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Abstract The rarity of rapid campaigns to charac-
terize soils across scales limits opportunities to
investigate variation in soil carbon stocks (SOC)
storage simultaneously at large and small scales, with
and without site-level replication. We used data from
two complementary campaigns at 40 sites in the
United States across the National Ecological Obser-
vatory Network (NEON), in which one campaign
sampled profiles from closely co-located intensive
plots and physically composited similar horizons, and
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the other sampled dozens of pedons across the
landscape at each site. We demonstrate some consis-
tencies between these distinct designs, while also
revealing that within-site replication reveals patterns
and predictors of SOC stocks not detectable with non-
replicated designs. Both designs demonstrate that
SOC stocks of whole soil profiles vary across conti-
nental-scale climate gradients. However, broad cli-
mate patterns may mask the importance of localized
variation in soil physicochemical properties, as cap-
tured by within-site sampling, especially for SOC
stocks of discrete genetic horizons. Within-site repli-
cation also reveals examples in which expectations
based on readily explained continental-scale patterns
do not hold. For example, even wide-ranging drainage
class sequences within landscapes do not duplicate the
clear differences in profile SOC stocks across drainage
classes at the continental scale, and physicochemical
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factors associated with increasing B horizon SOC
stocks at continental scales frequently do not follow
the same patterns within landscapes. Because infer-
ences from SOC studies are a product of their context
(where, when, how), this study provides context—in
terms of SOC stocks and the factors that influence
them—for others assessing soils and the C cycle at
NEON sites.

Keywords Soil carbon stocks - Pedogenesis -
Climate - Land use - Parent material - National
ecological observatory network

Introduction

Most of the factors related to spatial variation in soil
organic carbon (SOC) stocks have been known for
some time, as has the reality that their relative
influences vary across scales (Wiesmeier et al.
2019). From molecular structures and particle sizes
factors at pore to ped scales (Sollins et al. 2006; von
Lutzow et al. 2006), to topography and moisture at
pedon to landscape scales (Doetterl et al. 2016;
Adhikari et al. 2020), to climate and vegetation at
regional to global scales (Jobbagy and Jackson 2000;
Post et al. 1982), a large body of research readily
explains why SOC varies so remarkably from place to
place. The strongest studies also acknowledge that
soils are dynamic through time, unique at sites and
scales that cannot be captured by even strong gener-
alizations, and therefore conclude that further inves-
tigations into factors influencing SOC storage will
continue to refine our understanding of how much is
present, where, and why.

In the body of research exploring patterns and
predictors of variation in SOC storage, a vast number
of studies have reported factors influencing SOC for

M. SanClements
INSTAAR University of Colorado Boulder, Boulder,
CO 80303, USA

M. SanClements
National Ecological Observatory Network, Boulder,
CO 80301, USA

J. Sanderman

Woods Hole Research Center, Falmouth,
MA 02540, USA

@ Springer

part of the spectrum of spatial scales (e.g., Davidson
1995; Goidts et al. 2009; Huang et al. 2017; Minasny
et al. 2013; Mishra et al. 2010; Patton et al. 2019a;
Paustian et al. 1997; Schimel et al. 1994; Thompson
and Kolka 2005; Wynn et al. 2006). The ability to
make inferences across the full range of spatial scales
from global to landscape has largely derived from
reviews of this literature, such as Wiesmeier et al.
(2019, and references therein), and from multi-site
inventories or large data syntheses that have used
extensively (but not intensively) distributed observa-
tions to assess patterns at regional or larger scales
(e.g., Doetterl et al. 2016; Cotrufo et al. 2019). In the
context of these approaches to addressing SOC stocks
and predictors as a function of scale, large networks
that allow for investigation of patterns across and
within sites have much to add, especially when such
networks are sampled expeditiously and according to
common protocols.

Studies that explore processes of SOC and soil
organic matter (SOM) stabilization report mechanisms
that may relate to patterns of SOC storage. This
literature has particularly focused on soil physico-
chemical and biogeochemical mechanisms promoting
SOC stability, such as physical protection, mineral or
metal association, and molecular complexity (Crow
et al. 2007; Kallenbach et al. 2016; Kramer and
Chadwick 2018; Mao et al. 2000; Preston and Schmidt
2006; Sollins et al. 2006; Six et al. 2002; von Lutzow
et al. 2006). These and other studies have specifically
pointed to extractable metals (e.g., Fe, Al), exchange-
able base cations (e.g., Ca, Mg), and soil fine fraction
contents (especially clays) as having controlling
influence over the stability of SOC (Chen et al.
2019; Heckman et al. 2018a, b; Lawrence et al. 2015;
Rasmussen et al. 2018). If these processes and
mechanisms that confer SOM persistence also result
in larger quantities of SOC being present at a point in
time, they may provide a foundation for hypotheses
addressing physicochemical predictors of variation in
SOC stocks at varying scales.

The literature on pedogenesis and soil taxonomy
also offers a strong foundation for assessments of SOC
patterns and predictors at distinct scales. Genetic soil
taxonomy uses morphologic and physicochemical
properties to infer processes of soil formation, many
of which involve gains, losses, transfers and transfor-
mations of materials which are dominantly comprised
of, or critically affected by C (Marbut 1921; Simonson
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1959). In light of the many interacting processes and
factors in soils, all of which vary continuously, genetic
soil taxonomy provides a structure for managing this
complexity, creating categorical groups that reflect
fundamental differences between soils. This categor-
ical system is also hierarchical, integrating broad
distal (e.g., climatic) and local proximal factors (e.g.,
physicochemical properties) at steadily increasing
resolution, to describe soils ultimately as unique
bodies, which often differ in SOC stocks (Wills et al.
2013). As soils are inherently multi-factor, these distal
and proximal factors are not completely independent
of each other. Nonetheless, this pedogenic framework
provides structure for a conceptual model (Fig. 1) that
can be applied at any number of scales. In this model,
distal and proximal controls mediate each other, with
distal controls dominant in extreme climates (frozen,
saturated, or arid conditions) and proximal controls
becoming more important in the mesic, temperate
middle, and within landscapes where climatic varia-
tion is narrower.

The present study is based upon this conceptual
model, which seeks to rectify the more proximal
factors recognized in the mechanistic biogeochemical
literature with the distal climatic factors long associ-
ated with more ecological analyses of SOC. This study
is enabled by the continental-scale National

Ecological Observatory Network (NEON); as such it
is intended to provide context for studies at and across
NEON sites, and to test hypotheses related to SOC
stocks and their variation as influenced by scale and
study design. Data for testing these hypotheses derive
from two complementary campaigns, in which one
sampled profiles from closely adjacent intensive plots
and physically composited similar horizons, and the
other sampled dozens of pedons across the landscape
at each site. Owing to the differing levels of replication
of these two campaigns, they afford opportunities to
assess SOC stocks across the entire network and
within sites, i.e., at continental and landscape scales.
Our (6) hypotheses, enumerated below, are informed
by literature reporting predictors of SOC storage
across scales, and by the SOM stabilization literature,
though it is important to note that they address SOC
stocks in terms of patterns, not stabilization as a
mechanistic process. (1) Regarding whole soil pro-
files, we hypothesized that the two designs reveal the
same continental-scale patterns and sources of varia-
tion in terms of soil taxonomy, climate and soil
wetness influences on SOC stocks. (2) We further
hypothesized that profile SOC stocks vary according
to soil wetness within landscapes in the same pattern
as at the continental scale. (3) Regarding discrete
genetic horizons, we hypothesized that A horizon
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Molecule Pedon Landscape Ecoregion Biome
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Proximal factors Distal factors
* Soil physicochemical ¢ Parent material e Temperature
properties ¢ Lland use * Drainage / moisture regime
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Fig. 1 Conceptual model relating proximal versus distal
influences on SOC storage across ecologic and pedologic scales
of investigation. At broad scales and where climate is extreme,

distal climatic factors have greater influence on SOC stocks. At
more localized scales and in moderate climates, proximal
variation (e.g., in physicochemical properties) is more important
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stocks are predicted more by land cover/use than
parent material, with the reverse being true for B
horizons, and the pattern being consistent for the two
study designs. (4) Regarding illuvial horizons specif-
ically, we hypothesized that within-site replication
reveals a wider suite of physicochemical variables
influencing SOC stocks in B horizons, even at the
continental scale, and (5) that the physicochemical
predictors of B horizon SOC differ between distinct
pedogenic pathways. (6) Lastly, we hypothesized that,
within landscapes consisting of soils forming along
distinct pedogenic pathways, the predictors of B
horizon SOC stocks are the same, and follow the
same patterns as observed at the continental scale.

Methods
Study sites and data sources

The NEON design includes 47 terrestrial sites,
distributed across 20 the conterminous United States
(CONUS), Alaska, Hawaii, and Puerto Rico. This
study utilizes soil observations from the 40 CONUS
and Alaska NEON sites comprising the Soil Organic
Matter—Mechanisms Of Stabilization (SOM-MOS)
project (Heckman et al., this issue). In this paper, we
present results from two complementary sampling
campaigns at these 40 NEON sites. The first is the
SOM-MOS project, which sampled five profiles in
close association with the centrally located eddy-
covariance tower at each NEON site, on the locally
dominant soil map unit. The SOM-MOS project
conducted standard soil characterization tests and
complemented them with a suite of mechanistic
measurements, including density fractionation, radio-
carbon, laboratory incubations, and a wide range of
spectroscopic analyses. The present analysis does not
address mechanisms and utilized only the standard soil
characterization data from SOM-MOS. The second
campaign is the network-wide, NEON-coordinated
sampling of dozens of soil profiles collected across the
landscape at each site, intended to characterize
standard soil properties (the initial characterization
campaign). The former of these campaigns is referred
to hereafter as the “non-replicated” or SOM-MOS
dataset, to distinguish its limited, highly localized
within-site replication as compared to the “replicated”
or initial characterization dataset.

@ Springer

SOM-MOS soil sampling and data synthesis

Samples were collected for the SOM-MOS project
from each of the five centrally located Soil Array Plots
immediately surrounding the eddy-covariance tower
at each NEON site between February 2015 and
October 2018. At each site, NEON staff used a
hydraulic corer (7.6 cm diameter for permafrost,
4.5 cm diameter for all others) to sample in 1 m
increments to a depth of refusal by rock, 2 m (most
soils), or 3 m (when possible in permafrost soils).
Cores, capped and contained in clear butyrate plastic
liners, were shipped on ice to the Oregon State
University Core Marine Geological Repository Lab-
oratory, where they were stored up to 8 weeks at 4 °C
until processing and description, typically within
2 weeks of arrival, according to U.S. Department of
Agriculture-Natural Resources Conservation Service
(USDA-NRCS) protocols (Schoeneberger et al. 2012).
During processing, the five SOM-MOS profiles per
NEON site were described individually, and identical
genetic horizons were composited across those cores
possessing them. Individual composited horizon sam-
ples were homogenized, split, and shared among
collaborating facilities where characterization was
completed according to NRCS methods (Burt et al.
2004) as detailed in Heckman et al. (this issue). We
addressed variation in the designations and thick-
nesses of major horizons across cores by expressing
total profile SOC stocks mathematically as site-level
“composite profiles” based on the number of cores in
which a given horizon was observed and the thick-
nesses of that horizon among those cores in which it
was observed. We averaged the thicknesses of similar
and composited horizons across cores, where the
thicknesses of horizons that were absent in a core
equaled zero. Horizons from all cores were reassem-
bled into a master chronology and the computed
thicknesses were then used to calculate depths for each
horizon. Bulk density was measured on every horizon
from each core, and a weighted average based on
thickness was used to calculate bulk density of the
composite horizon. Of the individual horizons ulti-
mately present in each site-level composite profile,
only the uppermost mineral (typically A), uppermost
B, and lowermost B horizons were subjected to full
laboratory characterization, e.g., C concentrations,
extractable ion concentrations, particle size distribu-
tions. For purposes of whole profile SOC stock
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calculations, organic C concentrations for non-char-
acterized horizons were modeled from diffuse reflec-
tance Fourier transform mid-infrared (FT-IR) spectra
of those horizons, according to methods described in
detail elsewhere (Dangal et al. 2019). Briefly, a local
modeling approach called Memory Based Learning
(Ramirez-Lopez et al. 2013) was applied using the
USDA-NRCS Kellogg Soil Survey Laboratory
(KSSL) spectral library, consisting of > 50,000 soil
samples with FT-IR spectra and measured OC data.
The FT-IR based predictions showed excellent per-
formance for the subset of SOM-MOS samples that
were independently measured for OC concentration
(R* = 0.99, n = 87). Of the total 289 OC concentra-
tions in the SOM-MOS dataset, 117 were measured by
elemental analysis, 121 were predicted from their FT-
IR spectra, 28 were the linear interpolation of values
for super- and supra-adjacent horizons, and 23 were
assumed to be equal to the value reported for that site
and most similar horizon in the NEON Megapit soil
characterization data product (National Ecological
Observatory Network (NEON) 2020;
DP1.00097.001). We computed SOC stocks of each
SOM-MOS horizon as % C x Db x horizon thick-
ness, scaled to Mg C ha_l, and truncated the OC
stocks of horizons spanning 100 cm to a depth of
100 cm.

NEON initial characterization soil sampling and data
synthesis

At each NEON site, 10-26 soil profiles were observed,
described, and quantitatively sampled by professional
soil survey staff from NRCS according to standard
field methods (Schoeneberger et al. 2012). Sampling
took place between September 2015 and August 2018,
with sampling at most sites typically occurring within
a one-week period. At each site, profiles were sampled
from a subset of the Distributed and Tower Base Plots,
which are collectively arrayed across a landscape of
hundreds to thousands of hectares surrounding each
NEON site’s centrally located eddy-covariance tower.
Soil survey staff with local expertise selected a subset
of these plots at each NEON site for sampling, with the
intent of capturing the range of variability in dominant
soil map units within the footprint of the overall
NEON site. Most profiles were excavated as pits (i.e.,
full pedons); at some sites or under specific soil
conditions (e.g., deep dry sands or saturated organic

wetland soils), augers were used to observe, describe,
and collect samples. After collection, samples were
shipped on ice to the KSSL in Lincoln, NE, where they
were processed and characterized according to stan-
dard protocols (Burt et al. 2004). These characteriza-
tion data, as well as descriptive information such as
site and pedon descriptions are available from NEON
at https://www.neonscience.org/data-collection/soils-
sediments.

We began our analysis of NEON Distributed Plot
soils with data for 2627 individual soil horizons from
615 profiles across 40 NEON sites, as sampled and
characterized by NRCS. Soil C concentrations were
determined as percent total C at the KSSL using an
elemental analyzer; for soils containing measureable
inorganic C concentrations, we subtracted the percent
inorganic C (reported as % of mass in CaCO;
equivalents) from the total C to yield a computed %
organic C value. We assumed that % total C = %
organic C for soils that did not report a % inorganic C
value (n = 565); of these, 491 were pH < 7.0. We
calculated SOC stocks using C concentrations and
bulk density (Db) values, a majority of which were
measured by the clod method (n = 1213; Burt et al.
2004) or as oven-dry soil mass divided by soil volume
at field moisture content (n = 220). We created a
structured approach to gap-filling the 1194 missing Db
values that emphasized measurements most closely
aligned with the fine earth fraction. In order of
preference and limited by data availability, we gap-
filled Db data using the (1) mean of the clod
measurements for the other samples with an identical
horizon designation from that NEON site (n = 695),
(2) mean of that master horizon across the entire
dataset of measured clod values (n = 166), (3) site-
level estimate for that horizon based on the most
closely matched SOM-MOS (n = 169) or NEON
Megapit (n = 103) samples, or (4) mean of the field-
collected samples with the most similar horizon
designations (n = 61). Although measurements are
preferred, even carefully measured Db values are still
only estimates of a notoriously variable soil property
(Patton et al. 2019a, b; Throop et al. 2012). Our gap-
filling approach (using the average or point estimate of
measured values for similar horizon types) avoids
problems of non-independence arising when one soil
property of interest (Db) is predicted from another (%
C) via a pedotransfer function; considering the distri-
bution of gap-filled values across the entire
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Distributed Plot dataset, it is unlikely to result in any
directional bias in our SOC stock calculations.
Furthermore, we conducted a critical statistical
appraisal of gap-filled estimates generated from
pedotransfer functions (% C vs. Db) vs. horizon
means, which revealed no benefit of pedotransfer
functions in terms of prediction intervals, and consis-
tently significant differences between discrete types of
horizons for the horizon mean approach. Follow the
same calculations as with the SOM-MOS dataset, we
computed SOC stocks of each sampled horizon in the
Distributed Plot dataset as % C x Db x horizon
thickness, scaled to Mg C ha™!, and truncated the
OC stocks of horizons spanning 100 cm to a depth of
100 cm, assuming a homogenous vertical distribution
of OC within such horizons.

Data analysis

As is typical in soils datasets, SOC stocks of whole
profiles and individual horizons were for typically
skewed right in the SOM-MOS and initial character-
ization datasets; we used /n transformation to address
non-normality (Grigal et al. 1991). We ran parametric
statistical tests (categorical: ANOVA with Fisher’s
Least Significant Difference multiple comparisons,
¢t test; continuous: best subsets, simple or multiple
linear regression) on transformed response variables,
but present most results as back-transformed means
and 95% confidence intervals to aid in interpretation.
In some cases, we used non-parametric tests (Kruskal—
Wallis or Mann—Whitney) and report results as
medians and quartiles. All statistical tests were
performed with SigmaPlot (SYSTAT Software, San
Jose, CA US).

We selected specific statistical analyses to address
our hypotheses. To test H1 and H2, we used one-way
ANOVAs to test whether soil taxonomic groups
(Order, Suborder, Great Group, Subgroup) soil tem-
perature regime, moisture regime, were significant
categorical predictors of variation, followed by Fish-
er’s tests to identify significantly different groups at
continental (H1) and landscape (H2) levels. We
performed these tests separately for the non-replicated
SOM-MOS (one composited profile per NEON site)
and replicated initial characterization (many profiles
per NEON site) datasets. We ranked the ability of
categorical variables to explain variation among the
observations by examining: (1) the proportion of total
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variation among observations that was explained by
either variable [sum of squares between groups/total
sum of squares]; (2) the F statistic associated with each
categorical variable, which controls the comparison of
variance for the degrees of freedom associated with
each categorical variable. To test H3, we used two
one-way ANOVAs (one for A, one for B horizons) to
test whether land cover/use and parent material groups
differed significantly SOC stocks, again repeating
these tests for SOM-MOS vs. initial characterization
datasets. To test H4, we used best subsets regressions
to identify variables explaining the largest shares of
variation in SOC stocks for A and B horizons; similar
to other tests, these were conducted separately for the
SOM-MOS and initial characterization datasets. Each
best subsets model run was allowed to select from a
common field of predictor variables, which we
selected before running tests based on factors reported
in the literature summarized in “Introduction” sec-
tion. In terms of soil physicochemical properties
(derived from soil characterization tests), these
included particle size distribution (% of mass in sand,
silt, and clay size fractions), volumetric coarse frag-
ment content (% coarse fg.), pH in 2:1 water:soil
slurry, oxalate extractable aluminum (Al_ox) and iron
(Fe_ox) and dithionite-citrate extractable Al and Fe
(Al_dith, Fe_dith) as % of mass, ammonium acetate
extractable Ca (Ca_NH4) and CEC (CEC_NH4)
contents as cmol + per kg of soil (Burt et al. 2004).
In terms of climate variables, these included site-level
mean annual temperature (MAT), mean annual pre-
cipitation (MAP), and a climatic leaching index
calculated as the difference between MAP and annual
evaporation (MAP-ERef). All climate variables were
generated with the ClimateNA v5.10 software pack-
age, at 4 km resolution and using 30-year means
(Wang et al. 2016). To characterize land cover and use
(not differentiated), we used the categories of the
National Land Cover Dataset (NLCD; Homer et al.
2015), as provided by NEON for each plot from which
soils were sampled for the two sampling campaigns.
We selected the strongest predictive model in each test
by inspecting the adjusted R* values of each succes-
sively larger model (in terms of P predictors) and
accepted the largest model that increased the adjusted
R? by at least 0.05 relative to the one with P — 1
predictors. This a priori approach protects against
over-fitting by selecting models with many added
predictor variables that do little to increase proportion



Biogeochemistry (2021) 156:75-96

81

of explained variation, and which often appeared to
suffer serious multicollinearity or spurious relation-
ships in our datasets. In cases where the selected
model had variables with strong multi-collinearity
[variance inflation factors (VIF) > 4.0], we defaulted
to the next smallest model without any VIF val-
ues > 4.0. To test H5, we used the nonparametric
Kruskal-Wallis test to assess whether median values
of B horizon properties in the initial characterization
dataset differed between three pedogenically defined
groups at the continental scale, and subsequently the
Mann-Whitney test to compare medians (for two of
the three pedogenic groups) at each of three NEON
sites. To test H6, we used the same best subsets
regression process described for H4 three times (once
for each NEON site assessed under HS) to identify
continuous variables explaining the largest share of
variation in B horizon SOC stocks.

In all statistical tests, we set P < 0.05 as the
threshold for accepting test results as significant. In
addition to assessing statistical significance according
to P values, we also assessed whether patterns and
statistical significance were robust to alternative
models by performing separate tests aimed at each
hypothesis. Namely, for hypotheses addressing SOC
stocks as a function of categorical variables (H1-H3,
H5), we ran nonparametric Kruskal-Wallis and
Mann—-Whitney tests (as appropriate to the number
of groups) on non-transformed SOC stocks for the
initial characterization dataset. For hypotheses incor-
porating both continuous and categorical predictors,
we ran best subsets regressions focused on B horizon
properties twice: once for the full initial characteriza-
tion dataset of B horizons and again using only the
uppermost B horizon from each initial characteriza-
tion pedon (most pedons had 1-2 B horizons). The
results of these additional tests are not reported in this
paper; in general, we found very few (and minor)
exceptions to patterns reported in this paper when
substituting alternative models. When deviations were
noted, they involved minor changes, e.g., in multiple
comparisons P values for categorical groups, or the
partial ¢ values of individual variables in best subsets
models. Overall, we report this here to encourage
multi-model analyses as a practice, and emphasize the
robustness of our results to alternative analytical
frameworks in the remainder of this paper.

Results

Hypothesis 1: patterns and sources of variation
in whole profile SOC stocks at the continental scale

At the continental scale, nearly all tested predictor
variables were significant sources of variation in
whole profile SOC stocks in both the SOM-MOS and
initial characterization datasets (Table 1). Among the
three climatic predictor variables tested, both datasets
indicated that temperature regime explained more of
the observed variation in whole profile SOC stocks
than drainage class, whether assessed in terms of the
proportion of total variance explained (SSb/SSt) or
when comparing F statistics to control for the differing
degrees of freedom of the three predictor variables.
Regarding variation as explained by soil taxonomy,
the initial characterization dataset with its high level of
within-site replication suggested that finer taxonomic
classifications were mostly able to explain larger
proportions of total variance in profile SOC stocks.
However, comparing F statistics to control for the
differing degrees of freedom across taxonomic levels,
the coarsest level of classification (soil order) was the
strongest predictor. NEON sites also differed signif-
icantly from each other in profile total SOC stocks,
despite considerable within-site variation in soils
present and SOC stocks (Supplementary Tables S1,
S2). Assessing between-site differences was not
possible with the SOM-MOS dataset, which possessed
no within-site replication and also had limited statis-
tical power for testing variation at finer levels of
taxonomic classification. Specifically, while SOM-
MOS spanned 9 orders (compared to ten for the initial
characterization dataset), most suborders, great
groups, and subgroups had only n =1 profile, and
highly significant P values reflected large differences
between a small number of highly different mean
values for certain soil taxa (Fisher’s test comparisons,
results not shown).

The SOM-MOS and initial characterization data-
sets both spanned the full range of temperature
regimes in USDA Soil Taxonomy, and temperature
regime explained 70 and 39% of the total variance in
profile total SOC (as SSb/SSt) for the two datasets,
respectively. Both datasets showed the same general
pattern (Fig. 2), with the largest profile SOC stocks at
the cold, and the smallest at the warm end of the
spectrum, and many though slightly different

@ Springer



82

Biogeochemistry (2021) 156:75-96

Table 1 Categorical sources of variation in profile total SOC stocks at the continental scale in the SOM-MOS (left) and initial

characterization (right) datasets

SOM-MOS (non-replicated)

Initial characterization (replicated)

Factor dfb SSb  SSt SSb/SSt  F P df b SSb  SSt SSb/SSt F P

Temperature 5 19 27 0.70 15.6 < 0.001 5 196 504 0.39 72.6 < 0.001
Drainage 4 10 27 0.37 5.0 < 0.001 6 177 547 032 48.5 < 0.001
Moisture 4 5 27 0.19 2.1 0.102 7 76 476 0.16 13.5 < 0.001
Order 7 19 27 0.70 10.2 < 0.001 9 299 547 071 81.0 < 0.001
Suborder 13 22 27 0.81 7.1 < 0.001 31 348 547  0.64 32.6 < 0.001
Great group 11 24 27 0.87 8.9 < 0.001 61 388 547 0.71 21.1 < 0.001
Subgroup 5 26 27 0.95 28.5 < 0.001 94 446 547  0.82 19.9 < 0.001
Site 39 391 547 071 36.9 < 0.001

For each dataset and predictor variable, the between-group degrees of freedom (df_b) and sum of squares (SSb), total sum of squares
(SSt), proportion of explained variation (as SSb/SSt), and F and P statistics are shown

Gelic (3,41) atH—e—o+——A
5
£ Cryi : F—oe——
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Fig. 2 Whole soil profile SOC storage, to a depth of refusal or
1 m, for the six soil temperature regimes in USDA Soil Taxonomy
as represented across NEON sites. Open squares, large error bar
whiskers, and lower case letters denote back-transformed means,
95% confidence intervals, and significant differences between
temperature regimes for profiles from the SOM-MOS dataset,

significant differences between intermediate temper-
ature regimes. The SOM-MOS dataset, with its far
smaller number of total profiles, had wider 95%
confidence intervals than the initial characterization
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1200

Profile total SOC stock
(Mg C ha™ to 1 m or refusal)

which were not replicated within sites. Filled circles, small error
bar whiskers, and capital letters denote the same for the initial
characterization dataset, in which many profiles were sampled
within each NEON site. The number of profiles for SOM-MOS
and initial characterization datasets, respectively, are given
parenthetically for each temperature regime

dataset for every temperature regime, though the
confidence intervals of the two datasets overlapped in
every temperature regime. In terms of specific pat-
terns, the larger sample size of the initial
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characterization dataset showed that soils with gelic
temperature regimes [mean annual soil temperature
(MAST) of < 0 or < 1 °C, depending upon level of
taxonomic classification] had the largest profile SOC
stocks. Cryic and frigid temperature regimes, possess-
ing MAST of 0-8 °C (but frigid regimes possessing
more intra-annual variation) had similar profile total
SOC stocks, which were in turn larger than the
remaining temperature regimes. Soils with mesic
temperature regimes (MAST > 8, < 15 °C) had sig-
nificantly larger profile SOC storage than the thermic
(MAST > 15, < 22 °C) and hyperthermic (> 22 °C)
regimes, which did not differ from each other.
Natural drainage classes incorporate the climatic
and topographic conditions under which a soil has
formed, as mediated by soil hydraulic properties, and
described in reference to the depth to, frequency and
duration of internal free water. These classes are
designated at the pedon level, and as hypothesized
were a significant predictor of variation in whole
profile SOC stocks in both the SOM-MOS and initial
characterization datasets (Fig. 3). In both datasets,
drainage was a stronger predictor of observed varia-
tion than soil moisture regime (Table 1), which very
specifically characterizes the amount of soil moisture
as it varies seasonally within a typical year for some
superficial portion of the pedon (the control section),

in reference to temperature and biological activity.
The internally replicated (within NEON sites) initial
characterization dataset spanned a wider range of
natural drainage classes overall, possessed larger
sample sizes within each, and revealed significant
differences between most groups. Namely, very
poorly drained (free water very shallow, persistent to
permanent), poorly drained (free water shallow or very
shallow, common to persistent), and somewhat poorly
drained soils had the largest, second-, and third-largest
mean profile total SOC stocks, respectively. Profile
total SOC stocks of moderately well drained soils (free
water moderately deep, transitory to persistent) ranged
into those of well-drained soils (free water deep to
very deep), which in turn differed from the smallest
mean values for somewhat excessively and exces-
sively drained soils, which have very deep, very rare
occurrences of free water and high to very high
hydraulic conductivity. None of the SOM-MOS soils
possessed very poorly drained classifications; among
those represented, poorly drained soils differed from
all others, which did not differ from each other.
Similar to soil temperature regimes, 95% confidence
intervals for whole profile SOC stocks among SOM-
MOS soils were much wider than for initial charac-
terization soils, but overlapped for all mutually
sampled drainage classes.
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©
e Well 23,336) | bl D
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n
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Excessively (1,19) { bDH E L] Withip-§ite 'replica.tion' (Initial Characterization)
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Fig. 3 Whole soil profile SOC storage, to a depth of refusal or
1 m, for the seven natural drainage classes in USDA Soil
Taxonomy as represented across NEON sites. See Fig. 2 caption

Profile total SOC stock
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for explanation of sample sizes, means, confidence intervals,
and multiple comparisons for the two datasets. Note x-axis break
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Soil taxonomic classifications reflect a multitude of
factors influencing the development and hence mor-
phology and properties of soils. Thus, soil taxonomic
patterns in profile SOC (Table 1) are not independent
of the presented climatic patterns (Figs. 2, 3). How-
ever, soil taxonomy also incorporates additional
factors, and provides a framework for differentiating
soils at hierarchically more specific levels. Consider-
ing the two datasets and four levels of classification
tested here (Table 1), the coarsest (soil order) provided
the best overall performance in terms of explaining
total variation in SOC stocks between soil profiles
across NEON sites (SSb/SSt), while avoiding prob-
lems with overfitting or limited within-group replica-
tion (assessed in terms of F statistics). In terms of
specific patterns, the initial characterization dataset
showed significant differences in profile total SOC
between many soil orders (Fig. 4), with very large
means (and variances) for the frozen and often
saturated Gelisols and mostly saturated Histosols, to
small mean values for the widely distributed, weakly
developed Entisols (82 Mg C ha™') and the Aridisols
(23 Mg C ha™!). Intermediate values, many of them
significantly different, were observed for other min-
eral soil orders. The SOM-MOS dataset revealed

fewer differences between orders, but where these
were detected they followed the same patterns as
observed across the initial characterization dataset
(Fig. 4).

Hypothesis 2: patterns of variation in whole profile
SOC stocks at the landscape level

Three NEON sites possessed localized drainage
sequences with reasonably strong replication across
drainage classes at the landscape level, enabling a test
of Hypothesis 2 with the initial characterization
dataset (Fig. 5). These sites included one in the
western Great Lakes basin (TREE; Wisconsin) and
two on the Outer Coastal Plain, in Florida (OSBS and
TALL) The only site spanning the full range of seven
natural drainage classes (OSBS) most closely approx-
imated the continental pattern of increasing profile
SOC with increasing wetness, albeit with fewer
significant differences between drainage classes. The
other two sites possessed soils from only four of the
seven drainage classes; at these, the most poorly
drained soils on the landscape tended to have more
variable profile total SOC, but only at one of them
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Inceptisols (6,139) -
Spodosols (5,55) { b |- cD

Ultisols (5,96) + bc [o{m DE

Alfisols (5, 61) - be & DE

Soil Taxonomic Order

]
>

Entisols (1, 46) 4 bc @+ E

Aridisols (4,37) { c#H F

® Within-site replication (Initial Characterization
O  No within-site replication (SOM-MOS)

0 200

T T

T
600 800 1000 1200

Profile total SOC stock

(Mg C ha™ to 1 m or refusal)

Fig. 4 Whole soil profile SOC storage, to a depth of refusal or
1 m, for the ten orders (of 12 total) in USDA Soil Taxonomy
represented across NEON sites. See Fig. 2 caption for
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Fig. 5 Whole soil profile SOC storage, to a depth of refusal or
1 m, for the USDA natural drainage classes observed at three
NEON sites with internal gradients in natural drainage. Plots
show means and 95% confidence intervals after back-

(TREE) was profile SOC significantly greater with the
poorest drainage than (all other) drainage classes.

Hypothesis 3: SOC stocks in A vs. B horizons
as related to land cover vs. parent material

Topsoil (A horizon) and illuvial (B) horizon SOC
storage varied significantly with land cover/use and

transformation from the /n-transformed values used for analysis.
Lowercase letters denote significant differences between In-
transformed values. Note x-axis breaks

parent material, for both SOM-MOS and initial
characterization datasets (Table 2). However, our
specific hypotheses were not consistently supported by
the results. In A horizons, land cover/use was a
stronger predictor of variation in SOC storage than
was parent material for both datasets, both in terms of
the proportion of total variance explained and the
F statistics of the two predictors. In B horizons, lower
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Table 2 SOC stocks for A (above dotted line) and B (below dotted line) horizons, for SOM-MOS (left) and initial characterization
(right) datasets, as related to land cover/use vs. parent material

SOM-MOS (non-replicated)

Initial characterization (replicated)

Horizon/factor dfb SSb  SSt SSb/SSt  F df b SSb  SSt SSb/SSt F P
A horizons
Land cover/use 6 17 28 0.61 7.7 < 0.001 9 164 510 0.32 29.0 < 0.001
Parent material 7 12 28 0.43 3.2 0.015 23 155 510  0.30 10.1 < 0.001
B horizons
Land cover/use 6 33 91 0.36 6.0 < 0.001 9 84 739  0.11 13.3 < 0.001
Parent material 13 38 91 0.42 32 < 0.001 24 148 739 020 9.7 < 0.001

proportions of the total variance were explained by
these two predictors, and there was no clear pattern of
either variable being a stronger predictor of observed
variation than the other. Namely, parent material
explained somewhat larger proportions of variation
than land use in terms of the fraction of total variation
between observations, but at the expense of degrees of
freedom (i.e., a much larger number of categorical
groups than land cover/use classes).

Table 3 Sources of continuous variation in A and B horizon
SOC storage in the SOM-MOS (for each dataset and predictor
variable, the between-group degrees of freedom (df b) and

Hypothesis 4: continuous variables influencing
A and B horizon SOC stocks

Despite originating from the very same study sites and
possessing the same pool of potential predictor
variables, the SOM-MOS and initial characterization
datasets diverged in the continuously varying factors
best able to explain the variation observed in A and B
horizon SOC stocks (Table 3). Best subsets models
within the non-replicated SOM-MOS dataset nomi-

sum of squares (SSb), total sum of squares (SSt), proportion of
explained variation (as SSb/SSt), and F and P statistics are
shown left) and initial characterization (right) datasets

SOM-MOS

Initial characterization

Factor t P VIF

Factor t P VIF

A horizons R? = 0.35

MAT — 2411 0.022 1.068
MAP 1.927 0.063 1.277
Al_dith 1.917 0.064 1.336

B horizons R* = 0.25

MAT — 4.796 < 0.001 1.000

A horizons R = 0.51

pH — 10.983 < 0.001 2.234
CEC_NH4 8.542 < 0.001 2.373
Ca_NH4 6.729 < 0.001 2.933
Al_ox 4.031 < 0.001 1.399
% Sand — 2.638 0.009 1.885
B horizons R* = 0.30

CEC_NH4 8.026 < 0.001 1.372
Al_ox 3.695 < 0.001 1.208
% Coarse fg 2.941 0.003 1.093
% Silt 2.227 0.027 1.425

For each horizon, the predictor variables in the strongest best subsets regression model are presented, along with their partial # and
P statistics and variance inflation factors (VIF), and the adjusted R? value of the model. See “Data analysis” section for information

about variables and model selection
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nated climatic drivers as those explaining the most
variation, with MAT appearing first for both horizons.
Mean annual precipitation and dithionite-citrate
extractable Al concentrations additionally appeared
in the strongest multi-variate A horizon model that met
our criteria. Model predictive capacity, in terms of
proportion of variance explained, was higher for the
initial characterization dataset (R> = 0.51 and 0.30 for
A and B horizons, respectively, vs. 0.35 and 0.25 for
the SOM-MOS dataset). The initial characterization
dataset, which spanned the same broad climatic
gradients but also replicated across soil physicochem-
ical properties within each NEON site’s climate,
suggested a stronger influence of variation in soil
physicochemical properties, while climate variables
were not present in the strongest models that met our
criteria. In A horizons, pH values predicted the largest
proportion of the variation in observed SOC stocks,
with CEC, exchangeable Ca and Al concentrations,
and sand content explaining the successive remaining
shares of residual variation. Cation exchange capacity
and oxalate-extractable Al concentration were also
selected in the B horizon model, which further
included coarse fragment and silt contents.

Hypothesis 5: pedogenic variation in B horizon
properties and SOC stocks at the continental scale

Table 4 Physicochemical properties of illuvial (B) horizons
falling into three major pedongenic groups: clay-enriched
argillic and kandic horizons (B horizons with t and k

Considering all B horizons from the continental-scale,
internally replicated initial characterization dataset
revealed that nearly all measured physicochemical
properties differed significantly between argillic/
kandic, cambic, and spodic groups (Table 4; Krus-
kal-Wallis tests). The only exceptions were silt
contents of argillic/kandic (n = 548) vs. cambic
horizons (n = 295) and coarse fragment contents of
spodic (n = 110) vs. cambic horizons. In general
terms, spodic horizons tended to be coarse-textured,
acidic, high in OC and extractable metal, and low in
bulk density, extractable calcium, and CEC. In
contrast, argillic and kandic horizons were the densest,
finest-textured, highest in Ca and CEC, and lowest in
extractable metals and OC. Compared to these
extremes, cambic horizons were intermediate in most
regards but had notably high CEC. Median SOC
stocks were significantly different for all three groups,
being 16 Mg C ha™' for argillic/kandic horizons,
23 Mg C ha ! for spodic horizons, and 30 Mg C ha™*
for cambic horizons.

In keeping with their significant differences in
nearly all physicochemical parameters, the three types
of illuvial horizons in the initial characterization
dataset differed in the variables that best explained
variation in their SOC stocks, although several
predictors were consistent across two of the three
groups (Table 5). Predictors of SOC storage in argillic

designations), incipient cambic horizons (w designations),
and organo-metal spodic horizons (s and h designations)

Argillic/Kandic Cambic Spodic
%Sand 37 (18-59) 44 (27-70) 74 (65-89)
%Silt 33 (18-46) 35 (21-45) 22 (8-30)
%Clay 28 (19-37) 14 (8-28) 4 (3-5)
9%Coarse fg 1(0-9) 8 (0-32) 19 (0-41)
Db 1.59 (1.50-1.67) 1.40 (1.21-1.52) 1.11 (0.93-1.31)
pH 6.6 (5.2-8.1) 5.4 (5.0-6.6) 5.0 (4.5-5.2)
%0C 0.36 (0.21-0.67) 1.06 (0.64-1.82) 1.50 (0.78-2.55)
Al_ox 0.09 (0.05-0.14) 0.19 (0.10-0.47) 0.37 (0.24-0.60)
Al_dith 0.10 (0.00-0.20) 0.20 (0.10-0.50) 0.30 (0.20-0.60)
Ca_NH4 11.2 (3.3-31.6) 2.2 (0.0-9.8) 0.4 (0.0-1.2)
CEC_NH4 13.3 (8.1-19.9) 11.5 (6.5-17.3) 7.7 (5.3-12.2)

Values reported are medians, 25th and 75th percentiles
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Table 5 Sources of variation in SOC storage of B horizons
from the continental-scale distributed plot dataset falling into
three pedogenic groups

Factor t P VIF

Argillic/Kandic R* = 0.31

CEC_NH4 8.118 < 0.001 1.375
Al_ox 3.547 < 0.001 1.213
%Coarse fg 3.413 < 0.001 1.09
%Silt 2.119 0.035 1.432
Cambic R* = 0.53
CEC_NH4 5.351 < 0.001 1.2
MAP-Eref 3.841 < 0.001 1.2
Spodic B> = 0.61
Al_dith 4.847 < 0.001 1.602
pH — 3.738 < 0.001 2.166
%Clay 2.84 0.005 1.49
9% Coarse fg 2.684 0.008 1.571
MAP 2.626 0.01 2.871

For each group, the predictor variables in the strongest best
subsets regression model are presented, along with their partial
t and P statistics, variance inflation factors (VIF), and the
adjusted R? value of the model. See “Data analysis™ section for
information about variables and model selection

and kandic horizons, which were 58% of all B
horizons in the continental-scale dataset, were the
same in identity, rank, and sign as for B horizons
overall in the dataset. These included CEC, oxalate
extractable Al, coarse fragment, and silt contents.
Cation exchange capacity was also the most signifi-
cant predictor of SOC storage for cambic horizons,
followed by climatic leaching index. In spodic hori-
zons, B horizon SOC was related to oxalate
extractable Al, pH, clay and coarse fragment contents,
and MAP.

Hypothesis 6: pedogenic variation in B horizon
properties and SOC stocks within heterogeneous
soil landscapes

Three NEON sites-one each in the Appalachian
(MLBS), Rocky (NIWO), and Sierra Nevada Moun-
tains (SOAP) provided well-replicated internal con-
trasts between soils with argillic (Bt/Bk) horizons vs.
cambic (Bw) horizons. This observational design
afforded the opportunity to test whether B horizon
SOC stocks and relationships  with  soil
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physicochemical properties followed the same pat-
terns within these local landscapes as observed across
the continental-scale dataset. In contrast to the many
significant differences in physicochemical properties
between argillic and cambic B horizons observed at
the continental scale (cf. Table 4), there were few
significant differences between argillic and cambic
horizons at these three sites (Table 6). Specifically,
clay differed significantly between groups at 2 of the 3
sites, and pH, extractable Al and Ca contents differed
significantly at one site each, respectively. Categori-
cally, B horizon SOC stocks of the two pedogenic
groups were significantly different at two of the three
sites, but best subsets model selection identified
continuously varying physicochemical properties as
better predictors of variation in B horizon SOC stocks.
However, the factors that best explained variation in B
horizon SOC stocks differed depending on site
(Fig. 6). The strongest model meeting our criteria at
each site (each had P < 0.001) was a three-variable
model, with adjusted R? values ranging from 0.62
(NIWO) to 0.83 (MLBS). At MLBS, oxalate-ex-
tractable Al explained the largest share of variation in
B horizon SOC (partial 7 = 8.186), with residual
variation  explained by  coarse  fragment
(t=—2.195) and clay (r=— 1.910) contents,
respectively. At NIWO, variation in SOC was most
strongly related to CEC (partial ¢ = 3.903), followed
by clay and extractable Al contents (r = — 2.898 and
t = 2.700, respectively). At SOAP, B horizon SOC
stocks were positively related to their sand (¢ = 6.650),
extractable Fe (t=4.686), and Ca (r=3.192)
contents.

Discussion

The NEON design, spanning continental gradients
across sites, and landscape-level variation within
them, affords unique opportunities to test hypotheses
as a function of scale and study design, using two
complementary datasets differing in their degree of
within-site replication. Table 7 enumerates our
hypotheses, their scales of testing and degree of
support, the implications of these results for studies at
NEON sites and similar cross-scale networks, and
inferences into how soils function. Our overarching
result, across all of these hypotheses, is that SOC
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Table 6 Paired comparisons of B horizon SOC storage and physicochemical properties for three NEON sites possessing internal

contrasts of argillic (Bt/Bk) vs. cambic (Bw) horizons

Site Pedogenic B horizon

Group C stock % Clay % Crs. fg pH

Al_ox Ca_NH4 CEC_NH4

MLBS  Argillic 26 (15-42) 23 (19-30)a 14 (5-28) 4.6 (45-4.7)  0.17 (0.11-0.22) 0.0 (0.0-0.1) 7.8 (6.1-9.6)
Cambic 18 (11-30) 14 (10-18)b 14 (1-77) 4.6 (42-4.8)  0.16 (0.12-0.21) 0.0 (0.0-0.0) 6.2 (5.0-8.2)

NIWO  Argillic 13 (9-16)a 13 (10-16) 62 (52-85) 5.3 (5.2-5.3)a 0.22 (0.18-0.25) 1.0 (0.4-1.3)a 8.9 (7.2-10.3)
Cambic 30 (17-50)b 9 (6-15) 63 (41-70) 5.6 (5.4-59)b 0.20 (0.10-0.42) 3.0 (2.1-3.2)b 8.9 (7.3-13.3)

SOAP  Argillic 27 (18-35)a 23 (20-32)a 8 (5-16) 6.0 (5.9-6.4) 0.16 (0.11-0.32)a 4.6 (3.5-5.7) 10.0 (9.1-11.4)
Cambic 51 (40-73)b 7 (5-18)b 27 (8-43) 6.4 (5.9-6.5)  0.65 (0.30-0.68)b 2.9 (2.5-6.4) 10.4 (8.7-14.1)

All properties are reported as medians, 25th and 75th percentiles. Within each site, significant differences between groups (Mann—

Whitney test) are indicated with lowercase letters
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Fig. 6 Relationships between B horizon physicochemical
properties and SOC stocks (In-transformed) for three NEON
sites. Points represent individual B horizon samples. Plots in the
left column show relationships between the physicochemical
property explaining the largest share of variation in SOC; plots
in the center and right columns show relationships between the

physicochemical property and the residual variation after
accounting for the predictor variable(s) to the left. Best-fit lines
are added as a visual aid; slopes and partial P values correspond
to the coefficients returned by the strongest best subsets
regression model for each site
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Table 7 Summary of hypothesis test

Hypothesis Scale Test Implication Inference
1. Patterns and sources of variation C + At wide scales and for whole soil Soil taxonomy categorizes continuous
in whole-profile SOC stocks are profiles, within-site replication is not  variation in soil forming factors into
the same in replicated and non- needed to discern soil taxonomic, groups that also differ in SOC, which
replicated datasets climatic, and drainage patterns in is thus an emergent pedogenic
SOC property
2. Drainage and profile SOC show C/L  ° Continental drainage gradients are At broad (but not local) scales, wetness
the same positive relationship at rarely found at landscape levels; at may covary with factors that
landscape as continental scales more localized scales SOC strengthen its positive influence on
differences are restricted to the SOC
extremes
3. SOC in A horizons is predicted C — Land cover/use may predict more Both top-down and bottom-up factors
by land cover/ use more than variation than parent material in A are important throughout the soil
parent material; in B horizons horizons, but neither factor profile, though topsoils are somewhat
these influences reverse predominates in B horizons more influenced by top-down
controls
4. Within-site replication reveals C/L 4+  Broad designs suggest broad climatic ~ Climatic influences on SOC are
more continuous variables trends; within-site replication reveals ~ modulated by soil physicochemical
influencing SOC stocks in A & B these plus physicochemical variation
horizons influences that occur more locally
5. B horizon SOC stocks vary C +  Categorical groups capture broad Variation in SOC within and between
according to different drivers in patterns; variation within each group  soil taxa is influenced by factors and
distinct pedogenic groups is explained by continuous variation  processes of formation expected
in group-specific properties from, and unique to those taxa
6. B horizon SOC and its predictors C/L  — Pedogenic differences in soil Predictors of and covariance between

follow the same pedogenic
patterns as at the continental scale

properties and SOC stocks are fewer
and smaller at landscape than
continental scales

SOC stocks and other soil properties
are ultimately site-specific

Hypotheses were addressed at continental (C) and landscape (L) scales and are qualified here as having strong (+), mixed (°), or no (-

) support. Implications are statistical results in context; inferences refer to soil functioning

patterns and predictors observed at one scale (or using
one design) do not necessarily transfer to others.

Our first two hypothesis tests exemplify the disso-
nance that can occur when soils arrayed across a
sequence on a landscape are expected to follow the
trend observed across the same gradient at a larger
scale. Profile total SOC stocks for soils differing in
drainage at TREE, OSBS, and TALL (H2, Fig. 5)
highlight that even landscapes with many similarities
(i.e., humid climates, low relief, hydraulically con-
ductive unconsolidated parent materials) can diverge
from a strong pattern with a straightforward explana-
tion (HI, Fig. 3). Importantly, few sites (whether
NEON or otherwise) span the full range of drainage
classes, and while each of the three we assessed shows
a grossly similar qualitative trend, not one shows the
clearly significant pattern that we observed at the
continental scale, or others have reported at regional
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and continental scales (Dalsgaard et al. 2016; David-
son 1995; Davidson and Lefebvre 1993; Wills et al.
2013). Thus, expecting drainage sequences to align
neatly with SOC stocks on any landscape is unwar-
ranted, despite the convincing pattern from the large-
scale dataset, which has been documented in individ-
ual site-level studies elsewhere (Raymond et al. 2011;
Richardson and Stolt 2013; Webster et al. 2008). In
terms of implications for SOC studies across scales,
testing our first two hypotheses revealed that within-
site replication is not needed to discern drainage,
climatic, and soil taxonomic patterns in SOC at wide
scales and for whole soil profiles. The common
inference among these patterns is thus the ability of
meaningful categories to encompass continuous vari-
ation in soil forming factors and processes, and in turn
differentiate their SOC stocks. Ultimately, the factors
and processes that govern the formation of soils as
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natural bodies interact and covary in fundamental
ways that cannot be statistically disentagled. This
reality makes categorization (e.g., as with soil taxon-
omy) a useful way to manage complexity, while
acknowledging that categories include factors that
may work synergistically (e.g., coldness and wetness)
to produce strong patterns in observational datasets
such as we have assembled across NEON sites.

Our latter three hypothesis tests demonstrate the
implications that study designs have for the inferences
that they can support, in terms of patterns and their
transferability across scales. The first of these (H4,
Table 3) demonstrated how broad-scale designs that
do not replicate within sites can capture variation in
SOC stocks as related to factors varying at such broad
scales (e.g., climate), while failing to detect the
influence of factors varying at broad and local scales
(e.g., soil physicochemical properties). In this case,
comparing results from the initial characterization
dataset to those of the SOM-MOS dataset effectively
controls for the broad climatic variation detected by
the latter, in that climate variables do not vary
meaningfully at the scale of a NEON site while soil
physicochemical properties do. In terms of inference,
this suggests that the apparent overarching influence
of climate may in fact be less important than
continuously varying soil physicochemical properties,
to the extent that these factors are independent of each
other. Our Hypothesis 5, focused on B horizons in
particular, placed that continuous variation in physic-
ochemical properties within three pedogenically
defined groups at the continental scale (Tables 4, 5).
The consistent differences in properties, and the
relationships of unique physicochemical properties
to SOC in each of those groups may superficially seem
to provide a pedogenic basis for SOC variation at more
localized scales, much like the hypothesized wetness —
profile SOC relationship (H2). However, in similar
fashion, testing this hypothesis (H6) at the landscape
level at MLBS, NIWO, and SOAP revealed that
pedogenic differences in B horizon properties and
SOC stocks were far fewer at landscape than conti-
nental levels (Table 6, Fig. 6). Soils from the Bt/Bk vs.
Bw pedogenic groups at each of these sites not only
failed to exhibit most of the physicochemical differ-
ences observed at the continental scale, but the specific
physicochemical factors that predicted SOC stocks
differed across the three sites.

The SOM literature emphasizes the importance of
organo-metal interactions to the formation of rela-
tively stable SOM, or having positive relationships
with SOC concentrations (Kleber et al. 2007; Kogel-
Knabner et al. 2008; Rasmussen et al. 2018). Obser-
vational relationships between extractable forms of Al
and SOC storage in A and B horizons at the continental
scale (H4, Table 3) support this, to the degree that
operational dissolutions target meaningfully discrete
reactive forms of soil metals (Heckman et al. 2018a, b;
Wagai et al. 2013). However, SOC relationships with
Al and other physicochemical properties (e.g., pH,
CEC) that we report are to some degree a product of
covariance, and thus do not indicate a controlling
influence of any one or three soil properties over SOC
storage. That said, this covariance could reasonably be
expected to be stronger in some soils (or portions of
the profile) than others, and best subsets regressions
(results not shown) demonstrated this was the case.
For example, across all initial characterization A
horizons, % organic C explained 46% of the variation
in CEC, with the addition of % clay bringing the
explanatory power of the model to 80%. In the lower
organic matter B horizons, this order was reversed,
with % clay explaining 36% of variation in CEC, and
the addition of % organic C resulting in a model with
adjusted R? of 0.60.

The inability of observational statistics to disen-
tangle integrative soil properties is not a new problem,
nor is it particularly important when considering that
physicochemical properties such as pH, base cation,
and metal concentrations are temporally dynamic
(McLaughlin 2014; SanClements et al. 2009; Thomp-
son et al. 2006). A soil extraction from one point in
time may therefore misrepresent the conditions under
which that soil has formed, and fail to reveal climate,
biogeochemical, and other factors that influence SOC
stocks that have accumulated over longer timescales
(Delgado-Baquerizo et al. 2017; Slessarev et al. 2016).
Radiocarbon measurements indicate that most soils
hold C that has been cycling over centuries to
millennia, especially in B horizons (Heckman, this
issue; He et al. 2016; Schrumpf et al. 2013; von
Lutzow et al. 2006), implying that relationships
between SOC and state factors as they are observed
today may be at best coincidental, and at worst
misleading. Paleo-disciplines (e.g., ecology, climatol-
ogy, pedology) all indicate that over time scales
relevant to soil C turnover, many soils have
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experienced wide variation (or directional changes) in
factors such as climate and vegetation (Commerford
etal. 2016; Shuman and Marsicek 2016). For example,
in climates that are today semi-arid or drier, clay-
enriched horizons (e.g., Bt, Bk) have been interpreted
as relicts of past wetter climates needed to explain
physical mechanisms of clay translocation and accu-
mulation (Bockheim and Hartemink 2013; Elliott and
Drohan 2009; Lavkulich and Arocena 2011). Soils in
forest-grassland ecotones, often comprised of Alfisol-
Mollisol complexes (Eckmeier et al. 2007; Kru-
penikov et al. 2011) provide another set of examples,
in which mechanisms of SOM stabilization associated
with these dramatically different vegetation types and
disturbance regimes can both be detected (Masiello
et al. 2004). Notably, soil properties developed over
long-term pedogenesis can influence SOC concur-
rently over the course of that long-term development;
they can also pre-dispose soils to stabilize contempo-
rary C inputs according to distinct mechanisms
(Sanderman 2018). These are not mutually exclusive,
and because our analysis addresses patterns in stocks
rather than mechanisms of stabilization, we stress the
operational disconnect between snapshot soil extrac-
tions and century to millennial soil formation and '*C
ages. Our intent is to highlight that the study of soils
and SOC stocks depends largely upon observational
approaches, and within that context, the challenge of
disentangling the factors and properties of natural
systems (soils) that are by definition multi-factor.

The influence of top-down (e.g., land cover/use) vs.
bottom-up (e.g., parent material) factors on SOC
storage in A and B horizons are examples of factors
that may influence SOC over short- vs. long-term
timescales. Regarding our third hypothesis, SOM-
MOS and initial characterization datasets concurred
that parent material influences SOC stocks in A
horizons (Table 2). This was despite an apparently
greater sensitivity to changes in surface processes,
inputs, and disturbance regimes, as inferred through
our observational statistical results for land cover/use
and as supported by literature (Angst et al. 2018; Barre
et al. 2017; Mao et al. 2020). In B horizons, variation
in SOC stocks at NEON sites was generally less
predictable, with both categorical predictors providing
significant explanatory power but neither obviously
explaining a larger share of the (still largely unex-
plained) variation.

@ Springer

Coarse fragment content is a continuously varying
soil property inherited from parent material with a
significant influence on fine soil SOC storage in B
horizons at continental and landscape scales (Tables 3,
5, Fig. 6). This finding raises two important points for
consideration. First, though rocks are more often
considered a sampling problem, a particle size class to
be excluded during sample processing, or a mathe-
matical term in an element stock computation, they
may be a widespread underlying driver of SOC
storage. Rocks may thus warrant more attention in
SOC inventories, which often do not address them
explicitly. Second, relationships between rocks and
SOC stocks exemplify the inability to generate
mechanistic explanations from the observational
studies that are the norm in the SOM literature. In
this case, plausible explanations can be proposed for
several mechanisms by which rocks could increase
fine soil SOC stocks. By decreasing the available
volume of fine soil, rocks may concentrate rooting,
OM inputs, and biogeochemical and pedogenic pro-
cesses in the fine soil (Harrison et al. 2003; Pierret
et al. 2016). Rocks are also a source of primary
minerals and limiting nutrients, and careful excavation
often reveals preferential root and rhizosphere activity
in rocky soil volumes or in the coarse fragments
themselves (Arredondo et al. 2019; Hoffland et al.
2002; Fahey et al. 2017). Coarse fragments also create
physical surfaces for accumulation of clay films and
organo-metal complexes; as these coatings thicken
into the surrounding fine soil matrix, they may
increase overall SOC contents (Bockheim 2011;
Frazier and Graham 2000; Schaetzl 1996; Sommer
et al. 2001; Stolt et al 1993). These three potential
explanations for coarse fragment—SOC relationships
are not mutually exclusive; each is supported by
literature, yet none can be offered as a stand-alone
explanation for the observed pattern. Accepting, then,
that each soil is the integration of myriad processes
and factors acting across scales and changing through
time, these explanations for just one of our results only
beg more questions. Why should any one, or even five
factors be denoted as “controlling” SOC storage?
How (if at all) do mechanisms of SOM stabilization
relate to the amount of SOC stored in soils? Our results
overall (and for coarse fragments specifically) indicate
that the factors most closely related to SOC stocks
depend very much on time and place. Ultimately, soils
are unique down to scales finer than their variation can
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be feasibly sampled, and the challenge to applying the
findings of any inventory lies in deciding the scale at
which the dissonance between broad pattern and site
specificity is unacceptable.

Conclusions

By analyzing two complementary soil datasets from
40 NEON sites at continental and landscape scales, we
have shown that patterns and predictors of SOC stocks
depend upon design and scale, and that inferences
gained from one design (or at one scale) do not
necessarily transfer to the other. Climate patterns are
robust at the continental scale, regardless within-site
replication, but within-site replication reveals the
influence of landscape-level variation in soil physic-
ochemical properties on SOC stocks. Strong conti-
nental patterns such as larger profile SOC stocks for
poorer drainage classes, or increasing B horizon SOC
as related to extractable metals are only marginally
transferrable to individual landscapes with narrower
gradients. At localized levels, the predictive utility of
categorical schemes is exceeded by continuous vari-
ation in physicochemical factors, even when the latter
are differentiated into meaningful groups by the
former.
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