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Abstract: In this paper, we propose a new clustering approach for multivariate re-
sponses in a longitudinal analysis. Clustering analyses for multiple outcomes can
be challenging, owing to multiple sources of correlation from multiple outcomes of
the same subject and longitudinal measurements. The proposed method enhances
clustering analyses by integrating multiple sources of correlations. Specifically,
we incorporate random effects to capture correlations from multivariate responses,
and group individuals by penalizing the pairwise distances between the B-spline
coefficient vectors. We implement an alternating directions and method of multi-
pliers (ADMM) algorithm for optimization in clustering. Furthermore, we study
the asymptotic convergence rate of the proposed nonparametric estimator in the
presence of longitudinal correlations for the random-effects model. The results of
simulations and a real-data analysis show that the proposed method outperforms
existing clustering methods.

Key words and phrases: ADMM, minimax concave penalty, model selection, penalized-
spline, random effects.

1. Introduction

Clustering analyses of longitudinal data play an important role in many
fields, such as public health, economics, and marketing research, where multi-
ple outcomes are obtained from a subject repeatedly over time. Consequently,
repeated measurements from the same response variable are correlated with ad-
ditional correlations from multiple outcomes on the same subject. Identifying
potential longitudinal trajectory patterns in order to fully utilize joint multiple
outcomes is of great interest in practice. In general, multiple measurements of
symptoms on the same subject are more powerful for identifying the severity of
diseases than single measurements are, if multiple outcomes are available.

Existing clustering analyses of longtitudinal data include multivariate clus-
tering methods, such as k-means clustering (MacQueen (1967); Hartigan and
Wong (1979)) and finite-mixture models (Fraley and Raftery (2002)), which are
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useful for identifying groups of longitudinal patterns. These methods assume
that repeated measurements from the same subject form a vector at distinct time
points, and that information on time ordering is ignored. Thus, the clustering re-
sults could be invariant to arbitrary permutations of a sequence of measuremetns
for each subject. However, the trajectory patterns in time-ordering data are of-
ten of primary interest in many applications. In addition, these methods usually
require prior knowledge on the number of subgroups, and cannot handle missing
values, which can be a limitation in practice.

Other clustering methods are based on regression curves. Vogt and Linton
(2017) developed a two-step classification algorithm to estimate the parameters
of group memberships and the number of subgroups simultaneously by compar-
ing the Lo-distances between the kernel estimates of nonparametric functions.
However, the number of subgroups is estimated by the number of iterations
in the first-step thresholding procedure, which could perform poorly when the
noise level in the data is high. In addition, their method cannot be applied to
unbalanced longitudinal data. Ma et al. (2006) and Coffey, Hinde and Holian
(2014) analyze time-course gene expression data by applying smoothing spline
and penalized spline approximations, respectively, under the mixed-effects model
framework. However, neither of these methods takes correlations from the same
individual into account, and both require prior knowledge of the true number of
subgroups.

The penalized model selection methods, for example, the L,-norm (Tibshi-
rani (1996)), smoothly clipped absolute deviation (SCAD) (Fan and Li (2001)),
minimax concave penalty (MCP) (Zhang (2010)), and truncated Lasso penalty
(TLP) (Shen, Pan and Zhu (2012)), allow automatic detection of the clusters,
and model the subgroup mean centers simultaneously. Ma and Huang (2017)
apply nonconvex fusion penalties to pairwise differences of unobserved subject-
specific intercepts, based on a linear regression model. Shen and Huang (2010)
group covariate effects using fused concave penalties. Chi and Lange (2015) for-
mulate the clustering problem as a convex optimization problem. Pan, Shen and
Liu (2013) adopt a fused-lasso-type penalty to compare the pairwise differences
between the centroids of each subject. However, none of these methods focus on
longitudinal data analyses with multivariate responses.

The aim of this study is to develop a new clustering method to detect the
unknown group structure of individuals, without pre-assuming the number of
subgroups, for multiple outcomes of longitudinal data, which are correlated for
repeated measurements and multivariate outcomes with possibly missing obser-



CLUSTER ANALYSIS ON MULTIPLE OUTCOMES 1831

vations. The potential challenges of dealing with inherent correlations between
multiple outcomes from the same subject and longitudinal correlation arise from
repeated measures on the same outcome. In this work, we propose a penalized
regression-based clustering approach that incorporates within-outcome serial cor-
relation and uses random effects to account for the correlations between multiple
outcomes from the same subject. These allow us to integrate multiple sources of
information when partitioning individuals into homogeneous groups with similar
joint-trajectory patterns.

One way to identify longitudinal trajectory patterns is to estimate the func-
tional curve of each subject using a nonparametric penalized spline approach.
We group individuals by penalizing the pairwise distances between the B-spline
coefficient vectors. In order to minimize the clustering objective function, we
implement an alternating directions and method of multipliers (ADMM) algo-
rithm (Boyd et al. (2011)). The proposed method has several advantages. First,
combining multiple outcomes for each subject by modeling the subject-specific
random effects enables us to merge individuals with similar joint-trajectory pat-
terns into homogeneous groups. Second, formulating clustering as a regression
problem enables us to use well-established model selection methods and crite-
ria for a clustering analysis. In addition, we apply a Bayesian information-type
criterion to select the number of clusters automatically, and achieve parameter
estimations simultaneously. The proposed method is capable of dealing with
unbalanced longitudinal data.

The remainder of the paper proceeds is as follows. In Section 2, we introduce
the model formulation and framework. In Section 3, we present the new cluster-
ing method for longitudinal multiple outcome data. In Section 4, we establish
the convergence rate of the proposed estimator in the presence of correlation.
Simulation comparisons with several competing methods are conducted in Sec-
tion 5. In Section 6, we illustrate the proposed method for IRI data and compare
its performance with that of other methods. We provide a brief conclusion and
discussion in Section 7. The proofs of the theorems are provided in the online
Supplementary Material.

2. Model Framework
2.1. The individualized model with multiple outcomes

We consider data from n individuals, with M outcomes from each subject.
Instead of modeling on each individual outcome separately, we utilize multiple
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outcomes from the same subject simultaneously by introducing random effects
to link the multiple outcomes for subgroup identification. For example, in our
real-data analysis, each product has two attributes: sales unit and sales vol-
ume. We are interested in modeling the joint contribution of two attributes
to the clustering of products. Combining the information of the two attributes
by incorporating their correlations provides us with better power to distinguish
potential subgroups among these products.

We consider the following subject-wise model under the nonparametric model
framework:

Yijm = fim(ZTijm) + bi + Eijm, (2.1)

where y;;m is the mth outcome, measured at the jth (j = 1,...,n;y) time for
subject 4, and x;j, is the corresponding covariate for the mth outcome of the
ith subject at time j. Without loss of generality, we assume that x;j, can be
rescaled to a compact interval X = [0,1], fin(:) € C"(X) is an unknown rth-
order continuously differentiable smoothing function, and b; is the random effect
that links different outcomes together, under the assumption that different out-
comes for each subject share the same random effect; here, the random effects
are treated as nuisance parameters, as in Wang, Tsai and Qu (2012) and Ma and
Huang (2017). The traditional random-effects model assumes that the random
effects follow a certain distribution, for example, a normal distribution, and fo-
cuses on the variance component estimation of the random effects. However, we
do not impose any distribution assumption on b;, but instead assume that the

random effects have mean zero and variance ag > 0. In addition, &;j,, is the ran-

dom error with zero mean and variance og > 0. Let €5m = (Sitms -+ Einym) s
€; = (5;7'1, e siTM)T, and Yim = (Yitm, - - - » Yin,..m) .. We also allow serial corre-

1/2

lation within each outcome, that is, cov(gsm) = Aiml/ 2R?mAim , where Ajm

is the diagonal matrix of the marginal variance of Y;m, R?m is the correlation
matrix from the longitudinal measurements for each outcome, and &4, is inde-
pendent across m and €; is independent across 1.

In addition, we assume that the subjects have the group structure G =
{G1,...,G¢}, which is a partition of {1,...,n}, where G(G < n) is the number
of subgroups. We suppose that fi,(z) = fim(z) (m = 1,..., M) if subjects
are in the same subgroup; that is, i,j € G, and ¢g € {1,...,G}. Denote fi, =
(fim@itm)s - s fim@ing,m)) T, & = (Fa”, .. fim?)T, and £ = (R7,..., £.)7,

and let n; = Zi\le Nim and N = 2?21 n;. We define the nonparametric function
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subspace ./\/l(f; corresponding to the group partition as

That is, the members in class G, all have the same regression function. The aim
of this study is to estimate the regression function for each group and subgroup
of subjects simultaneously.

The smoothing function f;,,(-) can be estimated using a linear combination of
spline basis functions. Typically, B-spline bases for different outcomes may vary
in terms of their numbers of knots k,, or the degree of the B-spline r,,—1. We con-
sider rp,th-order B-splines, with &, equally spaced internal knots K = {ny =0 <
m<---<ng, <1=mng 41} Specifically, there are p,, = kp, +7y, normalized B-
spline basis functions of order r,, for each outcome. The B-spline basis functions
are NJ'(z) = ((z = m)/(nyr—1 = m))N] (@) + (e — 2/ (e — ma2))N 1 (2),
where N}!(z) = 1 when n < z < mq1, and N} (z) = 0 otherwise. Thus,
fim(z) =~ sim(x) = Zlm Nlt:' (z)Bimt,, = 7"m(m)Tﬂimy where Bim is a pp-
dimensional coefficient vector. Consequently, fim ~ BimBim with By, =
(ﬂ'm(il}ilm), - 77rm(a7inimm))T7 fi =~ B;3; with B; = diag(B,-l, .. ,B,;M),
Bi = ( zT17 e B?M)T, and 3; is a p-dimensional coefficient vector, where p =
E%:l Dm.

Equivalently, we can write
yi%Biﬁi—Flnibi—l-Ei, 1=1,...,n, (2.2)

where y; = (yfl, e y;rpM)T, Yim = Witm, - -+ Yin,. m) ", and 1, is a n; x 1 vector
with entries equal to one. Let 3 = (81,...,8L)T. Thus, the group partition
Mg is equivalent to /\/lg ={B € R"™:B; =P, forany i,j € G4,1 < g < G}.
To identify subgroups by distinguishing the group patterns of the smoothing
functions is equivalent to distinguishing the B-spline coefficients for each group.

2.2. Clustering with a single outcome

In this section, we illustrate a special case with only one outcome (i.e., M =
1). That is, the nonparametric panel regression model is

Yij = fz({L'Z]) + b; + €ij- (2.3)

Ma et al. (2006) cluster time-course gene expression data under the frame-
work of (2.3). They apply smoothing splines to estimate the unknown mean
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expression curve f;(z), and assume random effects b; ~ N(0,07) and errors
gij ~ N (0,02), which are independent across i. They cluster the time-course
data under the Gaussian mixture model framework using a rejection-controlled
EM algorithm.

A drawback of smoothing spline regressions is that they incur a high com-
putational cost. To address this problem, Coffey, Hinde and Holian (2014) im-
plement a penalized spline (P-spline) smoothing to estimate the unknown mean
expression function f;(z), which reduces the computation cost, while maintaining
comparable performance in terms of estimating and clustering. However, both
Ma et al. (2006) and Coffey, Hinde and Holian (2014) require prior knowledge
of the number of subgroups, and neither take correlation within individuals into
account when the errors are correlated within subjects.

Recently, Vogt and Linton (2017) developed a two-step classification algo-
rithm to estimate the parameters of group memberships and the number of
Subgroups simultaneously. Their method compares Lo-distances of the form

0ij = f{fl (x)}?7m(x)dx, where 7 is a weight function, and f; and fj are the
kernel smoothers of the nonparametric function. In the first step, they sort the
estimated distances {&] : j € S} in increasing order as 51'[1] < SZ-[Q} <o < 5,[n s
where S C {1,...,n} is an index set and ns = |S| is the cardinality of S. Un-
der appropriate regularity conditions, they show that max e &-j < Tn,1, Where
G ={[1],...,[p]} and 7, 7 is a threshold parameter. Furthermore, p can be esti-
mated as p = p; s = max{j € {1,...,ns}: 5 < 7, 7}. Thus, using an iterative
procedure, they partition 1nd1v1duals into the class structure {gg 1<g< G}
where G can be estimated by the number of iterations. In the second step, they
use a k-means clustering method, using the threshold estimators gl, .. QG as
the starting values. However, calculating the distances between dlfferent sub-
jects requires equally observed time points. Therefore, their method cannot be
applied to unbalanced longitudinal data. On the other hand, the performance
of the first-step can be poor when the noise level in the data is high, which can
further affect the second step in terms of the k-means clustering.

3. Methodology

In this section, we propose a new method for clustering longitudinal multiple
outcome data.
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3.1. The pairwise-grouping method with MCP Penalty

We rewrite (2.2) in matrix form, as follows:
Y ~BB+Zb + ¢, (3.1)

where Y = (y¥,...,yD)T, B = diag(B1,...,Bn), 8 = (B,....80)1, Z =
diag(lp,,...,1n,), b= (b1,...,b,)T, and e = (1 ,...,eL)T.

In order to cluster subjects with similar functional forms into one group,
we impose a penalty on the pairwise distances of the B-spline coefficients. In
addition, we incorporate longitudinal correlation using a weighting matrix 3 =
diag(X1, ..., Xy) toimprove the estimation efficiency, where ¥; = AYPR A2 =
diag(Zi1, ..., XiM), Zim = Aiml/QRimAim1/2, A;m is a diagonal matrix of the
marginal variance of ¥;,,, and Rjy is a working correlation matrix within each
outcome.

We obtain the following weighted penalized pairwise fusion objective func-
tion:

H(B.b) = §(Y ~ BB~ 2Zb)"S™(Y ~Bf ~ Zb) + ; \5" D

1
2
+ahallBl+ 7 p(18i - Bl ), (32
i,JEL

where Dq = diag(Dy,...,Dy); Dy = diag(Dis,...,Dim); Dim = Am? Am,
where Ay, is a (pm, — d) X py, difference penalty matrix, defined as in Eilers and
Marx (1996); || - ||2 is the Euclidean norm; p(-, A3) is a penalty function with a
tuning parameter A3, used to encourage the pairwise spline coefficients to cluster
together if they are close to each other; and £ ={l = (i,j): 1 <i<j<n}isan
index set containing the total number of possible pairs |£| = n(n — 1)/2. Thus,
we obtain 3 and b by minimizing (3.2), and the estimated smoothing function is
f=B3.

The formulation in (3.2) takes both model flexibility and complexity into
consideration. Specifically, A1 is a smoothing parameter that controls the trade-
off between model-fitting and smoothness from the data. The tuning parameter
Ao plays an important role in controlling the variability and ensuring the identi-
fiability of the random effects, such that > b; = 0 (Wang, Tsai and Qu (2012)),
because the inequality n. >~ b7 > (3 b;)? holds. In addition, A3 is a tuning param-
eter that determines the number of subgroups. The choice of these parameters
can be based on a data-driven procedure, such as the BIC; we discuss this in fur-
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ther detail in Section 3.3. To incorporate correlation information from repeated
measurements, we use an empirical estimation of the correlations based on the
residuals. By minimizing the objective function (3.2), we can obtain B-spline
coefficients and subgroups simutaneously.

It is crucial to choose the fusion penalty function p(-, A\3) to ensure nearly
unbiased estimators, while satisfying the sparsity and oracle properties. This
leads to similar B-spline coefficients being grouped together, and results in better
estimations and predictions. Here, we adopt the minimax concave penalty (MCP)
(Zhang (2010)) to achieve the sparsity, unbiasedness, and oracle properties. The
MCP is defined as p(18; — 85l As) = p- (|| Bi — B ll2.2s) = As 37 P21 -
(z/v\3))4+dx, for A3 > 0 and v > 0, where (z); = max(x,0). In addition, ~
controls the concavity of the penalty function in that the MCP serves as the ¢;
penalty and the ¢y penalty, when v — oo and v — +1, respectively.

Note that without the penalty term p(|3; —B3;|, A3), minimizing (3.2) leads to
the penalized ordinary least squares (OLS) estimators (,5, 5) = argmin(gp) Q(83, b),
where Q(8,b) = (1/2)(Y — BB — Zb)TEZ"1(Y — BB — Zb) + (1/2)\187DgB +
(L/2)2al[BIJ3 = (1/2) S0 (93 — BiBi — Lnsb) TS~ (s — BifBi — La,by) + (1/2)
S AMBIDiB; + (1/2) Yo, Aob?. This leads to the explicit solutions

B=(BTWB+ \Dy) 'BTWY, (3.3)
b= (Z"S7'Z + \I,) " 'Z2TS (Y — BA),

where W = (2+(1/)2)ZZT)~1. Consequently, the estimated smoothing function
is f = BB.

When the true group membership is known, we obtain the oracle penalized
spline estimator and the corresponding random-effect estimator as follows:

(B, b°") =arg  min  Q(B,b). (3.5)
(BeMg,beR™)

Then, the oracle approximation of the spline function is obtained as for — BBO’".

3.2. An ADMM procedure

In this subsection, we derive an ADMM algorithm (Boyd et al. (2011); Ma
and Huang (2017)) to solve the objective function in (3.2). Because the penalty

function in (3.2) is not separable for 3;, we introduce a new set of parameters
u=(ul,... 7u|T£|)T? with w; = B3; — B4, for | € L, to reconstruct the original
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optimization problem using an ADMM as follows:

0
Lo(B.b,u, ) = Q(B,0) + > py (Il wr 2. 33) + 5 D 1 B = By — w3

lel lel
+ZTZT(U1 - Bi + Bj), (3.6)
lel
where 6 is a tuning parameter and T = (14, ..., T|7£:|)T are Lagrangian multipliers

of the constraints 3; — B; — u; = 0.

In each iteration of the ADMM algorithm, we perform alternating minimiza-
tion of the augmented Lagrangian over 3, b,u, and 7. That is, at the (s + 1)th
iteration, we carry out the following steps:

bt =arg m&nLg(,@s,b, u®, %),

3 —arg mgn Lo(B, b5, u®, %),

uwtl =arg m&n Lo(B°T 65w, 19),

=+ 0wt - B 'B;'H)’l €L 3.7)

We define the primal and dual residuals at iteration s + 1 by

[ep]erl _ ﬂerl _ ﬁ;+1 _ ui+1’
lealy™ = — | D_(wt =) =Y (ui ™! —uj)
i=k j=k
Let ep = (e;‘fl, . ,e;‘gm)T and eq = (el;,...,el )T. The algorithm is termi-

nated at step s* if the primal and dual residuals satisfy a stopping criterion, such
as the following:

ey

9< GPM, ” e(si" HQS 6dual.

dual

Here, the tolerances €’ and ¢ are small numbers satisfying

Epm' — |£|p€abs + €rel maX{H .A,@s*
edual — \/’ITpEabS +€rele || ATTS*

2, || us* g}and

2,

where €%* and € are predetermined absolute and relative tolerances, respec-
tively.
We summarize the implementation of the ADMM in Algorithm 1.
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Algorithm 1 ADMM algorithm

Step 1. (Initialization) Let 79 = 0 and u® = 0, # and v > 1/6 be fixed. Start with
initial estimators B° = arg ming Lo(B,b° u’,7°) assuming independent correlation
structure, and set the initial b = 0.

Step 2. (ADMM) At the (s + 1) th iteration, given (3%, b%,u®, %), update (8°+!,
b5t wstl r5t1) asin (3.7).

Step 3. (Stopping Criterion) Iterate Step 2 until the stopping criteria are met.

3.3. The choice of tuning parameters

In this subsection, we discuss how to select the tuning parameters. Note that
there are three tuning parameters, A1, Az, and A3, in our estimation. Specifically,
we apply generalized cross-validation (GCV) (Shao (1997)) to tune the smoothing
parameter A; in order to balance the bias and the variance of the model fitting.
Parameter Ao controls the variability of the random effects, and can be selected
as Ao = log(n) (Wang, Tsai and Qu (2012)). For tuning parameter A3, we apply
the BIC (Xue, Qu and Zhou (2010); Wang, Li and Leng (2009)), because A3
is associated with the number of subgroups and, in practice, the true subgroup
model exists. We search for A\; and A3 on a sequence of grid points simultaneously.
However, to consider the computational cost, we implement a two-step procedure
in which we first search for an optimal value of A\; by fixing A3 = 0, and then
select A3, given the optimal A;. More specifically, we first select A\; by minimizing

n

1 1 2
GOV, =3 s~ HNlP/ { v, — )|

i=1"" ¢
where H;(\) = S;W;B;(BIW;B; + \iD1) " 'BIW; — S;W; + L,,, W; = (Z; +
(1/A2)1n,17,) 7"

Then, we minimize

Y —f—Zb |3 N
BIC, = log (H b H2> | log(N) = df

N N

where df = (G/n) Som i dfi and df; = tr(H;(A1)), to obtain A3. This two-step
strategy is quite effective in selecting optimal tuning parameters.
4. Asymptotic Properties

In this section, we establish the asymptotic properties of the proposed esti-
mator in the presence of correlations. For any s X s symmetric matrix A, de-
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note Apin(A) and A\pa:(A) as its smallest and largest eigenvalues, respectively.
For any arbitrary matrix By,xn(bij), denote ||B||o = maxlgigm(2?21 bij|) as
its Loo-norm. For a vector a = (ay,...,a,)T, let ||all = maxi<i<n(|ai).
Let Ly(X) be the space of all square integrable functions on & = [0,1], and
I£18 = J) f(2)?da for any f € Lo(X). Denote ||f][2 = E[f(X)?) and ||f||2 =
(1/n) >, f(X;)? as the theoretical and empirical norms, respectively, where
X; is a random sample from X. For any set G, |G| represents the cardinal
of G. For unbalanced data, we define ng = min;{n;} (i = 1,...,n) and k =
ming, {ky,} (m=1,..., M).

We require the following regularity conditions to establish the asymptotic
properties.

A1l. The function fi,(-) € C"[0,1] (i=1,...,n;m=1,..., M), for some r > 1.
A2. Let hj =n; —nj—1 and h = maxj<;<x h;j. Then,

h
hjy1—h;| = O(k™! ¢ ety =
112;22‘ j+1—hil =0(k™") an ming <<k hj ~ o

for some constant C7 > 0.

A3. The design points {z;jm} (i=1,...,n;5 =1,...,nim;m =1,..., M) follow
an absolutely continuous density function gx, and there exist constants aj
and ag, such that 0 < a1 < mingey gx(z) < maxecx gx(z) < ag < 0.

A4. Assume that Ny = O(N), where N, = Zz’egg ng, for g =1,....G, Ny =
min(Ny,...,Ng), and N =>"" | n;.

A5. We assume )\max(Wi(aglni 151, + E?)) < (9 for any subject i, where C5 is
a constant and 2? =Cov(g;) = ALY 2R?Ail/ 2 with true correlation matrix
RY.

Assumptions A1-A3 are standard conditions for the nonparametric B-spline
smoothing functions. Similar conditions are also presented in Zhu, Fung and He
(2008), Claeskens, Krivobokova and Opsomer (2009), and Zhou, Shen and Wolfe
(1998). In Assumption 4, we require that the cluster size grow as the sample size
increases. Assumption A5 is needed to establish estimation consistency.

We first investigate the convergence property on the penalized B-spline esti-
mators f = BB, and establish the estimation consistency in the Lemma 1.

Lemma 1. Under Assumptions A1-A3 and A5, as n — oo, and given a suffi-
ciently large ng such that kg = (Mh=2?/ng) = o(1) if k — oo and k* = o(nyg),
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then
s 2 —2r A 24 k
I —flly = Op(k™") + Op | 5k +0,| — |- (4.1)
Un) no
Remark 1. From Lemma 1, the average mean squared error for the penalized
B-spline estimator is determined by three parts. The first and second parts are
similar to Theorem 1 in Claeskens, Krivobokova and Opsomer (2009), denoting
the average squared shrinkage bias and the average squared approximation bias,
respectively. In addition, note that when A; is small, the shrinkage bias can
also be ignored. The third part consists of the average variance and the approx-
imation bias from the random effects. The proof of Lemma 1 is given in the
Supplementary Material.

Next, we consider the case when the true group memberships Gi,...,Gq are
known; the corresponding estimated oracle functions are f°© = B3°".

The convergence rate of the estimated oracle estimators is provided in Lemma
2.

Lemma 2. Under Assumptions A1-Ab, and given a sufficiently large Ny such
that kq = A\ Ny 'h=2% = o(1), we have

For 2 —2r A od k
||If flly =Op(k™")+ O, (Ngk )+Op <N0>' (4.2)
Remark 2. The result of Lemma 2 implies that the convergence rate of the
oracle approximation for is faster than that of the P-spline estimator f , because
Ny > ng. The better convergence rate of the oracle estimator ensures that more
information from each cluster, with a sufficient number of repeated measure-
ments, can be used when prior knowledge on the true group memberships is
available. The proof of Lemma 2 is provided in the Supplementary Material.

In Theorem 1, we study the convergence rate of the proposed approximation
f = BB. Let dy represent the minimum distance between the smoothing func-
tions of each outcome from any two clusters; that is, dy = ming, g, {|fim(z) —
fim(z)], forall 1 <m < M,i € G;,j € G;}.

Theorem 1. Under Assumptions A1-A5, if cdy > A3 holds for a constant c >
0, and as n — oo, we have sufficiently large ng such that kg = )\mglh_Qd =o(1),
then we have

no

) 22 k
If —fl|3 = O,(k7%") + O, (%W) +0, () .
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Remark 3. Theorem 1 holds given a sufficiently large number of repeated mea-
surements and a minimum distance between the smoothing functions of any two
clusters. However, in practice, the minimum number of repeated measurements
does not need to be very large. For example, in our simulations, when the data
are unbalanced, the minimum number of repeated measurements can be eight,
without adversely affecting the simulation performance. We also explore the per-
formance of the proposed estimator when the number of repeated measurements
varies as T = 3,4, 5,6. Here, we find that the number of repeated measurements
can be as small as three for a reasonable subgroup result under our simulation
settings. Additional details are presented in Section 5.4. This also shows that the
convergence rate of the proposed approximation f is of the same order as the pe-
nalized spline estimator f. The proof of Theorem 1 is given in the Supplementary
Material.

Corollary 1. If the conditions required in Theorem 1 hold, then we have
P(G=G)—1,

where G = {G1,...,G4} is the estimated subgrouping membership, and G =
{G1,...,Gg} is the true subgrouping membership.

Corollary 1 indicates that when we have a sufficient number of repeated
measurements for each individual, the proposed method can identify the true
subgrouping structure with probability tending to one.

5. Simulations

In this section, we provide simulation studies to investigate the numerical
performance of the proposed nonparametric clustering approach.

We conduct simulations using both balanced and unbalanced data, and com-
pare the performance of our method with that of five other clustering approaches:
K-means (bKmeans); the Gaussian mixture methods (bGM); the kernel-based
method (Kernel), proposed by Vogt and Linton (2017); the mixture mixed-effects
method with a P-spline (MixedEffects), proposed by Coffey, Hinde and Holian
(2014); and the mixed-effects method with a smoothing spline (SSClust) (Ma
et al. (2006)). Note that the kernel-based method (Kernel) can be applied to
balanced data only; therefore, their method is included in the balanced data case
only.

The mixed-effects method with a smoothing spline (SSClust) is implemented
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using the R package MFDA, using the default settings; that is, the threshold
value ¢ = 0.5, and the number of iterations for each RCEM step is set to 10,
with five starting points in K-means. We implement the mixture mixed-effects
method with a P-spline (MixedEffects) using the same threshold and iteration
step value as that of SSClust, but apply 10 different starting points. For the
truncated power basis in MixedEffects, we set the degree = 2 and the number
of knots as max,,{min{n;,/4,40}} (Ruppert (2002)), for each subject i. In
addition, to implement the K-means method, we use the R package cluster to
select the number of clusters based on the Gap statistic (Tibshirani, Walther and
Hastie (2001)), and calculate an average from 10 random picks of initial centers
to mitigate the effect of outliers. We implement the Gaussian mixture method
(bGM) using the R package mclust (Fraley and Raftery (2002)). We choose the
optimal model according to the embedded BIC criterion for the EM, initialized
using hierarchical clustering when parameterizing the Gaussian mixture models,
where the number of clusters is chosen from G = 1,2,...,15 in each simulation.
However, the K-means and Gaussian mixture methods cannot be implemented
directly in the case of missing data. Instead, we conduct these two methods to
estimate the subject-wise penalized B-spline parameters 3;. All results are based
on 100 simulation runs.

To evaluate the performance of these clustering algorithms, we calculate the
estimated number of selected groups G , as well as their accuracy in identifying
the true implicit cluster structure. Therefore, three frequently used external
validity measures are calculated: the Rand index (Rand) (Rand (1971)), the
adjusted Rand index (aRand) (Hubert and Arabie (1985)), and the Jaccard index
(Jaccard (1912)). These indices are used to measure the concordance between
the estimated cluster memberships and the true memberships. Specifically,

TP+ TN
Rand = TN f FP 1 PN (5:1)
Rand — E(Rand)
d= 2
aftan maz(Rand) — E(Rand)’ (52)
TP
Jaccard_TP+FN+FP’ (5.3)

where true positive (7TP) represents the number of pairs of subjects from the
same ground truth group that are placed in the same cluster, true negative (7N)
represents the number of pairs of subjects from different clusters that are assigned

to different clusters, false positive (FP) is the number of pairs of subjects from
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different clusters that are assigned to the same class, and false negative (FN)
is the number of pairs of subjects from the same cluster that are assigned to
different clusters. Here, TP and TN can be interpreted as agreements, and FP
and F'N as disagreements.

Intuitively, the Rand index represents the frequency of agreements between
the true and selected clusters. However, the expected value of the Rand index
under random partitions is not constant. As a result, the adjusted Rand in-
dex was proposed with a constant expected value. Similarly, the Jaccard index
measures the similarity between the true and selected clusters. The Rand index
and Jaccard index both take values between zero and one, with a higher value
indicating a higher agreement. The adjusted Rand index is bounded above by
one, and can be negative if the Rand index is less than its expected value.

We also calculate the average mean squared error (AMSE) of the predictions
of the responses in order to evaluate the estimation efficiency. That is,

100 n M nim

AMSE 100 Z Z n; Z Z fzm ztm fzm( ztm)]z- (54)

=1 m=1 t=1

5.1. Subgroups with balanced data

In this section, we consider the case when each subject has the same number
of observation points. Here, we generate G = 3 clusters, with two outcomes from
each individual, based on

Yijm = fgm(l‘ijm)+bi+€ijm, 1=1,..., |gg|; g=1,23; m=1,2; 7=1,...,10

(5.5
where f1)(z) = —5exp(x) + 15 and f(12)(z) = 2.5cos(2mx) + 6; fia1)()
erp(2z) — 3 and fig)(7) = —2.5cos(2mz); f31)(x) = —6x — 6 and f(3)(z) =
2.5x — 6; and x4, are equally spaced points on [0,1]. The cluster sizes of each
group are |Gi| = |Ga| = 20 and |G3| = 15. The random effect b; is generated with

~—

mean zero and variance 02 = (0.72. The error term €ijm has a zero mean. Because
no distributional assumption is needed to implement the proposed method, we
perform simulations for both normal and non-normal distributions, such as the
mixture distribution, the exponential distribution, and the t-distribution. Specif-

ically, the random errors €4, = (€itm, - - -, Ei1om) . are generated as follows:

Case 1: €;,, ~ N(0,R), where the correlation matrix R is either AR(1) or
exchangeable, with a correlation parameter 0.3.
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Case 2: €, ~ 0.3N(0,0.25R) + 0.7N(0, R), where the correlation R is either
AR(1) or exchangeable, with a correlation parameter 0.7.

Case 3: g, = exp(&im) — 1, where &, ~ N(0,0.25R), and the correlation
matrix R is the same as in Case 2.

Case 4: g, ~ t3(0,0.25R), where the correlation R is the same as in Case 2.

Case 5: €57 ~ N(0,0.25R) and €42 ~ t3(0,0.04R), where the correlation R is
the same as in Case 2.

To conserve space, the numerical results for Case 3-5 are provided in the
Supplementary Material.

We choose a B-spline with order » = 3, and the number of knots as max,,{
min{n;y,/4,40}} for each response of subject ¢ (Ruppert (2002)). Therefore, we
set the number of knots as k = 2 for all subjects. We apply three different types
of working correlation structures, IN (independence), AR(1), and Ex (exchange-
able), in 100 simulation runs, represented as NPGr-IN, NPGr-AR, and NPGr-Ex,
respectively. The working correlation coefficient can be obtained through a mo-
ment estimation using the empirical residuals. We use fixed values for the MCP
parameters 6 = 1 and 7 = 3 to ensure the convexity of the objective function.

Table 1 and Table 2 show that the proposed method performs better in
terms of the three external criteria and the estimated number of subgroups, for
both normal and non-normal distributions. For example, under Case 1, when
the true serial correlation is AR(1) and the true number of subgroups is three,
the proposed method has the highest Rand value of one, and the estimated
subgroup number is the closest to three among all methods. SSClust performs
worst, tending to overestimate the number of clusters as almost nine groups.
Furthermore, the MFDA package is not stable numerically. In addition, the
number of groups estimated by bKmeans is very close to the truth, but the
three external criteria it produces are not high. This indicates that the K-means
method is not able to distinguish subgroup membership accurately when the
true model contains random effects. This could be because the K-means method
focuses on local similarities, and the presence of random effects may distort the
underlying patterns of the original functions. In general, the bGM and Kernel
tend to overestimate the number of subgroups. When the true correlation is
exchangeable, the results are similar to that of AR(1).

Note that the performance of MixedEffects is comparable with that of the
proposed method under the normal distribution assumption in Case 1. This
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Table 1. Case 1: Comparison results from the proposed nonparametric pairwise-grouping
with three different working correlation structures (NPGr-IN, NPGr-AR(1), NPGr-Ex),
Gaussian Mixtures (bGM), K-means (bKmeans), SSClust, MixedEffects, and Kernel for

balanced data.

NPGr-IN NPGr-AR(1) NPGr-Ex bGM bKmeans SSClust MixedEffects Kernel

K 3.00 3.00 3.00 4.27 3.00 9.14 3.00 5.43
Rand 1.0000 1.0000 1.0000 0.9369 0.9164  0.7971 1.0000 0.9119
AR(1) aRand  1.0000 1.0000 1.0000 0.8422 0.8337  0.4487 1.0000 0.7819
Jaccard ~ 1.0000 1.0000 1.0000 0.8067 0.8497  0.3788 1.0000 0.7302
AMSE  0.0616 0.0595 0.0613 0.2745 3.1045  0.4741 0.0383 0.6912
NPGr-IN NPGr-AR(1) NPGr-Ex bGM bKmeans SSClust MixedEffects Kernel

K 3.08 3.00 3.00 4.22 3.00 8.95 3.00 5.61
Rand  0.9992 1.0000 1.0000 0.9389 0.9224  0.8003 1.0000 0.8977
Ex  aRand 0.9983 1.0000 1.0000 0.8441 0.8446  0.4595 1.0000 0.7442
Jaccard  0.9977 1.0000 1.0000 0.8129 0.8590  0.3836 1.0000 0.6867
AMSE  0.0816 0.0763 0.0768 0.2618 2.9111  0.5423 0.0377 0.8171

Table 2. Case 2: Comparison results from the proposed nonparametric pairwise-grouping
with three different working correlation structures (NPGr-IN, NPGr-AR(1), NPGr-Ex),
Gaussian Mixtures (bGM), K-means (bKmeans), SSClust, MixedEffects, and Kernel for

balanced data.

NPGr-IN NPGr-AR(1) NPGr-Ex bGM bKmeans SSClust MixedEffects Kernel

K 3.03 3.00 3.00 3.27 3.00 7.98 4.38 4.42
Rand  0.9997 1.0000 1.0000 0.9870 0.9386  0.8148 0.9390 0.9362
AR(1) aRand  0.9994 1.0000 1.0000 0.9670 0.8757  0.5036 0.8494 0.8444
Jaccard  0.9991 1.0000 1.0000 0.9603 0.8858  0.4329 0.8131 0.8048
AMSE  0.0515 0.0492 0.0494 0.0786 2.3548  0.3651 0.0953 0.5504
NPGr-IN NPGr-AR(1) NPGr-Ex bGM bKmeans SSClust MixedEffects Kernel

K 3.11 3.00 3.00 3.04 3.00 8.70 3.00 4.60
Rand  0.9990 1.0000 1.0000 0.9982 0.9407  0.7990 1.0000 0.9339
Ex  aRand 0.9977 1.0000 1.0000 0.9952 0.8799  0.4556 1.0000 0.8379
Jaccard  0.9969 1.0000 1.0000 0.9944 0.8899  0.3847 1.0000 0.7977
AMSE  0.0548 0.0495 0.0495 0.0492 2.2587  0.4404 0.0438 0.5900

is not surprising, because their method also incorporates random effects, which

assumes a normal distribution. However, when the random errors follow a non-

normal distribution, for example, a mixture distribution as in Case 2, MixedEf-

fects does not perform well when the true correlation is AR(1). In contrast, the

proposed method is still robust under non-normal distributions such as the mix-
ture distribution, exponential distribution, or t-distribution. Additional details

are presented in Tables S1-S3 in the Supplementary Material.
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The proposed method is able to incorporate correlations between different
outcomes and estimate the B-spline coefficients more efficiently; thus, it identifies
the true functions more accurately. Table 1 shows that the estimation efficiency
of the proposed method can be improved by about 3.5% by incorporating se-
rial correlation under the true correlation AR(1), and by about 6.9% under the
exchangeable correlation when the random errors follow a normal distribution.
Table 2 shows that the estimation efficiency of the proposed method can be
improved by about 4.7% by incorporating serial correlation under the true cor-
relation AR(1), and by about 10.7% under the exchangeable correlation when a
non-normal distribution is assumed.

5.2. Subgroups with unbalanced data

In this section, we let each subgroup have 30% of the subjects, with 20%
missing repeated measurements. Because Kernel cannot be applied to unbalanced
data, we do not include this method here.

We let the cluster sizes of each group be |G| = |G2| = 25, |Gs| = 20. The
variance of the random effects af is equal to 0.7%, and the error term follows a
multivariate normal distribution with mean zero and variance o? = 0.72. The
correlation coefficient for both AR(1) and Ex is 0.8. In Section 5.1, MixedEf-
fects performs comparably with the proposed method when the true correlation
is exchangeable, but performs less satisfactorily under the AR(1) setting. To fur-
ther evaluate our method and MixedEffects, we also generate the Toeplitz (Tp)
correlation structure. The other settings are the same as those in Section 5.1.

From Table 3, we observe that the proposed approach still outperforms the
other methods in terms of the external indices and the AMSE. When the data
are unbalanced, in the AR(1) and Tp cases, the proposed method outperforms
MixedEffects. Specifically, under AR(1), the bGM, SSClust, and MixedEffects
methods tend to overestimate the number of subgroups, with numbers of sub-
groups of 3.30, 9.44, and 4.60, respectively. In contrast, the proposed method
estimates the number of subgroups as 3.08, 3.00, and 3.00 under the three working
correlation structures. Moreover, our method achieves the highest three external
indices of the various methods.

Furthermore, the estimation efficiency can be improved by incorporating
serial correlation. The improvement under the true AR(1) correlation structure
is around 6%, that under the true exchangeable structure is 24%, and that under
the true Toeplitz structure is nearly 20%. These improvements are even more
significant than those of the balanced data case.
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Table 3. Comparison results from the proposed nonparametric pairwise-grouping with
three different working correlation structures (NPGr-IN, NPGr-AR, NPGr-Ex), Gaus-
sian Mixtures (bGM), K-means (bKmeans), SSClust, MixedEffects, and Kernel for un-
balanced data.

NPGr-IN NPGr-AR(1) NPGr-Ex bGM bKmeans SSClust MixedEffects
K 3.08 3.00 3.00 3.30 3.02 9.44 4.60
Rand 0.9994 1.0000 1.0000 0.9878 0.9301 0.8022 0.9342
AR(1) aRand  0.9986 1.0000 1.0000 0.9687 0.8605  0.4660 0.8382
Jaccard  0.9981 1.0000 1.0000 0.9627 0.8733  0.3953 0.7989
AMSE  0.0338 0.0317 0.0314 0.0617 2.5971  0.4308 0.0739
NPGr-IN NPGr-AR(1) NPGr-Ex bGM bKmeans SSClust MixedEffects
K 3.21 3.00 3.00 3.12 3.00 9.10 3.01
Rand 0.9984 1.0000 1.0000 0.9975 0.9284  0.8042 0.9997
Ex aRand  0.9962 1.0000 1.0000 0.9940 0.8570  0.4723 0.9994
Jaccard  0.9950 1.0000 1.0000 0.9924 0.8703 0.4014 0.9992
AMSE  0.0386 0.0318 0.0312 0.0370 2.7026  0.3360 0.0316
NPGr-IN NPGr-AR(1) NPGr-Ex bGM bKmeans SSClust MixedEffects
K 3.18 3.00 3.00 3.07 3.00 9.31 4.98
Rand 0.9986 1.0000 1.0000 0.9979 0.9542  0.7993 0.9190
Tp aRand  0.9968 1.0000 1.0000 0.9949 0.9074  0.4572 0.8012
Jaccard  0.9957 1.0000 1.0000 0.9935 0.9152  0.3863 0.7524
AMSE  0.0398 0.0334 0.0332 0.0392 1.7574  0.3946 0.0772

Table 4. A comparison of computation times of the methods.

Method NPGr-IN NPGr-AR(1) NPGr-Ex bGM bKmeans SSClust MixedEffects Kernel
time(minutes) 12.86 19.93 17.14 0.33 0.71 0.09 6.89 0.01
standard errors 0.68 2.54 3.42 29.98 8.31 14.20 0.56 0.02

5.3. Computational time comparisons

We also compare the computational time among the methods under the
setting of Case 1 of Section 5.1. We tune the parameters A\; and A3 on a grid
of 30 points. The results of the average computational time and standard errors
of the computational time for each method, based on 200 simulation runs, are
provided in Table 4.

Table 4 shows that the proposed method incurs a longer computational time
because the implemented ADMM requires more computation power in its itera-
tions, and the computational time for the ADMM also relies on the initial value.
That is, if the initial value is close to the true value, then the computational time
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Table 5. Performance of the proposed method for different numbers of repeated mea-
surements for Case 1 and Case 3.

3.28 0.9969 0.9929  0.9905  0.2495
3.28 0.9969 0.9929  0.9905  0.0987

T K Rand aRand Jaccard AMSE
3 3.00 1.0000 1.0000 1.0000 0.0522
Case 1 4 3.00 1.0000 1.0000 1.0000 0.0490
5 3.02 0.9998 0.9996 0.9994 0.2291
6 3.02 0.9998 0.9996 0.9994 0.2291
3 324 09973 0.9939 0.9918  0.0944
Case 3 4 316 0.9984 0.9962 0.9950 0.0712
5
6

would be reduced.

5.4. An applicable range of repeated measurements

Longitudinal data are often measured irregularly, and tend to include miss-
ing observations. Therefore, in this section, we investigate the applicable range
of the repeated measurements n;,,, and explore the lower bound of n;,,. We use
simulations to empirically investigate the performance of the proposed estima-
tor under the independence working correlation structure when the number of
repeated measurements varies as T' = 3,4,5,6. We let the random errors follow
the settings in Case 1 and Case 3; all other settings are the same as those in
Section 5.1.

Table 5 provides the results based on 50 simulation runs under Case 1 and
Case 3. Table 5 indicates that the number of repeated measurements can be as
small as three, and still achieve a reasonable subgroup result. Fewer than three

repeated measurements could lead to an invalid tuning criterion in some cases.

6. Empirical Example for IRI Data

In this section, we investigate the IRI marketing data set assembled by the
SymphonyIRI Group (Bronnenberg, Kruger and Mela (2008)). This data set
contains grocery store sales data, including sales units and sales volumes, on
daily-use products for the period 2001-2011 from 47 geographical markets in
the United States. In total, there are 25 product categories, representing a
broad spectrum of consumer packaged goods, including beer, blades, carbon-
ated beverages, cigarettes, coffee, cold cereal, deodorant, diapers, facial tissue,
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Table 6. Product categories in Los Angeles from IRI marketing data.

First Group

Beer Coffee Soup Yogurt

Cold cereal Frozen dinners/entrees Frozen pizza Salty snacks

Hotdog Mayonnaise Peanut butter Spaghetti/Italian sauce

Sugar substitutes Toothbrush Household cleaner Laundry detergent
Second Group

Blades Cigarettes Deodorant Diapers

Facial tissue Photography supplies  Shampoo Toothpaste

Third Group

Carbonated beverages

frozen dinners/entrees, frozen pizza, hotdogs, household cleaner, laundry deter-
gent, mayonnaise, peanut butter, photography supplies, salty snacks, shampoo,
soup, spaghetti/Italian sauce, sugar substitutes, toothbrushes, toothpaste, and
yogurt. Among these products, carbonated beverages and beer have the largest
sales units and sales volume over time, and photography supplies have the small-
est sales units and sales volume over time. = We are interested in identifying
the underlying subgroup patterns among these products. Specifically, we try to
partition products into subgroups based on the multiple responses of sales units
and sales volume, which are highly correlated (see Figure 1). In addition, we
can borrow correlation information from the multiple responses to improve the
clustering accuracy. In this application, we are particularly interested in the
“Los Angeles” market, which is the second largest city in the United States. The
responses of interest are “sales units” and “sales volume.” We sum the weekly
data to yearly data for each product, such that there are 11 observations for each
response. Because products have different unit prices, we standardize the sales
units and volumes before applying the clustering algorithms. The patterns of
units and volumes are illustrated in Figure 2. There exist subgroups in the prod-
ucts in terms of the patterns of the two responses. However, we are interested in
clustering the products based on both repetitive responses.

We compare the performance of the proposed method with that of the SS-
Clust, MixedEffects, bKmeans, and bGM approaches. Because the real data are
balanced, we also include the Kernel approach.

We identify three subgroups of products using the pairwise grouping method
with independent correlation. The subgroup results are provided in Table 6.
Whereas the bKmeans and MixedEffects methods group the products into two
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Figure 1. The correlation between sales units and sales volume for each product.
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Figure 2. The patterns of sales units and sales volume for IRI marketing data in Los
Angeles.

subgroups, the bGM is not able to identify reasonable clusters, and instead groups
all products into one group. On the other hand, SSClust detects four subgroups,
and Kernel identifies five subgroups. The cluster patterns of these methods are
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Figure 3. The clustering patterns of sales units and sales volume from the K-means
(bKmeans), SSClust, MixedEffects, Kernel, and the proposed nonparametric pairwise-
grouping with independent working correlation structure (NPGr-IN) for IRI marketing
data.

illustrated in Figure 3.

Comparing (a)—(d) in Figure 3, our method is able to distinguish the product
“Carbonated beverages” from the other two subgroups identified by bKmeans
and MixedEffects, where the patterns of the outcomes on sale units and volume
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Table 7. Clustering results and the Davies—Bouldin index (DBI) from the K-means
(bKmeans), SSClust, MixedEffects, Kernel, and the proposed nonparametric pairwise-
grouping with independent working correlation structure (NPGr-IN) for IRI marketing
data.

bKmeans SSClust MixedEffects Kernel NPGr-IN
k 2 4 2 5 3
DBI 0.592 1.3067 0.592 0.529 0.457

of “Carbonated beverages” clearly differ from those in the other two subgroups.
However, the pattern of each individual outcome of “Carbonated beverages” is
similar to one of the two subgroups; thus, this product belongs to neither of the
two subgroups if both outcomes are considered.

The Kernel method detects five distinctive subgroups, including “Carbon-
ated beverages.” However, because the true underlying cluster structure is un-
known for this real data, we cannot use an external criterion, as we did in the
simulation, to evaluate the performance of different methods. Instead, we follow
Ma and Huang (2017), and use an internal criterion, the Davies-Bouldin index
(DBI), to assess the quality of the clustering algorithms, where a small DBI is
considered best. Let S; = {(1/T;) Z;‘-F;l |X; — A;|7}1/9 be the measure of scatter
within the cluster, where X; (j = 1,...,T;) is an n-dimensional vector assigned
to cluster i, T; is the size of cluster ¢, and A; is the centroid of cluster i. Let
Mij = ||Ai — Ajllp = Oy laki — akj]p)% be the measure of separation between
clusters ¢ and j, where ag; is the kth element of A;. Usually, the values of p and
q are set to two (Davies and Bouldin (1979)). Then, the DBI is defined as:

G
| Si+S;
DBI = . 2T
GHI?Q?{< M;; >

where G is the number of subgroups.

Because the bGM method can only identify one group, we cannot calculate
its DBI. The DBI values for bKmeans, MixedEffects, SSClust, Kernel, and our
method are shown in Table 7, which shows that our method outperforms the
other methods, having the smallest DBI index.

The proposed subgroup analysis of the IRI data yields insights into market
basket analyses (Berry and Linoff (1997)), which examine consumers’ shopping
behavior and the associations between different products. For our analysis of
the IRI data, different subgroups of products can be viewed as different mar-
ket baskets, and knowing the products that consumers purchase together can
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be helpful to retailers. For example, the products in the first subgroup in our
analysis include food and cleaning supplies, whereas personal care (e.g., blades
and shampoo), cigarettes, and photography supplies are clustered into the sec-
ond subgroup. A retailer could stock products belonging to the same subgroup
together, and place products frequently sold together in nearby areas in the store.
In addition, online merchants could use subgrouping information to determine
advertising and promotion strategies aimed at attracting consumers.

7. Conclusion

In this paper, we propose a nonparametric pairwise-grouping approach that
clusters subjects into groups for repeated measurements with multiple outcomes.
The main difference between our method and existing pairwise-grouping meth-
ods is that we take serial correlation from repeated measurements into account,
and we incorporate random effects to capture correlations from multivariate re-
sponses, where random effects do not necessarily follow normality assumptions.
We place individuals into subgroups by penalizing the pairwise distances between
the B-spline coefficient vectors, and then implement an ADMM algorithm for the
clustering. The main advantage of the proposed method is that it is able to detect
subgroups effectively when there are multiple sources of correlation with missing
data. In terms of the penalty function, we apply the MCP, owing to its unbiased-
ness and sparsity properties. Similarly, penalties such as the SCAD (Fan and Li
(2001)) or the TLP (Shen, Pan and Zhu (2012)) can also be implemented.

We have formulated a framework for continuous correlated longitudinal data.
The proposed method can be extended to more general linear models. One po-
tential direction for future work is to extend the proposed framework to binary
longitudinal outcomes when identifying subgroups. Furthermore, here, we con-
sider only the random intercept model; however, the proposed method can be
extended to a ¢g-dimensional random slope b; = (b;1,...,big). This requires an
additional penalty on the mean constraints of the random effects to ensure the
identifiability of the random effects and the convergence of the algorithm (Wang,
Tsai and Qu (2012)).

In addition, it may be computationally burdensome to implement the ADMM,
and the two-step procedure for selecting the tuning parameters may not be opti-
mal, although it can reduce the computational cost. We also explore the upper
limit of the number of observations to implement the method on a PC with a 2.9
GHz Intel Core i5 processor, without parallel computing. Here, we find that the
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processing time increases with the number of observations.

Supplementary Material

The online Supplementary Material provides simulation results under
additional settings, and provides proofs for the lemmas, Theorem 1, and Corol-
lary 1.
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