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ABSTRACT

Personalized prediction presents an important yet challenging task, which predicts user-specific prefer-
ences on a large number of items given limited information. It is often modeled as certain recommender
systems focusing on ordinal or continuous ratings, as in collaborative filtering and content-based filtering.
In this article, we propose a new collaborative ranking system to predict most-preferred items for each
user given search queries. Particularly, we propose a y/-ranker based on ranking functions incorporating
information on users, items, and search queries through latent factor models. Moreover, we show that the
proposed nonconvex surrogate pairwise -loss performs well under four popular bipartite ranking losses,
such as the sum loss, pairwise zero-one loss, discounted cumulative gain, and mean average precision.
We develop a parallel computing strategy to optimize the intractable loss of two levels of nonconvex
components through difference of convex programming and block successive upper-bound minimization.
Theoretically, we establish a probabilistic error bound for the v/-ranker and show that its ranking error has
a sharp rate of convergence in the general framework of bipartite ranking, even when the dimension of the
model parameters diverges with the sample size. Consequently, this result also indicates that the v/-ranker
performs better than two major approaches in bipartite ranking: pairwise ranking and scoring. Finally, we
demonstrate the utility of the v-ranker by comparing it with some strong competitors in the literature
through simulated examples as well as Expedia booking data. Supplementary materials for this article are
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1. Introduction

The rapid growth of e-commerce makes personalized predic-
tion indispensable, as it largely relies on the prediction of
each individual customer’s preference over a huge collection of
products. Personalized prediction has been widely employed
in a wide range of applications, including movie recommen-
dations (MovieLens; Miller et al. 2003), restaurant or hotel
booking (Entree; Burke 2002), news article suggestions (Daily
learner; Billsus and Pazzani 2000), and product marketing and
advertisement (Amazon; Linden, Smith, and York 2003). For
example, for hotel booking recommendations, a list of most
preferred hotels is crucial to enhance a customer’s experience
of booking.

In the literature, personalized prediction is popularly mod-
eled within the framework of recommender systems, such as
collaborative filtering (Paterek 2007; Salakhutdinov, Mnih, and
Hinton 2007; Wang, Wang, and Yeung 2015; Mao, Chen, and
Wong 2019) and content-based filtering (Lang 1995; Billsus
and Pazzani 2000; Middleton, Shadbolt, and De Roure 2004),
where ordinal preference ratings are often treated as a con-
tinuous variable to facilitate computing. Despite the successes
of these approaches, challenges arising from personalized pre-
diction remain persistently unsolved. First, methods designed
for continuous or ordinal preference ratings are not appro-
priate and effective for describing binary preferences in terms
of performance and evaluation criteria. Second, personalized

prediction is more useful for providing a short list of top-
preferred items as opposed to a complete list of items with
estimated preference scores. Therefore, ranking has become
more relevant than classification or regression in personalized
prediction.

In this article, we propose a collaborative ranking method,
where each user’s preferences over items are binary, such as
in hotel booking. Our primary goal is to provide personalized
ranking of a short list of most-preferred items, which differs
from conventional recommender systems in that our approach
focuses on ranking items based on their relevance to obser-
vations from users such as queries instead of estimating user-
specific preferences. One motivating example is the Expedia
data challenge, which aims to recommend a list of most pre-
ferred hotels for a searching query. Specifically, a query concerns
the event of a customer’s searching on hotels, including date,
time, searching destination, length of stay, and children counts.
In this situation, information regarding search queries and
hotels based on observed preferences can be pooled to produce
appropriate ranking of potential hotels for future queries. This
differs dramatically from conventional ranking in that it consid-
ers a common set of users and items, and thus the collaborative
information across users and items can greatly enhance ranking
accuracy.

It is important to develop an evaluation criterion to measure
the ranking accuracy. The losses for bipartite ranking include
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the sum loss (Ailon 2014), pairwise zero-one loss (Clémencgon,
Lugosi, and Vayatis 2008), discounted cumulative gain (DCG;
Valizadegan et al. 2009), and mean average precision (MAP;
Yue et al. 2007). While the sum loss, DCG, and MAP reward
correctly identified top-ranked items more than other correctly
ranked items, the pairwise zero-one loss focuses on the pref-
erence ordering of each item pair. These loss functions have
been adopted for various ranking methods, yet very little is
known about the relations among them. As a result, there lacks
a benchmark for comparison under different loss functions.
Moreover, it is computationally intractable to minimize these
loss functions in general, except for the pairwise zero-one
loss as it reduces to the pairwise classification loss with feasi-
ble computational algorithms (Burges et al. 2005; Clémengon,
Lugosi, and Vayatis 2008). In addition, theoretical properties
under these loss functions are still unknown. Importantly, many
binary ranking systems involve both continuous and discrete
predictors, such as the date, time, searching destination, dis-
tance, and hotel ID such as in the Expedia dataset. There-
fore, it is highly desirable to develop a collaborative ranking
method which has a sound theoretical foundation, is computa-
tionally scalable, and can incorporate collaborative information
from users, items, and search queries to achieve high ranking
accuracy.

In this article, we show that the regrets defined by the
aforementioned bipartite ranking losses can be upper-bounded
by the regret defined by the pairwise zero-one loss. To our
knowledge, this is the first work to integrate the regrets of
various bipartite ranking losses into one framework. On this
ground, we construct a nonconvex surrogate pairwise y-loss,
which builds up a theoretical foundation for developing accu-
rate collaborative ranking methods. In contrast, as showed in
Calauzenes, Usunier, and Gallinari (2012), there is no convex
surrogate loss calibrated with the mean average precision loss.
Moreover, this unified framework allows us to develop a reg-
ularized formulation derived from the surrogate pairwise /-
loss. In addition, we propose a ranking function motivated by
matrix factorization to facilitate user-query-item interaction,
which effectively integrates the collaborative information from
users, items, and search queries by imposing a nested structure
of user-specific queries. In contrast to conventional recom-
mender systems based on estimation of conditional expecta-
tion, the v -ranker directly targets a bipartite ranking, which
not only produces higher accuracy in ranking as measured
by the four ranking losses (cf., Lemma 3 and Theorem 1),
but also utilizes nested structures to facilitate computation in
ranking.

Computationally, we develop a block successive upper-
bound minimization (BSUM) scheme together with difference
of convex (DC) programming to solve the optimization with
two-levels of nonconvex components corresponding to the /-
loss and matrix factorization. Theoretically, we establish a prob-
abilistic error bound of the pairwise-regret of the proposed
y-ranker, and derive a sharp rate of convergence. The estab-
lished rate of convergence also shows that the v -ranker per-
forms better than the pairwise ranking and scoring methods
under any of the aforementioned four losses. As a by-product,
our result also indicates that the v -ranker unifies the error
rate of the pairwise ranking and scoring approaches in the

bipartite ranking. In addition, the v -ranker based on a scoring
approach reduces computational complexity while achieving
desirable theoretical properties. In contrast, other surrogate loss
functions, such as exponential or logistic losses (Kotlowski,
Dembczynski, and Huellermeier 2011; Agarwal 2014), have a
slower rate of convergence or could be inconsistent, for example,
the hinge loss. Finally, the proposed method is employed to
analyze the Expedia dataset, containing over 550,000 brows-
ing records from over 200,000 searching queries and 60,000
hotels.

The rest of the article is organized as follows. Section 2
introduces commonly used loss functions in bipartite ranking,
where a Bayes ranker and the relations among the regrets of
various loss functions are established. In addition, we propose
a regularized 1 -ranker based on a surrogate pairwise i -loss,
incorporating the collaborative information among users, items,
and search queries. Section 3 develops a scalable computation
method. Section 4 derives finite-sample risk bounds for the
proposed method. Section 5 evaluates the proposed method in
simulation studies and a real application to the Expedia data
challenge. Section 6 provides a brief discussion. The technical
proofs are contained in the supplementary materials.

2. Method

In this section, we propose a collaborative ranking method,
called y-ranker, for bipartite ranking systems. Suppose that the
binary preferences of T items responding to N searching queries
areinaform R = (RQi)zN L With Rq, = (Q,-, Zi, Yit)thl, where
Qi = (Qi1,Qi2,--.,Qig) is an ith discrete-valued searching
query vector with ’ denoting the transpose, G is the length of
the query vector, Z;; € RP? is a vector of continuous query-item
predictors, and Y; € {0,1} with 1 indicating the preference
of item t for query Q; and 0 otherwise. For instance, for the
Expedia hotel booking dataset, each query Q; is comprised of
the ith browsing record, including date, time, and searching
destination, Z; consists of the length of stay, children count,
hotel review score, hotel location score, hotel rating, price, and
distance between the user’s location and a hotel ¢, and Yj; is
an indicator of whether a user books the hotel ¢ or not. We
assume that (RQi)fi | are independent, and (Z;, Yit)thl are
conditional independent and identically distributed given each
Q;. However, (Qi, Zit,Y,-t)’s are not independent due to the
shared query Q; in every batch of T observations. The primary
goal is to construct a ranking function f(Q;,Z;) based on
the collaborative information across queries and items, which
provides accurate ranking of items with top preference given a

query.

2.1. Ranking Loss Functions

A number of loss functions have been proposed to assess the
accuracy of bipartite ranking (Chaudhuri and Tewari 2017),
including the sum loss, the pairwise zero-one loss, one minus
DCG, and one minus MAP. For the latter two, we denote them
as the discounted cumulative error (DCE) and the mean average
error (MAE). Specifically, given a sample R, these losses on a



given ranking function f(Q, Z) are defined as

1 v 1 Zr@uz)
NT Z Z TYit; (D

i=1 t=1

Sum-loss:Leym (f, R) =

Pairwise-108s: Lpair (f, R)

N
1
73 2 21 > Yi)I(f(Qu Zi) < f(Qi Zir))s ()

i=1 tt
DCE:Lgce(f> R)

1
NT 4

=1-

™M=
M=

(log, (1 + |Z¢(q, ,t)l)) Yits (3)

I
—-

1t

MAE:Liac (f, R)

1 N T
=1-— Z Y Tzl

1=1 t=1

Yit Yit” (4)

2

€Ty zip)

where Zr(q,z,) = {t' : f(Qi»Zir) = f(Qi,Zir)} consists of all
items ranked higher than Z;; by f for query Q;, |- | denotes the set
cardinality, and I(-) is an indicator function. To rank, we assume,
without loss of generality, that f(Q;, Z;;) has distinct values at
different Z;’s with probability 1. Specifically, the pairwise zero-
one loss evaluates the relative order of any two items, while the
sum loss, DCE, and MAE are defined based on |Zs(q, z;)| to
penalize more when top-ranked items are misidentified.

Note that that (2) slightly differs from the classical pairwise-
loss for a continuous response Y € R in Clémencon, Lugosi,
and Vayatis (2008), which imposes an additional unnecessary
penalty to a tie Yy = Yy, that almost never occurs to a
continuous response Y € R, but can notbe ignored in the binary
case Y € {0, 1}. In contrast, (2) overcomes this difficulty for a
binary response.

For each loss function L, we define the ideal ranker as f" =
argming E (L(f,R)), where the expectation is taken with respect
to R and the minimization is taken over all functions. Lemma 1
shows that all the aforementioned loss functions lead to the same
Bayes ranker defined by the relative order of P(Yj = 1 | Q;, Zjr),
where P(- | Qj, Zj) is the conditional probability of Y;; given Q;
and Z;;.

Lemma 1 (Characterization of fi"). For any loss function L in
(1)-(4), the rank of (Z;,...,Z;7) determined by f;" for query
Q; is the same as that determmed by P( +=1]Q; ,t) in that
it holds with probability 1 that

(ff Qi Zin) — f7(Qi» Zir'))
(P(Yir =11 Qi Zi) —P(Yyy =1| Qi Zi)) =0, (5)

forany t # t' € {1,..., T}, and the equality holds iff P(Y;y =
11Qi,Zip) = P(Yiy = 1| Qi Zip).

For Lemma 1, we denote f;" as f* for any L defined in (1)-
(4), and f* is referred to as the Bayes ranker subsequently.
One important metric to measure the ranking performance
of a ranking function f is through its ranking regret rela-
tive to the Bayes ranker, defined as Reg; (f) = E(L(f,R)) —
E(L(f*,R) = 0.
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It can be verified that Reg; (f) = Rengair(f) as in
Ailon (2014). In addition, the following Lemma 2 indicates that
the ranking regrets defined by DCE and MAE can be upper-
bounded by the pairwise regret.

Lemma 2 (Regret relations). For any ranking function f, if it has
distinct values at Z;’s with probability 1, then

T
Rengae (f) = _R ngalr (f)

1
Reg; () = T( - E) gL (-

A direct implication of Lemma 2 is that if a ranking function
achieves small pairwise regret, the regrets defined by the other
three losses are also small. Therefore, we construct a surro-
gate loss of Lp,ir(f, R) as an operating loss for the proposed
ranker. This is achieved by replacing the indicator function
I(f(QiZit) = f(QiZiyy)) in Lpair(f, R) by ¥ (f(QiZir) —
f(Qi, Ziy)), where ¥ (s) = min(1, (1 —s/6)) (Shen et al. 2003)
isa scaled v-loss with a prespecified constant 6 > 0; see Figure 1
for a display of the scaled v-loss, the hinge loss and the zero-one
loss.

The advantage of using ¥ (-) is to increase the separation
between the outcomes of 1 and 0 in ranking, while still approxi-
mating the indicator function. Specifically, the proposed surro-
gate loss function of (2) is

1 N T T
Ly (R = 3 >0 ) D 1Y > Vi) (6)

i=1 t=1 ¢'=1
Y (f(QiZip) — f(Qi» Ziy)).
The following Lemma 3 shows that Ly, (-, ) retains the property
Oprair(': ).

Lemma 3 (The scaled +-loss). For any 6 > 0, fj =
argminf E(LI/, > R)) gives the same rank of (Z;, ..., Z;T) for
Q; as that given by P(Yit =1 | Qi,Zit) in that it holds with
probability 1 that
(f Qi Zir) — £5(Qi Zir)) )
(P(Yit =1|QiuZy) —P(Yyy =1| Qi)Zit’)) >0,

--- zero-one loss
------ hinge loss
—— psiloss

0.50 1

0.25 4

0.00

-1.0 -0.5 0.0 0.5 10 1.5 2.0

Figure 1. The zero-one loss, the hinge loss, and the scaled-r loss functions.
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forany t # t' € {1,..., T}, and the equality holds iff P(Y; =
1] QiZy) = P(Yyy = 1| Qj, Zy). Moreover, for any ranking
function f,

Reg, . (f) < Reg;, (), (8)

and

T
Reg; (f) < EReng (22

1
Reng (f) = T(l - E) eng, (f)
2

It is important to note that (8) does not hold for Ly in
general when the scaled -loss in (6) is replaced by the hinge
loss (1 — s/0)4 although Lgym, satisfies (7) (Uematsu and Lee
2017). This property is very different from classification. In fact,
Reg; () = RegL (f) for exponential loss and logistic loss L
(Agarwal 2014; Gao and Zhou 2015), which ultimately impedes
the ranking performance if it is used as opposed to Ly,.

In summary, Ly (-,-) can be an appropriate surrogate loss
for the losses in (1)-(4), with regrets upper-bounding the cor-
responding four regrets Reg; (f), as showed in Lemmas 2 and
3. Consequently, a ranker f that performs well under Ly is
expected to perform well under any other loss function L, which
makes Ly desirable. Another benefit of Ly is that it is easier
to implement while retaining desirable statistical properties as
suggested in Theorem 1. On the other hand, the difference
between Lmae, Ldce> and Ly lies in the weights |If(Qi»Zit)|71
As showed in Lemma 3, the weights |Z¢(q,z,)| ™" play a role
of breaking ties in view of (5) and (7). Therefore, there is no
efficiency loss when the weights are discarded in Ly,.

2.2. Collaborative Ranking Function

To incorporate the collaborative information across queries and
items, we propose a novel ranking function based on a latent
factor model with a nested structure of user-specific queries.
Specifically, for query q; = (q;1> - - -» q;)" with qip € {1,...,ng}
involving multiple queries associated with user i, we introduce
one additional layer of latent factors a‘gig as a K-dimensional
latent factor corresponding to g,,. Then the proposed ranking
function becomes

f@pzi) = Bz + Zb’aqlg ©)
g=1
where G is the number of latent factors, B is an overall query-
item effect coefficient of z;;, and ag.q,, and b; are K-dimensional
query-specific and item-specific latent factors, representing the
intrinsic degree of preference of a user making query g, and the
intrinsic degree of relevance on item .

The ranking function in (9) is highly interpretable. First,
f(q;,zi)’s tend to be positively correlated through the common
latent factors. This reflects the fact that the responses Yj’s tend
to be positively associated when the corresponding queries share
the same factors. Second, f (qz, z;¢) imposes a nested structure as
aresult of the components aq ’sin (9). Third, as in mixed-effect

models, B'z;; can be regarded as the item-specific main effect,
and b;a‘gig as random effects representing interactions between
users and items.

2.3. Proposed Method

In this subsection, we propose the collaborative ranking formu-
lation based on a training set (q;, Zit, Yit)i=1,... Nst=1,..., T

N
~ 1
Lw(f,R) = WZZI()}# >yit/)

i=1 t't

v (f(@pzi) — f(@pzir)) + (), (10)

where J(f) is a nonnegative regularizer such as the inverse of
the separation margin, Cortes and Vapnik (1995) and A > 0
is a tuning parameter controlling the trade-oft between the
ranking of training data and the separation margin. Normally,
leta = (@'Y, .. (aG)’)/ with a8 = ((@a})’,..., (aﬁg)’)/, then
) = I8 + T, 1881 + X1, b1 is the squared L
norm, which is anafogous to the notion of geometric separation
in classification (Cortes and Vapnik 1995).

3. Scalable Computation

In this section, we develop a scalable computing scheme to solve
(10). Specifically, the computing scheme employs a difference
convex algorithm to relax nonconvex minimization (10) into
a sequence of convex subproblems, where each subproblem
is solved by the block successive upper-bound minimization
(BSUM) algorithm (Razaviyayn, Hong, and Luo 2013) and
a “divide-and-conquer” strategy. In this fashion, the scheme
decomposes (10) into multiple small-scale tasks for paralleliza-
tion and alleviates the memory requirement to achieve scalabil-
ity.

To proceed, we introduce three blocks, namely, the overall

effect B, the item-specific latent factors denoted by by, ..., br,
and the user-specific latent factors defined by a', ..., a". First,
the scaled y-loss is decomposed by ¥ (1) = (1 — u/0)4 —
(—u/0) 4+, and thus (10) is rewritten as
Z Z)’m’ 1- ztt’/9 Z Z)’ztt’ - ﬂitt’/9)+
i=1 tt i=1 t,t
G T
(1812 4+ 3 112+ 3 Ibel?),
g=1 t=1
where yiy = I(yit > yie), Ziw = Zit — Zig, & = ag+ -+ +

agG, and Oy = Bz + a; (b, — bt/). Second, as in Liu, Shen,

and Wong (2005), we linearize Zfil Do ym/( — ﬁitt//9)+ at
a current solut~ion (a0, by, B,), which leads to a convex upper
bound of (10) Lf/f (a, b, B;a,, b,, ﬂu) as follows:

ZZW (=30 /0) 4+ (1181 +Z||ag|| +Z||bt|| )

i=1 tt/

—ZZ)’ztt’ - ztt’/9

i=1 tt



N
1 3 ’
+ g E E IWiy < 024y (B — Bo)

i=1 tt

N
1 - _
5D ) 10w < 0y (I @ Ixxk) (b —by)

i=1 tt

G g
+ é Z Z Z Zl(éitt’ < 0)(bor — boy)' (agj — agg)),

g=1 j=1 iergg) LY

(11)

where l?,itt’ = ﬂi)zl'tt’ + 5:)i(b0[ — bot’)> b= (b/ P ’b{T)/’ ltt’ is
a T-dimensional vector with 1 at the fth element, —1 at the 'th
element —1 and 0 otherwise, Ixxx is a K x K matrix of all 1,
® stands for the Kronecker product, and Q;g) ={i:q;, =j}

The BSUM algorithm minimizes (11) using blockwise
descent iteratively, which solves the following three subprob-
lems (12), (14), and (15) alternatively. Note that LY is blockwise
convex, which ensures the unique minimizer for each of the
subproblems.

3.1. Item-Effect Block

After fixing (al,...,a%) and B, (by,...

minimizing

,br)" is updated by

N
1 - _
min Y > (& + 21D < 0 (1w ® i) (b —bo)) +bb (12)

i=1

subjectto Py > 0(1 — &) and &y > 0,

with respect to b and &;;’s, where &;,’s are some slack variables.

3.2. User Effect Block

For each a8 with g = 1,...,G, we fix 8, (by,...,br) and a?

with ¢’ # g, and af can be updated by minimizing

(13)

g
Z Z Z (}Vitt’(l — Vi /0) +

=1 e Q;g) LY

+ I(ﬂm/ < 0)(b; —by)' (@} —af ) +AZ||agn2,
]_

with respect to ag Note that (13) can be solved separately with
respect to (a - That is, for each a; G = 1,...
introducing Sm/ we solve (13) in a parallel fashion:

,ng), after

min
agiEin! )
1

1 -
D (G + 51@ur < 0)(br — by @ — ) + Allaf 13,

- Q;g) Lt

subjectto  B'ziyy + (af)/(bt -
> 600 —&y)

by) + (@; ) (b; — by)

and &y >0, (14)

-—g 4 . . .
where a, © = Zg, £¢ 4, This computational strategy is sum-

marized in Figure 2.
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Block-wise update for each aj(g=1,---,G)
a; a2 a, a,41 ag-| ag
*r—>r—e
A1 ags Agn,
Parallel computing for each a,j(7 =1, -- -, ny)

Figure 2. The chart on the scheme of updating user effect.

3.3. Main Effect Block

After fixing (al, ... ,a% and (by,. ..

ing

,br), we update § by solv-

N
1 -
min D (G + S 10 < 0)2i (B = Bo)) + MBI,
i=1 tt
(15)

SubjeCt to ,B/zm/ -+ é;(bt — bt’) > 9(1 — %‘iﬂ/) and Ei[t/ > 0.

Note that only the user effect can be parallelizable in the
BSUM algorithm. The above process can be summarized as in
Algorithm 1, where the final solution is denoted as @l,...,a%),

(’51, .. bT) and ,B and thusf(ql,z,[) = ﬁ Zir + Zg lb/aq,g
Finally, the items z;1, .. .,z;r for each specific query g, can be
ranked based on the Values of f(q;zit).

Algorithm 1 (Parallel BSUM algorithm). Step 1 (Initialization):
Initialize (a‘g)gzl, B, and b, Specify a tolerance level.

Step 2 (Item-effect): Update b, by solving (12) with respect
to b with a and 8 fixed.

Step 3 (Parallelization for user-effect): Update a$ in a parallel
fashion by solving (14) for each a}g with fixed b, B and ay with
g #e

Step 4 (Main-effect): Update B, by solving (15) for B with
fixeda and b.

Step 5 (Termination): Iterate Steps 2-4 until the decrement
of the objective function is less than the tolerance level.

The following lemma shows that the BSUM algorithm con-
verges to a coordinate-wise minimizer Razaviyayn, Hong, and
Luo (2013) of (10), which cannot be further improved by any
coordinate-wise updates.

Lemma 4 (Convergence). Any solution @b, E) obtained from
Algorithm 1 is the coordinate-wise minimizer of (10).

Convergence of the BSUM algorithm is ensured by Lemma 4.
In fact, if we further assume (10) is regular at (a, b, 8), then it
follows from Razaviyayn, Hong, and Luo (2013) that (a, b, B)
must be a local minimizer of (10) as well.

4. Theory

This section explains the theoretical properties of the proposed
collaborative ranking method in terms of its ranking accuracy,
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measure by the pairwise regret. Particularly, an error bound for
the pairwise regret is established with regard to the number of
queries and items, the factors of query, and tuning parameters.
Specifically, the function space F of candidate ranking functions
in (9) can be written as

G
F = [f(qi,zit) =B'z; + Zb;a‘gig, fori=1,...,N;
g=1

t=1 .,T:ﬂeRp;afeRK, forg=1,...,G;

i=1..., T},

andy = p+ (T + ZG ng)K denotes the total number of
parameters used in F. Tl%e following technical assumptions are
made:

ng;bteRK, fort=1,...,

Assumption A (Bounded moment). Assume that N~' 3N
E(||Z;1]|5) is upper bounded by cz for all N.

Assumption B (Variance property). There exist constants ¥ > 0,
c1 > 0,and small ¢g > 0, such that for any 0 < ¢ < ¢ and
fer

N

1
sup N Zvar (Ly (f*sRq,) — Ly (f,Rq,)) < c1€.
feFReg (H=e ™% i

Assumption A imposes a moment condition on predictors
Zj, and Assumption B is a local smoothness condition on the
variance of the criterion function difference in the neighbor-
hood of f*. For example, Assumption B is satisfied with x = 1
if Z;; follows a discrete distribution and there exists a constant
¢, such that }n(z, q —n(Z, q)} > ¢, for any q, where 1(z,q) =
P(Yn =1|Zy =2,Qi = q).

Theorem 1. If Assumptions A and Bhold, and N > ¢3y for some

constant ¢3 > 0, then for any minimizerf of (10), there exists a
constant ¢4 > 0 such that

P(RegLpalir (/f\) > 6]2\]) < 3exp ( — C4N()»N]0)27min(1”())
+2 exp (—C4NE§) , (16)

1
given that €3, = O(%log(%)) =min(0 < €y, when Ay ~ €5.

Here Jo = max(L,J(f*)),y =p+ (T + Zgzl ng)K is the total

number of parameters, and ¢ is a constant depending on 8y, ¢z,
1

and Jo. As a result, Reg; (f) Op(% log(%)) 2-min(Li)

Theorem 1 suggests that the convergence rate of the pairwise
regret offis of order (% log(g)) T .When k = 1, this rate
becomes & log(%]), matching up with the fast classification rate
(Shen et al. 2003; Bartlett, Jordan, and McAuliffe 2006). Further-
more, together with Lemma 2, it implies the following corollary,

which provides a rate of convergence for other bipartite ranking
losses.

Corollary 1. Under the assumptions of Theorem 1, (16) holds
uniformly over four other losses, or L can be Lpair, Lmaes Ldces OF

_l
Lsum. Moreover, Reg; (f) = Op(% log(g)) O hen L s

_l
Lmae OF Lyce; and Reg; (f) = Op<% log(§)> 2t when L is
Lpair or Lsum.

5. Numerical Examples

This section examines the operating characteristics of the pro-
posed y-ranker with & = 1 in simulated and real examples, and
compares it with strong competitors in the literature, including
the support vector machine (SVM; Cortes and Vapnik 1995),
pairwise ranking with SVM (pairwise-SVM; Joachims 2002),
regularized single factor singular value decomposition for rec-
ommender systems (rSVD; Paterek 2007), and a ReLU neural
network logistic regression (neural network; Glorot, Bordes,
and Bengio 2011). Specifically, for SVM and neural network,
we convert a categorical covariate to a binary vector with the
one-hot encoding scheme, and rank items by values of the
estimated conditional class probabilities. The conditional class
probabilities are estimated by the values of the last layer of the
neural network.

For implementation, we code Algorithm 1 using the Python
package VarSVM,! SVM based on the package linearSVC,
rSVD based on Dai et al. (2019), and neural networks based on
package MLPClassifier.? To facilitate the evaluation, we report
the MAE for the top 3 ranked items for each query, as suggested
in Herlocker et al. (2004).

5.1. Simulated Examples

One simulated example {q;,Zis, yit}i=1,.. Ny=1,.,7 is generated
to mimic the situation of hotel booking. Specifically, g; is the
ith discrete-valued query vector, z; € RP is a vector of item
predictors, and y; € {0, 1} with 1 indicating the preference of
item ¢ for query q; and 0 otherwise.

First, given a vector (11, .. .,1g), a total of N queries {ql- =

4> - - 96) }fil are generated, where g, is uniformly sam-
pled from {1,...,ng} to mimic the discrete-valued query of
hotel booking, such as destination id, the number of rooms, and
the length of stay, and G denotes the number of query options.
Next, zy = w1 = 1,...,N;t = 1,..., T, which may be
thought of as a hotel feature that remains unchanged for each
query and independent of f, where w; is independently gen-
erated from N(0,+/0.11,) for the item covariate, such as hotel
price and hotel review, and B is generated from N(0, I7), a}g and
b; are generated from N(0,Ixo) to simulate the heterogeneity
among users and items, where K° is the number of latent factors.
For each query q;> we generate a preference score siy = B'ziy +
(al ; 4+ +a )’bt—i—st for each item, where &; ~ N(0, +/0.1).

As in the hotef booking example, where each query results in
only one booked hotel, we set the item with the highest score
as the “booked hotel” with Y; = 1, and set Y;» = 0 for all
other items. Finally, the generated dataset is split into training,
validation and testing sets with proportions of 50%, 20% and
30%, respectively. Then a ranker is fitted on the training set, is
tuned on the validation set, and is evaluated by MAE (4) on the
test set.

Vhttps:// github.com/statmlben/Variant-SVM

2https://scikit-learn.org/stable/modules/generated/ sklearn.svm.LinearSVC.
html

3 https://scikit-learn.org/stable/modules/generated/ sklearn.neural_network.
MLPClassifier.html
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https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html
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Table 1. Averaged MAEs and running time in seconds of various methods and their standard deviations in parenthesis over 100 replications.

Bayes w-Ranker SVM Pairwise-SVM rSVD Neural network

N =200

KO=5 0.098(0.008) 0.284(0.020) 0.430(0.032 0.388(0.029) 0.371(0.028) 0.274(0.019)
K°=10 0.077(0.006) 0.314(0.017) 0.493(0.029 0.453(0.026) 0.443(0.022) 0.309(0.018)
K9=20 0.057(0.005) 0.342(0.015) 0.582(0.023 0.543(0.022) 0.518(0.020) 0.342(0.015)
Time (sec) - 0.985(0.033) 0.036(0.001 0.003(0.000) 0.322(0.047) 0.636(0.018)
N = 500

KO=5 0.099(0.006) 0.194(0.011) 0.387(0.023 0.341(0.023) 0.326(0.019) 0.214(0.013)
K0=10 0.075(0.004) 0.212(0.009) 0.531(0.024 0.473(0.022) 0.447(0.021) 0.240(0.014)
K% =20 0.055(0.003) 0.218(0.010) 0.504(0.021 0.477(0.020) 0.454(0.019) 0.259(0.010)
Time (sec) - 2.37(0.078) 0.109(0.006 0.004(0.000) 0.543(0.065) 1.11(0.086)
N = 1000

KO=5 0.090(0.006) 0.152(0.009) 0.423(0.028) 0.372(0.023) 0.364(0.023) 0.180(0.012)
K9=10 0.100(0.007) 0.174(0.010) 0.449(0.027) 0.391(0.026) 0.370(0.023) 0.199(0.013)
K°=20 0.057(0.002) 0.157(0.006) 0.540(0.021) 0.496(0.020) 0.470(0.020) 0.221(0.010)
Time (sec) - 4.09(0.110) 0.267(0.005) 0.006(0.000) 0.901(0.023) 1.61(0.048)
N = 2000

KO=5 0.103(0.006) 0.148(0.009) 0.497(0.031 0.415(0.025) 0.392(0.023) 0.191(0.012)
K°=10 0.075(0.003) 0.126(0.006) 0.507(0.023 0.460(0.023) 0.428(0.020) 0.201(0.010)
K% =20 0.053(0.002) 0.106(0.004) 0.550(0.027 0.504(0.022) 0.478(0.021) 0.187(0.007)
Time (sec) - 8.15(0.160) 0.615(0.008 0.010(0.000) 1.13(0.008) 2.60(0.089)
N = 3000

KO=5 0.093(0.006) 0.126(0.009) 0.445(0.033 0.362(0.024) 0.336(0.022) 0.167(0.012)
Ko=10 0.074(0.003) 0.113(0.004) 0.502(0.020 0.453(0.018) 0.425(0.017) 0.189(0.007)
K% =20 0.054(0.002) 0.093(0.003) 0.515(0.022 0.480(0.020) 0.453(0.018) 0.181(0.006)
Time (sec) - 12.7(0.564) 0.123(0.037 0.014(0.001) 1.27(0.077) 3.92(0.179)

NOTE: Here Bayes, y-rank, SVM, pairwise-SVM, rSVD, and neural network denote the Bayes ranker, the proposed /-ranker, linear SVM classification, pairwise ranking with

linear SVM, the regularized singular value decomposition, and the neural network.

In simulations, we fixd = 10, T = 10, G = 3, n; = 50,
n, = 10, n3 = 2, and consider N = 200, 500, 1000, 2000, 3000,
and K° = 5,10, 20.

For the rSVD, it uses continuous covariates z;, the first
column of q and the item id ¢ as latent factors. For the pairwise-
SVM, only z; is included, since g; is eliminated for each
item pair. For the SVM and neural network, all covariates are
included, and g, and item id t are numerically converted to
multiple 0-1 dummy variables. We set K = K° for the proposed
Yr-ranker and sSVD. For tuning A, we perform a grid search
over {0.01, 0.1, 1, 10, 20, 50, 100, 150, 200} on the validation
set to seek the optimal A to minimize the test error for the SVM,
pairwise-SVM, rSVD, and ¢ -ranker. For the neural network, we
fix the number of nodes as 64 at each hidden layer, and tune
the depth of hidden layers in a grid set {1, 2, 3, 4, 5, 6}. The
MAESs and running times of each method on the testing set over
100 replications are summarized in Table 1, where the running
times are provided for the SVM, pairwise-SVM, rSVD, and -
ranker with A = 0.01, and for the neural network with 6 hidden
layers.

As suggested in Table 1, the -ranker outperforms the
other competitors in terms of MAE, expect the proposed -
ranker and neural network share the similar performance when
n = 200. The largest percentages of improvements are about
81.9%, 74.3%, 72.3%, and 48.6% over the SVM, pairwise-SVM,

rSVD, and neural network, respectively. However, the proposed
method is slightly slower than the other competitors. Further-
more, as suggested by Figure 3, the y/-ranker has a faster rate
of convergence than the neural network logistic regression, with
the convergence power nearly twice, which is consistent with the
theoretical result of Lemma 3 and Theorem 1. By comparison,
the SVM, pairwise-SVM, and rSVD may not converge in terms
of n.

5.2. Application to the Expedia Data Challenge

This section applies the i -ranker, pairwise-SVM, SVM, rSVD,
and neural network to analyze a dataset for personalized predi-
cation of Expedia hotel searches in the Kaggle competition.* The
Expedia data contain online user-specific records of shopping
and purchasing, price competitiveness-related information, as
well as users’ responses on whether a hotel is booked. Specifi-
cally, each record includes variables: search id, date time, des-
tination id, length of stay, children count, hotel review score,
hotel location score, hotel rating, hotel price, hotel id, distance,
is randomly sort, is book, where variable “distance” is the dis-
tance between the user’s location and a hotel, and variable “is

“https://www.kaggle.com/c/expedia-personalized-sort
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Figure 3. Logarithm of averaged MAE regrets of various methods in the simulated examples with K = 20 as a function of logarithm of the sample size n =
200, 500, 1000, 2000, 3000, where the slope of the curve indicates the convergence power « for a method to yield a rate of n®. Here v/-ranker, SVM, pairwise-SVM, rSVD,
and neural network denote the Bayes ranker, the y-ranker, linear SVM classification, pairwise ranking with linear SVM, the regularized singular value decomposition, and
the neural network logistic regression.

Table 2. Averaged MAEs and running time in seconds of various methods and their standard deviations in parenthesis on 10% random subset of Expedia dataset over 50
replications.

w-Ranker SVM Pairwise-SVM rSVD Neural network
MAE 0.377(0.001) 0.506(0.002) 0.396(0.002) 0.404(0.001) 0.406(0.001)
Time (sec) 612(57.8) 68.4(0.237) 35.7(0.100) 68.7(1.54) 2451(255)

NOTE: Here y-rank, SVM, rSVD, and neural network denote the Bayes ranker, the proposed /-ranker, linear SVM classification, the regularized singular value decomposition,

and the neural network logistic regression.

randomly sort” is binary with 1/0 indicating random/normal
displayed sort. Finally, “is book” indicates if the hotel is booked
for a researching record.

Our goal is to predict if a hotel will be booked given each
query. First, we extract query features “month” and “is Saturday”
from date time. Second, for the proposed 1 -ranker, continuous
covariates z;; include “hotel rating;” “hotel review score,” “hotel
location score;” “distance;” “price;” “length of stay;” “children
count,” while the latent factor a, in (9) and (10), consists of the
factors of q; as “month,” “is Saturday;” “is randomly sort” and
the latent factors b there represent all “hotel id” Then, y;; = 1
for the booked hotels, and y;; = —1 for the view-only hotels
under same “search id” For rSVD, it is infeasible to treat each
query as one latent factor, so rSVD uses continuous covariates
zi and “month,” “hotel id” as latent factors. For the pairwise-
SVM, SVM, and neural network, all covariates are included, and
each categorical covariate is numerically converted to multiple
0-1 dummy variables except for “hotel id” with levels over
60,000.

For evaluation, the MAEs and running times of each method
over 50 replications are summarized in Table 2, where the
running times are provided for SVM, rSVD, and i -ranker

with A = 0.01, and for neural network with 6 hidden layers.
For each replication, we randomly sample 10% of the Expe-
dia data in the United States, and split it into training, val-
idation, and testing sets, with partition ratios of 50%, 20%,
and 30%, respectively. The combined dataset consists of over
550,000 records from over 200,000 search queries involving
60,000 hotels. For the proposed 1 -ranker, the number of latent
factors is chosen to be K = 3. For tuning A, we perform a
grid search over {0.01, 0.1, 1, 10, 20, 50, 100, 150, 200} on
the validation set to seek the optimal A minimizing the test
error for SVM, pairwise-SVM, rSVD and -ranker. For neural
network, we fix the number of nodes in each hidden layer as
64, and tune the depth of hidden layers in a grid set {1, 2, 3, 4,
5, 6}.

As suggested in Table 2, the i -ranker again provides superior
performance in terms of the MAEs. The percentages of improve-
ments of the y-ranker over SVM, pairwise-SVM, rSVD, and
neural network are 25.5%, 4.80%, 6.68%, and 7.14%, respec-
tively. As expected, the pairwise v -loss contributes to the
improved performance as well as the information of search
queries and items incorporated by the nested structure of latent
factors.



6. Discussion

This article develops the 1/ -ranker, a new collaborative ranking
system, which provides a user-specific list of most-preferred
items by incorporating the information from users, items, and
search queries collaboratively. Moreover, we prove that a sharper
convergence of the ir-ranker is achieved under four popular
bipartite ranking losses simultaneously, including the sum loss,
pairwise zero-one loss, DCE, and MAE. Computationally, two
levels of nonconvex optimization are implemented via differ-
ence convex programming and block successive upper-bound
minimization. Theoretically, we establish a probabilistic error
bound for the i -ranker and show that the ranking error of
the yr-ranker has a sharper rate of convergence in the general
framework of bipartite ranking losses, even when the number
of the model parameters diverges with the sample size.

Supplementary Materials

The supplementary materials provide additional proofs of theorems and the
codings used in simulations and real data application.
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