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ARTICLE INFO ABSTRACT
Keywords: When researchers analyze data, it typically requires significant effort in data preparation to make the data
Scientific data analysis analysis ready. This often involves cleaning, pre-processing, harmonizing, or integrating data from one or

Research infrastructures
Data service providers
Data analysis environments

multiple sources and placing them into a computational environment in a form suitable for analysis. Research
infrastructures and their data repositories host data and make them available to researchers, but rarely offer a
computational environment for data analysis. Published data are often persistently identified, but such identifiers
resolve onto landing pages that must be (manually) navigated to identify how data are accessed. This navigation
is typically challenging or impossible for machines.

This paper surveys existing approaches for improving environmental data access to facilitate more rapid data
analyses in computational environments, and thus contribute to a more seamless integration of data and analysis.
By analysing current state-of-the-art approaches and solutions being implemented by world-leading environ-
mental research infrastructures, we highlight the existing practices to interface data repositories with compu-
tational environments and the challenges moving forward.

We found that while the level of standardization has improved during recent years, it still is challenging for
machines to discover and access data based on persistent identifiers. This is problematic in regard to the
emerging requirements for FAIR (Findable, Accessible, Interoperable, and Reusable) data, in general, and
problematic for seamless integration of data and analysis, in particular. There are a number of promising ap-
proaches that would improve the state-of-the-art. A key approach presented here involves software libraries that
streamline reading data and metadata into computational environments. We describe this approach in detail for
two research infrastructures. We argue that the development and maintenance of specialized libraries for each RI
and a range of programming languages used in data analysis does not scale well.
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Based on this observation, we propose a set of established standards and web practices that, if implemented by
environmental research infrastructures, will enable the development of RI and programming language inde-
pendent software libraries with much reduced effort required for library implementation and maintenance as
well as considerably lower learning requirements on users. To catalyse such advancement, we propose a roadmap
and key action points for technology harmonization among Rls that we argue will build the foundation for
efficient and effective integration of data and analysis.

1. Introduction

One of the great challenges of data-driven research is that data rarely
come in a form that is immediately ready for analysis. Across industry
and academia it is estimated that in a data-driven project 80% of the
effort is spent on data preparation (Press, 2016; Wickham, 2014). As a
consequence, a relatively small amount of time is spent on the actual
analysis through which the primary value can be realised, and some
research may not even be attempted because the necessary data prep-
aration would be too time consuming.

Technological advances over the past decade have provided us with
an unprecedented increase in compute resources for research, ushering
in a new way of doing science (Hey et al., 2009). However, we will not
be able to reap the dividend for research from these developments if we
cannot reverse the unfavourable ratio of time spent on data preparation
versus data analysis, thus allowing more resources to be shifted towards
activities that allow us to extract knowledge from data.

The increasing need for long term, systematic, standardised moni-
toring required to understand the environment has led to the develop-
ment of Research Infrastructures (RI). At the same time, technology
advancements in storage and compute has provided an opportunity to
make any data collected readily available for reuse. Rls are platforms
that acquire, curate and publish continuous observation data for
research and policy making. Important for RIs is that their data holdings
and compute services are accessible and reusable not only for human
users but also for machines (Weigel et al., 2020). Preparing the data for
machine access paves the way for data reuse in computational envi-
ronments for data analysis, e.g., in Jupyter Notebooks and High Per-
formance Computing, and thus more actively supports the automated
transformation of published data into analysis-ready data.

We conducted a survey of state-of-the-art approaches for integrating
data and analysis implemented by world-leading RI in the Earth System
and Environmental Sciences. Major RI advances in Earth System and
Environmental Sciences studying global challenges such as climate
change, geohazards or biodiversity loss have led to an enormous in-
crease in the amount of data available in these domains. This trend was
further fueled in recent years by the commissioning of large Rls that
enable the permanent observation of the Earth System. The resulting
research data managed by these infrastructures collected by individual
researchers, groups, or projects are not only voluminous but also
extremely heterogeneous, which reflects the multidisciplinarity as well
as the large range of methods and technologies used in data acquisition
and processing.

Within this scope, we studied automated approaches that improve
access to research data published by repositories and facilitate auto-
mated transformation of published data into analysis-ready data in
computational environments to enable a seamless integration of data
and analysis. In our study, we paid particular attention to observational
time series and whether such data can be efficiently (i.e., automatically)
loaded into data structures for data analysis with Python as program-
ming language and using Jupyter as a commonly used computational
environment.

By analysing current approaches and solutions being implemented
by world-leading RIs, we highlight the existing practices to interface
data repositories with computational environments, underscore the
challenges faced at this interface, and identify technology gaps in ap-
proaches by individual RIs. The survey also highlights the heterogeneity

of existing practices and shows that there is enormous potential for
practice harmonization.

A continuing challenge is the significant effort required to develop
technologies that match the requirements of the many distinct appli-
cation programming interfaces (APIs) implemented by data repositories
with the many programming languages used by researchers for data
analysis. We show that in practice this heterogeneity means that each
data repository needs to develop, publish and maintain individual
technologies for each (major) programming language used by re-
searchers for data analysis (e.g., R, Python, Julia, Go, MATLAB, just to
name a few). Such development and maintenance is inefficient and for
many RIs untenable.

Building on this observation, we propose a roadmap for future co-
ordinated development among RIs in the Earth and Environmental
Sciences, and potentially in other disciplines, that will see a harmoni-
zation in approaches for seamless integration of data and analysis, and
inevitably lead to increased efficiency, reduced development and
maintenance costs, and lower learning curves for users.

The paper is structured as follows: Section 2 (Survey) presents the
conducted survey, with a short description of the surveyed RIs and a
description of the activities conducted to understand if and how the RIs
support machine discovery of data access, given an identifier (e.g.,
digital object identifier (DOI)). Building on the survey, sections 3 (So-
lutions) and 4 (Discussion) present and discuss state-of-the-art solutions.
In Section 5 (Roadmap), we suggest that the solutions can inspire a
concerted technology harmonization among Rls that would enable the
development and maintenance of RI and programming language inde-
pendent solutions for data-analysis integration. Section 6 (Conclusions)
closes this work with final remarks.

2. Survey

This section summarizes a systematic review of the approaches
implemented by world-leading RIs in Earth System and Environmental
Sciences to enable data and metadata access for both humans and ma-
chines. We first present the RIs included in the survey. We then detail the
survey design and the conducted activities. Finally, we present our
findings in a survey evaluation.

2.1. Selected research infrastructures

This section briefly introduces selected RIs and their data and in-
formation systems.

PANGAEA (www.pangaea.de) is a data publisher in Earth & Envi-
ronmental Science, jointly managed by the Alfred Wegener Institute
Helmholtz Centre for Polar and Marine Research (AWI) and the Centre
for Marine Environmental Sciences (MARUM) at the University of Bre-
men. PANGAEA is a trustworthy repository (World Data System, Core-
TrustSeal) which provides continued access and long term preservation
of more than 400,000 datasets from various sub-disciplines of Envi-
ronmental Sciences. These datasets have been collected through
research infrastructures, projects and programs, and also includes long
tail data collected or created by individual researchers. Access to these
datasets is enabled through support for numerous community-specific as
well as cross-domain standards. All published datasets are also tagged
with a persistent identifier (DOI).

The Terrestrial Ecosystem Research Network (TERN, https://www.ter
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n.org.au/) collects, curates and publishes data on temporal and spatial
changes in Australia’s terrestrial ecosystems. Established in 2009 with
Australian government NCRIS (National Collaborative Research Infra-
structure Strategy) grant funding, TERN’s Data Discovery Portal gives
open access to over 2500 open data collections. TERN’s data collections
are derived from continental-scale gridded remote sensing, soil and
landscape products, plot-based soil and vegetation surveillance moni-
toring sites, calibration and validation campaigns for remote sensing,
and sensors such as phenocams, acoustic monitors and eddy-covariance
flux towers. TERN develops standardised ecological monitoring pro-
tocols and systems for data collection, storage and management.

AuScope (https://www.auscope.org.au/) is an NCRIS-funded
Australian research infrastructure that develops and delivers practical
tools to enhance accessibility of geoscience datasets. The AuScope Vir-
tual Research Environment (AVRE) provides a unifying platform for all
AuScope Programs’ data and analytical needs (Wyborn et al., 2018). Its
Scientific Software Solutions Centre (SSSC) provides an environment
where scientific software can be published, discovered, shared with
collaborators, and described for automated execution (Squire et al.,
2018). The process of registering software at the SSSC captures
description, license, versioning, and citation relevant information, as
well as a machine-readable description of the software environment
required to run it. With these elements, software from the SSSC can be
chained together into workflows in virtual laboratories. This includes
automated data preparation by client applications and management of
output data. The elements are identified by persistent and versioned
Uniform Resource Identifiers (URI).

The Commonwealth Scientific and Industrial Research Organization
(CSIRO, https://www.csiro.au) is Australia’s national research agency,
covering a broad spectrum of science, engineering and medical research
domains. Many datasets that originated from CSIRO research are made
available through the CSIRO Data Access Portal (DAP, https://data.
csiro.au). The repository serves both as a general data repository and
as an institutional data archive. The CSIRO DAP was among the first data
repositories to offer its metadata for harvesting using Schema.org (Noy
and Brickley, 2017) in its user interface to make data landing pages
machine readable.

The National Ecological Observatory Network (NEON, https://www.
neonscience.org) is a Research Infrastructure (RI) established by the
US National Science Foundation, with the mission to ‘enable ecological
forecasting of ecosystem function’s response to natural and human-
induced forcings such as climate, land use and invasive species across
a range of spatial and temporal scales’ (Schimel et al., 2011). It is a
distributed site-based RI of ecological measurements and observations
designed to scale from the site to the region-and-continent over the next
30 years. The observatory includes 81 field sites (including terrestrial
and aquatic), airborne remote sensing, and a cyber-infrastructure for
data acquisition, storage, analyses, and dissemination. NEON has 181
quality-controlled, open-source data products across a range of biotic
and abiotic ecological processes and drivers, that include; biodiversity,
biogeochemistry, climate, ecohydrology, invasive species and land use.

The Chinese Ecosystem Research Network (CERN, http://www.cern.ac.
cn/) was established in 1988 by the Chinese Academy of Sciences, to
obtain scientific data of ecosystem changes and to study the changes in
structure, functions and processes of different ecosystems in China (Fu
etal., 2010). Over the past 30 years, CERN has developed into a national
innovative scientific and technological facility, including a synthesis
center, a data center, five disciplinary sub-centers, and 44 networking
stations. CERN’s monitoring and experimental activities produce
various data that are processed, integrated, and accessed through
ecological stations, sub-centers, data centers, and the synthesis center
under standardised procedure. CERN conducts network observation and
experimentation across China’s diverse ecosystems on a long-term basis,
serves as a nexus for national ecological research, promotes data
sharing, and creates an educational center and collaborative base for
ecological researchers.
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The Integrated European Long-Term Ecosystem, Critical Zone & Socio-
Ecological Research Infrastructure (eLTER RI https://www.lter-europe.
net/elter-esfri) comprises a wide range of highly instrumented Euro-
pean sites focusing on terrestrial, fresh- and transitional water ecosys-
tems and also addressing socio-ecological interactions. Currently in the
phase of preparing its operational implementation, it enables the in-situ
and co-located acquisition and long-term preservation of ecosystem
characteristics and Essential Variables ranging from biogeochemistry to
biodiversity as well as socio-ecological characteristics. The RI provides
and develops e-infrastructure for data managers, developers and scien-
tists, including the Dynamic Ecological Information Management Sys-
tem - Site and Dataset Registry (DEIMS-SDR) (https://deims.org/), the
vocabulary service EnvThes (http://vocabs.lter-europe.net/EnvThes/),
the eLTER Data Integration Portal (DIP) (http://dip.lter-europe.net) and
Central Data Node (CDN) (https://cdn.lter-europe.net/).

The Integrated Carbon Observation System (ICOS, https://www.icos-cp
.eu/) is a European-wide greenhouse gas research infrastructure. ICOS
produces standardised data on greenhouse gas concentrations in the
atmosphere, as well as on carbon fluxes between the atmosphere, the
earth and oceans. ICOS provides long term, high quality observations
that follow the global standards for the best possible quality data on the
atmospheric composition for greenhouse gases (GHG), greenhouse gas
exchange fluxes measured by eddy covariance and CO partial pressure
at water surfaces. ICOS data is based on the measurements from over
140 stations across 12 European countries and is available at the ICOS
data portal (https://data.icos-cp.eu/) with open access to data and
metadata for download and instant graphical preview. A virtual research
environment is provided as well with Jupyter Notebooks to the public,
for collaborative research groups and education with direct access to the
data.

The European Network for Earth System Modeling Climate Data Infra-
structure (ENES CDI, https://is.enes.org/) is a Research Infrastructure
which aligns and pools national services and resources to support the
European climate research community. It is closely integrated into the
worldwide Earth System Grid Federation (ESGF, https://esgf.lInl.gov/).
Core services, such as data ingestion, hosting and access for climate
simulations in the multi-PByte range, are complemented by persistent
identifier (PID) services that enable data versioning, data replication,
collection building and annotation with external information. High-
level collections are associated with DOIs whose persistence is guaran-
teed by the World Data Centre for Climate (WDCC). Processing services
close to the data are stepwise integrated into the infrastructure. This
includes JupyterHub installations as well as web service interfaces based
on OGC WPS (Open Geospatial Consortium Web Processing Service)
standard.ENES provides standardised and quality-controlled, open data
collections from various climate modeling activities. Most prominent
examples are the collections from Coupled Model Intercomparison
Projects (CMIP) and the Coordinated Regional Climate Downscaling
Experiments (CORDEX).

NCI Australia (National Computational Infrastructure) (https://nci.org.
au/) hosts data collections that are co-located with high-performance
supercomputer infrastructure and cloud systems that generate data,
process data streams or analyze data. The vast majority of this data has
been from the climate, weather, geophysics and environmental sciences.
As well as available through filesystem access and vast co-located soft-
ware library, NCI publicly delivers the geospatial data through inter-
operable protocols wherever possible, including ISO (International
Organization for Standardization) geospatial standards, OGC, and
OpenDAP (Open-source Project for a Network Data Access Protocol),
plus global federations such as the ESGF NCI has delivered these through
a mixture of servers including GeoNetwork (https://geonetwork.nci.
org.au) as a data discovery service. While NCI delivers large amounts
of data through services such as THREDDS, it has developed its own
scalable data services, e.g., through GSKY (https://gsky.nci.org.au).
These services increasingly ensure that the computational processing of
the data is handled on the server-side (Evans et al., 2015). Each
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community on the system can also augment their computational
ecosystem on the common data.

2.2. Design

To obtain a state-of-the-art overview of the current practices on data
access offered by the selected RIs, we asked participating infrastructure
representatives to fill a questionnaire on technical details and imple-
mented standards of their data infrastructure. Specifically, we asked for
persistent identifiers used, the metadata and data formats and standards
offered as well as the implemented access protocols and interfaces.
Furthermore, we asked the participants to provide example links to both
data and metadata resources as well as the required authentication
protocols. Finally, we asked the respondents to gather practices and
thoughts on the following questions: Describe how a data scientist can
write a script (any language) that based on a DOI/PID loads the identified
(meta)data into a data frame (native data structure in your language of
choice). Do you or third parties offer special libraries for data access? If a
DOI/PID is not sufficient, what information does the data scientist need to
load the data of your RI into a data frame?

Of primary interest are cross-domain practices based on widely used
and easily implementable web standards suitable for both human and
machine access and processing. We focused on two approaches for
disseminating meta(data): embedding metadata within a web page and
using content negotiation.

2.2.1. Embedded metadata

A very common method to expose machine readable metadata is to
embed metadata in the HTML (Hypertext Markup Language) code of the
landing page a PID/DOI resolves to. Traditionally, in the scholarly
context this has been achieved using Dublin Core (Weibel and Koch,
2000) within META tags (e.g., title, date, creator, identifier) as recom-
mended by the Dublin Core initiative (Kunze, 1999).

Links (Uniform Resource Locators - URLs) to data objects can be
embedded in a landing page’s HTML or in the response header following
the typed links convention (RFC8228, Nottingham, 2010) which in the
scholarly context has been refined by Van de Sompel and Nelson (2015)
in their signposting initiative.

During recent years, the use of JSON-LD (JavaScript Object Notation
for Linked Data; Sporny et al., 2020) encoded Schema.org metadata, e.
g., in the HEAD section of an HTML document, has gained popularity in
research related web pages. The use of Schema.org offers two important
advantages and therefore has been implemented by a large number of
data providers. First, it allows us to describe data sets in detail using the
Schema.org/Dataset type. Second, its use improves search engine har-
vesting and thus visibility and discoverability of described data sets. In
Schema.org/Dataset, links (URLS) to data objects can easily be captured
using the Schema.org/distribution property.

2.2.2. Content negotiation

To offer web based content in different formats, content negotiation
is a common approach to enable access to metadata optimized for both
humans and machines. This is done by a client application sending HTTP
(Hypertext Transfer Protocol) header requests in which the expected
response format is specified using a valid MIME (Multipurpose Internet
Mail Extensions) type within the Accept header field. This enables the
server to deliver the metadata in the form requested by the client. JSON-
LD encoded metadata can be requested using the application/ld + json
MIME type, as shown in the following example:

GET doi:10.1594/PANGAEA.80968 HTTP/1.1
Accept: application/ld+json

Assuming the MIME type is supported, content negotiation could also
be used to offer direct access to downloadable data objects such as
NetCDF (Network Common Data Form format) files. This mechanism is
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thus particularly useful if data is offered to users in various alternative
formats (Loscio et al., 2017).

To discover links (URLs) to data objects within the served content
generally requires domain knowledge. For example, XML (Extensible
Markup Language) encoded ISO19139 (Geographic MetaData XML) uses
the ‘CI_OnlineResource’ element while in XML encoded EML (Environ-
mental Markup Language) this is done using the ‘distribution’ element.
As described above, if Schema.org/Dataset encoded content is accessed
through content negotiation, data object links can be discovered via the
Schema.org/distribution property. This heterogeneity complicates the
discovery for machines of links to data objects in metadata.

Both methods are currently widely used by RIs. Content negotiation
is a W3C (World Wide Web Consortium) recommended practice for
providing data on the web (Loscio et al.,, 2017) and currently gains
momentum in particular within the Open Data community through the
emerging ‘content negotiation by profile’ approach (Svensson et al.,
2019). JSON (JavaScript Object Notation) encoded metadata, in
particular following the schema.org/Dataset specification, has been
strongly promoted by major search engines (Guha et al., 2015) and is
recommended by Google’s dataset search, one of the largest and fastest
growing search engines for research data (Brickley et al., 2019).

2.3. Evaluation

To determine if the described technologies are in use by the
participating RIs, we tested direct machine access to data given a DOI or
another (persistent) identifier used by the RI. The diagram in Fig. 1
shows the overall approach. We used F-UJI (Devaraju and Huber, 2020,
https://github.com/pangaea-data-publisher/fuji) - a tool which allows
Rls to estimate the FAIR level of a given data set - to perform metadata
retrieval from a landing page as well as to test content negotiation for
each data set. F-UJI also reports if the links to data objects are listed in
metadata. Additionally, we manually inspected each landing page
HTML source code in order to validate F-UJI’s results. (See Tables 1 and
2.)

Our survey showed that all RIs offer a number of standardised ex-
change protocols and associated services to enable machine access to
their metadata catalogues. However, no common agreement or main-
stream practice exists regarding the choice of offered metadata schemas
and associated exchange interfaces. The mainstream standards Cata-
logue Service for the Web (CSW) of the Open Geospatial Consortium
(OGC) and the Open Archives Initiative Protocol for Metadata Har-
vesting (OAI-PMH) were mentioned by all RIs except NEON and ICOS,
which offer a GraphQL (query language for APIs) API and a SPARQL
(SPARQL Protocol And RDF Query Language) endpoint, respectively.
Except ICOS, all RIs offer community accepted standard metadata for-
mats, among which 1ISO19115 (Geographic Information - Metadata),
1SO19139, and EML are most frequent. Most Rls offer Schema.org
metadata as JSON-LD in order to improve search engine discover-
ability. Similarly, the choice of data formats is not harmonized among
the RlIs, which is partly due to the large number of offered data types
ranging from time series data to multimedia objects. However, for time
series data, the common choice of available formats is limited to text
formats, in particular CSV (comma-separated values) and TSV (tab-
separated values), or NetCDF, which are offered by all RIs. Besides data
set based access, RIs have also started to offer data via APIs such as OGC
SOS (Sensor Observation Service) or WFS (Web Feature Service)
allowing to retrieve customized data sets whose extent is determined via
query parameters. Similarly, OpenDAP is used as query based data in-
terfaces by some of the investigated RIs.

Persistent identifiers are especially important for reusing data, since
they serve as reference in scientific citations. Therefore, they usually are
the only available information for finding corresponding metadata and
to identify and download the data objects, e.g., data files or data
streams. All examined RIs routinely identify all their data sets or select
data sets with PIDs. DOIs and Handles are the predominantly used
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Fig. 1. A schematic overview of HTTP based methods to expose metadata in a machine as well a human friendly manner offering various routes for machine based

discovery of links to downloadable data.

Table 1
Overview of most frequently used standards and interfaces for metadata and
data access offered by investigated RIs.

RI PID Metadata Data formats Data access
access
PANGAEA DOI OAI-PMH, HTML, TSV HTTP
HTTP
TERN DOI, PID OAI-PMH, CSW  NetCDF, CSV, HTTP,
GeoTIFF OpenDAP,
WES, WMS
NEON DOI, UUID REST API, CSV, HDF5, HTTP, REST
GraphQL, GeoTIFF API
HTTP
CERN DOI HTTP XLS, CSV, TIFF, HTTP
SHP, NetCDF
eLTER DOI REST API, OAI-  CSV, XLS, HTTP, SOS
(external) PMH, CSW NetCDF,
GeoTIFF, SHP
ICOS DOI, HTTP, SPARQL JSON, CSV, HTTP
handle XML, TSV
IS-ENES/ DOI, HTTP, OAI- NetCF, GRIB HTTP,
ESGF handle PMH OpenDAP
NCI DOI CSW, NetCDF, HDF5, HTTP,
OpenSearch GeoTIFF, CSV OpenDAP,
WMS, WCS
AuScope DOI CSW XML HTTP, WMS,
AVRE (external) WFS

Acronyms used in this table not explained elsewhere in this document: WMS:
Web Map Service; WCS: Web Coverage Service; WFS: Web Feature Service;
HDF5: Hierarchical Data Format; GeoTIFF: Geographic Tagged Image File
Format; UUID: Universally Unique Identifier; SHP: Shapefile format; GRIB:
General Regularly-distributed Information in Binary form format.

persistent identifiers.

Some of the above-mentioned mainstream protocols (e.g., OAI-PMH
or CSW) provide standard methods to access data sets using identifiers.
However, the identifiers listed by these catalogue services often differ in
design from persistent identifiers. For example, OAI-PMH identifiers
must follow a URI syntax different from RFC2396 (Berners-Lee, 1998),
which effectively excludes DOIs in OAI-PMH metadata. This is a chal-
lenge for FAIR (meta)data because the principles prescribe the use of
persistent identifiers. The same can be said for systems using OpenDAP
or OGC data exchange standards, such as SOS or WFS, which do not
allow data retrieval by persistent identifier. More important, however, is
the fact that no standard or common (and machine actionable) agree-
ment exists for how links to data objects shall be included in metadata.
Consequently, none of the investigated RIs provides machine-actionable
links to data objects on their landing pages or within provided metadata.
As a result, an information gap exists between identifiers and data ac-
cess. For machines this gap is particularly challenging since they fail to
automatically identify the link.

As we highlighted, some of the above-mentioned protocols do not
allow retrieval of data based on persistent identifiers. As illustrated in
Fig. 1, we, thus, focus on access methods based on the HTTP protocol
and evaluate how RIs address the gap between identifiers and data, and
which possibilities and practices exist to make data accessible for
machine-based data analysis environments using persistent identifiers as
an entry point.

PANGAEA and IS-ENES provide metadata embedded in their landing
page’s HTML expressed as Dublin Core META tags. PANGAEA, CERN
and IS-ENES offer their metadata encoded as JSON-LD, following the
Schema.org/Dataset convention, embedded in the HTML of their land-
ing pages. Additionally, PANGAEA, TERN, CSIRO, IS-ENES, ICOS and
NCI offer JSON encoded metadata via content negotiation. Except ICOS
which offers a proprietary JSON encoding, all RIs offer this JSON met-
adata encoded as standardised Schema.org/Dataset style JSON-LD.
NEON also provides JSON-LD schema.org/Dataset encoded metadata
embedded in the HTML of its landing page. However, in NEON this
HTML is dynamically generated using JavaScript and access to metadata
thus relies on a client that interprets JavaScript.

Except PANGAEA, none of the investigated RIs serves JSON meta-
data containing a standard compliant link to a downloadable data ob-
ject. ICOS’ custom JSON and XML metadata formats do contain data file
name and access URL, but are not machine actionable due to a license
agreement which needs to be manually accepted. PANGAEA and NEON
include sufficient metadata about data objects such as actionable links to
data files and encoding information (MIME type) in their Schema.or
g/Dataset encoded JSON-LD metadata. However, only PANGAEA uses
this data object metadata (namely its MIME type) to enable direct
download of data files using content negotiation, for example:

GET doi:10.1594/PANGAEA.80968 HTTP/1.1
Accept: text/tab-separated-values

To summarize, we found that despite the comparably high stan-
dardization level among RIs attained during the past years, it still seems
to be a challenge to provide the same level of information to both ma-
chines and humans. When using a DOI or URL as starting point, a human
user is immediately directed to a landing page. From there, for humans it
is generally straightforward to discover rich metadata and download the
corresponding data. In contrast, it is surprisingly difficult for machines
to find interpretable metadata with links to data objects using a DOl as a
starting point. Although content negotiation is supported by some RIs,
links to downloadable data objects are rarely included in this metadata.
Also, these links are rarely embedded in machine-readable form in the
HTML code of the landing pages.
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Table 2
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Evaluation results performed on selected datasets from investigated Rls using the HTTP based methods illustrated in Fig. 1 for machine based discovery of links to

downloadable data.

Evaluated PID PIDs Data link on Metadata Content Content Data link Data link
available landing page embedded negotiation JSON negotiation XML in JSON in XML

PANGAEA https://doi.pangaea.de/10.1594/PA Y Y vy Y N Y -
NGAEA.896543

TERN https://doi.org/10.4227/05/5344 Y N - Y* N N N
F1159A1A9

CSIRO doi:https://doi.org/10.4225/08 Y - - Y* N N -
/563869A931CFE

NEON https://data.neonscience.org/ Y© Y* yaube N N Y€ -
data-products/DP1.00001.001

CERN https://dx.doi.org/10.11922/scie Y N Y* N N - -
ncedb.293

eLTER https://deims.org/dataset/75a7{93 Y© N N N N - -
8-7¢77-11e3-8832-005056ab003f

1COS https://hdl.handle.net/11 Y N N yd v v N
676/8YwZj8CQEj87Iul9P6QkZiKX

IS-ENES/ doi:10.22033/ESGF/CMIP6.4397 Y N yob Y?* N N -

ESGF
NCI doi:10.25914/5eaa30de53244 Y Y N Y N N -
Footnotes:

& Schema.org.

® Dublin Core.

¢ Content generated by JavaScript.
4 Proprietary or custom format.

¢ Partly implemented.

3. Solutions

The above described approaches can be used to automate ingesting
data and metadata into computational environments. Some of the
investigated RIs have proposed solutions by developing specialized
software libraries that automate such ingestion. For example, PANGAEA
has recently published the Python library pangaeapy (Huber et al.,
2020) (https://pypi.org/project/pangaeapy/), which allows reading
data sets into a native Python object given a DOIL. The library leverages
PANGAEA’s web services to retrieve rich metadata and load the asso-
ciated tabular data into a Python (pandas) data frame object (McKin-
ney, 2012). The data frame data structure is commonly used in the wide
range of statistical and data visualisation libraries, e.g., scipy or
matplotlib. The direct availability of data in this data structure
streamlines data processing for data scientists. Pangeapy’s data struc-
tures for metadata follow the PANGAEA data model (Diepenbroek et al.,
2017), which is centered around the Dataset class structure containing
several supportive classes such Event and Parameter for information
about the geographical and methodological context and the observed
property, respectively, as well as the Data themselves, for the individual
measurements and observations. To represent PANGAEA specific met-
adata, pangaeapy implements the PanDataSet class, which provides
attributes to hold objects for, among other, PanEvent and PanParam
classes. Individual metadata values can be accessed through their cor-
responding object attributes. The tabular data of a data set is stored in
the data attribute of PanDataSet, which holds a data frame object. In
some cases, PANGAEA’s tabular data does not contain temporal or
geographical information (e.g., latitude and longitude) as this infor-
mation is instead in the metadata of a PANGAEA data set, e.g., in an
associated Event. In such cases, pangaeapy adds additional data col-
umns to the data frame to hold these data.

Within a Python based data analysis environment such as Jupyter,
PANGAEA data and metadata can be loaded with the following
statement:

pandata = PanDataSet (’doi:10.1594/PANGAEA.889516")

Similarly to PANGAEA, ICOS provides a Python library (icoscp)
(https://pypi.org/project/icoscp/) to provide users high-level,

performant and easy access to tabular data. In ICOS, persistent identi-
fication of digital data objects resolves to a human friendly landing page.
The provided metadata includes a filename needed to conventionally
download the file. With a single instruction, the icoscp library loads
this metadata and data into a Python data frame. The following state-
ments can be used to load ICOS data into a data frame by either (1) the
local identifier, (2) the Handle, or (3) the landing page URL:

icosdata = Dobj ('XA_Ifg7BKgS0tkQd4dGVEFnM’)

icosdata = Dobj (’https://hdl.handle.net/11676/
XA_Ifg7BKgS0tkQd4dGVEFnM’)

icosdata = Dobj (’https://meta.icos-cp.eu/objects/
XA_Ifq7BKgS0tkQd4dGVEFnM’)

As with pangaeapy, the returned Python object contains a standard
pandas data frame and attributes describing the data columns. A col-
umn description contains for example: type = “gross primary CO2
production”, unit = “pmol m-2 s-17, kind = “particle flux”, whereas the
metadata for the data set itself contains the citation string, among other
information. Currently, icoscp is limited to loading time series data
(CSV). As a rule of thumb: data sets that can be previewed in the data
portal are accessible through the library. Overall, the pangaeapy and
icoscp libraries considerably streamline loading data into computa-
tional environments and, thus, support making data analysis ready. This
concerns in particular the reading of data into suitable data analysis
formats as well as data harmonization and cleansing.

Having data available in data frames is an important first step in
overall data processing and analysis. As a showcase for PANGAEA and
ICOS data processing and analysis, we used pangaeapy and icoscp to
synthesise data from both RIs in a common computational environment,
for which we used Jupyter. We chose two complementary data sets
(Diverres et al., 2020; Knust and Rohardt, 2018) with data collected
during ship-based physical oceanography and carbon dioxide measure-
ments (Pfeil et al., 2013). Together, the data represent two close tran-
sects across the Atlantic ocean, measured during two ship expeditions
that occurred within a 2 months’ time frame.

With the libraries, we load the data sets directly into data frames
using the respective persistent identifier as follows:
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icosdata Dobj (https://hdl.handle.net/11676/
xgudrfCmgvXb4dwlwGGD6mYsB’)

icosdata_frame = icosdata.get ()

pandata PanDataSet (’https://doi.org/10.1594/PANGAEA.
889516°)

pandata_frame = pandata.data

We used the pandas built-in pl ot method and matplotlib to plot
the sea surface temperature data against their measurement timestamp
of both data sets. As Fig. 2 shows, the data sets are temporally closely
connected.

The showcase highlights (code in Fig. 2) that only the data are uni-
form while metadata remains heterogeneous, with Rl-specific syntax
and semantics. Indeed, the columns of interest are labelled Temp and
Temp [degC] in PANGAEA and ICOS data, respectively. Both are water
temperature observations in degree Celsius. This can be inferred from
the metadata, but is implicit and not (easily) correctly interpreted by
machines. The depth (sensor depth in the water) for the measurement is
unknown, which highlights a lack of harmonized annotation practices
for accurately describing observable properties. Unfortunately,
resolving this requires manual intervention. In the future, this semantic
problem must be addressed more systematically, e.g. with a unified
parameter nomenclature or a semantic interoperability framework
(Magagna et al., 2020).

We used the cartopy (Met Office, 2020) Python module to show the
geographical variation of measured temperatures along both transects.
The module provides advanced cartographical plotting features to add a
geographical context to matplotlib plotting results using a variety of
geographical projections. The plotted map (Fig. 3) nicely shows the
geographical complementarity of both datasets as well as the expected
longitudinal variation of observed sea surface temperatures.

In addition to data analytics, both libraries support proper data
citation, the citation property in each data structure, which prints the
data citation including the preferred persistent identifier (Fig. 4). (See
Fig. 4.)

The presented chart and map plotting examples nicely show the
advantage of libraries that streamline the data ingestion and harmoni-
zation tasks and thus contribute to ensuring that data scientists can focus
more on data analysis. Although the example given here is very Python-

plt.figure(figsize=(14,7))
ax = plt.axes()
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centric, we note that the proposed approach can be implemented using
other languages. For example, the R library pangaear (Chamberlain
et al., 2016) offers functionality comparable to pangaeapy.

4. Discussion

The implementation by RIs of harmonized and standardised access to
data and metadata described here shows some clear trends. For example,
we observe that cross-community metadata standards are gaining mo-
mentum in environmental Rls. Here, embedding metadata in landing
pages following the Schema.org convention for structured data on the
web (JSON-LD) plays a very important role. This is an interesting
development, since the main focus in recent years has been on com-
munity specific formats. For example, there is a remarkable diversifi-
cation of OGC and ISO standards in the numerous community profiles
and extensions to the ISO19115 metadata standard (see, e.g., Brodeur
et al., 2019). These are highly specialized formats in contrast to the
generic and easy to implement Schema.org.

An analysis of Google Trends shows a decreasing interest in
1SO19115 after about 2011, and at the same time an increasing interest
in Schema.org (Fig. 4). In 2013, the Schema.org/Dataset type was
included, which enabled data providers to richly describe their data
assets and major search engines to harvest them.

Three years later, Wilkinson et al. (2016) published the FAIR data
principles, which describe “concise, domain-independent, high-level
principles that can be applied to a wide range of scholarly outputs” while
recognizing the importance of discipline specific requirements. Since
then, the FAIR principles have had overwhelming success within the
scientific community and are endorsed by major scientific stakeholders
including publishers, funders and policy makers (see, e.g., Stall et al.
(2019) for initiatives in Earth and environmental sciences).

Both the FAIR data principles as well as search engine optimisation
(SEOQ) approaches have similar requirements for domain agnostic pro-
vision of metadata and have a comparably high standard with respect to
detail and completeness. As Schema.org serves two purposes (SEO and
FAIR), it is now used by a rapidly increasing number of data providers to
enable FAIR metadata and data provision.

The use of persistent identifiers is another prerequisite for FAIR data,
and their advantages have been described in detail by Philipson (2019).

icosdata_frame.plot(x="TIMESTAMP', y='Temp [degC]',ax=ax,linestyle='None', marke
pandata_frame.plot(x='Date/Time', y='Temp',ax=ax, linestyle='None', marker='o',g

plt.show()
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Fig. 2. Time series of water temperature in degree Celsius for two ships crossing the Atlantic ocean. On the left in orange, the data set published by PANGAEA, with
observations from Europe to South America. On the right in blue, the data set published by ICOS, with data collected from Europe to Brazil. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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proj=ccrs.cartopy.crs.Miller()
plt.figure(dpi=150)

ax = plt.axes(projection=proj)
ax.set_extent([-60, 20, 48, -40])
ax.stock_img()
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land_56m = feat.NaturalEarthFeature('physical', 'land', '50m',edgecolor='grey',f

ax.add_feature(land_56m)
ax.coastlines()

ax.scatter(pandata_frame[ 'Longitude'],pandata_frame['Latitude’],c=pandata_frame[
ax.scatter(icosdata_frame['Longitude'],icosdata_frame['lLatitude'],c=icosdata_fra

plt.show()

4

Fig. 3. The PANGAEA and ICOS data sets plotted with geolocation and colour gradients (dark blue, minimum, to yellow, maximum) to represent the sampled water
temperature. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

for references in [icosdata.citation, pandata.citation):|
print(references)

Diverres, D., Lefévre, N., ICOS RI, 2020. ICOS OTC Release, FR-SOOP-France-Brazil , 2017-04-23-2017-05-04, https://hdl.handl

e.net/11676/xgudrfCmqvxbawlwGGD6mYsB

Knust, Rainer; Rohardt, Gerd (2018): Continuous thermosalinograph oceanography along POLARSTERN cruise track PS105 (ANT-XXXI
1/4). Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, PANGAEA, https://doi.org/10.159

4/PANGAEA. 889516

Fig. 4. Example of how to obtain the citation strings for both data sets.

The environmental domain, in particular, has been using PIDs for a
variety of data resources and products. In recent years, the reliability of
PID systems has been a cause for concern, resulting in DOIs becoming
the tool of choice in most communities, as this system has proven to be
the most trusted and consistent (Klump and Huber, 2017), a trend we
also observe among Rls investigated in this study. Persistent identifiers
assigned by trustworthy data archives are essential to make data citable
and thus enable the data-based reproducibility of research results. They
represent the link between analysis results, published research data and
publications based on them and are thus the bridge between publishers,
data and computational environments.

While being frequently used by the investigated RIs, some of the
above mentioned catalogue services, namely OAI-PMH and CSW, un-
fortunately have significant disadvantages with respect to the above
described FAIR data practises. As they often require using internal

identifiers, OAI-PMH, CSW and other catalogue services are less useful
for metadata retrieval within interdisciplinary data science applications.
Furthermore, the use of these protocols requires additional knowledge
such as the web location of the individual service endpoint. Except for
OpenSearch, no standard and widely accepted method exists to expose
machine readable links to metadata search or catalogue services within
a data set web page. We therefore recommend to offer domain-agnostic
machine readable metadata, preferrably Schema.org/Dataset JSON-LD,
in closest connection with a human readable data set web page. As
discussed above, this can be achieved by implementing commonly used
web technologies such as HTTP based content negotiation or embedding
metadata within the HTML code of the landing page. Both methods
already are used by investigated RIs.

In principle, the harmonized use of persistent identifiers and com-
mon approaches for exposing cross-disciplinary metadata should enable
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Fig. 4. Google trend analysis, showing in red increased interest in ‘Schema.org’ and in blue a decrease for ISO19115. (For interpretation of the references to colour in

this figure legend, the reader is referred to the web version of this article.)

data to be transferred to computational environments using a uniform
approach (Weigel et al., 2020). The technology components required to
directly access data given a DOI and negotiate content between data
provider and consumer does exist. While necessary for a solution, these
components are not sufficient for our ultimate goal of having the data in
a native data structure of the computational environment. Essential is
also the explicit linking of data in metadata (FAIR sub principle F3:
“Metadata clearly and explicitly include the identifier of the data they
describe”) and we observed that such links are often not available or not
identifiable by machines. Moreover, data are available in many different
formats, which considerably complicates a unified approach since
loading data into computational environments relies on additional in-
formation. Such additional information needs to be encoded in pro-
gramming code. A solution is presented by specialized software libraries
such as pangaeapy or icoscp. Specifically for an RI and programming
language, implement the required software logic and with this simplify
the steps from download to the transformation of metadata and data into
a uniform data structure for analysis.

Although the approach to use specialized libraries is promising, our
use case revealed some open issues. For example, it takes time to get
familiar with multiple libraries. It would therefore be desirable if the
libraries (interface) were uniformly designed. Although icoscp and
pangaeapy are very similar, a common library framework for accessing
and ingesting data from a variety of RIs would be very helpful and would
improve the overall accessibility and reusability of their data sets.
Furthermore, a common data access and ingestion framework would
ease adoption and development of comparable libraries and tools for
other RIs. Another open issue is that the libraries presented here are
made available for only one programming language, i.e., Python, and
therefore cannot support the large number of data scientists using
alternative languages such as Julia or R. A common framework should -
to the extent this is possible - be defined independent from programming
languages.

We therefore favour and propose a more standards based solution,
which builds on standardization and best practices we discussed in this
study. As mentioned above, a distinct trend towards the use of Schema.
org JSON-LD encoded metadata in combination with persistent identi-
fiers can be observed among all investigated RIs. A common strategy of
FAIR implementation in RlIs should build on the high level of stan-
dardization we observed but include the definition of some common best
practises for, e.g., Schema.org implementations, agreement on the link
used to point to data in metadata, and a minimum set of metadata

elements required by data scientists. These best practises should build on
accepted FAIR principles for data objects, including the FAIR sub prin-
ciple F3. Inclusion of data identifier in the metadata of data to enable its
machine based access is also recommended by existing work on the
definition of FAIR metrics in the EOSC (European Open Science Cloud)
context (Genova et al., 2020) such as the Research Data Alliance (RDA)
FAIR data maturity model (RDA FAIR Data Maturity Model Working
Group, 2020) or the FAIRSFAIR project (Devaraju et al., 2020). FAIR
assessment tools such as F-UJI can help during the journey towards FAIR
compliance by testing the inclusion of data identifiers in metadata.

While the technologies and approaches would allow for harmonized
access to metadata for use within data analytics, access to data still is
problematic due to the rather low degree of standardization and the lack
of agreements on data syntax and semantics among the RIs. Additional
efforts are therefore necessary to reach such agreement. Since RIs cover
a wide range of scientific disciplines, interdisciplinary formats are the
most promising. Candidate formats include established scientific binary
formats such as NetCDF, HDF or the emerging interdisciplinary text
based formats ‘CSV on the Web’ (Tennison, 2016) or ‘frictionless data’
(Fowler et al., 2018). The latter two are especially interesting for data
scientists as they are based on flat, two dimensional comma separated
tables that are particularly easy to load using languages such as Python
or R. In contrast, the handling of multidimensional data in NetCDF or
HDF requires considerable knowledge about the dimensional structure
of the contained data. In summary, the choice of suitable data formats is
relatively small and need not be limited to a single format.

As mentioned earlier, another important aspect is dynamic data
retrieval APIs such as OGC SOS, which represent an alternative to of-
fering data-access via machine-actionable persistent identifiers. SOS has
for example been used as data infrastructure for national air quality data
provisions to the European Environment Agency (Kotsev et al., 2015)
and as a platform to provide public real-time access and harvesting of
marine data to be archived in PANGAEA (Huber et al., 2012). It is used
by RIs such as eLTER to publish site-based environmental observation
and measurement data and has also been extended or used as a basis for
additional services in diverse application scenarios such as data quality
assurance (Devaraju et al., 2015; Goldfarb et al., 2020). Open Source
libraries such as the R-package sos4R (https://github.com/52North/so
s4R) allow programmatic access to data comparable to the above
described PANGAEA and ICOS libraries, with the difference that for
sos4R an API endpoint and the correct parameters must be provided
instead of a persistent identifier. Publishing data only via API and not via
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regular file-based persistently identified snapshots raises concerns
regarding, in particular, reproducibility, since dynamic data can change.
Pioneering initiatives such as the RDA Working Group on Dynamic Data
Citation (WGDC) (Rauber et al., 2016) have provided detailed guide-
lines how this gap can be addressed, primarily by assigning PIDs to the
queries used to retrieve data sets.

Though not in the scope of this work, we emphasize that integrating
data and analysis must also encompass semantic harmonization of terms
used in (meta)data. This should allow for less ambiguous and machine-
actionable descriptions of complex observable properties beyond what is
currently possible or practiced with, e.g., Schema.org/measuredPrope
rty. The RDA InteroperAble Descriptions of Observable Property Ter-
minology (I-ADOPT) Working Group (WG) addresses this problem and is
developing a semantic interoperability framework (Magagna et al.,
2020).

The last two decades have seen a remarkable change in the use of
computational environments. In the early days, community-tailored
Virtual Research Environments (VREs, also termed Virtual Research
Laboratories or Science Gateways; see, e.g., Barker et al., 2019), pro-
vided pre-canned workflows for scientific analysis required by a
research community. However, VREs proved to be inflexible as they rely
on adaptation to meet the frequently changing requirements (Voss and
Procter, 2009). Moreover, custom systems generally require consider-
able maintenance effort, which consequently results in sustainability
challenges for many VREs and broader adoption beyond the community
that built them for their specific needs (particularly those that tightly
coupled data sets to specific tools, e.g., Candela et al., 2013). In recent
years, however, generic, domain-agnostic solutions have become more
common. They rely more on programmable data handling and analysis.
In this context, the rapid spread of computational notebooks, especially
Jupyter, has created an incredible dynamic in the context of data sci-
ences (Perkel, 2018). For example, AuScope has expanded its VREs to
enable users with varying skills to specifically target their needs and
either access a range of online data and software services to now create
their own workflows in their own environment. Both data and software
are accessible via standardised interfaces and are being utilised by in-
dividual researchers who commonly use computational notebooks to
mix and match data, software and tools to create their own exploratory
workflows (Wyborn et al., 2018).

For users who utilize analysis tools, be it advanced community spe-
cific VREs or desktop based Jupyter notebooks, a common RI approach
to expose metadata and data as described above would be very advan-
tageous. Environmental RIs play a major role worldwide for a large
number of users from research, industry and policy. The growing
number of such facilities and the increasing quality of the measurement
methods used have led to a sharp increase in the amount of available
research data. This explains the increasing importance of data science,
specifically also in environmental sciences (Raban and Gordon, 2020).
Both growing data and advanced analytics are essential elements in the
production of knowledge required to address urgent societal problems
such as climate change, loss of biodiversity or natural disasters.
Addressing the problem discussed here is an important responsibility of
the e-infrastructures managing the data. These infrastructures must
support efficient and effective data-driven, interdisciplinary research.
Streamlining data flow into the analysis tools used is an important sub
task, towards which this work contributes important insight.

5. Roadmap

The discussed approaches for data and metadata provision would
enable a significant fraction of RI-collected data to be more easily in-
tegrated into a computational platform of choice. However, the state-of-
the-art of creating, publishing and maintaining software libraries
specialized for each RI and programming language popular in data
analysis does not scale well, is inefficient and ultimately not sustainable.

We argue for a concerted technology harmonization effort among the
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RIs so that their data assets can be seamlessly integrated into arbitrary
computational platforms and programming languages with minimum
effort required for development and maintenance of libraries. The
requirement of minimum effort relies on developing generic approaches
and implementing these in generic libraries, which itself relies on
technology harmonization among Rls for which we need a concerted
effort.

We thus suggest a roadmap and actions that the RIs involved here
now intend to implement and others could follow as well. The plan in-
volves the following measures, which we categorize into immediate (1),
short (S) and medium term (M):

o Persistently identify data sets

e Adopt open and globally implementable communication protocols to
exchange data and metadata, where possible HTTP

e Resolve persistent identifiers to landing pages that are human and
machine readable, where possible HTTP-based resolution

e (S) Offer metadata in a domain-agnostic format, preferably JSSON-LD
following the schema.org/Dataset specification

e (M) Harmonize Rl-relevant metadata (e.g., observed properties,
methods, etc.).

e (S) Ensure that data set metadata include an explicit (i.e., machine
actionable) link to the corresponding data object so that given a
persistent identifier machines can access data without human
intervention

o (M) Ensure that accessed data are offered in a web and data science
friendly data format to (e.g., ‘CSV on the Web’ or ‘frictionless data’)

e (M) Offer metadata and data through content negotiation.

Although the presented work focuses on Rls, we note that the pro-
posed solutions and roadmap are applicable also to environmental data
infrastructures not directly associated with RIs. The proposed measures
are relatively straightforward to implement and, if widely applied, could
contribute to significantly improving the reusability, and thus FAIRness,
of environmental data.

6. Conclusions

We presented how some of the world’s largest environmental
research infrastructures (RIs) make their data available to the scientific
community. We found that while access to persistently identified data
and metadata is generally straightforward for humans, this is not true for
machines. For most RIs, it is thus still a challenge to make analysis-ready
data available in computational environments. Moreover, in recent
years the FAIR principles have defined further requirements for data
providers, including reproducibility and citation of data used in analysis.
We argue that it is important to address these challenges in order to
efficiently and effectively support data-intensive research in popular
modern data analysis languages such as Python and R. We present and
discuss current approaches implemented by Rls to address the challenge
of seamless integration of data and analysis. Our analysis shows that the
state-of-the-art approach is for the RI to provide specialized software
libraries in a data analysis language of choice that streamline loading
persistently identified data and metadata into a data structure native to
the language. This relies on established domain-independent standards
and web-based practices that in principle allow for the design of uni-
form, programming language and RI independent approaches, which
could enable seamless integration of arbitrary data and analysis con-
ducted in virtual research environments. For this to become viable in
practice, we need a concerted technology harmonization effort among
the RIs, for which we proposed a roadmap that the RIs involved here
now intend to implement.
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