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Abstract. Flux measurements of nitrogen oxides (NO, ) were
made over London using airborne eddy covariance from a
low-flying aircraft. Seven low-altitude flights were conducted
over Greater London, performing multiple overpasses across
the city during eight days in July 2014. NO, fluxes across
the Greater London region (GLR) exhibited high heterogene-
ity and strong diurnal variability, with central areas responsi-
ble for the highest emission rates (20-30 mg m~—2h~"). Other
high-emission areas included the M25 orbital motorway. The
complexity of London’s emission characteristics makes it
challenging to pinpoint single emissions sources definitively
using airborne measurements. Multiple sources, including
road transport and residential, commercial and industrial
combustion sources, are all likely to contribute to measured
fluxes. Measured flux estimates were compared to scaled Na-
tional Atmospheric Emissions Inventory (NAEI) estimates,
accounting for monthly, daily and hourly variability. Signif-
icant differences were found between the flux-driven emis-
sions and the NAEI estimates across Greater London, with
measured values up to 2 times higher in Central London than
those predicted by the inventory. To overcome the limita-
tions of using the national inventory to contextualise mea-
sured fluxes, we used physics-guided flux data fusion to train
environmental response functions (ERFs) between measured
flux and environmental drivers (meteorological and surface).
The aim was to generate time-of-day emission surfaces using
calculated ERF relationships for the entire GLR; 98 % spa-

tial coverage was achieved across the GLR at 400 m? spatial
resolution. All flight leg projections showed substantial het-
erogeneity across the domain, with high emissions emanat-
ing from Central London and major road infrastructure. The
diurnal emission structure of the GLR was also investigated,
through ERF, with the morning rush hour distinguished from
lower emissions during the early afternoon. Overall, the in-
tegration of airborne fluxes with an ERF-driven strategy en-
abled the first independent generation of surface NO, emis-
sions, at high resolution using an eddy-covariance approach,
for an entire city region.

1 Introduction

Anthropogenic emissions of NO, (NO +NO, =NO,) oc-
cur over large areas of Europe and the United Kingdom, with
atmospheric concentrations in many urban areas exceed-
ing the recommended World Health Organisation (WHO)
40 ugm~—3 annual health limit value (Brookes et al., 2013).
Of all the common gaseous air pollutants, nitrogen dioxide
(NO») is particularly problematic as it promotes respiratory
diseases, such as lung inflammation, bronchial reactivity and
a significant reduction in lung capacity (Foster et al., 2000;
Kelly and Fussell, 2017; Shao et al., 2019). NO; also plays a
central role in the production of ground-level ozone at the
regional scale. London has operated a low-emission zone
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(LEZ) since 2008, with the aim of reducing air pollution
through vehicle-specific restrictions. The effectiveness of the
current LEZ on respiratory health is still unclear, with some
studies highlighting the need further to reduce NO; concen-
trations before improvements in public health are achieved
(Mudway et al., 2019). Analysis of UK and European road-
side NO, annual trends have shown a downward trend in
NO, concentrations, however; road-side concentrations in
regions such as Greater London remain well above WHO
guidelines as of 2020 (Grange et al., 2017; Lang et al., 2019).

In order to bring atmospheric concentrations of air pol-
lutants into alignment with air quality standards, it is first
necessary to understand where the pollutant originates from
so that effective legislative controls can be introduced. The
National Atmospheric Emissions Inventory (NAEI) is the
primary tool used by the UK Government for this purpose.
A growing body of work has been conducted to evalu-
ate the NAEI, by comparing inventory estimates with real-
time flux measurements from towers and airborne platforms
(Bjorkegren and Grimmond, 2018; Famulari et al., 2010;
Font et al., 2015; Langford et al., 2009, 2010; Lee et al.,
2015; Pitt et al., 2019; Vaughan et al., 2016, 2017).

Inventory validation is a vital component towards reducing
urban pollutant concentrations, requiring a continued under-
standing of significant emissions sources and spatial distribu-
tions. Eddy covariance (EC) is a well-documented technique
for quantifying atmospheric emission rates within the atmo-
spheric boundary layer (Aubinet et al., 2012). Initially, EC
studies focused on greenhouse gas emission assessment (Bal-
docchi, 2003), but these have now been extended to include
reactive atmospheric compounds such as volatile organic car-
bon compounds (VOCs) and NO, (Baldocchi, 2003; Karl et
al., 2001, 2017, 2002; Langford et al., 2009, 2010; Lee et al.,
2015; Marr et al., 2013; Squires et al., 2020; Vaughan et al.,
2016).

The number of studies assessing NO, emissions in ur-
ban environments is small, and they have focused mainly
on point source analysis and emission inventory validation,
highlighting often significant underestimation of emissions
by inventories (Karl et al., 2017; Lee et al., 2015; Squires
et al., 2020; Vaughan et al., 2016). The next stage in under-
standing complex urban emission topographies is to directly
employ measured fluxes to calculate independent emissions
grids. Here we present a new methodology for calculating
high spatial resolution NO, fluxes by airborne eddy covari-
ance and use these with other techniques to generate real-
time emission grids over complex urban terrain. The method
is demonstrated for the GLR but will be applicable to other
metropolitan areas worldwide.
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2 Methods
2.1 Measurement campaign

Airborne eddy-covariance measurements were made during
seven research flights as part of the Ozone Precurers Fluxes
in an Urban Environment (OPFUE) project in July 2014
(Shaw et al., 2015; Vaughan et al., 2016, 2017). The project
involved multiple low-altitude flights over the GLR using the
Natural Environment Research Council’s (NERC’s) Dornier-
228 aircraft, based at Gloucestershire Airport’s Airborne Re-
search and Survey Facility (ARSF). The aircraft has a max-
imum flight range of 2600 km, a science ceiling altitude of
4500 m and a typical science flight speed of 74.5 £ 10ms~ .

Each research flight consisted of the following structure.
An initial profile to 2600 m was carried out at the begin-
ning of each flight, allowing for calibrations in lower-NO,
air during the transit towards London. After transiting, a spi-
ral descent over Goodwood (south-eastern England) gave an
estimation of boundary layer height. Straight level transects
at 300400 m were then flown across Greater London, start-
ing at the south-western corner of the M25 orbital motorway
and finishing at the opposite north-eastern edge of the GLR.
A sharp right turn was then made towards the industrial ar-
eas of eastern London and over the Dartford Thames River
crossing. The final transect ran perpendicular to the original,
ending at the north-western corner of London, completing
an open figure-of-eight design. The loop was not completed
around the west of London due to Heathrow Airport. Each
flight contained three repeat passes. Figure 1 shows the flight
path, with each transect type labelled. Table 1 summarises
each transect type and the typical flight distance, location and
number of completed replicates. Only data collected during
flights 3—7 will be presented due to instrument issues during
flights 1-2.

2.2 Instrumentation

Eddy-covariance flux measurements of NO, were made us-
ing an Air Quality Design Inc. (Golden, Colorado, USA)
NO, chemiluminescence analyser (Fast-AQD-NO, ). The in-
strument has a dual-channel architecture capable of quan-
tifying ambient mixing ratios of NO and NO; sequen-
tially (Squires et al., 2020). NO is quantified by the ozone-
chemiluminescence reaction and NO, via the same detection
method with an additional conversion of NO; to NO first
(Drummond et al., 1985; Kley and McFarland, 1980; Lee
et al., 2009; Reed et al., 2016). Ambient NO; is first pho-
tolytically converted to NO using a blue-light converter. Af-
ter conversion, detection is achieved using the same ozone-
chemiluminescence reaction as NO. Chemiluminescence de-
tection is achieved using dry-ice-cooled (—60 °C) photomul-
tiplier tubes (PMTs) (Hamamatsu Photonics K. K.) with a
red-window filter. As the resonance time within the NO; con-
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Table 1. (a) Individual flight transect information. (b) Flight information outlining the time each flight occurred, the number of complete

London overpasses and the altitude range.

(a)
Transects Length  Start Finish Area type Replicates
(km)
1 50 51.30°N,0.45°W  51.60°N,0.18°E  Suburban and urban 14
2 30 51.40°N,0.20°E  51.62°N,0.25°E  Suburban and urban 5
3 30 51.40°N,0.20°E  51.65°N,0.15°E  Suburban and urban 10
4 13 51.60°N,0.10°E  51.50°N, 0.30°E  Urban (major roads) 13
5 14 51.50°N,0.30°E  51.40°N, 0.20°E  Urban (major roads and industry) 16
(b)
Flight  Overpasses Altitude  Date Duration Weekday
no. (m) (yyyy-mm-dd) (UTC)
3 2 329+59 2014-07-12 13:00-15:00  Saturday
4 4 336+55 2014-07-14 13:00-16:00 Monday
5 4 344431 2014-07-15 09:00-12:00  Tuesday
6 3 342+78 2014-07-16 07:00-09:00 Wednesday
7 3 359+89 2014-07-16 12:00-14:00 Wednesday
0.45°W  0.30°W _ 0.13°W  0.Q0° 0.15°E  0.30°E Crouch, 1972; Williamson et al., 1988). Instrument zeros

Harlow
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Figure 1. OPFUE 2014 flight path over Greater London, highlight-
ing the incomplete figure-of-eight structure. Each transect type has
been labelled. Plotted in ArcGIS® (Esri, 2021a).

verter was found to be 0.11s, NO and NO; mixing ratios
were measured at a 9 Hz acquisition rate.

Instrument precision was quantified by assessing the dark
count noise on each PMT through frequency instrument ze-
ros (Supplement, Sect. S1.1) or by sampling NO, free air
(Lee et al., 2009). Photon counting is a well-established tech-
nique, with rates following a Poisson distribution (Ingle and
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were performed every 5min during flight, except over the
GLR, where zeros were performed during turns only. Fig-
ure S2 shows for each flight the dark count distribution as
a density area and the calculated Gaussian distribution. A
Gaussian distribution was used over a Poisson one, as the
count rate (> 3000 countss~!) was high enough to ensure
both distributions become identical (Lee et al., 2009; Silvia
and Skilling, 2006). Across the campaign, the average 2o
precision using in-flight zeros was calculated to be 153 and
249 pptv for NO and NO,.

Instrument accuracy was assessed for systematic uncer-
tainties. Sources of instrument inaccuracy were mass-flow
controllers, calibration standards, the blue-light converter
and channel artefacts. Instrument mass-flow controllers are
accurate to =1 % (manufacturer quoted). The NO / N, cal-
ibration standard has a quoted accuracy of 1% (supplied
by BOC Group plc). The blue-light converter gives consis-
tent, stable calibrations with an accuracy of £10 % derived
from signal stability of the CE calculation. By taking the in-
dividual uncertainties and propagating them, the overall un-
certainty was calculated. Total uncertainty for a 1 ppb mea-
surement of NO and NO» is 142.3 % and 143.9 % (at a 9 Hz
acquisition rate).

In addition to the Fast-AQD-NO,, on-board instru-
mentation also included a Proton-Transfer-Reaction Mass-
Spectrometer (PTR-MS; Ionicon GmbH), an Inertial-
Position and Altitude System (IPAS 20) and an Aircraft In-
tegrated Meteorological Measurement System (AIMMS-20;
Aventech Research Inc.). The AIMMS-20 system delivers
20 Hz measurements of u, v, w wind vectors, temperature,
pressure and relative humidity. The probe consists of five
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pitot-static pressure ports, configured in a cruciform array,
giving horizontal and vertical wind speed measurements. The
temperature and humidity sensors are located at the back of
the probe in a reverse-flow housing to reduce particulate con-
tamination (Beswick et al., 2008). The probe was calibrated
for static and dynamic upwash (Vaughan et al., 2016, 2017).
Only data collected from the Fast-AQD-NO,, IPAS 20 and
AIMMs-20 will be discussed in the study. VOC concentra-
tion and flux data from the PTR-MS have been discussed al-
ready elsewhere (Shaw et al., 2015; Vaughan et al., 2017).

2.3 Eddy covariance with environmental response
functions

An environmental response function (ERF) is a physics-
guided flux data fusion designed to create a bridge from EC
measurements to model grid-scale flux estimates (Metzger,
2018; Metzger et al., 2013; Xu et al., 2017, 2018). In an
ERF, high-rate time-frequency wavelet decomposition and
flux footprint modelling are used to create a time-aligned
dataset between response (flux) and driver (e.g. concentra-
tion, building height) observations. From this time-aligned
dataset, machine learning extracts a driver—response process
model — outputting a multi-dimensional surface that con-
nects flux to process. The ERF then uses this driver—response
process model to project flux maps with hourly and sub-
kilometre resolution, extending the areal representation of
the airborne NO, fluxes from a few square kilometres around
the flight tracks to the GLR. The following subsections de-
tail the software used for ERF EC data processing and the
principal processing steps.

2.3.1 Flux processing overview

NO, fluxes were calculated using the wavelet EC approach
discussed by Metzger et al. (2013), which has been described
in detail elsewhere (Karl et al., 2013; Misztal et al., 2014,
Thomas and Foken, 2007; Torrence and Compo, 1998; Wolfe
et al., 2015; Yuan et al., 2015). Flux processing was achieved
in R using eddy4R, as discussed by Metzger et al. (2017).
The eddy4R flux processing followed the workflow shown
in Fig. 2. Individual transects were processed separately, with
a minimum flight distance of 15km, ensuring large atmo-
spheric transport scales were captured. Data periods contain-
ing sharp turns or orbital loops were omitted. Meteorology,
position and concentration data were merged for each tran-
sect, giving a regularised data frame at 20 Hz. Each transect
was screened for data outside of defined thresholds and omit-
ted. The overall data pass rate was set to > 90 %. Successful
transects underwent de-spiking using the method outlined by
Brock (1986) in the form of Starkenburg et al. (2016) for
wind vectors (u, v, w), temperature and NO and NO;, mixing
ratios. The technique is sensitive to up to four consecutive
data spikes. High-pass filtered cross-covariance maximisa-
tion (Hartmann et al., 2018) was applied to correct NO / NO»
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mixing ratios and air temperature for differences in sampling
time compared to the vertical wind (w). Once lag-time cor-
rected, data were resampled from 20 to 9 Hz using mean
rolling averaging (Zeileis and Grothendieck, 2005).

After data pre-treatment, time-domain (classical) and
time-frequency-domain (wavelet) fluxes were calculated as
outlined in Fig. 2. Time-domain EC gives a single flux es-
timate per transect, whereas time-frequency EC gives a flux
measurement every 400 m along the transect using an over-
lapping 4000 m moving window. Time-frequency EC uses
CWT for flux analyses. A minimum wavelet scale of 4.5 Hz
(Nyquist frequency) and a maximum scale of 512 s were cho-
sen for the wavelet calculations; 512s was chosen to en-
sure all long-scale transport processes were accounted for,
as shown in Fig. S4, whereby scales above this point do
not show significant emission structure. Wavelet cone of
influence was not removed in accordance with Metzger et
al. (2013). Table 2 outlines eddy4R processing parameters.

Each flight leg underwent the following QA/QC steps.
Each flight transect was screened for the presence of
clear cross-covariance peaks for NO, NO, and tempera-
ture (Fig. S3). Limit of detection (LOD) (Billesbach, 2011)
and signal-to-noise (S / N) statistics (Foken and Wichura,
1996; Vickers and Mahrt, 1997) were calculated and me-
dian flux LODs were found to be 0.19 mgm~>h~! for NO
and 0.57mgm~2h~! for NO,. Fluxes below these thresh-
olds were flagged. Median S / N statistics for NO and NO,
fluxes were found to be 14.54 and 17.26. Stationarity tests
were calculated for each flight transect, with a flag thresh-
old of 100 % used (Foken and Wichura, 1996; Vickers and
Mabhrt, 1997). Nine out of 42 transects failed the stationar-
ity criteria and so were omitted. NO and NO, fluxes were
assessed for high-frequency spectral loss using a wavelet-
based correction methodology (Nordbo and Katul, 2013).
Average high-frequency loss factors for NO and NO, were
found to be 1.014 and 1.015. As these corrections increased
fluxes by only 1.4 %—1.5 %, they were not applied. A detailed
overview of chemical and meteorological NO, flux losses
can be found in Vaughan et al. (2016). As a final QA/QC fil-
ter, friction velocity (u*) was chosen as a metric of developed
turbulence. A ux threshold of 0.15ms™! was chosen in line
with other urban EC studies (Langford et al., 2010; Squires
et al., 2020), with data falling below this value being filtered
out.

2.3.2 Footprint model

To assess the spatial influence of each flux, we used a foot-
print model. The model calculates a spatial representative
weighting matrix for each measurement along the flight
track. In this study, we apply a model capable of assessing
influence from prevailing wind and crosswind (Metzger et
al., 2012). The model uses a parameterised version of the
Kljun (KL04) backwards Lagrangian model (Kljun et al.,
2002, 2004), capable of calculating footprint estimates under
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Figure 2. Modular eddy4R workflow giving four processing steps: raw data pre-treatment, time-domain EC, time-frequency-domain EC,

and post-processing analysis (footprint and ERF).

Table 2. List of eddy-covariance parameters for quantifying airborne NO, fluxes.

eddy4R parameter Setting

Data frequency 9Hz

Transect length > 15km

De-spiking Median filter (Brock, 1986; Starkenburg et al., 2016)

Lag correction High-pass filtered cross-correlation maximisation (Hartmann et al., 2018)

De-trending Mean

High-frequency correction Yes (Nordbo and Katul, 2013)

Wavelet waveform Morlet

Waveletd j 1/8

Wavelet maximum scale 512s

Wavelet cone of influence (COI) inclusion  Yes

Flux subinterval window 4000 m

Flux spatial averaging 400 m
stable and strongly convective conditions. Parameterisation resentative value along the flight leg. Figure 3 shows the av-
was achieved using measurement height (Zy,), ux*, standard erage calculated footprint across the campaign at 30 %, 60 %,
deviations of vertical and horizontal wind speeds, the plane- and 90 % influence contours. On average, the 90 % influence
tary boundary layer height (Z;) and aerodynamic roughness distance ranged from 3 to 12 km.
length (Zp). We used previously published Z( values for the
GLR, accounting for westerly and easterly wind influences, 2.3.3 Boosted regression tree machine learning
at 1km? resolution (Drew et al., 2013). The model gener-
ates a weighting matrix across the same domain as the spa- Linking time-of-day measured fluxes at the aircraft transect
tial dataset of interest, summing up to 1, and is centred on the  pejght to the surface can be challenging and is driven mainly
aircraft’s location. The footprint matrix can then be used to by their spatio-temporal variability. The application of an
weight and cumulatively sum the spatial dataset, giving a rep- EREF, in contrast, can bridge this gap by building relation-
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Figure 3. Footprint climatology of all aircraft transects, indicated
by the 30 %, 60 % and 90 % contour lines of the cumulative surface
influence superimposed over the 2014 NAEI for NO, emissions in
tons km ™2 yr_l. Plotted in ArcGIS® (Esri, 2021b).

ships between measured flux (spatial and temporal) and envi-
ronmental drivers. We used boosted regression trees (BRTs)
(Elith et al., 2008; Metzger et al., 2013; Serafimovich et al.,
2018) to calculate ERF relationships between measured air-
borne fluxes (spatial and temporal) and multiple environmen-
tal drivers. BRT is a non-parametric machine learning tech-
nique that combines regression trees and boosting to formu-
late ERF relationships (Serafimovich et al., 2018). BRT pa-
rameters were determined using the same strategy as Met-
zger et al. (2013) through the cross-validation procedure de-
scribed in Elith et al. (2008). We found by using a learning
rate of 0.1, tree complexity of 6, bag fraction of 0.75, ab-
solute (Laplace) error structure and 3.7 x 10* trees overall
that we were able to minimise the predicted deviance whilst
achieving the optimum model fit. The BRT approach used an
initial 500 trees, with 500 trees added at each step. The train-
ing dataset consisted of 1751 airborne flux observations after
QA/QC filtering.

3 Results and discussion
3.1 Airborne NO, fluxes

NO, fluxes were calculated during four flights, giving 11
complete transects across the GLR and 2884 individual
400m flux averages. Measurements were made at a rela-
tively constant altitude above the surface (340 =40 m), cor-
rected for both terrain elevation and building height. Build-
ing height data for the entire Greater London region were
obtained from the Digimap Ordnance Survey Web Map Ser-
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vice (Digimap) (Ordnance Survey, 2020). To account for
changing boundary layer heights, we used hourly 0.25° es-
timates from the ERAS fifth-generation ECMWF reanalysis
for global climate data (Hersbach et al., 2018). The calcu-
lated depth of the boundary layer (Zy,/Z;) ranged from 0.150
to 0.770, with a median Z,/Z; of 0.255. Atmospheric strati-
fication was found to be mostly unstable throughout the cam-
paign, with a median Obukhov length (L) of —182m and a
dimensionless Monin—Obukhov stability parameter (Zy,/L)

of —1.98. Friction velocities ranged from 0.06 to 1.09 ms~!,

with an average of 0.56ms~!.

EC measurements are affected by random and systematic
uncertainties. Random error accounts for uncertainty due to
an insufficient averaging period, resulting in the inadequate
sampling of primary contributing eddies (Lenschow et al.,
1994; Mann and Lenschow, 1994). A detailed review of ran-
dom error estimation approaches for EC can be found in
Salesky et al. (2012). Systematic error accounts for under-
sampling of the largest atmospheric scales responsible for
turbulent flux (Lenschow et al., 1994; Mann and Lenschow,
1994). At a 400 m averaging interval, the median random
error (£ median absolute deviation) for the NO flux was
126.6 £80.6 % and 108.3 £58.5% for NO;,. The median
systematic errors for NO and NO; flux were 14.7+4.7 %
and 14.3 £4.5 %. Chemical loss of NO, to OH was not cor-
rected for in this study, which is in line with the discussion
in Vaughan et al. (2016), with such losses being small (1 %—
2 %).

As the Fast-AQD-NO, quantifies mixing ratios of NO, in
wet air, the effect of density fluctuations (WPL) on calcu-
lated NO, flux was assessed using the method described by
Hartmann et al. (2018, Eq. 21). Fast (20 Hz) mixing ratios of
water vapour were calculated from relative humidity, pres-
sure, and temperature data and corrected for lag-time differ-
ences to the vertical wind. The water vapour mixing ratio
was used to convert NO / NO; mixing ratios to dry mole be-
fore performing EC calculations. Figure S6a shows the lin-
ear regression between uncorrected and corrected NO, flux
for the influence of WPL. Correcting for WPL increased
measured NO, flux on average by 1.35 %. In addition to
WPL corrections, the effect of vertical flux divergence was
also investigated. Vertical divergence can account for signif-
icant flux losses due to weakening vertical momentum at in-
creased altitudes below the planetary boundary layer (Dear-
dorff, 1974; Sorbjan, 2006). Figure S6b shows corrected vs.
uncorrected NO, flux using the method outlined by Sorb-
jan (2006), showing a potential 50 % flux increase. Due to
the coarseness of the ERA5 PLB data at 0.25° resolution
and the complexity of London’s surface structure, a more
detailed assessment is needed to understand what potential
effects vertical flux divergence may have on urban emission
estimates. Due to strict air traffic control restrictions, vertical
profiles were not possible during the campaign, which would
have allowed for a more detailed assessment of divergence
influences. The NO, fluxes reported in this study are not cor-

https://doi.org/10.5194/acp-21-15283-2021



A. R. Vaughan et al.: Spatially and temporally resolved measurements of NO, fluxes

rected for vertical flux divergence and so will be considered
conservative due to the listed processes having the potential
to further increase measured rates.

Flux measurements were made across a 5d period, giv-
ing three weekdays (Monday—Wednesday) and one weekend
day (Saturday). The temporal distribution of measurements is
well distributed, ranging from 08:00 to 16:00 UTC. Hourly
averaging across the entire dataset shows a partial diurnal
profile, with the maximum hourly mean NO, flux for the
GLR occurring at 10:00 UTC (8.95mgm~2h~!). The diur-
nal profile does not extend past 16:00 UTC, due to encoun-
tered air traffic control time restrictions. The present diurnal
is complex due to limited flight hours and the spatial varia-
tion of measured fluxes. Focus on the temporal component:
fluxes were hourly bin averaged and grouped according to
the flight leg type (Fig. 1) and measurement location with
three defined areas: Central London, the North/South Circu-
lar area and Outer London. Figure 4 shows hourly boxplot
flux averages for each flight leg type vs. location in Lon-
don. Leg 1 showed a strong morning diurnal for the Central
and North/South Circular areas of London, compared to legs
2 and 3, which typically showed consistent NO, emission
rates across the different hours sampled. Emissions measured
during the hours of 08:00-10:00 UTC in Central London are
above 20 mg m~—2h~!, which is consistent with other Lon-
don studies assessing London emissions (Lee et al., 2015).
The temporal variability of leg 5 was contrastingly different
to the other four legs and is heavily influenced by road trans-
port emissions (M25 orbital motorway).

By aggregating and averaging across multiple transects,
the temporal variability can be better accounted for, giving
a clearer picture of the spatial component. Figure 5 shows
mean 400 m latitude flux averages for each of the five transect
types. The shaded area shows the average flux random error
divided by the square root of the number of sample points
which went into each mean. Averaging reduces the individual
flux uncertainty (> 100 %), with the average flux uncertainty
(average error / \/n) being 48.7 4-20.7 %. Transect 1 follows
an identical path to that of similar measurements made pre-
viously in 2013 and shows comparable NO, fluxes (Vaughan
et al., 2016). The highest observed fluxes (> 20mgm~2h~1)
were measured over the London borough of Southwark and
the City of London. Both areas include major roads, national
rail stations and densely packed high-rise buildings, giving
profoundly heterogeneous emissions sources of NO,. Tran-
sects 2 and 3 (Fig. 5) ran perpendicularly to transect 1, giv-
ing emission information over the south-eastern and north-
western areas of Greater London. The emission structure of
transect 2 shows similarities to that of transect 1, with fluxes
in the central area above 10mgm~2h~!. Transect 3, in com-
parison, showed 50 % lower emissions (5 mgm~2h~"!). This
transect was over more suburban areas compared to transects
1 and 2. The final transects (4 and 5) ran over eastern parts
of the GLR, extending out to the M25 orbital motorway and
industrial infrastructure. The Dartford Crossing (A282) area
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showed elevated NO, emissions (> 10 mg m—2h~"). It was
evident during most flights that this area was prone to con-
gestion, suggesting vehicles as the primary source. The de-
sign capacity of the bridge is 135 000 vehicles d~!, but vehi-
cle flows now routinely exceed 160 000d~".

3.2 Comparison to the emission inventory

Measured fluxes are a powerful tool for evaluating bottom-
up emission estimates, such as the NAEI. The NAEI is vi-
tal for assessing UK air quality, providing annual emissions
estimates for a range of pollutants at 1 km? resolution for
the UK region. Each pollutant has an individual bottom-
up inventory, covering hundreds of different emissions cat-
egories, which, when summed together, give an annual na-
tional estimate. These sources include road transport, domes-
tic and industrial combustion, rail, aviation, energy genera-
tion, waste, fossil fuel extraction and agricultural production.
The NAET’s road transport sector is based on UK road traffic
statistics and the COPERT (Calculation of Emissions from
Road Transport) 4 emission factor model, which is part of the
European Monitoring and Evaluation Programme/European
Economic Area (EMEP/EEA) air pollutant emission inven-
tory guidebook (Bush et al., 2008; EEA, 2013). For each air-
borne flux, a footprint matrix was generated at the same spa-
tial extent and resolution (1 kmz) as the NAEI, using the de-
scribed footprint model. Each footprint equates to a value of
1 and weights each grid cell of the NAEI individually. Once
weighted, all cells are summarised, giving a spatially rep-
resentative emission estimate. We corrected for time-of-day
emission variations by scaling each source sector individu-
ally for monthly, daily and hourly influences using factors
unique to each sector. Once scaled, all sources are summed
to produce a time-of-day estimate, comparable to the location
and time-of-day each flux measurement was made.

To compare measured fluxes against footprint-calculated
time-of-day NAEI estimates, each transect type was 1km
mean binned as a function of latitude. Transects 2 and 3
were grouped to produce a perpendicular comparison to tran-
sect 1. Transects 4 and 5 were grouped to give a comparison
in an area more representative of industrial/road transport-
dominated emissions sources. Figure 6a shows the measured
flux (solid) and time-of-day scales’ NAEI estimates (dotted)
as a function of latitude for each of the three groupings us-
ing a generalised additive model (GAM) fit (Hastie and Tib-
shirani, 1990). The GAM fits a non-linear distribution to
the data, being either the measured flux or time-of-day in-
ventory estimate as a function of latitude. The shaded area
shows the 95 % confidence interval of the GAM fit. Mea-
sured fluxes along transect 1 consistently showed higher NO,
emissions than estimated by the NAEI (mean of 1.5 times
higher). The greatest divergence ratio between the measured
and inventory-estimate fluxes was 1.98, which is broadly
consistent with previous studies (Lee et al., 2015). The di-
vergence for transect 1 was most substantial when a mix of
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Figure 4. Hourly boxplot analysis of measured NOy fluxes, grouped by flight leg type and location within London. Groupings have been
defined as the following. Central London (51.48-51.52° N, 0.17-0.07° W). North/South Circular (51.44-51.6° N, 0.29° W-0.07° E), exclud-
ing the Central London area within. Outer London (51.25-51.7° N, 0.54° W-0.29° E), excluding both the Central London and North/South
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Table 3. Predicted NAEI emissions sources grouped by transect time and the median ratio of measurement to NAEI estimate (& median
absolute deviation). These sources are road transport, other transport such as rail and shipping, domestic combustion (combustion in commer-
cial, institutional, residential and agriculture), industrial combustion (combustion in industry) and energy production (combustion in energy

production and transformation).

Transect Road Other Domestic Industrial Energy Ratio

transport  transport combustion combustion production (flux / NAEI)
1 63.89 % 9.24 % 21.71 % 4.27 % 0.82 % 1.51+0.31
2 and 3 62.75 % 8.44 % 222 % 6.06 % 0.42 % 1.20+£0.27
4 and 5 70.09 % 8.47 % 11.1% 8.40 % 1.90 % 2.58+1.39

different emissions sources were encountered, such as other
transport mediums (rail and shipping) and domestic and in-
dustrial combustion settings (see Table 3). Comparison for
grouped transects 2 and 3 showed improved agreement with
the inventory, with measured fluxes on average 1.21 times
higher. The percentage contribution of emissions sources was
similar to transect 1, with only a slightly lower average road
transport contribution (63 %). The stronger agreement be-
tween transects 2 and 3 suggests the high emissions observed
during transect 1 are dependent on either a missing or under-
represented source in the inventory. Grouped transects 4 and
5 also displayed a high degree of divergence from the inven-
tory. On average, the ratio between measurement and inven-
tory was 2.57, with a peak value of 4.45. The primary sources
for this area include a greater contribution from energy pro-
duction and industrial combustion. Table 3 summarises the
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three different groups, with average NAEI sector contribu-
tions and the ratio between flux measurement and inventory.

Spatially, the disagreement between measurement and in-
ventory is uneven, as shown by Fig. 6b, whether, for each
1 km along the flight track, the median inventory minus mea-
surement value has been calculated. South-western areas of
the GLR agree better than the central and north-eastern ar-
eas. Greater underestimation by the inventory compared with
measurements was predominantly observed in regions of
complex source distribution and where no single primary
source dominated. The extent of disagreement highlights the
challenges and consequent drawbacks of using the NAEI as a
predictive tool for estimating NO, emissions or as a time-of-
day diagnostic for measured NO, fluxes. Several vital pro-
cesses may likely contribute to the observed differences, in
addition to NO, emissions being higher than in the NAEL
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The first is inventory scaling from annual to time-of-day. As
each source sector undergoes individual scaling, these factors
play a significant role in predicting time-of-day influences.
Currently, these factors lack spatial disaggregation and do
not account for the unique temporal profiles present per area.
In contrast to the NAEI, the London Atmospheric Emissions
Inventory (LAEI) uses emissions data from individual ve-
hicle classes, obtained by on-the-road ‘remote sensing’, to
constrain its predicted emissions from the road transport sec-
tor, giving a more realistic comparison to “real-life” emis-
sions and hence to eddy-covariance measurements (Lee et
al., 2015; Vaughan et al., 2016).

3.3 Spatio-temporal emissions

To overcome the limitation of using time-of-day represen-
tative NAEI estimates to explain measured fluxes, a more
pragmatic approach was chosen. Using the outlined ERF
methodology, we attempted to generate representative emis-
sion grids for each flight transect. To train the BRT technique,
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NO, flux data were filtered to include 0.5 % to 99.5 % quan-
tile values and positive fluxes only. We found excellent agree-
ment between measured and ERF-reproduced NO, fluxes in
the range of 0—37 mg m~2 h~!. The two datasets agreed close
toa 1:1 trend (0.96), with an R? coefficient of correlation of
> 0.99 and a residual standard deviation of 0.01. Figure S7a
shows the linear regression between median-averaged mea-
sured flux vs. BRT model prediction for each flight transect.

Six environmental drivers were used in the ERF process
to describe the spatio-temporal nature of the measured NO,
fluxes. Figure 7 shows the partial response functions calcu-
lated for each driver against difference from the mean flux
and ranked in terms of percentage contribution to the flux
distribution. Two different spatial datasets were used to ac-
count for the complex heterogeneity of the Greater London
region (Fig. 7a and c). Using the described footprint method-
ology, spatially representative surface NO, concentrations
and building heights were calculated for each flux from the
LAEI and Ordnance Survey datasets (Greater London Au-
thority, 2013; Ordnance Survey, 2020). Preliminary analyses
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using surface NO, concentration as the only spatial driver
appeared to overweight suburban areas and underweight cen-
tral areas of the GLR. The combination of the two datasets
helps to reinforce the significant spatial differences between
outer and inner London. To account for meteorological dif-
ferences, NO, concentration at altitude (Fig. 7b), relative
measurement height in the boundary layer (Zy,/Z;) and po-
tential temperature were chosen as ERF drivers (Fig. 7e and
f). As shown in Fig. 7e, 90 % of flight data occur below a
Zyn/Z; value of 0.4, with the function above 0.4 being mainly
linear. Solar azimuth angle (Fig. 7d) was chosen to account
for temporal variations in the measured flux. Flight data are
well distributed across the solar azimuth angle domain from
100 to 2607, corresponding to 08:00-16:00 UTC.

For each flight leg, surface-layer NO, fluxes were pro-
jected using median calculated statistics. Median values were
chosen to account for the high heterogeneity across the
length of a flight leg. Zy,,/Z; values for each ERF flux projec-
tion were kept constant to enable comparison between legs.
Overall, 20 unique transects were projected onto an aggre-
gated 400 m? LAEI grid, marrying to the spatial resolution
of measured flux. Figure 8 shows the median average of all
ERF flux projections across the field campaign. Overall, ERF
flux projection was possible across 98 % of the GLR domain.
Strong NO, emission rates are exhibited in Central Lon-
don, with lower emissions in Outer London. The standard
deviation between individual flight transects is low, showing
+2.45mgm~2h~!. The calculated relative standard devia-
tion (RSD) shows a more complex picture, with predicted
emissions in outer regions of London having a high RSD
(> 40 %) compared to Central London (> 35 %). Figure 8c
shows the calculated RSD across the GLR domain, suggest-
ing central areas showed a more consistent emission profile
during the campaign, highlighting the need for further refine-
ment of how the ERF predicted emissions in outer areas of
London. ERF did not extrapolate onto areas of much higher
or lower surface NO, concentrations (shown as grey), which
exceeded the ranges observed in the training dataset. These
areas included parts of the M25 orbital motorway due to lim-
ited data airborne over the region and where footprints ex-
tended beyond the confines of the LAEI grid. Areas of Cen-
tral London are also left blank due to footprints not encoun-
tering surface concentrations above 122 ugm=3.

To assess the performance of the BRT model, one flight
transect was omitted at a time, and the incomplete model
was then used to predict the omitted dataset. Figure S7b
shows the comparison between the predicted median flight
emission average using the incomplete model vs. the com-
plete one. Linear regression gives a slope of 0.867, with
the incomplete model, on average, overpredicting fluxes by
13.8% (0.74 mgm~2h~1!), which is taken as the prediction
uncertainty of the complete BRT model. The difference be-
tween the two models is comparable to the finding of Met-
zger et al. (2013), which found model differences for sen-
sible and latent heat flux to be between 11 % and 18 % us-
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ing the same technique. The spatial uncertainty distribution
across the GLR is complex, as shown in Fig. S7c. The incom-
plete model generally overestimates NO, emissions in Outer
London more significantly than in Central London, where
the models align more strongly. The prediction performance
of the BRT model varied from flight transect to transect, as
shown in Fig. S8. The majority of flight leg projects success-
fully scaled Central London emissions comparably to that of
measured fluxes. The projects also successfully captured key
features in the flux observation, such as major road networks
and densely populated areas.

The diurnal variability was also investigated during the
campaign by grouping flight data into hourly bins and using
the median hourly statistics to drive each ERF flux projec-
tion. Again, Zn,/Z; was kept constant for all projections. Fig-
ure 9 shows the average hourly ERF projections, spanning an
8 h period from 09:00 to 16:00 UTC. All projections retain a
strong heterogeneous profile. The most substantial emission
rates were observed during 09:00-10:00 UTC (Fig. 9a-b),
aligning with the morning rush hour. The emission rates rise
across the GLR, in unison, until 10:00 UTC, when emissions
stabilise into the afternoon period. Projected Central Lon-
don emissions during this period agree well with measured
fluxes, whilst more suburban areas are potentially scaled too
high, suggesting further temporal refinement across the do-
main is required. The evening rush hour, previously observed
in NO, emissions in London after 16:00 UTC (Lee et al.,
2015), is not captured in these predictions.

4 Conclusions

The assessment of NO, emissions in urban areas remains an
important area for research due to the critical impacts that
high NO, concentrations have on local public health and
the attainment of national transboundary emissions commit-
ments. In this study, we used airborne measurements over
the Greater London area to upscale airborne NO, flux ob-
servations to high-resolution emission projections across the
region via environmental response function (ERF) physics-
guided flux data fusion. The work presented here presents a
method which can quantify and spatially disaggregate NO,
fluxes over challenging urban terrain and has the potential to
be applied to other metropolitan areas worldwide.

Seven low-altitude research flights were made over the
Greater London region (GLR) in July 2014, performing mul-
tiple overpasses across the city. From these flights, 2715 in-
dividual NO, fluxes at 400 m spatial resolution were mea-
sured and processed in R using the eddy4R software. Mea-
sured NO; fluxes across the Greater London region exhibited
high heterogeneity and substantial diurnal variability. Central
areas of London showed the highest emission rates quanti-
fied during the campaign. Other high-emission source areas
included the M25 orbital motorway. The complexity of Lon-
don’s emission characteristics makes it challenging to pin-
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point single emissions sources definitively. In practice, mul-
tiple sources are likely to contribute to measured fluxes at the
spatial scale used here, including road transport and residen-
tial, commercial and industrial combustion (mainly for space
heating). To give a time-of-day reference, we compared mea-
sured fluxes to the UK’s National Atmospheric Emissions
Inventory, scaled to account for monthly, daily and hourly
differences from the annual values. We found that for central
areas of London, the inventory underestimated emissions by
up to a factor of 2, which is consistent with other published
studies. Measured fluxes were consistently higher than in-
ventory estimates across most of Greater London.

To overcome the limitations of comparing to the na-
tional inventory, we trained ERFs between measured spatial—
temporal NO, fluxes and environmental drivers (meteorolog-
ical and surface) to generate time-of-day emission surfaces.
EREF successfully reproduced aircraft-measured NO, fluxes,
with a coefficient of determination (R?2) of 0.99. We used the
calculated ERF relationships to project the NO, flux for the
time of each flight transect across the GLR domain at 400 m>
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resolution. We were able to achieve a 98 % spatial cover-
age and a highly heterogeneous emission surface. The overall
variability between ERF flux projections was low, with an av-
erage relative standard deviation of 40 %. All ERF flux pro-
jections showed high emissions emanating from central areas
of London and the major road network. Hour of day pro-
jections highlighted a strong morning rush hour, peaking at
10:00 UTC and remaining elevated into the afternoon. Over-
all, the integration of high-resolution spatio-temporal fluxes
with an ERF-driven strategy has enabled the generation of
spatial NO, emissions at high resolution over Greater Lon-
don.

This work demonstrates the power of airborne eddy-
covariance-based measurements of air pollutant fluxes as
a tool for evaluating emission inventories or as a method
of independently obtaining spatially disaggregated city-wide
emission rates of pollutants. The method is applicable to
other metropolitan areas or any other heterogeneous land-
scape. It should also help legislating authorities better under-
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stand air pollution sources and the effectiveness of control
measures.

Code availability. The eddy4R v0.2.0 software framework used
to generate eddy-covariance flux estimates is described in Met-
zger et al. (2017) and can be freely accessed at https://github.
com/NEONScience/eddy4R (last access: 22 June 2021, Metzger
et al.,, 2017). The eddy4R turbulence v0.0.16 software module
for advanced airborne data processing described in Metzger et
al. (2013) was accessed under terms of use for this study (https:
/Iwww.eol.ucar.edu/content/cheesehead-code-policy-appendix, last
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