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ABSTRACT
Multi-dimensional tensor data have gained increasing attention in the recent years, especially in biomedical
imaging analyses. However, the most existing tensor models are only based on the mean information of
imaging pixels. Motivated by multimodal optical imaging data in a breast cancer study, we develop a new
tensor learning approach to use pixel-wise correlation information, which is represented through the higher
order correlation tensor. We proposed a novel semi-symmetric correlation tensor decomposition method
which effectively captures the informative spatial patterns of pixel-wise correlations to facilitate cancer
diagnosis. We establish the theoretical properties for recovering structure and for classification consistency.
In addition, we develop an efficient algorithm to achieve computational scalability. Our simulation studies
and an application on breast cancer imaging data all indicate that the proposed method outperforms other
competing methods in terms of pattern recognition and prediction accuracy.
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1. Introduction

Recent advances in technology have catalyzed the rapid growth
of large volumes of biomedical data with heterogeneity struc-
tures. Among them, medical imaging data are the most dis-
tinctive and progressive due to their sheer volume and the
importance of the fields, as medical imaging data can carry sig-
nificant amounts of information on disease status and treatment
outcomes.

This article is motivated by the multiphoton optical imaging
data arising from a breast cancer study (Tu et al. 2016), where
multiple modalities of images are taken at each target region
with respect to different photon wavelengths. This advanced
technology is capable of capturing tumor-associated microvesi-
cles (TMVs) which have been shown a biomarker in detect-
ing early-stage breast cancer before a tumor forms (D’Souza-
Schorey and Clancy 2012). In particular, the number of TMVs
is highly correlated with tumor aggressiveness and metastatic
phenotype (Taylor and Gercel-Taylor 2008). A large quantity of
spatially concentrated TMVs is a strong indicator of invasive
tumors in a later stage.

Moreover, different from other imaging data such as brain
imaging (Bowman, Guo, and Derado 2007; Lindquist 2008; Tian
2010) where the regions of interest are fixed, the location of
tumor-associated TMVs on breast cancer images are random.
Due to the randomness of signal regions and large-volume of
pixels, traditional regression methods assuming fixed-location
signals are likely to fail in breast cancer imaging. Instead, Tang,
Bi, and Qu (2019) considered heterogeneous structures among
subjects and proposed to extract features based on individu-
alized tensor decomposition. However, one drawback of their
method is that it is hard to interpret the relationship between

CONTACT Annie Qu aqu2@uci.edu Department of Statistics, University of California, Irvine, CA 92697.
Supplementary materials for this article are available online. Please go to www.tandfonline.com/r/JASA.

the extracted features and the label of individuals, and therefore
it is rather difficult to recover the signal regions that contain
TMVs. In addition, Tang, Bi, and Qu (2019) did not utilize
the spatial correlation information among pixels to provide
more effective detection on TMV and improve classification
accuracy.

In this article, we propose to incorporate pixel correlation
in multimodality image analysis to identify TMVs more effi-
ciently. The existing approaches in multimodality image analysis
(Hinrichs et al. 2011; Yuan et al. 2012; Zhang and Shen 2012;
Liu and Calhoun 2014; Tang, Bi, and Qu 2019) are mainly
based on the marginal mean of imaging pixels. However, these
methods are not applicable and likely to fail when the signals
are too weak compared to noisy backgrounds, which does not
provide informative features for imaging diagnosis. In addition,
the pixel values might present heterogeneously across different
modalities. In particular, signals can be more visually expressed
in certain modalities while less apparent in others, which also
makes it more difficult to detect based on pixel values only.
Nevertheless, the signals still share certain imaging features
across different modalities; particular spatial correlations are
still more or less preserved even under different modalities. This
motivates us to consider a new tensor correlation strategy to
incorporate correlation structures of pixels for multimodality
images.

However, the estimation of the correlation structure is non-
trivial given that image size is much larger than modality
numbers. Existing approaches for handling high-dimensional
correlation matrices include the matrix normal distribution
(Dutilleul 1999) which assumed that the covariance of the
vectorized data can be decomposed into a Kronecker product of
two matrices. Nonetheless, the decomposed covariance matrices
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can only capture the marginal correlation between rows and
columns of the matrix, and cannot represent the neighboring
spatial information. The principal orthogonal complement
thresholding method (POET) Fan, Liao, and Mincheva (2013)
assumed a factor model with a sparse error covariance matrix,
but it is not applicable for imaging data where the factors are
no longer single dimensions and the error covariance is not
sparse.

Detection of TMVs can be formulated as a clustering prob-
lem through the correlation structure of pixels. The existing
clustering approaches require index permutation marginally
(DeRisi, Iyer, and Brown 1997; Eisen et al. 1998; Bar-Joseph,
Gifford, and Jaakkola 2001), where the neighborhood infor-
mation is ignored. However, spatial information is crucial in
detecting TMVs, otherwise irrelevant pixels can be classified
as TMVs incorrectly, which may result in high false positive
rate. Moreover, correlation estimation after vectorization is inef-
ficient as it only utilizes information of single-pixel pairs without
incorporating high-order spatial information jointly in multi-
modality image analysis.

To tackle the above challenges, we introduce a new concept
of correlation tensor which captures the spatial correlations
for multimodality imaging data in a high-order array. In addi-
tion, we propose a novel semi-symmetric tensor decomposition
method to recover the correlation structures among all pix-
els efficiently and extract latent features for disease diagnosis.
Specifically, we impose a low-rank structure in tensor decom-
position to reduce the number of parameters, which enables
us to detect signal patterns on images associated with potential
disease outcomes.

A low-rank structure has been adopted in many tensor mod-
els to discover the underlying features. For example, Bi, Qu,
and Shen (2018) extracted the subgroup information through
tensor decomposition to improve the recommendation system;
Tang, Bi, and Qu (2019) developed an individualized multilayer
tensor learning method to classify multimodal images; Zhang
and Xia (2018) investigated the consistency of tensor singular
value decomposition (SVD) under different signal noise ratios;
Xia and Zhou (2019) proposed a low-rank tensor denoising
estimator with sharp entry-wise deviation bounds; Sun and
Li (2019) utilized the low-rank tensor factorization to achieve
dynamic tensor clustering. In addition, Allen (2012) obtained
both low-rank and sparse tensor decomposition by imposing L1
penalty on components, and Zhang and Han (2019) achieved
sparse tensor SVD through iterative thresholding. However, all
existing tensor methods assume that the elements of the target
tensor are independent, while in our case, the entries of the
decomposed tensors are sample correlation estimates and are
correlated in nature. The dependence nature imposes a great
challenge in deriving theoretical properties compared to the
independent case.

To the best of our knowledge, the proposed method is the first
to integrate correlation structure and spatial information under
the tensor framework. Through incorporating spatial correla-
tion information, the proposed method is able to provide higher
classification accuracy when signal strength is weak compared
with background noise. Since spatial information is preserved,
we are able to fully use the multi-dimensional structure of
image data, and distinguish signals from noise according to

their spatial distribution in the image, which is infeasible using
traditional vectorization methods. In addition, we are also able
to identify regions that contain signals associated with tensor
correlation features directly, which provides more meaningful
scientific interpretation compared to Tang, Bi, and Qu (2019).
Moreover, the semi-symmetric tensor decomposition improves
estimation efficiency by reducing the dimension of parameters,
which enables us to extract important features even with a
limited number of modalities. More importantly, we establish
a general theoretical framework using the low-rank tensor
decomposition model for high-dimensional correlated data
which takes underlying correlations into account. The new
developed theory generalizes the theoretical properties under
the independence framework Wang and Li (2020) to accom-
modate different correlation structures and regularization
terms.

Our numerical results and theoretical properties all indicate
that the proposed method achieves higher classification accu-
racy with an increase of the number of modalities and image
size. In the existing regression methods Li et al. (2018a), the
increase of modalities and image size adds more difficulties
to prediction since it introduces more coefficients to estimate.
In contrast, the proposed method utilizes additional informa-
tion on spatial correlation and multimodality for better feature
extraction through correlation tensor decomposition, which
leads to better prediction performance.

The rest of the article is organized as follows. Section 2
introduces notations and some background in tensor analysis.
Section 3 proposes the correlation tensor structure, the semi-
symmetric decomposition method and the corresponding clas-
sification method based on the extracted features. Section 4
provides the identifiability and asymptotic result of the proposed
method. Section 5 demonstrates the numerical studies using
simulated data. Section 6 applies the proposed method to mul-
timodal breast cancer imaging data. The last section provides
concluding remarks and discussion.

2. Notation and Background

We start with some notations to represent multimodality image
data. Let X(i,m) be the observed imaging data for the ith subject
on the mth modality, where 1 ≤ i ≤ n and 1 ≤ m ≤ M.
We assume that each X(i,m) is an independent and identically
distributed sample of the random matrix X(i). For simplicity, we
assume that the image size is L × L since the generalization to
the rectangular case is straightforward. We denote X(i)

pq as the
(p, q)th pixel of X(i) with mean E(X(i)

pq ) = μ
(i)
pq , marginal vari-

ance var(X(i)
pq ) = (σ

(i)
pq )2, (p, q = 1, . . . , L); and the correlation

with another pixel X(i)
st as corr(X(i)

pq , X(i)
st ) = ρ

(i)
pqst . In this study,

we focus on the case when μ
(i)
pq is noisy or noninformative and

we utilize the correlation pattern ρ
(i)
pqst to classify images.

One conventional representation of the correlation structure
is based on the vectorized data Dutilleul (1999), Manceur and
Dutilleul (2013), and Hoff (2011), that is, �0 = corr {vec(X)}
where �0,q+(p−1)L,s+(t−1)L = corr

(
Xpq, Xst

)
. However, one dis-

advantage of vectorizing is that it cannot preserve the important
spatial information which is crucial in detecting the target-
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ing signal patterns associated with spatially correlated pixels.
Another issue of vectorization is the estimation efficiency of
the sample correlation matrix, since the number of parameters
involved through vectorization O(L4) is much larger than the
number of modalities M.

In this article, we propose to use tensor structure to represent
the correlation information. We provide some background on
tensor and its operations as follows. A Dth-order tensor is a
D-dimensional array X ∈ R

p1×p2×...pD , where the order of a
tensor is defined as the number of dimensions, also known as
ways or modes (Kolda 2006). For example, a vector a is the
first-order tensor and a matrix A is a second-order tensor. We
use Xi1...iD to denote the (i1, i2, . . ., iD)th element of a tensor
X , id = 1, . . . , pd.

In addition, a fiber is defined by fixing every index of the
tensor modes except one Kolda and Bader (2009). For example,
for a matrix A, the ith row fiber Ai: and the jth column fiber A:j
correspond to the ith row vector and the jth column vector of
A, respectively. A slice is a two-dimensional representation of a
tensor, defined by fixing all except two indices. Furthermore, we
define the blocks of a Dth-order tensor with size K as the index
set {i1, i1 +1, . . . , i1 +K −1}×· · ·×{iD, iD +1 . . . , iD +K −1},
where × denotes the Cartesian product.

In contrast to matrices, the definition of symmetry and diag-
onal can be ambiguous in high-order tensors. Conventionally,
a tensor is called supersymmetric if its elements remain con-
stant under any permutation of the indices Kolda and Bader
(2009), i.e. Xi1...iD = Xiσ1 ...iσD

for every permutation σ of the
symbol {1, 2, .., D}. Also, a tensor can be partially symmetric
in two or more modes, if by fixing the rest of the indices are
its slices symmetric. For example, a fourth-order tensor X ∈
R

p1×p2×p3×p4 is partially symmetric in mode one and two if
p1 = p2 and

X::st = X T
::st , for all s = 1, . . . , p3 and t = 1, . . . , p4.

On the other hand, we call the entries Xi1,...iD primal diagonal
terms if i1 = . . . = iD. For a fourth order tensor with D = 4,
we define Xpqst as diagonal terms if (p, q) = (s, t), and the rest
as off-diagonal terms.

In the following, we introduce some tensor operations. We
use vec(X ) to denote the vectorization of a tensor X , where

the

⎧⎨
⎩i1 +

D∑
d=2

⎧⎨
⎩(id − 1)

d−1∏
j=1

pj

⎫⎬
⎭
⎫⎬
⎭-th element of vec(X ) corre-

sponds to xi1,...,iD . Moreover, an outer product “◦” on multiple
vectors b1 ∈ R

p1 , . . . , bD ∈ R
pD creates a rank-1 tensor b1 ◦b2 ◦

· · · ◦ bD where xi1...iD = b1,i1 b2,i2 . . . bD,iD .

Hence, a Dth-order tensor X is defined as a rank R if it can
be represented as

X =
R∑

r=1
b(r)

1 ◦ b(r)
2 ◦ · · · ◦ b(r)

D ,

where b(r)
d ’s (r = 1, . . . , R) are the pd-dimensional factor vectors

(d = 1, . . . , D). The above decomposition is called the CAN-
DECOMP/PARAFAC (CP) decomposition Hitchcock (1927)
which is adopted in the following sections since the rank of
CP decomposition is better defined compared to the Tucker
decomposition Tucker (1966).

3. Methodology
3.1. Correlation Tensor Decomposition

In this section, we introduce a new concept of correlation tensor,
and the corresponding decomposition method to analyze spatial
correlated multimodal imaging data.

Definition 1. For a random matrix X ∈ R
L×L, a correlation

tensor is the fourth-order tensor T = {τpqst}1≤p,q,s,t≤L ∈
R

L×L×L×L, where τpqst = cov(Xpq, Xst); and a correlation tensor
is the fourth-order tensor C = {cpqst}1≤p,q,s,t≤L ∈ R

L×L×L×L,
where cpqst = corr(Xpq, Xst).

In practice, the pixels of an image are usually normalized so
that the variances are the same. Thus, the correlation tensor and
the correlation tensor are identical up to a constant. For ease of
notation, we only use C for the rest of the article.

An illustration of the fourth-order tensor is provided on the
left side of Figure 1, where the entire tensor is a set of L×L slices
with an L × L matrix. The advantage of using the correlation
tensor is to facilitate the correlation structure analysis while
preserving the spatial information. Specifically, for an image
with spatially correlated pixels located in a size K block region
{i, . . . , i + K − 1} × {j, . . . , j + K − 1}, where the nonzero
correlation coefficients correspond to a block region {i, . . . , i +
K −1}×{j, . . . , j+K −1}×{i, . . . , i+K −1}×{j, . . . , j+K −1}
in the correlation tensor. The ultimate goal of our study is to
detect the block-wise correlated pixels by identifying the block
structure of the correlation tensor.

Under the above block structure assumption, we assume the
correlation tensor can be approximated by a low-rank tensor
decomposition

C =
R∑

r=1
a(r) ◦b(r) ◦a(r) ◦b(r), for all off-diagonal terms, (1)

Figure 1. Illustration of the correlation tensor decomposition.
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where a(r) ∈ R
L, b(r) ∈ R

L, and R is the rank. Equivalently, for
each element, we have

cpqst =
R∑

r=1
a(r)

p b(r)
q a(r)

s b(r)
t , for any(p, q) �= (s, t).

We denote the column stacks of a(r)’s and b(r)’s as A =
[a(1), a(2), · · · , a(r)] ∈ R

L×R, B = [b(1), b(2), · · · , b(r)] ∈ R
L×R,

respectively.
Compared with the traditional CP decomposition, the pro-

posed decomposition (1) imposes symmetry on the decom-
posed bases. This is due to the symmetry of the correlation coef-
ficients in the sense that cpqst = cstpq, for any p, q, s, t. Notice
that this type of symmetry structure in the tensor is different
from the symmetric and partially symmetric tensors defined
earlier, and are not considered in existing tensor decomposition
methods, such as Allen (2012), Shah, Rao, and Tang (2015), and
Sun et al. (2017). We name (1) semi-symmetric tensor decompo-
sition.

Compared to vectorization methods, the main advantage
of the semi-symmetric tensor decomposition (1) is to cap-
ture the spatial correlation efficiently by reducing the dimen-
sion of parameters. This is because the vectorized approaches
estimate the correlation matrix through every pairwise sam-
ple correlation corr(Xpq, Xst) independently, without borrow-
ing information from other pixels. In contrast, the proposed
method estimates the corresponding pairwise correlation based
on the basis vectors a(r)’s and b(r)’s, which allows integrating
information from all neighboring image pixels. Indeed, the
number of parameters in the proposed model is reduced from
(L2 − 1)(L2)/2 to 2LR compared with the traditional vectorized
approaches. Therefore, we can achieve more accurate estimation
on correlation coefficients, and gain more power in identifying
spatial correlation.

Since the true value of C is unknown, we plug in the sample
correlation tensor to estimate the basis vectors a(r) and b(r) as
follows

min
C

‖C̄ − C‖2
F+λJ(C),

subject to C =
R∑

r=1
a(r)

i ◦ b(r)
i ◦ a(r)

i ◦ b(r)
i ,

for all off-diagonal components,

(2)

where J(C) is a penalty term, λ is the penalization parameter and
C̄ = {c̄pqst}1≤p,q,s,t≤L is the sample correlation tensor

c̄pqst = 1
M

M∑
m=1

X(m)
pq X(m)

st . (3)

In the target function (2), we use ‖ ·‖2
F to denote the summation

of squares over all elements in the tensor.
We remark that the proposed framework targets a general

form of correlation tensor decomposition assuming a low-rank
structure. However, in some specific applications, we also allow
an additional structure pursuit on the decomposed factors by
including a corresponding regularization term J(C). In general,
the penalty is imposed on the decomposed factors A and B,
and thus J(C) = J1(A) + J2(B). For example, a Lasso penalty

for sparsity Allen (2012), a fusion penalty imposed for local
smoothing (Tibshirani et al. 2005; Sun and Li 2019; Wu et al.
2019) or a graphical Lasso to encourage certain geometric struc-
tures (Madrid-Padilla and Scott 2017; Greenewald, Zhou, and
Hero 2019). For ease of notation, we use J(C) in the following to
represent a general penalty form.

In the above discussion, we view multimodality images
as iid observations of a single subject. However, we may
also consider the case where modalities are not independent
with each other. Specifically, we replace C̄ in the target
function (2) with a generalized estimate of correlation that is
the solution to an estimation equation incorporating cross-
modality correlation. A detailed discussion and the corre-
sponding numerical results can be found in the supplementary
materials.

In addition, the decomposition enables us to detect the block-
wise correlated pixels through the outer-product a(r) ◦ b(r). For
example, the simplest case consists of a single block of size s1 ×
s2 on the top-left corner of a random matrix X ∈ R

L×L, s1 ≤
L, s2 ≤ L. Suppose the pixels within a block are correlated with
an equal correlation coefficient ρ, and uncorrelated with the rest
of the pixels otherwise, that is,

corr(Xpq, Xst) =
{

ρ, if p, s ≤ L and q, t ≤ L,
0, otherwise,

then the correlation tensor can be written as C = a ◦ b ◦ a ◦
b , a ∈ R

L, b ∈ R
L for all off-diagonal terms, where a =

ρa(1, . . . , 1︸ ︷︷ ︸
s1

, 0, . . . , 0), b = ρb(1, . . . , 1︸ ︷︷ ︸
s2

, 0, . . . , 0) and ρ2
aρ2

b = ρ.

Therefore, the nonzero terms of a ◦ b correspond to the block-
wise correlated region of X.

The above example indicates that the interaction term a(r) ◦
b(r) is important in identifying signals. For this purpose, we
define the latent feature F ∈ R

L×L as

FL×L = abs(A)L×R abs(B)T
L×R, (4)

where abs(·) is applied element-wise to avoid the indeterminacy
caused by sign flipping. The latent feature F has the same dimen-
sion as the original image X and its nonzero entries imply the
signal region, which plays an important role in signal detection
in Section 3.2.

An example. To better illustrate the idea of correlation
tensor decomposition, we use the following toy example for
demonstration. We generate 10 independent and identically
distributed random matrices X(m) ∈ R

100×100, m = 1, . . . , 10,
where vec(X(m)) follows a normal distribution with mean
0 and marginal variance =1. The correlation tensor C =∑2

r=1 a(r) ◦ b(r) ◦ a(r) ◦ b(r) for all off-diagonal terms, where
a(1) = (√

0.91T
50, 0T

50
)T , a(2) = (

0T
50,

√
0.91T

50
)T , b(1) =(

0T
75,

√
0.81T

25
)T , b(2) = (√

0.81T
25, 0T

75
)T ,

Figure 2 shows four observations of the simulated random
matrix X(m)s. The generated matrices display two regions of
highly correlated pixels: one is located in the lower-left and
the other one is in the top-right. With the correlation tensor
decomposition, we recover the underlying block-wise correlated
structure successfully as shown in Figure 3.
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Figure 2. Simulated data from the example of Section 3.1, showing four modalities.

3.2. Latent Feature Extraction for Image Classification

In this section, we link the correlation tensor structure to image
classification based on the recovered spatial-correlated feature
map.

A unique advantage of the proposed decomposition method
is that the spatial information in X is preserved in the latent
feature F defined in Equation (4). To use this property in image
classification, we extract the spatial information by applying a
local operator and a global pooling function. Specifically, we
define φβ : RL×L → R

(L−β+1)×(L−β+1) elementwise by

{
φβ(F)

}
p,q = 1

β2

β∑
u=1

β∑
v=1

f 2
p+u−1,q+v−1, for any

1 ≤ p ≤ L − β + 1, 1 ≤ q ≤ L − β + 1,

where 0 < β ≤ L is a positive integer. And we define

πβ(F) = max φβ(F).

Intuitively, φβ computes the average of the square sum within a
β × β block of F and πβ computes the maximum value over
all blocks. By computing the maximum value, we are able to
identify the signal block regardless of its relative location in the
image as long as the non-zero elements within the signal block
are distinguishable. The entire procedure is analogous to the
convolution operator and the max pooling operator in the CNN.

Motivated by the breast cancer diagnosis application, we
classify subjects with multimodality images based on the mag-
nitude of correlations and spatial concentrations of the highly
correlated pixels. We assume that the label of the ith subject Yi
is determined by

Yi = sign
{
πβ0(Fi) − δ0

}
, (5)

where 0 < δ0 < 1 and 0 < β0 < L are two thresholding
parameters for the correlation strength and signal area, respec-
tively, and sign(x) = 1 if x > 0 and −1 if x < 0. That is, a
subject is classified as cancerous if it contains at least one β0×β0

block such that the average value of the correlation-based latent
features within this block is greater than a positive threshold δ0.

We train the classifier through the observed multimodal
images from n subjects. Specifically, we denote L(yi, Fi, β , δ) =
1
[
yi �= sign{πβ(Fi) − δ}] as the 0–1 loss function, and solve for

β , δ by minimizing the empirical risk function

(β̂ , δ̂) = arg min
(β ,δ)

1
n

n∑
i=1

L(yi, F̂i, β , δ),

where F̂i is the estimated latent feature of the ith subject. In
particular, we train β and δ by grid search on [0, L] and [0, 1],
respectively. The flowchart of the above classification procedure
is illustrated in Figure 4.

In summary, the proposed method builds a classification
based on the images’ spatial correlation information instead of
the marginal intensity of pixels as in conventional classification
methods (Caffo et al. 2010; Zhou, Li, and Zhu 2013), which
makes it robust for the case when the signal strength of a
single image is weak and noisy. Moreover, the proposed method
does not require preregistration of images since it can accom-
modate heterogeneous imaging data with random locations.
When the observed signal region does not have a block shape,
the selected features are still able to approximate the target
region since the proposed decomposition captures the principal
correlation structure. This is also supported numerically in
Section 5.2.

3.3. Algorithm and Implementation

For a better illustration, in this section, we introduce an effi-
cient algorithm to solve the proposed semi-symmetric tensor
decomposition (2) with an L1-penalty J(C) = λ

∑R
r=1

∣∣a(r)∣∣
1 +∣∣∣b(r)

∣∣∣
1
, which is commonly used for sparsity pursuit in many

applications. However, the proposed framework allows a general
class of penalties, and our algorithm can be easily extended to
accommodate other Lp regularizations.

The semi-symmetric structure brings an additional chal-
lenge in the implementation. The traditional CP decomposition
Hitchcock (1927) adopted an alternating updating strategy in
computation, where the estimation of factor parameters of each
mode is equivalent to a least-square problem, and has an explicit
solution. In contrast, in our case, the loss function is a fourth-
order polynomial due to the symmetry of a(r) and b(r), and there
is no direct solution. Although the gradient based method can
be used in each updating step, it is inefficient when the number
of iterations is large and the dimension is high.

Instead of solving for a(r) and b(r) directly, we consider
solving a(r) ◦ a(r) and b(r) ◦ b(r) first, and then obtain a(r) and
b(r) by performing constrained singular value decomposition.
Specifically, we let A ∈ R

L×L×R be a third-order array where
Apsr = a(r)

p a(r)
s , and the sliceA::r is equal to a(r)◦a(r). We denote

D(ps) = Diag
{
(Ap1As1, . . . , ApRAsR)

} = Diag(Aps:),
where Diag(x) denotes a matrix with the diagonal terms equal
to x. We ignore the penalty term first and reformulate the loss
function as

L(A, B) =
∑

1≤p≤s≤p1

‖C̄p:s: − BD(ps)BT‖2
F ,
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Figure 3. Correlation tensor decomposition from the example of Section 3.1, showing two block-wise correlated regions.
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Figure 4. Flowchart of the classification based on the latent features extracted from correlation tensor decomposition.

where p ≤ s is due to symmetry, and A, B are defined in Equation
(1). The decomposition algorithm updates A and B iteratively.
According to Wang et al. (2014), when B is given, the optimal
D(ps) can be solved explicitly as

D(ps) = Diag
[{

(BTB) 	 (BTB)
}−1

(B ∗ B)Tvec(C̄p:s:)
]

, (6)

where 	 is the element-wise product and ∗ is the Khatari-Rao
product. Since the construction of D(ps) utilizes the tubes of A
by fixing the first two dimensions, we can updateA tube by tube,
and denote the corresponding estimator as Â.

For the next step, we estimate a(r) through a rank-1 sparse
singular value decomposition (SSVD) of Â::r , that is,

â(r) = arg min
a(r)

‖a(r) ◦ a(r) − Â::r‖2
F + λ‖a(r)‖1. (7)

The SSVD problem is well-studied and can be solved by the
penalized matrix decomposition (PMD) algorithm Witten, Tib-
shirani, and Hastie (2009), which is described in Algorithm 2.
Updating of B with the fixed A follows the same manner.

We remark that the Lp-type penalty also improves the
computational stability, since the penalty term can prevent

the decomposed components A and B from diverging during
the alternative updating process. Specifically, the target tensor
involves the parameters A and B in a multiplication form; hence,
the scale of A and B could vary significantly without the penalty
term, which might lead to computational instability. Therefore,
adding a penalty term keeps the scale of A and B relatively
consistent and avoids local minimums at the same time. The
numerical evidence is included in the supplementary materials.

The above algorithm is efficient in implementation since the
updating procedure in Equations (6) and (7) at each step can
be solved explicitly. The complete algorithm is summarized in
Algorithm 1. The error tolerance ε in Algorithm 1 is set as 10−3

in the simulation and real data examples. The computational
complexity of Algorithm 1 is O{niter(cHLS + RcSSVD)}, where
niter is the number of iterations controlled by the tolerance
error, cHLS is the complexity of Steps 2(a) and 3(a) in Algorithm
1, and cSSVD is the complexity of the SSVD (Sun et al. 2017)
algorithm for an L × L matrix. Specifically, Steps 2(a) and 3(a)
can be viewed as a generalization of the ordinary least square,
with cHLS = O(RL4), where HLS stands for “high-order least
square”. In the case without penalty, cSSVD degenerates to the
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Algorithm 1 Correlation tensor decomposition algorithm
Input: Sample correlation tensor C̄, rank R, maximum iteration
dmax, penalty parameter λ and error tolerance ε.
Output: Decomposed factor A and B.

1. (Initialization) Set d = 1, sample initial values from N (0, 1)

for A(0) and B(0).
2. (Given B, update A) At the dth iteration, fix B(d),

(a) Compute Â with Âps: = {
(B(d)TB(d)) 	 (B(d)TB(d))

}−1

(B(d) ∗ B(d)T)vec(C̄p:s:).
(b) For each r, update A(d+1)

:r with â(r) = arg mina(r) ‖a(r) ◦
a(r) − Â::r‖2

F + λ‖a(r)‖1 through Algorithm 2.

3. (Given A, update B) Fix A(d+1),

(a) Compute B̂ with B̂qt: = {
(A(d+1)TA(d+1))	

(A(d+1)TA(d+1))
}−1

(A(d+1) ∗ A(d+1)T)vec(C̄:q:t).
(b) For each r, update B(d+1)

:r with b̂
(r) = arg minb(r) ‖b(r) ◦

b(r) − B̂::r‖2
F + λ‖b(r)‖1 through Algorithm 2.

4. (Stopping Criterion) Calculate the fitted correlation tensor
Ĉ(d+1) by Ĉ(d+1)

stpq = ∑R
r=1 A(d+1)

sr A(d+1)
pr B(d+1)

tr B(d+1)
qr , and

the corresponding loss function Q(d+1) = L(A(d+1), B(d+1)).
Stop if ||Ĉ(d)−Ĉ(d+1)||F/||Ĉ(d)||F < ε or |1−Q(d+1)/Q(d)| <

ε or d + 1 > dmax, otherwise set d ← d + 1, and repeat Step
2 and 3.

Algorithm 2 Single-factor penalized matrix decomposition
algorithm (PMD) from Witten, Tibshirani, and Hastie (2009)
Input: Positive semidefinite matrix M, penalty parameter λ.
Output: Rank-1 penalized eigenvector v.

1. (Initialization) Set v to be the unit vector with equal entries.
Denote S(v, λ) = sign(v)(|v| − λ)+ as the soft thresholding
function and S(v, λ) = (S(v1, λ), S(v2, λ), · · · ).

2. (Iterate until convergence) v = S(Mv, λ)/‖S(Mv, λ)‖2.
3. d ← vTMv, v ← √

dv.

complexity of the regular SVD which is O(L3), and the total
complexity becomes O(niterRL4). Note that both Steps 2(a),
3(a) and SSVD can be carried out in parallel to reduce the
computation time significantly. In practice, decomposing the
correlation tensor from an image of size 100 × 100 with 10
modalities containing 108 elements costs 10 seconds using an
Intel Core i7-6700 Processor, 3.4GHz.

In the following, we provide a brief discussion on selecting R
in implementation. Indeed, it is always challenging to identify
the exact value of the underlying rank R. Many efforts have been
made in the recent years to address this problem, for example,
BIC-based criteria (Goutte and Amini 2010; Sun and Li 2019),
cross-validation (Bro and Kiers 2003; Kolda and Plantenga
2014) and likelihood-based methods (Fu, Matsushima, and
Yamanishi 2019). In general, we regard R as a tuning parameter
which could be selected through the elbow-point strategy
based on the mean square error (MSE) of the recovered
tensor compared to the sample correlation tensor. This is

similar to selecting the number of principal components in
principal component analysis (PCA). We conduct a numerical
experiment to illustrate the effectiveness of the elbow-point
method. Due to the space limit, we attach the details in the
supplementary materials.

Note that the selection of R might not be optimal in practice
due to the randomness of observations. However, specifying
a larger rank than the true rank would not affect the estima-
tion convergence as it is able to recover the underlying tensor
structure completely, although the convergence rate could be
affected when M is small since more parameters are involved
in estimation (See supplementary materials). In general, we
suggest selecting R equal to or slightly larger than the elbow
point.

4. Theoretical Result

In this section, we establish theoretical properties regarding
the identifiability and the asymptotic theory of the correlation
tensor decomposition.

4.1. Identifiability

Although the proposed method does not rely on the identifiable
latent factors, as the prediction only depends on the recovered
correlation tensor, we provide some brief discussion regarding
the identifiability issue in the following. Identifiability is critical
in tensor decomposition and could be essential for consequen-
tial theoretical development. In the proposed decomposition
(1), the identifiability issue is attributed to three parts. The first
two are standard indeterminacies of scaling and permutation,
and the third one refers to the nonuniqueness of the CP decom-
position with more than one possible combinations of rank-one
tensors. Specifically, assuming a(r)’s and b(r)’s are the solution
to Equation (1) and their column stacks are denoted as A and
B, then the scaling indeterminacy refers to the case that for
any diagonal scaling matrices � = Diag(φ1, . . . , φR), A� and
B�−1 are also the solutions to Equation (1). The permutation
indeterminacy indicates that for any R × R permutation matrix

, A
, and B
−1 are also the solutions.

To deal with the permutation indeterminacy, we rearrange
the a(r)’s such that

‖a(1)‖2
2 ≥ ‖a(2)‖2

2 ≥ · · · ‖a(R)‖2
2,

which is equivalent to imposing a descending order based on the
vector norm. Then b(r)’s can be rearranged using the same order.
To deal with the scaling indeterminacy, we can rescale a(r) such
that a(r)(1) = 1 for r = 1, . . . , R and rescale b(r) accordingly so
that their outer product remains unchanged.

Next, we provide a sufficient condition for the uniqueness of
the correlation tensor decomposition.

Proposition 1. Let C satisfy Equation (1), and A, B be the column
stacks of the decomposed components. The decomposition is
unique if A and B have full column rank.

The proof is provided in the supplementary materials.
Different from the identifiability conditions in Tang, Bi, and
Qu (2019), Bi, Qu, and Shen (2018), we consider the semi-
symmetric framework of the correlation tensor decomposition
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in the proof. In practice, the condition of Proposition 1 is easy
to check. In the following proposition, we derive a sufficient
condition for the uniqueness of the latent feature defined in
Equation (4)

Proposition 2. The latent feature F is unique if A and B have full-
column rank.

Notice that there is no indeterminacy of scaling or permuta-
tion here since the latent feature is the summation of absolute
values of the product between the columns of A and B.

4.2. Asymptotics for Correlation Tensor Estimation

Before we establish our theoretical results, we introduce some
notations first. Given M iid random matrix X(m) ∈ R

L×L with
E
(
X(m)

) = 0L×L, m = 1, . . . , M, the correlation tensor T0,
and covariance tensor C0, let C̄ be the sample correlation tensor
estimator as defined in Equation (3), then E

(
C̄
) = C0. Let � =

{C = (cpqst)1≤p,q,s,t≤L: cpqst = ∑R
r=1 a(r)

p b(r)
q a(r)

s b(r)
t for (p, q) �=

(s, t)} be the parameter space. For any C ∈ �, we define the loss
function regarding the (p, q, s, t)th element of C̄ as

�(C, c̄pqst) = (cpqst − c̄pqst)
2.

Let J(C) be a nonnegative penalty function, then the objective
function can be formulated as

Loss(C|C̄) = 1
NL

∑
p,q�=s,t

�(C, c̄pqst)+λJ(C), (8)

where NL = L4 −L2 is the number of off-diagonal entries in the
correlation tensor.

Let �(C, C0) = 1
N
∑

p,q�=s,t
{
�
(
C, c̄pqst

) − �
(
C0, c̄pqst

)}
be the

loss difference and K(C, C0) = E(�(C, C0)) be the expected loss
difference. It is straightforward that K(C, C0) ≥ 0 for any C ∈ �

and K = 0 if and only if C = C0. Then the distance between C
and C0 can be defined as

d(C, C0) = K1/2(C, C0) =
⎧⎨
⎩ 1

N
∑

p,q�=s,t

(
cpqst − c0,pqst

)2

⎫⎬
⎭

1
2

.

In practice, the range of correlation coefficients is between
−1 and 1. Therefore, it is reasonable to assume that the decom-
posed factors of C are bounded so that ‖a(r)‖∞, ‖b(r)‖∞ < η,
where η is a positive constant.

In our framework, we do not need to impose any distribution
assumptions such as the normal distribution on the observa-
tions. We only require the following sub-Gaussian property
which is commonly adopted in high-dimensional analysis.

Definition 2 (standard sub-Gaussian random vector in R
p). Let

Z be a random vector in R
p. Then Z is standard sub-Gaussian if

there exists an τ ≥ 0 such that for all v ∈ R
p,

E

(
evT(Z−E(Z))

)
≤ eτ 2vT v/2.

In the following, we provide the convergence rate of the error
bound for the proposed estimator. We have a standard regularity
condition as follows.

(A1) For any 1 ≤ p, q, s, t ≤ L, E(XpXqXsXt) < ∞.

Condition (A1) assumes a bounded fourth moment. This
assumption can be easily validated for imaging data, since
the pixel values are restricted to a certain range, for example,
[0, 255], so that XpXqXsXt is always uniformly bounded and
thus condition (A1) holds naturally.

Theorem 1. Suppose �
−1/2
0 vec(X) is a standard sub-Gaussian

vector, where �0 = corr{vec(X)}. Let condition (A1) hold,
and Ĉ be the minimizer of the loss function (8) with λ =
o(R3M−1L−3), then for any 0 < u < 1, we have

d
(
Ĉ, C0

)
≤ ωmax(�0)

3/4
√

R3

ML3 log
1
u

, (9)

with probability at least 1 − u, for sufficiently large M, L, where
ωmax(�0) denotes the largest eigenvalue of �0.

Theorem 1 establishes the asymptotic property for the
estimated correlation tensor Ĉ. First, the recovered correlation
structure converges to the true structure as the number
of modality M increases with a rate of O(M− 1

2 ), which is
consistent with the rate of the sample correlation estimator.
Furthermore, as the tensor size L increases, Theorem 1
provides an extra convergence rate of L− 3

2 if ωmax(�0) is
bounded, which essentially benefits from the proposed low-
rank tensor decomposition model, yielding a substantially
smaller parameter space compared with the increasing data
volume. Note that L− 3

2 is the optimal rate for the CP-type tensor
decomposition in the literature (Wang and Li 2020). In addition,
we allow the rank R to grow with a rate smaller than M

1
3 L while

the convergence is still ensured.
On the other hand, the underlying correlation also plays an

important role in the error bound. Indeed, this is one of the
major challenges encountered in theoretical analysis for corre-
lation tensor estimation. We quantify the effect of correlation
on the convergence rate by ωmax(�0), which is introduced by
the generalized Hanson-Wright inequality in R

p Chen et al.
(2021). Note that ωmax(�0) may grow with L. In the following
Corollary 1, we provide the error bound under regularity condi-
tions imposed on C0, which contains a wide class of correlation
structures.

Corollary 1. Assume that the conditions for Theorem 1 hold,
then for any 0 < u < 1, we have

(Case I) if c0,pqst = ρ > 0 for all (p, q) �= (s, t), then

d
(
Ĉ, C0

)
≤ 2ρ

3
4 R

3
2 M− 1

2
√

log(1/u);

(Case II) if c0,pqst < ρ|p−s|+|q−t|, where 0 < ρ < 1, then

d
(
Ĉ, C0

)
≤
(

1 + 4ρ + 8ρ2

(1 − ρ)2

)
R

3
2 M− 1

2 L− 3
2
√

log(1/u),

with probability at least 1 − u.

Case (I) describes a strong correlation pattern, referring to
an exchangeable correlation structure, where the correlation
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coefficients are the same between any two pixels. Under this
setting, due to the substantially high correlation among the data,
there would be convergence only with an increasing number
of modalities M. In Case (II), the correlation between two
pixels Xpq and Xst decays geometrically, which implies a weaker
correlation among the pixels that are far away from each other.
Many commonly adopted correlation structures under the
spatial–temporal data framework fall into Case (II); for example,
the Gaussian model and the Matérn model (Wackernagel
2003; Gaetan and Guyon 2010; Chiles and Delfiner 2009;
Schlather 1999) in geostatistics and Lattice models (Lampert,
Ralaivola, and Zimin 2018) in spatial analyses. Another special
case is when the Xpq’s are all uncorrelated or independent.
Corollary 1 indicates that the convergence rate under Case
(II) will attain the optimal rate as M−1/2L−3/2. Furthermore,
note that O(1) ≤ ωmax(�0) ≤ O(L2) holds for an arbitrary
correlation structure. Hence, as long as ωmax(�o) = o(L2),
our error bound will decrease as the tensor size L increases,
which is advantageous compared to the sample correlation
estimate.

We remark that Theorem 1 provides the fundamental
estimation consistency properties of the correlation tensor
decomposition with a general class of penalized models, where
we only assume that C0 is low-rank. Moreover, the error bound
can be further improved by imposing appropriate penalty
functions according to additional prior knowledge on the
structure of C0. For example, an L1 penalty is commonly
used to encourage sparsity of the coefficients and has been
intensively studied in various settings (Meinshausen and Yu
2009; Negahban et al. 2012; Raskutti, Yuan, and Chen 2019;
Zhang and Han 2019). In the following, we provide a tighter
bound by imposing the L1 penalty on decomposition compo-
nents A and B, when the underlying correlation is assumed
sparse.

We denote the index set of nonzero entries in a(r) and b(r) of
C0 as Ir

a and Ir
b, respectively, and let ka = | ∪r Ir

a| and kb =
| ∪r Ir

b|, where | · | denotes the set cardinality.

Corollary 2. Let Ĉ be the minimizer of the loss function in Equa-
tion (8) with penalty J(C) = ∑R

r=1
∣∣a(r)∣∣

1 + ∑R
r=1

∣∣∣b(r)
∣∣∣
1
. Sup-

pose all conditions in Theorem 1 hold and λ = O(R3M−1L−3),
then for any 0 < u < 1, we have

d(Ĉ, C0) ≤
[

1 + kakb
L2 {ωmax(�0) − 1}

] 3
4
√

R3

ML3 log
1
u

, (10)

with probability at least 1 − u, for sufficiently large M and L.

Note that kakb quantifies the signal area of the 2D image,
where ka ≤ L and kb ≤ L. When the pixels are strongly
correlated, ωmax(�0) may grow as L increases. In this case,
Corollary 2 indicates that the error bound would be further
improved under the sparsity setting given ka � L and
kb � L, compared to Theorem 1. This is analogous to the
results in Zhang and Han (2019), which considers a sparse
SVD based on thresholding, but requiring independent tensor
entries.

4.3. Consistency of Classification

In addition to the recovery of the correlation tensor structure,
we are also interested in identifying the signal area through the
latent features defined in Equation (4) as they contribute to the
classification for disease diagnosis.

Formally, we define the signal areas of an image as the index
set S = S1 ∪ S2 ∪ · · · ∪ SnS , where for any (s, t) ∈ Sj, j =
1, . . . , nS , corr(Xpq, Xst) > 0. Note that we allow more than
one signal area in cancerous subject, that is, nS ≥ 1, where
each signal area is a collection of mutually correlated pixels. For
simplicity, we restrict nS = 1 in the following discussion and
use only S to denote the signal area. Cases of nS > 1 can be
generalized similarly.

In traditional image analyses, the signals are identified based
on the magnitude of pixels, while the stronger correlation could
decrease the convergence rate (Tang, Bi, and Qu 2019). In
contrast, in our model the signal areas are defined as the pixels
which are highly correlated with each other. The larger correla-
tion can improve the classification performance by enhancing
the margin between zero and nonzero correlations, which is
supported by the following theorem.

Theorem 2. Let F be the latent feature defined in Equation
(4), and denote F̂ as its estimator. Assume the conditions in
Theorem 1 hold, then for any 0 < ε < ρ̄0,

P
(
‖F̂‖2

S > ε
)

≥ 1 − 6 exp

{
− 1

2 M |S| 3
2 (ρ̄0−ε)2

R3‖�0‖
3
2
2

}
, (11)

where ‖F‖2
S = 1

|S|
∑

(p,q)∈S f 2
pq, and ρ̄0 =√∑

(p,q),(s,t)∈S c2
0,pqst .

Theorem 2 bridges the gap between the estimated correlation
tensor and the recovered latent feature in classification.
Theorem 2 indicates that as M grows, the average F-norm
of S is greater than ε with probability tending to 1. The
tail probability in (11) is also influenced by the average
correlation coefficient ρ̄0. Since the magnitude of ‖�0‖2 is
at most the same as |S|, increasing ρ̄0 also reduces the tail
probability, and thus the proposed method is more powerful
in distinguishing the signal region from the background
region.

Consequently, we prove the classification consistency
using the estimated latent feature. Let β0 and δ0 be the two
thresholding parameters which determine the label of the
image as in Equation (5). Furthermore, we denote R(L̂) =
1
n
∑n

i=1 L(yi, F̂i, β̂ , δ̂) as the empirical risk for the sample
loss function, and R(L̃) = 1

n
∑n

i=1 L(yi, F̂i, β0, δ0) as the
empirical risk of the oracle classifier. The next result provides
the consistency of the empirical risk.

Corollary 3. Assume that the conditions of Theorem 1 hold,
then as M and n → ∞, we have

|R(L̂) − R(L̃)| →p 0.

Corollary 3 implies that as the number of subjects and the
number of image modalities of each subject grows, the empirical
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risk of the sample loss with the learned parameter converges to
the empirical risk with the oracle classifier.

Moreover, by directly applying Theorem 2, we show that the
sensitivity of the proposed method satisfies

P
{
πβ(F̂) > δ | Y = 1

}
≥ 1 − 6

× exp

{
−1

2
M min

(
|S|2

‖�0‖2
F

(
ρ̄0 − β2δ

|S|
)2

,

|S|
‖�0‖2

(
ρ̄0 − β2δ

|S|
))}

. (12)

This implies that if the signal area is more concentrated, that is,
|S|
β2

0
is larger, or the average correlation within the signal area ρ̄0

is bigger, the sensitivity is higher.
The detailed proofs of the theoretical properties in this sec-

tion can be found in the supplementary materials.

5. Simulation Study

5.1. Simulation 1: Estimation Efficiency

In this subsection, we illustrate the estimation efficiency of the
correlation tensor with the proposed method. We consider a
series of images of size L×L with M modalities. Each X(m) is gen-
erated from a normal distribution with mean 0 and a correlation
tensor with the primal diagonal components var(X(m)

p,q ) = 1, and
the off-diagonal components following C = ∑2

r=1 a(r) ◦ b(r) ◦
a(r) ◦ b(r), where

a(1) = √
0.9(1, . . . , 1︸ ︷︷ ︸

L/2

, 0, . . . , 0),

b(1) = √
0.8(1, . . . , 1︸ ︷︷ ︸

L/4

, 0, . . . , 0),

a(2) = √
0.9(0, . . . , 0, 1, . . . , 1︸ ︷︷ ︸

L/2

),

b(2) = √
0.8(0, . . . , 0, 1, . . . , 1︸ ︷︷ ︸

L/4

).

Under this setting, the highly correlated pixels of X are located
in two block regions similar to the example in Section 3.1.

We compare the performance of the proposed method with
the sample correlation estimator (3) and the principal orthogo-
nal complement thresholding method (POET) (Fan, Liao, and
Mincheva 2013). The estimation efficiency is evaluated by the
average mean square error (MSE) of C based on 100 replications.
In particular, we investigate the asymptotics of MSE under two
settings: (a) increasing M, with fixed L = 40; (b) increasing L,
with fixed M = 10. Tables 1 and 2 summarize the results of
setting (a) and (b), respectively. We also provide corresponding

Table 1. Estimation accuracy of Simulation 1 with various M: average MSE based
on 100 replications with standard deviation.

M 10 20 30 40 50

Sample covariance 1.13(0.14) 0.61(0.04) 0.43(0.02) 0.33(0.02) 0.27(0.01)
POET 0.73(0.14) 0.27(0.04) 0.15(0.02) 0.10(0.02) 0.07(0.01)
Proposed 0.02(0.01) 0.01(0.00) 0.01(0.00) 0.01(0.00) 0.01(0.00)

Table 2. Estimation accuracy of Simulation 1 with various L: average MSE based on
100 replications with standard deviation.

L 10 20 30 40 50

Sample covariance 1.11(0.23) 1.13(0.16) 1.14(0.15) 1.13(0.14) 1.12(0.14)
POET 0.80(0.23) 0.75(0.17) 0.73(0.14) 0.73(0.14) 0.73(0.14)
Proposed 0.10(0.03) 0.04(0.01) 0.02(0.01) 0.02(0.01) 0.02(0.00)

line plots in Figure 5 to illustrate the discrepancy of different
methods more intuitively. The results show that the proposed
method achieves the lowest MSE in each setting, which reduces
the MSE by at least 90% compared with the other two methods.
Moreover, the proposed method benefits from the increase of
the image size L in addition to the number of modalities M,
while the MSE of the sample covariance method and POET only
decrease as M increases. This is because the sample covariance
method only uses pairwise pixel information, while the pro-
posed method borrows information from neighboring pixels
based on the low-rank tensor structure. Although the POET
estimator considers low-rank structure as well, the correspond-
ing MSE is always higher than the proposed method since it only
imposes a one-dimensional factor model without fully using the
spatial structure of the imaging data. In addition, the discrep-
ancy between POET and the sample covariance approach is not
obvious when M is small, while the proposed method performs
consistently better regardless of M.

5.2. Simulation 2: Multi-Modality Image Classification

In this simulation, we investigate the prediction performance
with multi-modality imaging data which mimics the microvesi-
cle imaging patterns of early-stage breast cancer. For the mth
modality of a single subject, the observed data X(i,m) ∈ R

L×L is
composed of three parts:
X(i,m) = S(i,m) + F(i,m) + E(i,m), m = 1, . . . , M, i = 1, . . . , N,
where S(i,m) represents signal patterns associated with spatially
highly correlated pixels, F(i,m) represents the correlated “signal-
like” noise without specific spatial patterns, and E(m) represents
the noise background.

Specifically, the location of the highly correlated pixels of
F(m) follows a Poisson point process with the intensity of a signal
ν = 75, and the corresponding intensity of the pixels follows a
multivariate normal distribution MVNnF (0, 0.911T +0.1I) with
exchangeable correlations, where nF is the number of “signal-
like” noise. The noise in E(i,m) is generated from a standard
normal distribution.

In this simulation, the label of the subject is based on the
pattern of S(m). For a normal subject i, we let S(i,m) = 0 for
m = 1, . . . , M and label hi = 0, otherwise the subject is labeled
as cancerous with yi = 1. The signal pixels are generated based
on the following two settings:

1. Random blocks: Similar pattern as described in Simulation 1,
where

a(r) = √
0.9(0, . . . , 0, 1, . . . , 1︸ ︷︷ ︸

Lb

, 0, . . . , 0),

b(r) = √
0.8(0, . . . , 0, 1, . . . , 1︸ ︷︷ ︸

Lb

, 0, . . . , 0),

where Lb = 0.1L.
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Figure 5. Estimation efficiency comparison with two random block-wise highly correlated pixel areas in Simulation 1. Left: MSE change with L = 40 and varying M. Right:
MSE change with M = 10 and varying L.

Figure 6. Selected samples with 1-modality in Simulation 2: (a) True signal location. (b) Signal-like noise location. (c) Observed samples.

2. Random clusters: The location for the signal pixels follows a
Matérn cluster process (Matérn 2013) with intensity of the
cluster center κ = 4, and the mean number of each cluster
μ = 50.

In the random block setting, Lb is the size of the signal block.
That is, there are two Lb by Lb block regions of correlated pixels
and the locations of the signal blocks is random. In the random
cluster setting, the signal regions consist of the clusters with a
fixed radius, and the location of the centers of the clusters are
random, where κ and μ control the average number of clusters
and the density of the signal pixels, respectively. The signal
strength of both settings follows MVNnS(0, 0.911T+0.1I) where
the dimension nS is the number of the signal pixels. Figure 6
illustrates the composition of the simulated data of both normal
subjects and cancerous subjects under the random block setting.

For both of the settings, we let M = 10, and generate training,
validation and testing sets of size 100, 40, and 60, respectively,
with 50% of healthy subjects and 50% of cancer subjects for each
set. We let L = 100, 200, and 500, and compare the proposed
classification method described in Section 3.2 with the higher
order CP decomposition method (HOCPD) Tang, Bi, and Qu
(2019) which used the components estimated from the tradi-
tional CP-decomposition as the input to a logistic regression
model, the marginal principal component analysis (MPCA)
by Caffo et al. (2010), the vectorizing L1-penalized logistic
regression model (VPL), the tensor regression (TR) model
(Zhou, Li, and Zhu 2013) and the convolutional neural network
(CNN).

For HOCPD and MPCA, we use the validation set to
select the best number of components. For CNN, we use the
Python library Keras (Chollet 2015) to train the model and
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adopt scikit-optimize library (https://github.com/scikit-optimize/
scikit-optimize/tree/master/skopt) to tune the hyperparameters. The
computation details can be found in supplementary materials.

The classification results are summarized in Tables 3 and 4,
which show that the proposed method outperforms the other
methods in terms of average accuracy, sensitivity and speci-
ficity on detection of signal block S(i,m). The accuracy of other
methods is around 50% due to weak marginal signals, while the
proposed method is able to achieve an accuracy of 90% when L
is large. Moreover, the proposed method achieves higher classi-
fication accuracy under both random block and random cluster
settings when L increases, which supports the conclusion of
Equation (12) empirically. In practice, it implies that leveraging
the resolution of the image could enhance signal identification
using the proposed method. In addition, although the random
cluster setting does not satisfy the block signal assumption
on the spatial correlation pattern, the proposed method still
achieves high accuracy, indicating that the proposed method is
quite robust as long as the target signals are concentrated in a
spatial region. On the other hand, the competing methods only
use the marginal intensity information and fail to fully utilize the
spatial correlation and correlation information across different
modalities.

To illustrate the signal regions identified by the proposed
method, Figure 7 provides the identified latent features defined
in (4), which clearly shows that the regions of true signals are
successfully captured while the randomly scattered signal-like
noises are not selected.

6. Multiphoton Imaging Data Classification

We apply the proposed method to multimodal breast cancer
imaging data Tu et al. (2016) provided by Boppart’s biophotonics
imaging lab in the University of Illinois at Urbana Champaign.
There are four modalities for each image: two-photon auto-
fluorescence (2PAF), three-photon auto-fluorescence (3PAF),
second-harmonic generation (SHG) and third-harmonic gen-

Figure 7. Detected regions of two samples. Color image: location of true signals
(red) and signal-like noise (yellow); Black and white image: latent features identified
by the proposed method.

eration (THG). These co-localized images are collected based
on different contrasts in the micro-environment of the breast
tissue at different molecular levels. Figure 8 shows two regions
that contain spatially concentrated TMVs in red circles. The
signal strength is strong in the 2PAF and 3PAF modalities yet
is relatively weak in the other two modalities. We apply the
proposed method to integrate information from all modalities
to detect TMVs effectively.

To better preserve the small-scale TMVs, we filter out the
irrelevant background imaging. Specifically, we preprocess the
images to remove the modality-specific background by applying
the Gaussian filter MATLAB Image Process Toolbox (2018a)
and we also subtract the mean of pixels across four modalities.
An illustration of Gaussian filter can be found in Figure 5 of

Table 3. Classification results of Simulation 2 under random block setting with various size of L: average accuracy, sensitivity and specificity based on 100 replications with
standard deviations.

L 100 200 500

Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity

HOCPD 0.51(0.07) 0.51(0.13) 0.51(0.14) 0.50(0.07) 0.48(0.13) 0.52(0.16) 0.50(0.05) 0.51(0.16) 0.49(0.18)
MPCA 0.51(0.07) 0.48(0.10) 0.54(0.10) 0.52(0.06) 0.39(0.09) 0.65(0.08) 0.51(0.07) 0.39(0.09) 0.63(0.10)
VPL 0.50(0.04) 0.82(0.24) 0.17(0.24) 0.49(0.04) 0.83(0.25) 0.16(0.23) 0.50(0.04) 0.82(0.24) 0.19(0.26)
TR 0.49(0.08) 0.50(0.12) 0.48(0.13) 0.51(0.05) 0.45(0.34) 0.57(0.33) 0.49(0.06) 0.50(0.24) 0.48(0.24)
CNN 0.56(0.13) 0.47(0.21) 0.64(0.24) 0.57(0.16) 0.47(0.23) 0.68(0.26) 0.50(0.05) 0.43(0.33) 0.58(0.34)
Proposed 0.75(0.05) 0.58(0.13) 0.87(0.11) 0.84(0.05) 0.73(0.07) 0.96(0.05) 0.95 (0.02) 0.92 (0.05) 0.99 (0.02)

Table 4. Classification results of Simulation 2 under random cluster setting with various size of L: showing average accuracy, sensitivity and specificity based on 100
replications with standard deviations.

L 100 200 500

Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity

HOCPD 0.47(0.06) 0.47(0.13) 0.48(0.12) 0.49(0.06) 0.49(0.11) 0.48(0.12) 0.55(0.09) 0.47(0.13) 0.64(0.22)
MPCA 0.46(0.06) 0.46(0.10) 0.46(0.10) 0.45(0.06) 0.46(0.09) 0.44(0.10) 0.64(0.08) 0.46(0.10) 0.83(0.14)
VPL 0.50(0.01) 0.98(0.09) 0.01(0.07) 0.50(0.00) 0.99(0.06) 0.01(0.05) 0.50(0.04) 0.81(0.25) 0.19(0.25)
TR 0.50(0.08) 0.50(0.13) 0.50(0.11) 0.50(0.04) 0.47(0.37) 0.53(0.37) 0.49(0.06) 0.47(0.24) 0.51(0.24)
CNN 0.56(0.10) 0.40(0.17) 0.72(0.22) 0.61(0.10) 0.44(0.19) 0.78(0.23) 0.52(0.07) 0.45(0.31) 0.58(0.33)
Proposed 0.90 (0.04) 0.82 (0.06) 0.97 (0.07) 0.98 (0.02) 0.97 (0.03) 0.98 (0.02) 0.99 (0.02) 0.99 (0.01) 0.99 (0.02)

 https://github.com/scikit-optimize/scikit-optimize/tree/master/skopt
 https://github.com/scikit-optimize/scikit-optimize/tree/master/skopt
https://doi.org/10.1080/01621459.2021.1938083
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Figure 8. Multiphoton image of a cancer subject with four modalities. TMVs (bright dots in red circle) may have different signal intensities on different modalities.

Figure 9. The first four columns are four-modality imaging data of two cancerous subjects and two normal subjects after filtering and segmentation. The last column
shows the latent feature detected by the correlation tensor decomposition. The contrast of the images has been adjusted for illustration purpose.

supplementary materials. Note that the preprocessing step does
not guarantee removal of all the irrelevant imaging patterns.
However, we can treat the remaining noninformative pixels as
random noise.

Furthermore, a previous study Tu et al. (2016) showed that
the informative TMVs are frequently observed in the microen-

vironment between certain cellular tissues such as at the lipid
boundary and around the stromal regions. Thus, we segment
the filtered images into 200 × 200 pixels, and mainly focus
on imaging within the potential target locations. Consequently,
each sample image is a 200 × 200 × 4 tensor. The left four
columns of Figure 9 illustrate the four modalities of the imaging
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Table 5. Classification result of breast cancer imaging data based on 100 replica-
tions with training size=20, validation size=20 and testing size=20.

Method Accuracy Sensitivity Specificity

HOCPD 0.592(0.108) 0.433(0.180) 0.750(0.184)
MPCA 0.646(0.115) 0.564(0.195) 0.728(0.168)
VPL 0.514(0.066) 0.328(0.358) 0.700(0.341)
TR 0.505(0.067) 0.478(0.446) 0.532(0.454)
CNN 0.753(0.111) 0.733(0.176) 0.773(0.226)
The proposed 0.814(0.081) 0.849(0.123) 0.780(0.165)

data of two cancerous subjects and one normal subject after
preprocessing.

We split the preprocessed data into a training set, a validation
set and a testing set. Each set consists of 10 samples from
normal subjects and 10 from cancerous subjects. We compare
the proposed method with the other four methods described in
Section 5. The rank of HOCPD and MPCA is determined by
a validation set and the architecture of the CNN is tuned in the
same way as in Section 5.2. We evaluate the performance of each
method by the prediction accuracy, sensitivity and specificity on
a testing dataset based on 100 replications, and summarize the
results in Table 5, which indicates that the proposed method out-
performs the other methods. Specifically, the proposed method
improves on the average prediction accuracy by 32%, 30%, 55%,
and 5% compared to HOCP, MPCA, VPL, and CNN, respec-
tively. We also notice that the proposed method achieves much
higher sensitivity and gives us more power to correctly detect
the cancer risk. Achieving high sensitivity is crucial in the early
diagnosis of breast cancer, especially when the proportion of
the potential cancer patients is small compared with the general
population.

The VPL method performs poorly with an average predic-
tion accuracy of 51%. This is probably due to the fact that
vectorization is not efficient capturing the spatial relationships
among pixels. The HOCPD and MPCA perform better than
the VPL, but still suffer low sensitivity due to weak marginal
signal intensity from the TMVs and the randomness of signal
locations. The CNN provides an acceptable prediction accuracy
of 75.3%, yet the sensitivity is still lower than the proposed
method, likely because of the high-intensity noise background.
In addition, the CNN is not robust against a small sample size
and heavily relies on the hyperparameter tunings.

More importantly, the CNN is not able to provide inter-
pretable results. In contrast, the proposed method provides
sensible interpretation through latent features. Specifically, the
rightmost columns of Figure 9 show heatmaps of latent features
captured by the correlation tensor decomposition which are
consistent with the observed patterns of TMV signals. The
highlighted blocks represent the highly correlated pixels and
are extracted features for TMV classification. Comparing the
cancerous subjects and the normal subject, it is clear that the
latent features of cancerous subjects indicate a more dense pat-
tern of TMV signals while those of the normal subjects are more
randomly and sparsely scattered. In particular, the highlighted
latent features of the topmost graph from a cancerous subject
indicate a vertical area which is consistent with the pattern of the
TMV signals in the SHG modality, and the yellow latent features
of the top graph from a cancerous subject at the lower-left region
of images indicate that these pixels are highly correlated across

the modalities. In summary, the proposed method provides an
interpretable visualization of the detected TMV signals, and
the latent features can serve as a prognostic tool for cancer
diagnosis.

7. Discussion

In this article, we introduce the concept of correlation tensor
and propose a semi-symmetric tensor decomposition to achieve
high estimation accuracy when the size of image is large, and
the number of modality is limited. The key idea is to extract the
block-wise spatially correlated pixels and informatively reduce
the dimension of parameters. In addition, we develop a classifi-
cation method based on the extracted latent features.

A major contribution of the proposed method is that we
are able to preserve the spatial information through correlation
tensor decomposition. This facilitates the detection of TMVs
where the target signals are both highly correlated and spatially
concentrated. Moreover, our numerical and theoretical anal-
yses show that increasing imaging resolution improves signal
detection efficiency, and thus benefits classification even with a
limited number of modalities.

The proposed decomposition method is able to provide
meaningful interpretation. The latent features constructed from
the decomposed components provide the locations of block-
wise correlated pixels, which is more advantageous compared to
Tang, Bi, and Qu (2019), and are useful in the medical imaging
diagnosis. In addition, the proposed method can be applied
in spatial analysis with repeated observations, especially when
the target signals are determined by their correlations, such
as in longitudinal fMRI data analysis (O’Brien et al. 2010),
remote sensing data (Li et al. 2018b) and calcium imaging data
(Soltanian-Zadeh et al. 2019). The comprehensive analyses of
these types of data require computation of correlation pairs
between pixels or voxels, which is challenging due to the data
size. The proposed correlation tensor decomposition method
can improve the estimation efficiency as well as enhancing signal
detection.

In our model, we detect the correlated pixels by recovering
block-wise correlated regions. Although in practice the shape of
the signal area might not be rectangular, our proposed method is
still able to capture the main signals through a low rank approx-
imation successfully, which is verified through the numerical
experiment. Furthermore, we can generalize the current model
to imaging data beyond two dimensions such as voxel data from
the fMRI, where the dimension of the correlation tensor could
be more than four. These are worth further investigation as
future research directions.

Supplementary Materials

The online supplement contains the generalized model with cross-modality
correlations, technical proofs, additional numerical results and computa-
tional details for CNN.
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