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ARTICLE INFO ABSTRACT
Keywords: Phenology is the study of recurring plant and animal life-cycle stages which can be observed across spatial and
Phenology temporal scales that span orders of magnitude (e.g., organisms to landscapes). The variety of scales at which
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phenological processes operate is reflected in the range of methods for collecting phenologically relevant data,
and the programs focused on these collections. Consideration of the scale at which phenological observations are
made, and the platform used for observation, is critical for the interpretation of phenological data and the

MODIS application of these data to both research questions and land management objectives. However, there is currently
Landsat little capacity to facilitate access, integration and analysis of cross-scale, multi-platform phenological data. This
Hierarchical modeling paper reports on a new suite of software and analysis tools — the “Pheno-Synthesis Software Suite,” or PS3 - to

facilitate integration and analysis of phenological and ancillary data, enabling investigation and interpretation of
phenological processes at scales ranging from organisms to landscapes and from days to decades. We use PS3 to
investigate phenological processes in a semi-aride, mixed shrub-grass ecosystem, and find that the apparent
importance of seasonal precipitation to vegetation activity (i.e., “greenness™) is affected by the scale and platform
of observation. We end by describing potential applications of PS3 to phenological modeling and forecasting,
understanding patterns and drivers of phenological activity in real-world ecosystems, and supporting agricultural
and natural resource management and decision-making.

1. Introduction and flowering of plants, maturation of agricultural crops, emergence of
insects, and migration of birds and mammals. These seasonal dynamics

Phenology is the study of recurring plant and animal life-cycle stages show high sensitivity to environmental variation and scale (e.g., Liang
(Lieth, 1974). Classic examples of phenological events include leafing and Schwartz, 2009; Morisette et al., 2009) and across observing
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systems (Browning et al., 2015; Richardson et al., 2017), making
phenological records important in the study of climate change and its
effects on living systems (Parmesan, 2007). Documentation of patterns
and trends in phenology has increasingly contributed to climate change
research, including applications in national climatological assessments
and indicator systems (e.g., U.S. Environmental Protection Agency,
2016, Kissling et al., 2018, Lipton et al., 2018, Weltzin et al., 2020).

Because of its broad and interdisciplinary scope (Schwartz et al.,
2013), phenological information is highly relevant to a wide range of
environmental applications (Enquist et al., 2014), including many as-
pects of land management such as forestry (Lausch et al., 2018), agri-
culture (Hufkens et al., 2019), wildland fire management (Emery et al.,
2020) and conservation of biodiversity, ecosystems and ecosystem ser-
vices (Weiskopf et al., 2020). Phenology science is also important in the
rapidly evolving field of terrestrial animal migration ecology (Aikens
et al., 2020; Berman et al., 2020). At the same time, from an Earth
system perspective, phenology is a critical component of terrestrial
biosphere models because it plays an important role in regulating land-
atmosphere interactions and feedbacks (Richardson et al., 2012, 2013).

The relevance of phenology to site-level management decisions and
global-scale models highlights the fact that phenological processes
operate across spatial and temporal scales that span orders of magnitude
- from leaf to globe, and from days to seasons (Cleland et al., 2007).
Consideration of the scale at which phenological observations are made
is critical for the interpretation of phenological data, and the application
of these data to both research questions and land management objec-
tives (Berman et al., 2020). First, variation in phenological responses
across species or functional groups can lead to substantial variation in
phenology within natural communities (Browning et al., 2015) or across
landscapes (Klosterman et al., 2018; Waller et al., 2018), particularly in
heterogeneous environments (Browning et al., 2017; Liu et al., 2019).
Second, phenological transition dates (e.g., spring onset) derived from
satellite vegetation indices (e.g., Normalized Difference Vegetation
Index; NDVI) may lag behind underlying biological phenomena (e.g.,
spring budburst or leaf-out) and may be comparatively insensitive to
other phenomena (e.g., flowering or fruiting). Phenological models such
as the extended spring indices (Schwartz et al., 2013), while useful for
predicting broad-scale patterns and long-term trends (Monahan et al.,
2016), may be imperfect proxies at the site level (Richardson et al.,
2019) or across taxa (Gerst et al., 2020). Third, differences between local
climate and microclimate can complicate the interpretation of satellite
observations and highlight the importance of understanding the ulti-
mate drivers of fine scale phenological variation (Fisher et al., 2006).
Finally, on-the-ground, organism-level observations of phenological
events may not provide the broad-scale perspective or frequency of
observations necessary to interpret whole-ecosystem data on produc-
tivity or carbon and water fluxes for which scale-relevant observations
are needed (Richardson, 2019).

The variety of spatial scales at which phenological processes operate
and can be observed is reflected in the range of methods for collecting
phenologically relevant data and programs focused on these collections
(Jones et al., 2010; Morisette et al., 2009). However, there is little ca-
pacity to facilitate integration, let alone analysis, of cross-scale multi-
platform phenological data (Richardson et al., 2017). Unlocking the full
potential of the growing array of diverse phenology-related dataset can
be enhanced through tools that allow researchers to access, integrate,
and analyze data from multiple programs and platforms and across a
variety of spatiotemporal scales and resolutions.

Here, we report on a new suite of software and analysis tools to
facilitate cross-scale and cross-platform integration of phenology-
relevant data, which we term the “Pheno-Synthesis Software Suite,” or
PS3. PS3 was developed to address integration and synthesis across
several existing dataset and the related phenology programs. The
phenology datasets include field-based observations at a local scale,
near-surface imagery at a canopy level/catchment scale, satellite im-
agery observed at a 30-250 m pixel resolution, and climate-derived
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products at 2.5 km resolution (Fig. 1, Table 1). We first provide back-
ground information on these datasets, and then describe the constella-
tion of software. To demonstrate the utility of these tools for facilitating
multi-scale analysis, we provide an example from phenological obser-
vations in an arid environment.

2. Materials and methods
2.1. Ground-based phenology observations

2.1.1. USA National Phenology Network protocols and data

The USA National Phenology Network (USA-NPN; Schwartz et al.,
2012) is the primary source of in situ (ground-based) organismal
phenology data in the United States. The data maintained by the USA-
NPN are contributed by professional and volunteer observers across
the country (Rosemartin et al., 2014; Table 1, Fig. 1) based on rigorous,
scientifically vetted “status and intensity” protocols established by the
USA-NPN and widely adopted by the research community (Denny et al.,
2014). “Status” protocols require observers to indicate the presence or
absence of phenological phases, or phenophases, such as the presence of
leaves or fruits on individual plants repeatedly over the course of a
season. The protocols also incorporate measures of abundance that
reflect the count of elements (e.g., number of fruits) present on an in-
dividual plant, as well as measures of intensity that reflect proportional
expression of a phenophase (e.g., percent of fruit that are ripe, or pro-
portion of canopy with green leaves) (Denny et al., 2014).

The USA-NPN’s in situ phenology data are also available in pro-
gressively wider spatial extent from “individual phenometrics” to”site
phenometrics” data, which yield estimated phenophase onset and end
dates for individual plants or for multiple individuals of a species at a
site, and”magnitude phenometrics” data, which provide measures of the
extent to which a phenophase is expressed across multiple individuals or
sites over a specified time interval (Rosemartin et al., 2018).

The USA-NPN’s phenology data total over 23 M records of pheno-
logical status for ~1400 species collected at over 15,000 sites across the
United States for the period 2009-2020. These data have contributed to
over 100 scientific publications, with applications including the iden-
tification of drivers of phenology in select species (Gerst et al., 2017;
Mazer et al., 2015), the development of predictive models of phenology
(Crimmins et al., 2017a; Elmendorf et al., 2019), and the detection and
control of invasive plants (Wallace et al., 2016) and animals (Crimmins
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Fig. 1. A graphical representation of the approximate spatial and temporal
resolution of the phenologically relevant dataset accessed through PS3. The
colour of the oval surrounding the dataset name indicates the specific software
used to access those data. (While there is not a blue circle around Landsat,
Phenosynth does access Landsat-derived land cover data, it does not access
Landsat vegetation time series data.) (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of
this article.)
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Table 1
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Suite of phenologically relevant dataset available for integration in PS3, including data sources, type of observation, potential application and utility, temporal and

spatial scales, and component software used to access and analyze the data.

Dataset Description Utility Period of Temporal Spatial scale Data Provider Related PS3

availability frequency software

Ground-based in-situ phenology Phenological stages of 2009-present Days to Individual USA National NPN
phenology observations from the USA individual plant species weeks organism Phenology Network
observations National Phenology and (and NEON via USA

NEON programs NPN)

Near-surface Near surface, tower-based Canopy-scale 2005-present 15 to 30 Viewshed (sub- Phenocam Network Phenosynth
imagery imagery perspective min landscape to

landscape)

Satellite-based Satellite-based (e.g. Landsat, Globally-consistent Variable, Days to Ecosystem Land Processes Phenosynth
land surface MODIS) vegetation indices information on plant depending on weeks Distributed Archive with
phenology and land surface phenology dynamics sensor Archive Center AppEEARs4R

(LSP) metrics

Gridded climate Historical temperature and Links between plant 1979-present Daily Ecosystem/ gridMET and dacqre
data precipitation interpolated phenology and (gridMET) Region DayMet via Google

from observations variations in weather 1980-present Earth Engine
and climate (Daymet)

Gridded Spring Index (SI) and Predictor of 1981-present Daily Ecosystem/ USA National rNPN
phenological Accumulated Growing phenological transitions Region Phenology Network
indices Degree Days (AGDD)

et al., 2020). The PhenoCam archive includes data from >650 cameras, with im-

2.1.2. National Ecological Observatory Network protocols and data

The National Ecological Observatory Network (NEON) is a National
Science Foundation (NSF)-sponsored continental-scale observation fa-
cility designed to collect long-term open access ecological data to better
understand how ecosystems in the United States (U.S.) are changing in
the face of several environmental drivers (Keller et al., 2008). NEON
collects plant phenological data following the USA-NPN’s “status and
intensity” protocols across all terrestrial sites within the network (Denny
et al., 2014; Elmendorf et al., 2016). NEON’s data are fully integrated
into the USA-NPN’s phenology database, enabling users to access,
explore, and visualize integrated USA-NPN and NEON data using tools
on the USA-NPN website (NEON, 2020). NEON phenology observations
have the benefit of the additional rich set of biophysical observations
obtained at each NEON site: these ancillary site-level meteorological and
ecological data enable analysis of the relationships between plant-level
phenology and meteorological and environmental forcing functions
(Elmendorf et al., 2016).

2.2. Near-surface imagery

Most vegetation types exhibit seasonal or interannual variation in
photosynthetic activity, and some (e.g., deciduous shrubs and trees,
grasses) have distinct life cycles marked by the growth and senescence of
leaves. Associated changes in biochemistry affect reflectance of elec-
tromagnetic radiation from foliage on the land surface that can be
measured using remote sensors. The timing of these recurring changes in
reflectance is called land surface phenology (LSP; de Beurs and Henebry,
2010, Henebry and de Beurs, 2013, Hanes et al., 2014). LSP can be
determined from ground-based (i.e., near-surface) or satellite-based
remote sensing platforms.

The PhenoCam network is a near-surface network of canopy-level
digital cameras distributed across a range of ecoregions, climate
zones, and plant functional types in North America (Richardson et al.,
2007, 2017; Fig. 1, Table 1). PhenoCam imagery is obtained by cameras
mounted on poles or towers 1-10 m above the ground or canopy surface.
This orientation provides a canopy-scale perspective while retaining the
capacity to resolve individual organisms. Because PhenoCam imagery
has digital and physical characteristics similar to imagery obtained from
airborne or satellite platforms and sensors, it can serve as a link between
ground observations and satellite or airborne remote sensing (Berman
et al., 2020; Keenan et al., 2014; Richardson et al., 2009; St. Peter et al.,
2018).

ages and derived data products displayed in near-real time on the project
website. The archived images—mostly obtained since 2015, but with
time series for some cameras extending to 2005 or earlier—provide a
permanent record that can be visually inspected to determine the
phenological state of the vegetation at any point in time. Quantitative
data on the colour of vegetation, a proxy for its phenological state, can
also be calculated from the imagery. Relative greenness (i.e., Green
Chromatic Coordinate, or GCC) is extracted using simple image pro-
cessing methods (Sonnentag et al., 2012), and time series data are
derived at 1- and 3-day timesteps (Seyednasrollah et al., 2019) along
with phenophase transition dates corresponding to start and end of a
seasonal cycle (Klosterman et al., 2014).

NEON has deployed PhenoCams at each of its sites using the Phe-
noCam network’s prescribed camera configuration and protocol (Phe-
noCam, 2020a, 2020b). In short, each NEON site deploys two cameras,
one just above ground level and the other near the top of the instru-
mentation tower, oriented in a manner to include, where feasible, the in
situ field transects within the camera field of view. The ancillary
meteorological and ecological information at each NEON site enables
analysis of the relationships between PhenoCam-derived data and
meteorological and environmental forcing functions.

2.3. Satellite-based land surface phenology

In addition to being derived from near-surface imagery, LSP can also
be calculated from time series of vegetation indices derived from land
surface reflectance data obtained from satellite-based sensors (de Beurs
and Henebry, 2010; Hanes et al., 2014). Satellite-based LSP data provide
estimates of vegetation phenology on landscape to global scales, typi-
cally at pixel sizes of 250 m to 1000 m. At this scale, phenological ob-
servations can be more readily compared to gridded climate data and
can facilitate understanding as to how living systems interact with
climate.

Operational Moderate Resolution Imaging Spectroradiometer
(MODIS) LSP products are frequently used for regional, continental, and
global scale LSP analysis (Ganguly et al., 2010; Moon et al., 2019).
MODIS vegetation indices, including Normalized Difference Vegetation
Index (NDVI) and the Enhanced Vegetation Index (EVI) (Huete et al.,
2002), are used to construct phenological metrics — or phenometrics — (e.
g., start of season) from time-series datasets (Friedl and Sulla-Menashe,
2019, Fig. 1, Table 1). Data from the MODIS-like Visible Infrared Im-
aging Radiometer Suite (VIIRS) were not the focus of the current study.
We recognize that PS3 capabilities will need to leverage VIIRS data in
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the future as MODIS data streams are discontinued.

2.4. Gridded climate data

Because plant life-cycle events are driven by meteorological and
climatological conditions such as temperature and precipitation
(Kathuroju et al., 2007; Menzel et al., 2005), these physical data can be
used to assess and predict phenological status and trends across scales
from organisms to landscapes and ecosystems (Schwartz, M.D. ed.,
2013). Links between plant phenology and variations in weather (short
term, days to weeks) and climate (long term, years to centuries) can also
feed back to the atmosphere and climate system, and influence ecolog-
ical interactions at different scales (individual to community to
ecosystem) and trophic levels (producers to consumers) (Morisette et al.,
2009). Thus, basic meteorological data, particularly air temperature and
precipitation, are essential for interpreting short- and longer-term
variation in phenology and for developing predictive models. The
Gridded Surface Meteorological dataset (gridMET; Abatzoglou, 2013)
and the Daymet dataset (Thornton et al., 2018) are made available
through PS3 (Fig. 1, Table 1).

2.5. Gridded phenological indices

To complement field-based observations, the USA-NPN offers a
growing suite of raster map products for the conterminous U.S. and
Alaska indicating the phenological status of organisms and seasonal
phenomena (Crimmins et al., 2017b). These products include daily
accumulated growing degree day (AGDD) maps and extended spring
indices (SI-x) which indicate the onset of the spring growing season
(Schwartz, 1997; Schwartz et al., 2013). SI-x products span the period
from 1880 to present. Real-time and recent (1981-present) data layers
and short-term forecasts are available at resolutions of 2.5 km and 4 km
(Crimmins et al., 2017b; Fig. 1, Table 1).

3. Software to access and integrate phenological data

Each of the datasets described above has been used as part of prior
phenological analyses. However, comparatively few studies have
leveraged their combined value, likely because of the effort required to
access, harmonize and integrate the many layers. Here we describe PS3 —
designed to facilitate such analyses. The following section illustrates the
value of data integration via a case-study for a dryland ecosystem. Each
element of the software suite provides access to one or more of the
dataset listed above and provide tools for visualizing these data.
Greenwave package (Section 3.5) provides tools for analyzing a time
series data (e.g. NDVI) and possible covariates (e.g. climate variables).

Code and more detailed information for each tool are described on
the NASA Earthdata Bitbucket repository (NASA Earthdata BitBucket:
https://git.earthdata.nasa.gov/projects/APIS/repos/pheno-synth
esis-software-suite). The repository describes the five code packages
described below (Sections 3.1-3.5) and includes a sixth directory con-
taining code snippets related to the case study below (Section 4).

3.1. TNPN

The rNPN package (Marsh et al., 2020) was created to allow
improved access to the USA-NPN and NEON observational products
(Section 2.1) and gridded data products (Section 2.5) by directly
importing USA-NPN’s web services data into R. Broadly, this package
streamlines and improves end-user accessibility to USA-NPN data
products individually and collectively. Important features include the
ability to stream responses from the server in real-time and the ability to
intersect point observations with raster data products.
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3.2. phenoSynth

phenoSynth is an open-repository R-Shiny interface that integrates
PhenoCam and MODIS datasets and allows users to visualize, interact
with, and download co-located phenological data across multiple sour-
ces. phenoSynth, through AppEEARs4R (described below) can extract
MODIS NDVI and EVI time series (Friedl and Sulla-Menashe, 2019), as
well as the MODIS land-cover products (Sulla-Menashe et al., 2019) and
the Multi-Resolution Land Characteristics (MRLC) Consortium land
cover products (Wickham et al., 2014). This web-based tool advances
cross-scale analyses by displaying the geospatial location and field of
view for any PhenoCam site relative to the associated MODIS 250 m
pixel. The geospatial information (and related accuracy) are inherited
from the original dataset. phenoSynth allows users to select any num-
ber of individual MODIS pixels and pull those remotely sensed indices of
phenology in concert with PhenoCam GCC. The tool allows users to
interactively evaluate agreement in phenological indices and time series
across datasets and spatial scales, then download data for further
investigation in any platform of their choice. In many cross-scale com-
parisons it is common to simply pull remotely sensed pixels which
overlap a PhenoCam’s location. However, for quality control of GCC
timeseries, PhenoCam region of interest (ROI) often consist of a select
number of trees or shrubs, or cover multiple plant functional types,
including those not widely present at a landscape-scale. To address scale
mismatch phenoSynth highlights MODIS pixels whose land-cover
classification matches that of a PhenoCam ROI vegetation-type, and
also assesses vegetation heterogeneity within a MODIS pixel via the
LandSat National Land Cover Database (Homer et al., 2020). pheno-
Synth allows users to select any number of individual MODIS pixels and
pull those remotely sensed indices of phenology in concert with Phe-
noCam GCC. The tool allows users to interactively evaluate agreement in
phenological indices and time series across datasets and spatial scales,
then download data for further investigation in any platform of their
choice. By integrating phenological data from multiple platforms into
the same interface and demonstrating their coherence or overlap, phe-
noSynth supports investigations of phenological response at regional
and continental scales, with concrete applications for validation,
ecological forecasting, and modeling.

3.3. AppEEARs4R

The Application for Extracting and Exploring Analysis Ready Sam-
ples (AppEEARS; AppEEARS Team, 2020) offers users a way to perform
data access and transformation processes for gridded dataset archived at
the Land Processes Distributed Active Archive Center (LP DAAG; https
://Ipdaac.usgs.gov/). AppEEARS enables users to subset data spatially,
temporally, and by layer, greatly reducing the volume of data down-
loads. For phenological applications, AppEEARS provides access to
hundreds of datasets from multiple missions, including the operational
MODIS LSP products as well as the MODIS NDVI and EVI time series.
AppEEARSs4R is an R package for AppEEARS functionality that allows
data end users to request and interact with data available through the
AppEEARS interface. The library provides a wrapper to all endpoints
available in the AppEEARS REpresentational State Transfer (REST)
Application Program Interface (API) and a unifying function that co-
ordinates the entire process of requesting and retrieving data.

3.4. dacgre

The Data ACQuisition and REtrieval software (dacqre) toolkit ex-
tracts geospatial datasets relevant for phenological modeling from the
Google Earth Engine (GEE) data catalog and allows retrieval within the
Google Cloud Platform (GCP) bucket storage. GEE provides access to
over twenty petabytes of Earth data across forty years. The utility of
dacqre includes 1) leveraging Google’s web services and related data-
set, 2) easy integration with existing GEE tools and developer
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communities, which can raise awareness of phenological products to a
broader community; and 3) allowing access to the many assets on GEE
not being served operationally in other phenology data systems, but
which serve as potentially valuable covariates in understanding
phenology.

3.5. Greenwave

Greenwave is an R package that was developed to fit the annual
vegetation greenness curve, or “green wave” (sensu Schwartz, 1998) to
LSP time series data, and to derive predictions of phenological param-
eters from the modeled curve. Greenwave can fit models to near-surface
vegetation greenness data from PhenoCams as well as satellite data from
LANDSAT, MODIS, and Sentinel. It can also be extended to any vege-
tation index (e.g. the Enhanced Vegetation Index, EVI). The approach
used by Greenwave differs from previous modeling efforts (summarized
in de Beurs and Henebry, 2010) in that it is built on a probabilistic
generative model (McElreath, 2020) for both prediction (e.g., predicting
the green wave at an unsampled site, or forecasting into the future) and
for inference (e.g., understanding the specific drivers behind pheno-
logical parameters of interest). The approach builds on earlier work by
Senf et al. (2017), which modeled greenup. It extends that work by
modeling the complete annual cycle, including the “brown down” phase
in which vegetation greenness decreases back down to baseline levels as
the fall and winter seasons progress. The approach differs from previous
methods that use more empirical curve-fitting algorithms (e.g., splines).
Such non-generative models lack an ability to make predictions about
the expected value of new observations and, as such, cannot support
forecasting or the incorporation of covariates. The parameters used to fit
a Greenwave model to the annual time series can be translated into
phenological metrics, such as the start and end of season, peak green-
ness, and duration of green-up and brown-down. The Bayesian approach
used to fit the Greenwave models also provides uncertainty estimates
for each phenological metric. Additional details on the underlying
mathematics and parameters of the Greenwave model can be found in
the Supplemental Information (S1).

4. Case study: an application of PS3 in a dryland ecosystem

In this section, we present an example application of PS3 for a well-
instrumented dryland grass/shrub ecosystem in the Chihuahuan Desert
in the southwestern U.S. Using some of the data streams described in
section 2, we demonstrate how some of the tools described in section 3
can be used to acquire, integrate, and analyze phenology observation in
this area. The results illustrate how phenological parameters vary rela-
tive to the spatial scale of observations and the temporal scale of
meteorological conditions. We then discuss how scale and ecological
processes can interact, and how multi-scale phenological inference can
be used to better understand, characterize, and manage dryland and
other ecosystems (Section 5).

4.1. Study site

The Jornada Experimental Range (JER), located in the Chihuahuan
Desert near Las Cruces, New Mexico, U.S., is a low-diversity, mixed
perennial grassland and evergreen/deciduous shrubland (Browning
et al.,, 2015). Long-term (1930-2008) local average precipitation is
232.2 mm with 62% of that occurring from July to October (Browning
et al., 2012). Both precipitation seasonality along with storm size and
duration influence soil water available to plants via the pulse reserve
paradigm (Loik et al., 2004; Reynolds et al., 2004). Evidence that fire
was historically common in this region of the Chihuahuan Desert is scant
(Buffington and Herbel, 1965).

The site, which has been managed by the US Department of Agri-
culture’s Agricultural Research Service (USDA-ARS) since 1912, is a
node of the Long-Term Ecological Research (LTER) network, the Long-
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Term Agroecosystem Research (LTAR) network, and NEON, all of
which include standardized observations of plant or landscape
phenology across multiple observing platforms. We chose this site in
part because it is well-instrumented, has a long history of applied and
experimental research, and because interpretation of phenological pro-
cesses is typically challenging in dryland ecosystems, especially those
with strongly contrasting plant functional types.

Research at JER focuses on providing data, tools, and methods for
understanding changes in grassland and shrubland ecosystems and for
predicting the dynamics of future ecosystem states in response to
changing climate and land use (Bestelmeyer et al., 2018; Browning et al.,
2015). In this dryland system, knowledge of ecological structure and
function (e.g., soil composition, biodiversity, carbon cycling) and ap-
plications such as land management (e.g., grazing practices, grassland
restoration) benefit by understanding how phenological processes
interact with meteorological and climatological conditions, at spatial
scales ranging from individual plants to landscapes and at temporal
scales ranging from days to decades (Browning et al., 2015). This
example explores phenological patterns of co-existing grass and shrub
plant functional groups at a range of spatial scales over a six-year period
(2014-2020). The study area map with MODIS land cover classifica-
tions, the location of the PhenoCam sites, the ROIs for each PhenoCam
field of view, and the MODIS pixel locations for the grassland and
shrubland cover types are shown in Fig. 2.

4.2. Data acquisition and processing

The rNPN package was used to extract a time series of phenophase
status and intensity for the warm-season bunchgrass black grama
(B. eriopoda) and the deciduous shrub honey mesquite (P. glandulosa) at
the JER study area (Fig. 2B). We used phenoSynth to extract time series
of GCC from three PhenoCams based on ROIs focused on grass and shrub
plant canopies within each PhenoCam viewshed (Fig. 2C). We also used
phenoSynth to extract NDVI time series data from six contiguous
MODIS pixels (to reduce interpixel variation caused by landscape het-
erogeneity), within shrubland or grassland vegetation types based on the
MODIS landcover product, adjacent to two of the PhenoCam sites
(Fig. 2B). For each site, we used dacqre to extract a time series of
gridded climatological data (daily maximum temperature, daily pre-
cipitation). Finally, we fit the Greenwave model to the grassland and
shrubland PhenoCam GCC and the MODIS NDVI time series. Additional
information on data extraction and analysis for this case study are in the
NASA Earthdata Bitbucket repository (https://git.earthdata.nasa.gov/p
rojects/APIS/repos/pheno-synthesis-software-suite).

One drawback of using remotely sensed imagery for phenological
research is the mixing of target and non-target signals within the rela-
tively large footprint of the pixel (Henebry and de Beurs, 2013). In our
case study, the signal in a MODIS pixel is a mix of photosynthetically
active and senescent leaves from grasses and shrubs, woody material,
and soil. The target-to-noise ratio is further diminished by artifacts
including atmospheric constituents, sensor degradation, and viewing
and illumination geometry. For the PhenoCam signal we were able to
overcome or diminish these issues by using relatively narrow ROIs from
the PhenoCams, and by aggregating multiple images collected each day
to a 3-day product that minimizes the influence of variation in weather
and illumination geometry on the retrieved phenological signal
(Richardson et al., 2018; Sonnentag et al., 2012). There was no evidence
of PhenoCam sensor degradation over the 6 years of observation, as
baseline values were stable over time (Richardson et al., 2018).

4.3. Observed phenological patterns and related drivers in a dryland
ecosystem

PS3 facilitated data access, extraction, compilation, integration, and
analysis to enable a system-level assessment of phenological drivers and
responses in a dryland ecosystem based on multi-scale, multi-platform
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Fig. 2. A) Location of study area in New Mexico, USA; B) MODIS landcover classification, location of 3 PhenoCam sites, and position of MODIS pixels within each
landcover type used for determination of NDVI; and C) representative PhenoCam images showing the grassland and shrubland ROI for determination of GCC.

phenological and climatological data (cf Browning et al., 2015). Con-
current consideration of each of the four datasets — in situ grass and
shrub species canopy greenness estimates, near-surface grass and shrub
canopy greenness response, satellite-based surface reflectance from
grassland and shrubland cover types, and climatological trends -
revealed nuances in phenological profiles for grasses and shrubs
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depending on temporal and spatial scales of observation and inference
(Fig. 3).

All datasets demonstrated high interannual variability across the
study period. However, interannual variability became less pronounced
as the spatial resolution of time series decreased from field observations
of individual species to near-surface imagery of canopies to satellite-

2017 2018 2019
Year

Fig. 3. Time series of mean (a) canopy greenness (%) for black grama (B. eriopoda; grass) and honey mesquite (P. glandulosa; shrub), (b) Green Chromatic Coordinate
(GCCQ) for grass- and shrub-dominated Regions of Interest (ROI) from PhenoCams, (c) Normalized Difference Vegetation Index (NDVI) from MODIS for landcover
types of grassland and shrubland, and (d) monthly accumulated precipitation estimated from Daymet and obtained from an in-situ precipitation gage (Jornada
LTER). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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based imagery of land-cover types. At the highest resolution, differences
in the pattern of responses for black grama and honey mesquite (Fig. 3A)
confirm prior reports of the importance of growing-season (summer)
precipitation (Fig. 3D) to photosynthetic activity of grasses at this site,
whereas the photosynthetic activity of the deciduous shrubs is relatively
consistent from year to year (e.g., Browning et al., 2015, 2017). Prop-
erties of grasses and shrubs with contrasting root morphologies, provide
nuanced responses with respect to timing, duration and size of rainfall
events and differences in soil texture and depth (Duniway et al., 2018).
The multi-year time series of phenological data along with combined
interpolated/gridded and in-situ precipitation (Fig. 3D) offer an op-
portunity to examine the pulse-reserve paradigm (Loik et al., 2004;
Reynolds et al., 2004) at a broader context. In addition, PS3 data inte-
gration tools facilitate opportunities to examine the role of winter pre-
cipitation on mesquite patch dynamics in landscape change (Browning
et al., 2012).

At a slightly lower resolution, GCC from PhenoCam ROIs (Fig. 3B)
closely reflected patterns of greenness observed in individual shrub and
grass canopies (Fig. 3A). The relatively muted response of grass ROIs in
2018 likely reflects patterns of precipitation in the relatively dry sum-
mer season that year (Fig. 3D). At our lowest resolution, NDVI from
MODIS pixels (Fig. 3C) for both grass and shrub time series exhibited less
temporal variability within any given growing season. For MODIS we
also see a damping of the shrub time series which is likely to be a
function of the amount of bare soil present in these pixels (Fig. 2).

Overall, the patterns discerned in Fig. 3 reflect differences in
methods and scale of observations. Greenness of individual plant can-
opies may not scale to measures of greenness observed at the resolution
of the PhenoCam (e.g., because of background effects) and especially
satellite platforms (e.g., because of mixed composition of plant func-
tional types in the pixel). This is illustrated in part by a divergence be-
tween grass canopy greenness in 2018 and 2019 relative to GCC and
especially NDVI in those years. Early spring (March — May), and summer
(July - September) precipitation in 2018 and 2019 were relatively low
(Fig. 3D). Moreover, the number of consecutive dry days (with less than
1 mm of precipitation) was recorded as 95d from DAYMET (from day 70
to day 165) and 93d from local rain gage data (from day 70 to 163;
Fig. 3D). This suggests that precipitation sufficient for individual plant
greenup (Fig. 3A) may have been insufficient for a detectable greenup at
the landscape scale (Fig. 3B and C).

We used the Greenwave modeling package to fit curves to one
grassland and one shrub Phenocam time series, and to one grassland and
one shrubland cover type MODIS time series (Fig. 4). The curves fit well,
so for each platform and each vegetation type we evaluate three
Greenwave-derived parameters likely to reflect important phenological
transitions: day of year (DOY) for peak greenup, DOY for start of the

0,400~

/"\j\ A A

0323~

PhenoCam »
GCC

@

MODIS
NDVI

2014 2016 2018 2020

Date Legend

Grass: MODIS NDVI
Grass: PhenoCam GCC
# Shrubs: MODIS NDVI
® Shrubs: PhenoCam GCC

Fig. 4. Examples of Greenwave model fits to grass- (gold) and shrub-dominated
(blue) sites using time series of vegetation indices from (A) PhenoCam and (B)
MODIS. Model fits for all site-sensor combinations, as well as in- and out-of-
sample predicted vs observed plots can be found in the code repository. (For
interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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Legend
Grass: MODIS NDVI
Grass: PhenoCam GCC
+ Shrubs: MODIS NDVI
® Shrubs: PhenoCam GCC

Fig. 5. Metrics of seasonality derived using the Greenwave model fits: a) day of
the year (DOY) of peak greenup, b) day of the year for the start of the season,
and c) day of the year for the timing of maximum greenness. The legend
matched the colors and symbols using in Fig. 4.

growing season, and DOY for the time of maximum greenness (Fig. 5).

DOY for peak greenup differed between the plant functional types
across all years and showed little dependence on scale (Fig. 5A). Peak
greenup of shrubs was relatively consistent across years and was lagged
by peak greenup of grasses by about 100d in 2014-2017. Peak greenup
of grasses lagged shrubs by about 150d in 2018 and 2019, probably
because of relatively low summer precipitation those years (Fig. 3D).
DOY for start of season also differed between the two plant functional
types and showed little dependence on the scale of observation until
2018 and 2019, again likely because of relatively low precipitation in
the spring of these years (Fig. 5B, Fig. 3D). Here we see an interaction
between phenological metrics and climate, and the degree to which
these metrics responded to climate depend on the scale of observations.
The drier conditions and lower dynamic range in the time series resulted
in much earlier start of season dates from the MODIS time series. As one
caveat, prior field observations indicate that grasses and shrubs gener-
ally initiate new growth at similar times, but that PhenoCam does not
detect grass greenness until canopies reach ca. 25% canopy greenness
(Browning et al., 2017); this may extend to MODIS as well. Finally, the
timing of maximum greenness showed little difference between the
plant functional types and relatively high interannual variability, espe-
cially for shrubs (Fig. 5C).

4.4. Interpreting phenological patterns in dryland ecosystems

The JER use case showcases challenges with detecting phenology in
water-limited systems with modest to low vegetation cover (e.g., Smith
et al., 2019) that are representative of many western U.S. rangelands
(Spiegal et al., 2018). Land managers and producers in western range-
lands seek timely and accurate forecasts for primary productivity at a
variety of temporal scales (e.g., sub-seasonal to annual) depending on
their application. Understanding what drives forage grass production
and formulating models to generate seasonal productivity forecasts are
high priorities to help producers better manage lands and livestock, fire,
or for other management or planning purposes (e.g., conservation,
acquisition, fire management). Insights from the use case described in
Section 4 confirms and expands on insights from Browning et al. (2017).
We confirmed reliability of honey mesquite phenology in wet and dry
years, the tightly coupled pattern between black grama phenology and
summer precipitation, and a lag in black grama canopy development
discerned in the field and using PhenoCam. Inclusion of satellite imagery
in our analysis expands on Browning et al. (2017) to indicate that there
may be a baseline proportion of fractional cover necessary to detect land
surface phenology in below-average rainfall years. Future research
could work to identify cover thresholds for detection of LSP across
heterogenous landscapes, or the degree to which observations scale
across platforms along landscape to regional precipitation gradients.

5. Discussion

The PS3 tool suite provides streamlined access to multi-scale, multi-
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platform phenological data layers and ancillary climatological data
layers, greatly reducing barriers to integration and analysis. The multi-
scale nature of the data products, integrated with frequently used
meteorological and climatological data products, provides an analysis-
ready data package suitable for investigating phenological patterns at
spatial scales ranging from canopies to communities to landscapes, at
temporal scales from days to decades. As described in the following
sections, PS3 not only supports data access and integration, but also
supports applications related to phenological modeling and forecasting,
understanding patterns and drivers of phenological activity in real-
world ecosystems, and can support agricultural and natural resource
management and decision-making.

5.1. Data accessibility and integration

The case study presented here suggest ways that PS3 can help realize
synergy between otherwise disparate datasets to build a better under-
standing of how phenological processes relate to the spatial scale of the
ecological system, the observation platform, and intra- and interannual
variation in climatological drivers. This kind of analysis can also provide
insight into the root causes of high vs. low agreement (e.g., landscape
heterogeneity, representativeness) between fine-scale ground observa-
tions and coarse-scale remote sensing (Richardson et al., 2018). As the
spatial and temporal resolution of satellite imagery continues to
improve (e.g., PlanetScope, Harmonized Landsat-Sentinel), and as
centimeter-scale imagery from low-flying unmanned aerial systems
(UASs) becomes increasingly available, questions about how scale, res-
olution, and extent of observations affect estimated phenological tran-
sition dates and seasonal trajectories become increasingly relevant
(Klosterman et al., 2018; Liu et al., 2019). PS3 helps lower a previously
formidable barrier to empirical phenological analysis by harmonizing
protocols within and across platforms, thereby enabling intercompar-
ison of data from individual organisms (~0.1-10 m) to satellite pixels
(~10-1000 m).

5.2. Phenological modeling and forecasting

The ability to integrate diverse phenological datasets—ground ob-
servations, near-surface remote sensing, and satellite remote sen-
sing—and rigorous Bayesian model parameterization using PS3 also has
the potential to advance the growing field of phenological modeling and
forecasting. The Greenwave model presented here adds to the growing
library of open-source phenology modeling packages that have been
made publicly available in recent years (Ault et al., 2015; Hufkens et al.,
2018; Senf et al., 2017; Taylor, 2018). Combined, the tools represented
in the PS3 suite make it substantially easier for users lacking modeling
and parameter optimization expertise to engage in phenological
modeling, which is one avenue by which the environmental controls on
vegetation phenology can be investigated.

Phenological models are typically calibrated to long-term or spatially
extensive ground observations or experimental datasets (Hanninen
et al., 2019). These models are increasingly being used to make pre-
dictions about how the nonlinear and potentially interacting effects of
future climate change (e.g., rising temperatures, altered precipitation
regimes) may impact the seasonality of vegetation in different ecosys-
tems (Chen et al., 2016; Hufkens et al., 2016; White et al., 1997).
Bayesian methods are now commonly used for phenological model
calibration because this approach permits rigorous quantification of
posterior parameter distributions with full characterization and propa-
gation of uncertainties (Seyednasrollah et al., 2020; Shirley et al., 2020).
Accounting for these uncertainties is particularly important when the
calibrated models are used for forecasting.

A potential application of phenological models stems from potential
integration with near-term weather forecasts to generate phenological
forecasts that can be used to improve scientific understanding of
modeled systems while informing land management decision-making
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(Bradford et al., 2020; Dietze et al., 2018; White and Nemani, 2006).
Prototype systems that integrate phenological models with near-term
weather forecasts have been developed for specific agricultural (Bour-
geois et al., 2008) and pest management (Crimmins et al., 2020) ap-
plications. But, fully operational phenological forecasting systems,
producing forecasts of a suite of phenological events at continental scale,
remain scarce (Taylor and White, 2020). PS3 can contribute to the
development of these systems, and the realization of broadscale
phenological forecasts that can be used to inform resource management
decision-making (Richardson et al., 2017).

5.3. Broader applications to natural resource management

The recognition that phenology is relevant to a variety of agricultural
and natural resource management applications dates back at least 50
years (e.g., Lieth and Radford, 1971). First, there is a long history of
using phenological models to predict the timing of growth and matu-
ration of agricultural crops, which can improve the efficiency or effec-
tiveness of management activities (Hodges, 1991). Phenological
monitoring can also inform the timing of natural resource management
activities, such as prescribed fire, herbicide applications, or livestock
grazing (Browning et al., 2018; Enquist et al., 2014; Morellato et al.,
2016). Similarly, Greenwave modeling may enable or improve seasonal
forecasts of forage production important for optimal rotational grazing
management. In sum, PS3 adds value by reducing barriers to data access,
organization, integration and analysis, thus improving the potential for
the production and delivery of actionable information to support natural
resource decision-making.

6. Conclusion

This paper describes several phenologically-relevant datasets,
derived from different platforms and available in native form at different
spatial and temporal scales. The suite of tools described as PS3 is meant
to facilitate easier and more automated access to these data streams.
While a more thorough analysis of dryland ecology is outside the scope
of this paper, the example presented here demonstrates how the soft-
ware can be used to compile and analyze information across a range of
spatial and temporal scales over multiple years that exhibit heteroge-
neous climatological conditions. The open-source PS3 will enable re-
searchers to explore such processes in different locations and with more
in-depth investigations into what drives phenology at different scales
and in different ecosystems. It thus addresses a previously identified
need to develop tools to facilitate cross-scale phenological data inte-
gration and modeling (Richardson et al., 2017), which can contribute to
better management of natural resources in a changing world.
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