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ABSTRACT
In this article, we propose a heterogeneous modeling framework which achieves individual-wise feature
selection and heterogeneous covariates’ effects subgrouping simultaneously. In contrast to conventional
model selection approaches, the new approach constructs a separation penalty with multidirectional
shrinkages, which facilitates individualized modeling to distinguish strong signals from noisy ones and
selects different relevant variables for different individuals. Meanwhile, the proposed model identifies
subgroups among which individuals share similar covariates’ effects, and thus improves individualized
estimation efficiency and feature selection accuracy. Moreover, the proposed model also incorporates
within-individual correlation for longitudinal data to gain extra efficiency. We provide a general theoretical
foundation under a double-divergence modeling framework where the number of individuals and the
number of individual-wise measurements can both diverge, which enables inference on both an individual
level and a population level. In particular, we establish a strong oracle property for the individualized
estimator to ensure its optimal large sample property under various conditions. An efficient ADMM algo-
rithm is developed for computational scalability. Simulation studies and applications to post-trauma mental
disorder analysis with genetic variation and an HIV longitudinal treatment study are illustrated to compare
the new approach to existing methods. Supplementary materials for this article are available online.
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1. Introduction

In recent years there has been a growing demand for explor-
ing individualized modeling to account for data heterogeneity,
which has broad applications in personalized medicine, per-
sonalized education, and personalized marketing. The tradi-
tional one-model-fits-the-whole-population approach is unable
to detect essential heterogeneous patterns and make accurate
personalized predictions for specific individuals. For example,
in a genetic study to identify biomarkers associated with a
certain disease, one gene could be a relevant biomarker for
a subgroup of individuals in the population, but not for the
other individuals. In addition, the rise of precision medicine and
personalized marketing strategies also motivate us to develop
more effective personalized treatment and recommendation by
selecting unique features for each individual. Therefore, it is
urgently needed to develop new statistical methodology and
theory for variable selection and estimation for individualized
modeling.

In the past two decades, penalized variable selection methods
have been developed, for example, the Lasso (Tibshirani 1996),
the smoothly clipped absolute deviation (SCAD) (Fan and Li
2001), the elastic net (Zou and Hastie 2005), the adaptive Lasso
(Zou 2006), the group Lasso (Yuan and Lin 2006), the mini-
max concave penalty (MCP) (Zhang 2010), and the truncated
L1-penalty (TLP) (Shen, Huang, and Pan 2012), based upon
a homogeneous model assumption. To pursue an individual-
ized model selection assuming different relevant predictors for
different individuals, one naive choice is to apply traditional
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variable selection methods on each individual separately, which
essentially requires multiple individual-wise observations, as in
longitudinal data settings. However, in practice, the number
of measurements for particular individuals could be limited,
yielding inefficient model estimation and statistical inference.
Therefore, it is more sensible to assume that subpopulations of
individuals share common effects on selected predictors, which
enables us to integrate individual information within subgroups
and thus to enhance the model efficiency.

To use cross-individual information, we pursue an underly-
ing subpopulation structure depending on unobserved covari-
ates’ effects. Existing approaches dealing with clustering on
regression coefficients include the mixture-of-experts model
(Jacobs et al. 1991; Tang and Qu 2016), for which the devel-
oped variable selection procedures (Raftery and Dean 2006;
Pan and Shen 2007; Guo et al. 2010) only focus on choosing
informative variables to distinguish different subgroups. Alter-
native approaches to model-based clustering analysis employ
grouping penalization. For example, Tibshirani et al. (2005)
proposed a fused Lasso by adding an L1-penalty to the pair
of adjacent coefficients; Bondell and Reich (2008) proposed a
clustering algorithm for regression by imposing a special octag-
onal shrinkage penalty on each pair of coefficients; Shen and
Huang (2010) developed a grouping pursuit algorithm utilizing
the truncated L1-penalty for fusions, and Ke, Fan, and Wu
(2013) proposed a data-driven segmentation method to explore
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homogeneous groups with regression. Nevertheless, these
approaches all assume parameter homogeneity over individ-
uals and target on grouping similar-effect covariates. For the
purpose of subgrouping different individuals, Hocking et al.
(2011), Lindsten, Ohlsson, and Ljung (2011), Pan, Shen, and Liu
(2013), and Ma and Huang (2017) formulated clustering as a
penalized regression problem by adopting a fusion-type penalty
with either an Lp-shrinkage or a nonconvex penalty function.
However, the fusion-type of penalties emphasizes on subgroup-
ing and feature selection is not incorporated. In addition, the
pairwise fusion also leads to estimation bias due to pulling
individuals together from different subgroups (Rinaldo 2009).

In this article, we propose an effective individualized model
selection approach using multidirectional shrinkage to select
unique relevant features for different individuals and identify
subgroups based on heterogeneous covariates’ effects simulta-
neously. To the best of our knowledge, this is a new approach
which has not been offered in the existing literature. From the
feature selection point of view, the proposed penalty allows
multiple possible shrinking directions including the one toward
zero, where the best shrinking option is determined by the data
itself. This provides a new perspective beyond the scope of
conventional penalty functions which shrink toward zero only.
One advantage of the proposed method is that, as long as the
candidate directions contain one near the truth, the optimal
oracle property holds by applying a regular L1-penalty in each
direction. Compared to traditional nonconvex penalties such
as the SCAD, the MCP, and the TLP, the proposed approach
does not rely on addition tuning parameters for penalization
thresholding.

In addition to individual-wise feature selection, our arti-
cle considers a new covariate-specific subgrouping framework
which is different from traditional subgroup analysis in terms
of the following: (1) pursuing subgrouping on heterogeneous
covariates’ effects and allowing subgroup structure on indi-
viduals to vary over different covariates, which has the most
flexibility in utilizing essential subgroup information compared
to traditional clustering approaches with a uniform subgroup
structure assumed for all covariates (Jacobs et al. 1991; Shen,
Huang, and Pan 2012; Pan, Shen, and Liu 2013; Zhu, Tang, and
Qu 2018); and (2) identifying subgroups including a specific
null effect using a center-based scheme, which naturally embeds
feature selection into subgrouping pursuit. Note that it is crucial
to achieve simultaneous feature selection and subgrouping, as
post-subgrouping inference could suffer from potential estima-
tion bias (Foster, Taylor, and Ruberg 2011; Desai, Pieper, and
Mahaffey 2014). Through introducing the sub-homogeneous
effects, the proposed approach enables individualized modeling
to borrow information across individuals effectively and thus
gain efficiency.

In theory, we lay out a theoretical framework for the double-
divergence heterogeneous model with correlated data, where the
number of individuals and the individual-wise measurement
size are both increasing, yielding a divergent number of individ-
ualized parameters. Furthermore, we develop asymptotic theory
for the proposed estimator under a variety of conditions and
establish the optimal strong oracle property for individualized
model estimation and feature selection, and uniform subgroup
identification consistency.

The major contributions of theory development in this
article can be outlined as follows. (1) Traditional subgroup
analysis mostly establishes theoretical results on the popula-
tion or subpopulation level, for example, the average effect
from a subgroup. In contrast, the theoretical framework estab-
lished in this article provides an individual-wise model infer-
ence, with a strong oracle property ensuring optimal model
selection consistency, estimation efficiency and subgroup iden-
tification consistency for each individual. (2) To the best
of our knowledge, to achieve the desired oracle property
for either heterogeneous model estimation or uniform sub-
group identification consistency (all individuals correctly clas-
sified), most existing penalization-based subgroup analyses
(Tang and Song 2016; Zhu and Qu 2018) consider the sce-
nario of a fixed number of individuals, N, and a divergent
number of measurements on each individual, m, which could
be restrictive in practice. The proposed double-divergence
framework allows both N and m to diverge, which also pro-
vides the divergence rate of individualized parameters. (3)
We also establish the theoretical results incorporating within-
individual correlation under mild conditions, which brings
nontrivial theoretical challenges since the dimension of the
correlation structure diverges as individual measurement size
increases.

The article is organized as follows. Section 2 introduces
the general framework and presents the methodology. Sec-
tion 3 establishes the theoretical results. Section 4 discusses
the computation and proposes an efficient algorithm. Section 5
presents simulation studies. Section 6 illustrates an applica-
tion on post-trauma mental disorder analysis from the Detroit
Neighborhood Health Study. The last section provides conclud-
ing remarks and discussion.

2. Model Framework and Methodology

2.1. Heterogeneous Regression Model

We formulate the problem under the longitudinal data setting,
where each individual can have multiple observations. For the
ith individual, let yi = (yi,1, . . . , yi,mi)

T be an mi-dimensional
response variable, Xi = (xi1, . . . , xip) be an mi × p covariate
matrix of predictors with heterogeneous effects, and Zi =
(zi1, . . . , ziq) be an mi ×q covariate matrix of population-shared
predictors. We consider a heterogeneous regression model:

yi = Xiβi + Ziα + εi, i = 1, . . . , N,

where each individual is associated with a unique effect βi =
(βi1, . . . , βip)

T
p×1 for some targeting variables Xi, in addition to

a homogeneous effect α = (α1, . . . , αq)
T
q×1 for some control

variables Zi. The random errors εi = (εi,1, . . . , εi,m)T
m×1 are

independent over different individuals, while within an individ-
ual, εi,t ’s (t = 1, . . . , m) have mean 0 and variance σ 2, and could
be correlated. For ease of notation, we assume a balanced dataset
with mi = m in this article.

In general, to identify unique features for different individu-
als, with an independent error assumption and a squared loss,
we could employ a penalization method to select and estimate
the regression parameters βi’s and α through minimizing the
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penalized objective function

1
2

N∑
i=1

‖ yi − Xiβi − Ziα ‖2
2 +

N∑
i=1

p∑
k=1

hλN,m(βik), (1)

where ‖ · ‖2 denotes the Euclidean norm, and hλN,m(·) refers to
a feature selection penalty function, for example, Lasso, adaptive
Lasso, MCP, SCAD, or TLP. Notice that the population-shared
predictors Zi mostly serve as control variables in applications,
and thus, in this article, we focus on individualized variable
selection of β i’s.

Next, we introduce some notations here. Define vec(bi)
N
i=1 ≡

(bT
1 , . . . , bT

N)T as a vectorization of a sequence of vectors
{bi}i=1,...,N , and define bdiag(Ai)

N
i=1 ≡ diag(A1, . . . , AN) as a

block-diagonal matrix with a sequence of matrices {Ai}i=1,...,N
at the diagonal. We let β(N) = vec(β i)

N
i=1 denote the Np-

by-1 grand vector of individualized coefficients. Furthermore,
we denote Y = vec(yi)

N
i=1, X = bdiag(Xi)

N
i=1 and Z =

[ZT
1 ZT

2 · · · ZT
N]T . Without the penalty term in (1), the ordinary

least squares (OLS) estimator is obtained as

vec(β̂
OLS
(N) , α̂OLS

) = ([X Z]T[X Z])−1[X Z]TY ,

where the dimension of parameters (Np + q) will diverge as
sample size N increases. It is clear that the model in (1) only uti-
lizes individual-specific information in estimating the hetero-
geneous coefficients β i’s, which is hence named individual-wise
modeling. As a result, this will lead to inefficient estimation and
over-fitting of a model, especially when the individual-specific
information is limited, for example, when the individual-wise
measurement size m is small.

2.2. Multidirectional Separation Penalty

To achieve more efficient individualized modeling, it is crucial
and beneficial to encourage grouping some individuals which
share similar treatment (covariates) effects. We propose a novel
penalization approach by providing multiple shrinking direc-
tions for individualized parameters and further using homo-
geneity information within the identified subpopulations, which
achieves simultaneous parameter estimation, variable selection
and individuals’ subgrouping.

We propose a general framework which allows different
subgrouping with respect to different heterogeneous-effect pre-
dictors. Specifically, for the individualized coefficients β ·k =
(β1k, . . . , βNk)

T of the kth heterogeneous-effect predictor (k =
1, . . . , p), we assume that there are Bk subgroups as

βik =
{

γ
(l)
k , if i ∈ G(l)

k , l = 1, . . . , Bk − 1
0, if i ∈ G(0)

k
,

for i = 1, . . . , N, (2)

where each γ
(l)
k (l = 1, . . . , Bk − 1) is an unknown nonzero

sub-homogeneous effect shared by individuals within the lth
subgroup, and the index partition sets {G(l)

k }l=0,1,...,Bk−1 repre-
sent the corresponding subgroup memberships in terms of the
heterogeneous effects of the kth predictor. For ease of notation,
in the following, we focus on the setting where there are two
subgroups with respect to each heterogeneous-effect covariate:

the nonzero-effect group (βik = γk, i ∈ Gk) and the zero-
effect group (βik = 0, i ∈ Gc

k). This is rather different
from conventional subgroup analysis approaches which assume
a uniform subgroup structure on individuals over all covariates’
effects. Detailed discussion is provided in Section 2.3.

Under the setting (2), to achieve simultaneous variable
selection and individual subgrouping, we propose a penal-
ized objective function with the sub-homogeneous effect γ =
(γ1, . . . , γp)T induced in a multidirectional separation penalty
(MDSP) sλ(·, ·) as

QN,m(α, β(N), γ ) = 1
2

N∑
i=1

(
yi − μi(βi, α)

)TVi
−1 (3)

× (
yi − μi(βi, α)

) +
N∑

i=1

p∑
k=1

sλ(βik, γk)

= LN,m(α, β(N)) + SλN,m(β(N), γ ), (4)

where μi(βi, α) = Xiβi + Ziα. To obtain more efficient estima-
tion, the within-individual serial correlations are utilized by a
weighting matrix V i = A

1
2
i RiA

1
2
i , where Ai is a diagonal matrix

of marginal variance of yi and Ri is a working correlation matrix
(Liang and Zeger 1986).

The key component of the proposed model is a designed mul-
tidirectional separation penalty (MDSP) function sλ(βik, γk),
defined as

sλ(βik, γk) = λN,mmin
(|βik|, |βik − γk|

)
, (5)

taking a selection over multiple marginal penalizations on indi-
vidualized coefficients, where λN,m is a tuning parameter for
penalization level. This MDSP term applies in (3) with a double-
summation over both individuals and covariates, essentially
providing two perspectives regarding the proposed individual-
ized modeling.

First, from an individual-wise point of view, given γk’s, the
penalty term

∑p
k=1 sλ(βik, γk) carries feature selection on the

ith individualized coefficients β i = (βi1, . . . , βip)T . Specifically,
the constructed MDSP is a piece-wise convex penalization (Fig-
ure 1(a)) imposed on βik, yielding multiple shrinking directions
including the one toward zero (Figure 1(b)). Traditional feature-
selection penalties shrink all parameters toward zero, leading to
estimation bias on those strong signals, especially with a convex
penalty such as the L1-penalty. By contrast, the MDSP function
sλ(·, γk) provides each βik an alternative shrinking direction γk
in addition to zero, which is able to protect the strong signals
from being pulled toward zero while shrinking those weak
signals for sparsity. Consequently, the MDSP approach can effi-
ciently reduce the estimation bias even with an L1-penalty and
does not depend on additional tuning parameters like those in
nonconvex penalty functions. Although the underlying effects
γk’s are also unknown and to be estimated, as illustrated in
Figure 1(b), the proposed MDSP-estimator still reduces the bias
on the nonzero coefficient estimators, as long as the estimated γ̂k
provides a roughly reasonable direction along one dimension.

Essentially, if the potential alternative direction γk’s can be
estimated precisely, the MDSP model will gain extra accuracy
in model estimation and future prediction from reducing both
estimation bias and variance, by pulling individual coefficients
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Figure 1. An illustration of the MDSP function in an individual-wise variable selection.

Figure 2. An illustration of the MDSP modeling with dynamic updating of γ and adaptive individual estimations. A marginal MDSP is applied to the second covariate

effect, βi2, where the penalty function is s(β , γ2) = ∑3
i=1

{|βi1| + min(|βi2|, |βi2 − γ2|)}, and β̂
LS
i denotes the least-squares estimator for β i = (βi1, βi2).

to either γk’s or zero. The MDSP term
∑N

i=1 sλ(βik, γk) in
(3) sums over individual effects of the kth covariate, serving
as a center-based clustering. Analogous to the K-means algo-
rithm, subgroup centers (γk’s) and the memberships captured
by individual shrinking directions are updated iteratively in
fitting the MDSP model. However, in contrast to traditional
clustering algorithms, the MDSP approach carries subgroup-
ing on estimated coefficients, β̂ik’s, which also change dynam-
ically along with the updates of subgroup centers and subgroup

memberships. Figure 2 provides an illustrative example to show
the dynamic fitting of the MDSP approach. The updating mem-
berships allow each individual to shrink toward an optimal
direction and thus improve the individual-wise model fitting,
while the γ̂ is further estimated adaptively to capture the sub-
group pattern of individuals. Indeed, as estimated as the centers
of nonzero coefficient subgroups, the sub-homogeneous effects
γk’s enable the individualized models to borrow information
from other individuals who share similar effects and effectively
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use the subgroup information in individual-wise model estima-
tion.

Compared to the commonly adopted fusion-based clustering
models, the MDSP approach enjoys unique properties through
utilizing a center-based scheme, which can efficiently integrate
feature selection with clustering by fixing one of the subgroup
centers as zero. Therefore, the MDSP model does not require
an additional penalty term for feature selection. Furthermore,
apparently, the fused Lasso suffers from significant estimation
bias due to the pairwise fusion,

∑
i,j |βik − βjk|, pulling indi-

viduals together even from different subgroups (Rinaldo 2009).
In contrast, the proposed MDSP approach intends to “separate”
very different individual coefficients rather than to “combine”
them. As long as the number of subgroups is correctly specified,
the MDSP penalty does not introduce bias even with an L1-
shrinkage along each direction.

Though other nonconvex penalties can be employed for
fusion to reduce the bias, they all rely on additional thresholding
parameters to control the penalization level, where the extra
tuning could be challenging and computationally costly unless
the subgroups are well-separated, especially in the setting which
allows different subgroups for different covariates. Intuitively,
to better identify subgroup clustering, a larger penalization
threshold for a nonconvex penalty is preferred to fuse more
pairs of individual coefficients, as otherwise it leads to many
local clusters. However, this is in contradiction to the purpose
of reducing the bias from merging individuals from different
subgroups, which requires a smaller threshold value. However,
the MDSP approach is much more robust, as the embedded
center-based clustering accounts for relative distances between
individual coefficients and subgroup centers, and thus is less
affected by the selection of tuning parameters.

The proposed MDSP can be easily generalized to accom-
modate various settings. For example, the above two-subgroup
penalty can be extended to multiple subgroups, even with addi-
tional constraints. We illustrate the extension of three subgroups
allowing positive and negative effects of individualized treat-
ments as

sλ(βik, γ +
k , γ −

k ) =λ min
(

|βik|, |βik − γ +
k |, |βik − γ −

k |
)

,

s.t. γ +
k > 0, γ −

k < 0.
In addition, the MDSP approach can also handle the case where
some of the covariates may share the same subgrouping. For
example, the MDSP term can be generalized to a vector-based
form: min

{|β i −γk|
}

k=0,...,B, with γ 0 = 0p in particular, where
β i = (βi1, . . . , βip)T corresponds to a group of covariates which
share the same subgroup structure. Moreover, we can further
generalize the model to incorporate different tuning parame-
ters associated with penalizations on different directions, which
can be useful in cases when prior knowledge such as mixing
proportions is known. Furthermore, the L1-penalty can be also
replaced by a nonconvex penalty to accommodate potential
outliers.

2.3. Comparison With Existing Subgroup Analysis

In this section, we make a few remarks comparing the pro-
posed model with existing subgroup models. In addition to

subgrouping on individualized regression coefficients, a key dif-
ference compared to the most of the conventional subgrouping
approaches (Jacobs et al. 1991; Gunter, Zhu, and Murphy 2011;
Pan, Shen, and Liu 2013; Ma and Huang 2017; Zhu and Qu
2018), is that our model in (3) allows different subgroups with
respect to heterogeneous coefficients of different predictors (2).
We refer to it as a covariate-specific subgrouping.

Specifically, we consider a simple example of a heterogeneous
model with 10 predictors:

yi,t = β0 + βi1xi1,t + · · · + βi10xi10,t + εi,t ,
i = 1, . . . , N, t = 1, . . . , m, (6)

where each βik (i = 1, . . . , N, k = 1, . . . , p) is generated
independently from a Bernoulli distribution with a probability
of 0.5. Conventional clustering methods target subgrouping the
coefficient vectors {β i ≡ (βi1, . . . , βi10)

T}’s (i = 1, . . . , N),
yielding subgroups corresponding to individuals sharing the
same effects on all covariates. As a result, this limits potential
applications, as the inference is still at a population level, but
not at an individual level. For instance, if we further perform a
variable selection based on the obtained subgroups, a variable
will be selected/eliminated for all the individuals within the
subgroup.

Furthermore, population-level inference can also be unre-
liable in many situations. Consider the above example in (6).
The coefficient vector β i essentially has 210 = 1024 unique
(0, 1) combinations leading to a potential 1024 underlying sub-
populations. However, conventional clustering approaches are
very likely to combine some of them as one group, for exam-
ple, (1, . . . , 1, 0)T and (1, . . . , 1, 1)T with finite samples, which
results in estimation biases. Even under the assumption that all
individuals are correctly classified into the true subpopulation,
the estimation for each βik is less efficient as it only utilizes
approximately N/1024 samples in one subgroup, which trades-
off small variance for unbiasedness. In contrast, the proposed
model with covariate-specific subgrouping is able to utilize
almost N/2 samples in estimation of each parameter, which can
achieve unbiased and efficient estimation simultaneously, while
allowing each individual to have a unique coefficient vector.

3. Theory

3.1. Double-Divergence Framework and Notation

In this section, we lay out a new theoretical framework for
individual-wise modeling inference and population-wise sub-
grouping analysis in a double-divergence structure, which
allows both sample size N and individual measurements size m
go to infinity.

We make contributions to two unique challenges under this
framework. First, as sample size N increases, it is difficult to
preserve the desired strong oracle property of the individualized
coefficients, which enables each individual to utilize the true
subpopulation information and thus to achieve optimal esti-
mation efficiency. This is because the number of individualized
parameters is diverging and a strong oracle property essentially
requires a subgrouping consistency, that is, classifying all the
individuals into the correct subpopulation. We establish the-
oretical results indicating that the proposed estimator enjoys
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the strong oracle property and we also outline the optimal
divergence rates of N with different assumptions. Second, in
contrast to traditional longitudinal analysis, as the number of
individual measurements m increases, the individual-specific
correlation can have a significant effect on the convergence
rate of the estimator, as the correlation matrices in (3) are also
expanding. We provide the convergence rate of the proposed
estimator taking unknown correlation structure into account
based on a double-divergence estimating equation.

We start by introducing some notation. For a symmetric
matrix An×n, let λmin(A) and λmax(A) be the smallest and
the largest eigenvalues of A, respectively. For an arbitrary
matrix Am×n(aij), denote ‖A‖2 =

√
λmax(ATA) as its L2-

norm, ‖A‖1 = max
1≤j≤n

(
∑m

i=1 |aij|) as its L1-norm, ‖A‖∞ =
max

1≤i≤m
(
∑n

j=1 |aij|) as its L∞-norm, and denote tr(A) as its trace.

For a vector a = (a1, . . . , an)T , let ‖a‖0 = ∑n
i=1 I{ai �=0}.

Moreover, let A ◦ B denote the entry-wise Hadamard product
between two same-dimension matrices and let “⊗” denote the
Kronecker product.

In addition, we let |Gk| denote the cardinal norm of the index
set Gk ⊂ {i : 1, . . . , N} where βik = γk if i ∈ Gk, and Gc

k is its
complement (βik = 0). We denote θ = vec(β(N), α) as a grand
coefficients vector and let θ0 = vec(β0

(N), α
0) be its true value,

and let γ 0 be the true value of γ . Furthermore, we denote the
true value of an individual coefficient β i as β0

i = vec(β0
i,Ai

, 0),
where Ai ⊂ {1, . . . , p} denotes the signal index sets such that
β0

ik = γ 0
k if k ∈ Ai.

The individual-wise estimator without subgrouping refers to
an unpenalized estimator minimizing the squared loss func-
tion LN,m(θ) in (4), which corresponds to solving the quasi-
likelihood estimating equation

GN,m(θ) =
N∑

i=1
g i(θ) =

N∑
i=1

U i(θ)TV−1
i

(
yi − μi(θ)

) = 0, (7)

where U i(θ) = ∂μi(θ)

∂θT . With a linear mean function, U i(θ)

does not actually depend on unknown parameter θ and thus is
suppressed as U i for simple notation. In addition, we let

DN,m = −∂GN,m(θ)

∂θT =
N∑

i=1
UT

i V−1
i U i,

HN,m = cov(GN,m(θ)) =
N∑

i=1
UT

i V−1
i �iV−1

i U i,

where �i = cov(yi) = A
1
2
i R0

i A
1
2
i and R0

i is the true correlation
matrix. Note that DN,m and HN,m are both (Np+q)-dimensional
symmetric matrices, which do not involve unknown param-
eter θ . Under the homogeneous variance assumption, Ai can
be dropped. In addition, we usually assume R0

i = R0 and
choose working correlation Ri = R for i = 1, . . . , N. Due
to the unknown true correlation R0, DN,m and HN,m are not
necessarily equal, unless R is correctly specified.

Section A.2 of the supplementary materials lists a set of
mild regularity conditions which are assumed in the following
discussion. They are all standard assumptions made on regres-
sors in penalized variable selection approaches and longitudinal

data models (Xie and Yang 2003; Balan and Schiopu-Kratina
2005; Wang, Zhou, and Qu 2012), with a small extension to the
current individualized model setting. In particular, the standard
assumptions of R0

i converging to a constant positive definite
matrix with eigenvalues bounded away from zero and infinity
(Wang, Zhou, and Qu 2012) might not be valid here, as the
dimension of R0

i diverges as the individual measurement size m
diverges. We impose a mild regularity condition (A3) instead on
the expanding correlation matrices which can be easily verified
on a set of common correlation structures such as Exchangeable,
AR-1, and Toeplitz.

3.2. Oracle Estimator and Unpenalized Individual-Wise
Estimator

In this section, we provide asymptotic results to the individu-
alized estimator without penalization and the oracle estimator
with true subgroup information. Both of the two estimators play
important roles in understanding the individual-wise model
inference and in investigating the large sample property of the
proposed MDSP estimator.

The estimating equation GN,m(θ) contains double summa-
tions with sample size N and individual measurement size m
that both can diverge. Therefore, the standard asymptotic results
for M-estimators are not applicable here even with a fixed num-
ber of parameters (Xie and Yang 2003). The following lemma
implies that the consistency of the unpenalized estimator θ̂

u

solved from the equation GN,m(θ) = 0 in (7) relies on the
information matrix DN,mH−1

N,mDN,m.

Lemma 1. Under regularity conditions (A1)–(A2) provided in
the supplementary materials, for any δ > 0, there exists a
solution θ̂

u
of the equation in (7) such that

P
(

p− 1
2

θ ‖H− 1
2

N,mDN,m(θ̂
u − θ0)‖2 > δ

)
<

1
δ2 ,

where pθ = Np+q is the dimension of θ . Moreover, if condition
(Ca): λmin(DN,mH−1

N,mDN,m) → ∞ holds, we have

P
(

p− 1
2

θ ‖θ̂u − θ0)‖2 > δ

)
−→ 0.

Remark 1. The condition (Ca) is a standard condition analogous
to the one in Xie and Yang (2003) for the weak consistency
of a fixed-dimensional generalized estimating equation (GEE)
estimator. In an independent model where R0 = R = Im
or the working correlation R is correctly specified, the infor-
mation DN,mH−1

N,mDN,m reduces to DN,m. Notice that, in the
individualized model setting, the divergence rate of the smallest
eigenvalue of DN,m (the same as HN,m) only depends on the
number of individual measurements m. Therefore, the condi-
tion (Ca) essentially implies the divergence of m, that is, we
need cumulative individual information to ensure consistent
estimation.

Lemma 1 provides the consistency result under an L2 norm
(spectral norm), which actually requires a limited sample size
N, otherwise the parameter dimension pθ will diverge as N
increases. However, the proof of Lemma 1 shows that, as m
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diverges, the consistency of θ̂
u

can be guaranteed as long as
N diverges with a limited rate. We will have more discussion
regarding this point later.

Next, we provide the theoretical results for the oracle estima-
tor, which assumes being given the true subpopulation infor-
mation (Gk, 1 ≤ k ≤ p) with respect to all individualized
predictors. This is equivalent to assuming that all individualized
true signal sets Ai’s (1 ≤ i ≤ N) are known. Consequently,
each individualized oracle parameter βor

i is linked to the sub-
homogeneous effect γ as ωi ◦ γ = βor

i through an indicator
vector ωi = (ωi1, . . . , ωip)T , where ωik = 1{i∈Gk} = 1{k∈Ai} and
1{·} denotes an indicator function. Hence, there exists a mapping
linking two parameter spaces: Rp(γ ) �→ RNp(βor

(N)) : 	γ =
βor

(N), where 	Np×p ≡ [	1 · · · 	N]T and 	i = diag(ωi) is a
diagonal matrix. Therefore, by noting that SλN,m(βor

(N), γ ) = 0,
the oracle estimator is obtained as

vec(γ̂ or, α̂or
) = argmin

α,γ

N∑
i=1

(
yi − Xi(ωi ◦ γ ) − Ziα

)T
(8)

V−1
i

(
yi − Xi(ωi ◦ γ ) − Ziα

)
,

and the oracle individualized estimator is β̂
or
i = ωi ◦ γ̂

or. We
first establish the asymptotic result for the oracle estimator with
an independent model to reveal the subpopulation effect on
estimation.

Theorem 1. Under regularity conditions (A4)–(A6) provided in
the supplementary materials, suppose vec(γ̂ or, α̂or

) is the oracle
estimator of an independent model obtained in (8), where R0 =
R = Im; as either m → ∞ or min

1≤k≤p
(|Gk|) → ∞, we have

(Hor
N,m)

1
2

(
vec(γ̂ or, α̂or

) − vec(γ 0, α0)

)
−→d N

(
0, Ip+q

)
,

where Hor
N,m 
 MN,m, and MN,m =

diag(N1, . . . , Np︸ ︷︷ ︸
p

, Na, . . . , Na︸ ︷︷ ︸
q

) is a (p + q)-dimensional diagonal

matrix, in which, Nk = m|Gk|, k = 1, . . . , p, and Na = mN.
The operator “
” denotes that the matrix Hor

N,m has the same
order as MN,m. The rigorous definition of “
” and the explicit
form of Hor

N,m are provided in Section A.4 of the supplementary
materials.

Theorem 1 indicates that the convergence rates of the oracle
estimator benefit from increasing both N and m, as it fully uti-
lizes the subpopulation information and thus achieves optimal
estimation efficiency. In particular, the convergence rates of the
sub-homogeneous-effect estimator γ̂k’s are covariate-specific,
corresponding to

√
Nk (1 ≤ k ≤ p), respectively. The asymp-

totic result for the oracle estimator with correlated data is further
discussed in the next subsection.

3.3. Multidirectional Separation Penalty Estimator With
Correlated Data

In this section, we establish the large sample results for the
proposed MDSP estimator with correlated data. In addition, we

provide the optimal divergence rate of N that can be achieved
while ensuring the oracle property of the proposed estimator.

Incorporating correlations on individual-wise measure-
ments brings additional theoretical challenges to the double-
divergence framework, as it involves divergent-dimensional cor-
relation matrices Ri and R0

i . This makes it difficult to figure out
the estimators’ convergence rates. In addition to condition (Ca),
we provide an alternative sufficient condition in the following
theorem, which could simplify the verification and discussion
similar to Xie and Yang (2003).

Theorem 2. Let ηm = max
1≤i≤N

{λmax(R−1
i R0

i )}. Under regularity

conditions (A3)–(A6) provided in the supplementary materials,
for the oracle estimator θ̂

or = vec(γ̂ or, α̂or
) obtained in (8), we

have

η
− 1

2
m ‖(Dor

N,m)
1
2 (θ̂

or − θ̃
0
)‖2 ≤ Op(1),

where θ̃
0 = vec(γ 0, α0), and Dor

N,m is the second-order deriva-
tive matrix for the objective function in (8). The explicit form of
Dor

N,m is provided in Section A.4 of the supplementary materials;
Furthermore, if condition (C∗

a ): η−1
m λmin(Dor

N,m) → ∞ holds,
then θ̂

or →p θ̃
0 under an L2 norm.

Theorem 2 indicates that the convergence of the estimator
depends on the divergence rate of ηm and Dor

N,m, where ηm
measures the “deviation” between the working correlation struc-
ture Ri and the true correlation structure R0

i . It is clear that if
an appropriate working correlation matrix Ri is specified, we
gain extra estimation efficiency by reducing ηm. However, in
general, as m → ∞, the value of ηm is not always bounded.
Therefore, the convergence rate of the estimator could be slower
than the optimal rate

√
m and it may not converge to a normal

distribution asymptotically (Xie and Yang 2003). We provide
more discussion with a few common cases and some useful
conditions in Section A.6 of the supplementary materials.

To finally establish the large sample theory for the MDSP
estimator, as well as providing the divergence rate of sample size
N, we consider two sets of assumptions on random error εi’s:

(Ia): Assume that εi = (εi,1, . . . , εi,m)T is independent and
identically generated with mean zero and the covariance matrix
�m = σ 2R0, where σ < ∞, for i = 1, . . . , N;

(Ib): In addition to (Ia), let εi∗ = �
− 1

2
m εi, assuming

that εi∗ is a sub-Gaussian vector, that is, P(|aTεi∗| > t) <

2exp(− t2

c2
σ ‖a‖2

2
) for any a ∈ Rm and t > 0, where cσ is a positive

constant.
In the independent-error model, the assumption in (Ib) is
equivalent to assuming marginal sub-Gaussian tails for εij’s,
which is a standard assumption in high-dimensional data mod-
els. Alternatively, if the random errors are assumed to be nor-
mally distributed, then (Ib) holds naturally for both indepen-
dent and correlated data.

Based on the above conditions and results, we establish the
large sample theory for the proposed estimator under a double-
divergence setting.

Theorem 3. Let τm = λmin(DN,m(HN,m)−1DN,m). Under reg-
ularity conditions (A1)–(A6) provided in the supplementary



JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 1287

materials, suppose λN,m
τm

→ 0 and λN,m√
τm

→ ∞ holds, there

exists a local minimizer vec(α̂, β̂(N), γ̂ ) of the MDSP objective
function in (3); as τm → ∞, we have

P
{

vec
(
α̂, β̂(N), γ̂

) = vec
(
α̂

or, β̂
or
(N), γ̂

or)} −→ 1,

with
(i) N = o(τm), if Assumption (Ia) holds, or
(ii) log(N) = o(τm), if Assumption (Ib) holds.

The explicit forms of DN,m and HN,m are provided in Section
A.7.2 of the supplementary materials. If the working correlation
is correctly specified Ri = R0

i , 1 ≤ i ≤ N, we have τm =
λmin(DN,m).

Theorem 3 indicates that the proposed estimator is the same
as the oracle estimator, which utilizes most of the information of
the underlying subpopulation structure, ensuring that the pro-
posed estimator inherits optimal efficiency from the oracle esti-
mator and that the effects for each individualized predictor are
correctly classified. To summarize, we achieve both individual-
wise variable selection consistency and covariate-wise subgroup
identification consistency as follows.

Corollary 1 (Uniform variable selection consistency). Under the
same conditions as in Theorem 3, as τm → ∞, we have

P
( ⋂N

i=1{Âi = Ai}
)

→ 1.

Corollary 2 (Uniform subgroup identification consistency).
Under the same conditions as in Theorem 3, as τm → ∞, we

have P
(⋂p

k=1{Ĝk = Gk}
)

→ 1.

Theorem 3 also provides the optimal divergence rates of
N, which depends on the order of τm, to ensure the oracle
property for the proposed estimator given different assumptions
on random errors. It is apparent that τm → ∞ as m → ∞,
while the explicit order of τm is not easy to obtain in general as it
involves unknown divergent-dimension correlation structures.
Under additional assumptions or given specific structures on the
correlation matrices, we are able to establish it as discussed in
Section A.6 of the supplementary materials. In particular, with
an independent error-model, by noting τm = m, we have a
simplified result as stated in the following corollary.

Corollary 3 (Oracle property in independent model). Under the
same conditions as in Theorem 3, suppose Ri = R0

i = Im, for
1 ≤ i ≤ N, if λN,m

m → 0 and λN,m√
m → ∞, there exists a local

minimizer vec(α̂, β̂(N), γ̂ ) of the MDSP objective function in
(3); as m → ∞, we have

P
{

vec
(
α̂, β̂(N), γ̂

) = vec
(
α̂

or, β̂
or
(N), γ̂

or)} −→ 1,

with (i) N = o(m) if Assumption (Ia) holds, or (ii) log(N) =
o(m) if Assumption (Ib) holds.

Lastly, we consider applying the MDSP model to a new
dataset such as a new individual which is usually challenging
but also crucial for subgroup analysis. Since this framework

focuses on unobservable predictor effects, we assume to have
a semi-new individual which has initial observations y∗

i with
independent errors. Given a pre-estimated sub-homogeneous
effect γ̂ = (γ̂1, . . . , γ̂p)T from a training dataset, we fit the model
on a semi-new individual as

Qi,m∗(β∗
i , α∗|γ̂ )= 1

2
‖y∗

i −X∗
i β

∗
i −Z∗

i α∗ ‖2
2 +

p∑
k=1

sλm∗ (β
∗
ik, γ̂k).

(9)

Theorem 4. Suppose
√

m∗(γ̂ − γ 0) ≤ Op(1). Under regularity
conditions (A1)–(A6) provided in the supplementary materials,
there exists a minimizer β̂

∗
i = vec(β̂

∗
i,Ai , β̂

∗
i,Ac

i
) of (9), if λm∗ →

0 and λm∗/
√

m∗ → ∞, as m∗ → ∞, we have

P(β̂
∗
i,Ac

i
= 0) → 1 and P(β̂

∗
i,Ai = γ̂Ai) → 1,

where Ai denotes the true signal index set for the ith semi-new
individual.

Theorem 4 provides an insight from an individual-wise per-
spective about how the MDSP enhances individualized model
inference on variable selection and model estimation. As a
given γ̂ provides a reasonably good direction toward sub-
homogeneous effects, the individualized estimator for the semi-
new individual is able to achieve selection consistency even
with a limited number of observations. The theorem does not
require that the given estimator γ̂ is more efficient than the
individualized estimator which is based on new observations
only (with an order of

√
m∗). However, if γ̂ is obtained from

a larger training sample with a convergence rate beyond
√

m∗, a
single-individual based model can achieve a faster convergence
rate inherited from the given γ̂ .

The proofs of all of the theoretical results are provided in
Appendix A of the supplementary materials.

4. Computation

4.1. ADMM Algorithm

The optimization problem of the objective function in (3) is
challenging as it involves the nonconvex penalty function with
an unknown sub-homogeneous-effect parameter, yielding non-
separable parameters in estimation. To achieve computational
scalability, we propose an efficient ADMM-based algorithm
(Boyd et al. 2011), which decomposes the original optimization
into several smaller pieces that can be solved more easily.

To minimize the objective function in (3), we introduce a set
of constraints βij = νij, 1 ≤ i ≤ N, 1 ≤ j ≤ p, and consider a
new constraint optimization problem

min
α,β ,ν,γ

LN,m(α, β) + SλN,m(ν, γ ), s.t. β = ν, (10)

where βNp×1 ≡ (βij)1≤i≤N,1≤j≤p and νNp×1 ≡ (νij)1≤i≤N,1≤j≤p.
To solve (10), we take the ADMM algorithm with the augmented
Lagrangian function as

L(α, β , ν, γ ) = LN,m(α, β) + SλN,m(ν, γ ) + �T(β − ν)

+ κ

2
‖β − ν‖2

2, (11)
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where �Np×1 ≡ (�ij)1≤i≤N,1≤j≤p is the Lagrangian multiplier,
and κ is a fixed augmented parameter. We update {α, β}, {ν, γ }
and � alternately at the (l + 1)th iteration as follows:

{α(l+1), β(l+1)} = argmin
α,β

LN,m(α, β) + κ

2
‖β − ν(l) + κ−1�(l)‖2

2,

(12)

{ν(l+1), γ (l+1)} = argmin
ν,γ

SλN,m(ν, γ ) + κ

2
‖β(l+1) − ν + κ−1�(l)‖2

2,

(13)

�(l+1) = �(l) + κ(β(l+1) − ν(l+1)).

The optimization in (12) turns to be a quadratic minimiza-
tion problem given a specified working correlation structure,
which leads to an explicit solution. We recommend a one-
step moment estimation for the correlation structure Ri using
the individual-wise estimator from an independent model. The
objective function in the second optimization can be split into p
parallel pieces based on different heterogeneous covariates as

argmin
ν·j

N∑
i=1

{
κ

2
(νij − β

(l+1)
ij − κ−1�(l)

ij )2 (14)

+ λN,m min(|νij|, |νij − γj|)
}

,

for j = 1, . . . , p, where ν·j = (ν1j, . . . , νNj)′. Along the jth het-
erogeneous covariate, we iteratively estimate ν·j and γj with fixed
β(l+1) and �(l). Specifically, given γj, the νij’s (i = 1, . . . , N)
in (14) can be estimated separately with explicit solutions,
and given νij’s, the γj can be estimated via a one-dimensional
exhaustive grid-search. Since all those pieces only involve uni-
variate optimization, the minimization of (14) can be solved
easily. More implementation details in (12)–(14) are provided
in Section B.4 of the supplementary materials. The proposed
algorithm is outlined in Algorithm 1.

Algorithm 1 ADMM algorithm with parallel computing
Initialization. Initialize ν(0), γ (0). Set λN,m and κ . Set � = 0.
Set stopping tolerance levels ε1 and ε2.
For l = 0, 1, 2, . . .
Step 2. Update {α(l+1), β(l+1)} via (12).
Step 3. Update {ν(l+1)

·j , γ (l+1)
j } via (14) with parallel computing

over j = 1, . . . , p.
Step 4. Update �(l+1) = �(l) + κ(β(l+1) − ν(l+1)).
Step 5. (Stopping criterion) Iterate Steps 2–4 until

{ ‖ β(l+1) −
β(l) ‖2 /(Np)+ ‖ α(l+1) −α(l) ‖2 /q+ ‖ γ (l+1) −γ (l) ‖2 /p

}
<

ε1 and ‖ r(l+1) − r(l) ‖2< ε2, where r(l) = β(l) − ν(l).

Proposition 1. For the objective function in (3), with a suffi-
ciently large κ , the estimator sequence generated by the pro-
posed ADMM Algorithm 1 converges to a stationary point of
(3) subsequently.

The proof of Proposition 1 can be shown by verifying the
conditions R1–R3 in Proposition 1 of Zhu, Tang, and Qu (2018).
In practice, the iterative estimators may converge to a local
minimizer due to the nonconvex objective function. Multiple

initial values can be applied to identify the optimum value. In
fact, most individuals are not sensitive to initial values except
the ones close to the boundaries of subgroups. Heuristically, if
λN,m/γk is small, implying that the true effects γ are strong,
then the coefficient estimators are likely consistent. Therefore,
we recommend using a warm-start for initialization, which can
be obtained by using the individual-wise least square estimator
or the proposed MDSP estimator with a very small value of λN,m
and a random initialization.

4.2. Tuning and Subgroup Number Selection

In this article, we tune the shrinkage parameter λN,m based on
the generalized cross-validation (GCV) method as suggested
by Pan, Shen, and Liu (2013), which can be regarded as an
approximation of leave-one-out cross-validation. Specifically,
the GCV is defined as

GCV(df) = RSS
(mN − df)2 = ‖Y − Ŷ‖2

2
(mN − df)2 ,

where df is the degree of freedom used in estimating the Ŷ ,
and the tuning parameter λN,m is thus selected by a grid-
based search to minimize the GCV. In this setting, the degree
of freedom cannot simply be treated as the total number of
nonzero parameters, since some of the coefficient estimator
β̂ik’s are shrunk to the exact sub-homogeneous effect γ̂k. Pan,
Shen, and Liu (2013) suggested a generalized degree of free-
dom (GDF) which provides a more accurate estimation to the
degrees of freedom. However, this procedure is computationally
costly, as it depends on Monte Carlo samplings. Alternatively, we
approximate the degrees of freedom (df) as the total number of
unique nonzero coefficient estimators. This approximation can
be regarded as a calculation of the df based on a grand linear
model including all individuals with Np + q parameters and a
series of subgroup constraints.

In general, the proposed method allows a multi-subgroup
setting as defined in (2), while the number of subgroups is
usually unknown and its selection is always challenging. In
practice, we could specify the subgroup numbers according
to known scientific information or a particular target such as
exploring the positive and negative treatment effects. Alterna-
tively, we can select the number of subgroups based on a data-
driven approach. One option is to adopt the idea of the jump
statistic (Sugar and James 2003) or the gap statistic (Tibshirani,
Walther, and Hastie 2001) based on the warm-start estimators.
In addition, Ma and Huang (2017) provided a subgroup number
selection strategy based on the modified Bayesian information
criterion (Wang, Li, and Tsai 2007). Specifically, for the kth
predictor, the number of subgroups Bk is selected by minimizing

BIC(Bk) = log
( N∑

i=1

m∑
t=1

{yi,t − μ̂i,t(Bk)}2/(mN)

)

+ bN
log(mN)

mN
(Bk + q − 1),

where bN is a positive number depending on N and m. When
bN = 1, the modified BIC reduces to the traditional BIC
(Schwarz 1978). For the high-dimensional setting, we follow
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Wang, Li, and Leng (2009) to take bN = c log(log(pθ )), where
pθ = Np+q and c = 2. To extend to multivariate individualized
predictors, we select the number of subgroups one-at-a-time
with penalizations only on the target predictor.

5. Numerical Study

5.1. Individualized Regression and Model Robustness

In this section, we provide simulation studies to investigate the
numerical performance of the proposed method in finite sam-
ples. In the first simulation study, we consider a heterogeneous
regression model with two population-shared variables and one
individualized variable which, for example, can be an interested
treatment effect:

yi,t = α0 + α1zi1,t + α2zi2,t + βixi,t + εi,t , (15)
i = 1, . . . , N, t = 1, . . . , m.

We set the sample size N = 40, 100, and the individual measure-
ment size m = 10, 20. The individualized coefficients are set as
β = (β1, . . . , βN)′ = (γ , . . . , γ︸ ︷︷ ︸

N/2

, 0, . . . , 0︸ ︷︷ ︸
N/2

)′, where γ is the true

sub-homogeneous effect chosen as 1 or 2, and the population
parameters are α0 = α1 = α2 = 1. The covariates zi1,t , zi2,t ,
and xi,t are generated from N(0, 1). The random error εi,t ’s are
independently generated from N(0, 1).

We compare the performance of the proposed model
(MDSP) with four individual-wise regularized variable selection
approaches, namely, the Lasso (Tibshirani 1996) implemented
by R package glmnet (version 2.0-2) (Friedman, Hastie, and
Tibshirani 2010), the adaptive Lasso (AdapL) (Zou 2006) solved
by R package parcor (version 0.2-6) (Krämer, Schäfer, and
Boulesteix 2009), the SCAD (Fan and Li 2001), and the MCP
(Zhang 2010) implemented by R package ncvreg (version 3.5-
1) (Breheny and Huang 2011). Moreover, we also compare two
nonvariable-selection models: the individual-wise least-squares
model (Sub) and the homogeneous least-squares model (Homo)
assuming βi = β for i = 1, . . . , N.

In addition, we compare three existing subgrouping-based
feature selection approaches: (1) the pairwise fused Lasso
(FLPa) with an L1 penalty: λ1

∑p
k=1

∑
i<j |βik − βjk| +

λ2
∑N

i=1 ‖βi‖1; (2) fusion and feature selection with a trun-
cated L1-penalty (FTLP) (Shen, Huang, and Pan 2012):

λ1
∑p

k=1
∑

i<j Jτ (|βik − βjk|) + λ2
∑p

k=1
∑N

i=1 Jτ (|βik|), where
Jτ (a) = min( a

τ
, 1); and (3) the fused Lasso (FuseL) (Tibshirani

et al. 2005) with an adjacent fusion: λ1
∑p

k=1
∑

i′=i+1 |βik −
βi′k| + λ2

∑N
i=1 ‖βi‖1. The first two methods are both imple-

mented by the R package FGSG (version 1.0.2) (Shen, Huang,
and Pan 2012), and the last one is implemented by the R package
penalized (version 0.9-50) (Goeman et al. 2018), where the least-
squares estimators are used as initials to order the coefficients
analogous to the strategy used in Tang and Song (2016).

Table 1 summarizes the average root mean square errors
(RMSE) of the individualized coefficient estimator, (Np)− 1

2 ‖β̂−
β‖2, based on 100 simulations, while Figures 3 and 4 provide the
corresponding boxplots. The proposed method has the smallest
RMSE in all settings, which has an improvement of at least
20% (m = 10) and 71% (m = 20) compared to the other
methods for both sample sizes N = 40, 100 when γ = 1. The
improvement is more significant reaching 150% (m = 10) and
250% (m = 20) when the subgroups are separated well (γ = 2).
This is because the proposed method is able to borrow strength
from different individuals within the same subgroup in esti-
mating individualized coefficients, while successfully shrinking
weak signals to be zero. The three fusion-based methods have
similar performances, which are all better than the other non-
subgrouping approaches. However, the additional parameter
tuning and inefficient pairwise fusion result in greater estima-
tion errors, and are effective than the MDSP approach.

Figures 6 and 5 provide the boxplots of correct variable
identification rate (CVSR: correct rate of classifying βi’s to be
either zero or nonzero), sensitivity, and specificity for all variable
selection approaches. The three fusion-type approaches have
very similar performances and thus the fused Lasso (FusedL)
is displayed as a representative. The MDSP approach clearly
outperforms the other feature selection approaches in terms of
the highest CVSR and the specificity rates. Additional tables
and boxplots summarizing the estimation of sub-homogeneous
effects, the CVSR, sensitivity, and specificity in other settings,
are provided in Section B.3 of the supplementary materials.

In unsupervised subgrouping analysis, determining the
number of subgroups is always challenging. Here we adopt the
modified-BIC-based strategy introduced in Section 4.2. In the
interest of space, an additional simulation study investigating
the selection of subgroup numbers is reported in Section B.1 of

Table 1. The average RMSE of the proposed MDSP model compared with other approaches based on 100 simulations, with sample size (Sp size) N = 40, 100, individual
measurement size (Ind size) m = 10, 20 where Sub, Homo, FusedL, Lasso, AdapL, SCAD, and MCP stand for individual-wise model, homogeneous model, the fused Lasso,
the Lasso, the adaptive Lasso, the SCAD, and the MCP regularization models, respectively.

Methods

Sp size (N) Ind size (m) MDSP Sub Homo FusedL FLPa FTLP Lasso AdapL SCAD MCP

γ = 1

40 10 0.267 0.349 0.504 0.306 0.296 0.312 0.439 0.339 0.344 0.350
20 0.120 0.232 0.502 0.206 0.196 0.207 0.298 0.207 0.201 0.201

100 10 0.262 0.350 0.501 0.319 0.290 0.311 0.394 0.334 0.335 0.345
20 0.119 0.233 0.501 0.210 0.200 0.212 0.271 0.208 0.205 0.206

γ = 2

40 10 0.122 0.348 1.004 0.317 0.303 0.299 0.408 0.309 0.311 0.309
20 0.048 0.230 1.002 0.204 0.197 0.196 0.293 0.181 0.168 0.167

100 10 0.113 0.351 1.001 0.318 0.301 0.315 0.387 0.305 0.300 0.299
20 0.037 0.235 1.001 0.210 0.201 0.205 0.274 0.208 0.206 0.206
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Figure 3. The boxplot of RMSE of the proposed MDSP model compared with other approaches based on 100 simulations, with sample size N = 40, 100, individual
measurement size (cluster size) m = 10, 20, where homogeneous effect γ = 1.

Figure 4. The boxplot of RMSE of the proposed MDSP model compared with other approaches based on 100 simulations, with sample size N = 40, 100, individual
measurement size (cluster size) m = 10, 20, where homogeneous effect γ = 2.

the supplementary materials. In general, the proposed method
is able to obtain an accurate estimation on the number of
subgroups, with a probability of more than 85% to identify
the correct number of subgroups under different subgrouping
scenarios with various sample sizes (N = 60, 120), and individ-
ual repeated measurement sizes (m = 5, 10, 20). In addition,
the proposed approach also outperforms the alternative two-
stage strategy based on the individualized least-squares esti-
mates and the Gap statistics (Tibshirani, Walther, and Hastie
2001).

Next we test the robustness of the proposed model when
the number of subgroups is misspecified. We generate the data
as in model (15) under two scenarios: one has a population
homogeneous predictor (βi = γ = 2, i = 1, . . . , N) and the
other generates individualized coefficients with three subgroups
(γ0 = 0, γ1 = −3, γ2 = 1) with balanced size. For both
scenarios, we fit the proposed model assuming two subgroups
(βi = 0, γ ).

Table 2 provides the average RMSEs and CVSRs for the
proposed method, the individual-wise model, and the five other
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Figure 5. The boxplots of CVSR, sensitivity, and specificity for all regularization approaches based on 100 simulations, with individual measurement size (cluster size)
m = 10, 20, where homogeneous effect γ = 2 and sample size N = 100.

Figure 6. The boxplots of CVSR, sensitivity, and specificity for all regularization approaches based on 100 simulations, with individual measurement size (cluster size)
m = 10, 20, where homogeneous effect γ = 1 and sample size N = 100.

Table 2. The average RMSE and CVSR of the proposed MDSP model compared to the individual-wise model (Sub), the fused Lasso (FusedL), the Lasso, the adaptive Lasso
(Adapl), the SCAD, and the MCP penalization models, with sample size N = 60 and cluster size (individual measurement size) m = 10.

Scenario MDSP Sub FusedL Lasso AdapL SCAD MCP

Bk = 1 RMSE 0.115 0.346 0.319 0.414 0.373 0.346 0.345
(βi = 2) CVSR 0.996 – 0.993 0.994 0.992 0.995 0.996

Bk = 3 RMSE 0.277 0.349 0.315 0.410 0.335 0.337 0.338
(βi = −3, 0, 1) CVSR 0.901 – 0.748 0.877 0.902 0.816 0.817

NOTE: Scenario 1 contains a population homogeneous effect (Bk = 1) and Scenario 2 contains an individualized predictor of three subgroups (Bk = 3) with equal subgroup
size. In both cases the MDSP model assumes two subgroups, where the estimated sub-homogeneous effects are γ̂ = 2.01(0.06) and γ̂ = −2.99(0.06) (with empirical
standard errors in parenthesis), respectively.

regularized methods described in Section 5.1. Figure 7 illus-
trates the estimation of individualized coefficients from the
proposed model. In general, the proposed method is robust
against the misspecification of subgroup numbers in terms of

the consistently smallest RMSE and the highest CVSR among
all methods. Specifically, the MDSP model does not suffer from
the homogeneous-effect setting, as all individuals are essen-
tially shrunk toward a unique nonzero group effect. In the
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Figure 7. The individual-wise least squares estimator and the proposed estimator assuming two subgroups (including a zero group) for individualized parameters in two
scenarios: a homogeneous group, and three subgroups, where the sample size N = 60 and individual measurement size m = 10.

scenario with three true subgroups, the subgroup with a rela-
tively stronger signal (γ1 = −3) is successfully identified which
gains more estimation efficiency, while the subgroup with the
weaker effect (γ2 = 1) is shrunk toward zero which does not
have extra loss as it is just equivalent to the Lasso estimator.

5.2. Correlated Data and Application on Semi-New
Individual

In this subsection, we investigate the performance of the pro-
posed model utilizing within-individual correlation and its
application on newly observed individuals. We consider an
individual-wise model of two individualized predictors with
serial correlations:

yi,t = α0 + α1zi1,t + α2zi2,t + βi1xi1,t + βi2xi2,t + εi,t ,
i = 1, . . . , N, t = 1, . . . , m. (16)

The individualized coefficients β1 = (β11, . . . , βN1)T and β2 =
(β12, . . . , βN2)

T are generated as

β1 = (γ1, . . . , γ1︸ ︷︷ ︸
N/2

, 0, . . . , 0︸ ︷︷ ︸
N/2

), β2 = (0, . . . , 0︸ ︷︷ ︸
N/2

, γ2, . . . , γ2︸ ︷︷ ︸
N/2

),

where γ1 = 1 and γ2 = −2. The covariates zi1,t , zi2,t , xi1,t
and xi2,t are generated from N(0, 1). The random error εi =
(εi,1, . . . , εi,m)T is generated from a multivariate normal distri-
bution with mean 0 and covariance σ 2R(ρ), where R(ρ) is the
correlation matrix which has either an AR-1 or exchangeable
structure with σ = 1 and ρ = 0.5.

Table 3 summarizes the average RMSEs of the MDSP model
using different working correlation structures compared to the
independent model. In general, the proposed model utiliz-
ing within-individual correlation information achieves smaller
RMSE than the independent model. In particular, if the correct
working structure is specified, the RMSE can be reduced at
least 40% compared to the one obtained using independent
structure.

As an unsupervised learning, subgrouping analysis has a
great challenge in dealing with the new individuals unless addi-
tional assumptions are imposed, as in subgroup membership
depending on some other observable variables. However, these

assumptions are essentially difficult to validate in practice. Since
this article targets nonobservable covariates effects, following
the existing literature about individualized dosage (Diaz et al.
2012; Zhu and Qu 2016), here we consider a semi-new indi-
vidual with a limited number of initial individual observations.
Specifically, we generate a semi-new individual with m∗ initial
observations y∗

i = (y∗
i1, . . . , y∗

im∗)T with covariates x∗
ik’s and z∗

ik’s
(k = 1, 2) following (16), for i = 1, . . . , N∗, with independent
errors, where the coefficients β∗

i1 and β∗
i2 are generated from a

Bernoulli distribution with a probability of 0.5. We first estimate
the sub-homogeneous effects γ̃1 and γ̃2 by fitting an MDSP
model on a training set of 100 individuals, each individual with
20 individual measurements. For the ith semi-new individual,
we apply the MDSP model given (γ̃1, γ̃2):

min
α∗,β∗

i1,β∗
i2

‖y∗
i − α∗

0 − α∗
1 z∗

i1 − α∗
2 z∗

i2 − βi1x∗
i1 − βi2x∗

i2‖2
2

+
2∑

k=1
sλ∗(β∗

ik, γ̃k).

We investigate the parameter estimation (RMSE) and the
variable selection (for β1 and β2) on a semi-new individual
using the MDSP model, the individual-specific linear model,
and the individual-specific Lasso model. For the linear model,
the variable selection is based on the marginal p-value with
a significance level of 0.05. All results are evaluated based on
N∗ = 100 semi-new individuals with m∗ varying from 6 to 20.
We add a homogeneous model estimator from the training as a
reference.

Figure 8 shows that the MDSP model consistently achieves
the smallest RMSE values, indicating the most efficient pre-
diction accuracy, and also has the best accuracy in predictor
selection/elimination. The improvement of the MDSP model is
more significant as the semi-new individual has fewer initial
observations, for example, when m∗ = 6, the MDSP model
reduces the RMSE value by 476% and 62% compared to the
OLS model and the Lasso model, respectively. In addition, the
MDSP model also consistently outperforms the homogeneous
model with an improvement of at least 34% (and up to 250% as
m increases) in the RMSE value.
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Table 3. The average root mean square error (RMSE) of the proposed MDSP model with different working correlation structures based on 100 simulations, including AR-1
(βAR1), exchangeable (βEx) and independent (β Ind) models.

True correlation Cluster size (m) N = 20 N = 80

βAR1 βEx β Ind βAR1 βEx β Ind

Exch 10 0.209 0.165 0.265 0.193 0.110 0.258
20 0.072 0.053 0.078 0.067 0.051 0.076

AR-1 10 0.182 0.230 0.258 0.183 0.205 0.256
20 0.091 0.121 0.132 0.089 0.112 0.130

NOTE: The true structures for the within-individual serial correlation are AR-1 or exchangeable, and correlation parameter ρ = 0.5, sample size N = 20, 80, cluster size
(individual measurement size) m = 10, 20.

Figure 8. The left figure provides the average RMSE values of the coefficients estimations (β̂1, β̂2) for the MDSP model, the individual-wise OLS model, the individual-wise
Lasso (L1) model and the homogeneous model estimated on the training set. The right two figures report the correct variable selection/elimination rates for β1 and β2,
respectively. All results are evaluated based on 5 replications of N∗ = 100 semi-new individuals over different numbers of individual measurements ranging from 6 to 20.

6. Real Data Application

In this section, we apply the proposed individualized vari-
able selection method to the Detroit Neighborhood Health
Study (DNHS) (https://dnhs.unc.edu/), which is a representative
longitudinal study investigating genetic variation or traumatic
events effects on mental disorders of African American adults
in Detroit, Michigan.

The DNHS contains blood samples and five-wave surveys
which ask questions about demographics, traumas, stressful
events, and post-traumatic stress disorder (PTSD). The sur-
vey at each wave includes a post-traumatic checklist (PCL)
based on incident trauma exposures, which is a 17-item self-
reported measure of PTSD symptoms. We treat the average
of 17 PCL scores as the response variable with a logarithm
transformation. Studies (Rusiecki et al. 2013; Chen et al. 2016)
show that pathophysiology of PTSD is associated with DNA
methylation (DNAm) in glucocorticoid receptor regulatory net-
work (GRRN) genes, since the process is intrinsically linked to
gene regulation. To identify cytosine-phosphate-guanine (CpG)
sites in GRRN genes which are significantly associated with
PTSD, we use DNAm values at 1648 CpG sites as potential
predictors.

Specifically, we target investigating the potential heteroge-
neous effects of the CpG predictors on the PCL scores. In

addition, we incorporate the numbers of traumas and stressful
events as homogeneous control variables. The DNHS has 126
individuals with traumas whose average PCL scores in the first
and second waves are completely observed. Since missing rates
of average PCL scores from the third to fifth waves are higher
than 50% and our sample size is limited, we impute the missing
response values y∗

it (for the ith individual at the tth wave) from
N(μi, 0.352), where μi is the individual mean calculated based
on previous observed yit ’s, while 0.35 is determined based on the
sample standard deviation of all complete responses. We split
the data into training and testing sets with three waves and two
waves, respectively.

Given the limited number of individual-wise repeated
measurements (three waves for training) and the ultrahigh-
dimensional covariates (1648 CpG sites), we carry out a screen-
ing process to identify potential covariates with significant het-
erogeneous effects. We fit a marginal homogenous model for
each CpG predictor and filter out the CpG cites with p-values
greater than 0.4, which are unlikely to have significant effects
for any reasonably large subgroup. For the remaining 376 covari-
ates, we fit a marginal MDSP model to each of them and estimate
the number of subgroups based on the gap statistic (Tibshirani,
Walther, and Hastie 2001). We are able to identify three CpG
sites (cg03256465, cg03762702, and cg06473843) which have
significant heterogeneous effects.

https://dnhs.unc.edu/
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Table 4. The p-values of the estimated CpG coefficients in DNHS study from the homogeneous model, the refitted model within subgroups identified by the MDSP model
(G(0) and G(γ )), and by the mixture model (Comp 1 and Comp 2), and the prediction RMSE of PCL scores on testing set.

p-values of the coefficients

CpG sites Homogeneous MDSP MixReg

G(0) G(γ ) (Proportion) Comp1 Comp2

cg03256465 0.189 0.708 0.001 (36.5%) 0.783 0.228
cg03762702 0.396 0.468 0.029 (34.1%) 0.189 0.223
cg06473843 0.376 0.156 0.001 (40.4%) 0.007 0.082

Prediction RMSE 0.385 0.292 0.336

For illustration, we compare the proposed MDSP model
with the homogeneous regression model and the mixture-of-
regression model (McLachlan and Peel 2004). Notice that all
DNAm values at the CpG sites are measured only once, thus
there is no variation on those covariates within an individ-
ual over longitudinal waves. Therefore, any individual-wise
models such as the individual-wise OLS model and the Lasso
model as well as the random-effects model are inapplicable. We
implement the mixture of regression model by the R package
“mixtools” (version 1.1.0) where the number of the mixture
components is selected as two by bootstrap sequential testing
(McLachlan and Peel 2004).

To evaluate the model performance, we calculate the aver-
age prediction RMSE of the response PCL scores on the test-
ing dataset. In addition, to examine whether subgrouping (the
MDSP model and the mixture model) provides more informa-
tive data structure, we refit a homogeneous model within each
identified subgroup, and report the marginal p-values for CpG
predictors, respectively.

Table 4 summarizes the RMSE values and the p-values of
the estimated CpG coefficients. The MDSP model reduces
the RMSE by 15% and 32% compared to the mixture model
and the homogeneous model, respectively. For variable selec-
tion, the homogeneous model does not provide any significant
results. However, the MDSP model successfully obtains signif-
icant p-values corresponding to three CpG sites with identi-
fied nonzero-effect subgroups, while the p-values in the zero-
effect subgroups are clearly insignificant. In contrast, only one
CpG site (cg0647384) presents significance in one subgroup
of the mixture model (Component 1). This indicates that the
MDSP model provides more informative subgrouping structure
as it achieves individualized variable selection and subgrouping
simultaneously. Additionally, we note that the nonzero-effect
subgroups identified by the MDSP model have reasonably large
sizes, consisting of 36.5%, 34.2%, and 40.4% of sample size with
respect to CpG sites cg03256465, cg03762702, and cg06473843.

In Section B.2 of the supplementary materials, we provide
another illustration of the proposed method analyzing the Har-
vard longitudinal AIDS clinical trial group data to investigate
the heterogeneous treatment effects of Zidovudine on CD4 cell
counts.

7. Discussion

In this article, we consider an individualized regression model
where both the number of individuals and the number
of individual-wise measurements increase. To select unique

features for different individuals, we propose a novel multidirec-
tional separation penalty to implement individualized variable
selection. In addition, by using subpopulation structure, we
induce sub-homogeneous effects and borrow cross-individual
information to achieve a good balance of parsimonious model-
ing and heterogeneous interpretation.

The proposed multidirectional separation penalty naturally
embeds feature selection into subgrouping pursuit by leveraging
a center-based clustering scheme with a subgroup center of zero.
The alternative-directional shrinkage provides a new perspec-
tive beyond the scope of traditional penalization approaches,
where the oracle properties can be achieved even with a con-
vex penalty along each direction. Moreover, by incorporating
within-individual serial correlation, the proposed method is
able to gain more efficiency than the model assuming indepen-
dence.

In subgroup analysis, to access heterogeneous covariates’
effects, the existing literature (Shuster and van Eys 1983; Gail
and Simon 1985; Yusuf et al. 1991; Lagakos 2006; Wang et al.
2007; Gunter, Zhu, and Murphy 2011; Rendle 2012) proposes
adding more interaction terms under a homogeneous model
setting, which relies on prespecified model assumptions such
as linear relationships (Gunter, Zhu, and Murphy 2011; Rendle
2012). However, these assumptions are usually difficult to verify
in applications. The covariates’ heterogeneity could be more
complex due to, for example, unobserved factors rather than
observed covariates. By contrast, the proposed method detects
heterogeneous structures on individual covariates’ effects with-
out relying on additional model assumptions on subgroup
mechanisms.

To provide individual-wise model inference, we lay out a
double-divergence theoretical framework which allows both
sample size and individual-wise measurement size to diverge,
and also incorporates a divergent longitudinal correlation struc-
ture. The established large sample results indicate that the pro-
posed method achieves a strong oracle property and thus inher-
its the optimal convergence rate with true subpopulation infor-
mation. In addition, we also provide the optimal divergence rate
of the dimension of individualized parameters as the sample size
increases.

In this article, we mainly consider a fixed dimension of indi-
vidualized covariates, as the number of typical individualized
predictors for heterogeneous modeling is usually limited in
practice, such as the treatments in personalized medicine (Yusuf
et al. 1991; Gunter, Zhu, and Murphy 2011) or biomarkers in
personalized cancer genomics (Tursz et al. 2011; Simon and
Roychowdhury 2013), due to the limited size of individual-wise
observations. It would be of great interest to extend the theory
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to a diverging number of individualized covariates, which could
follow the standard results for a high-dimensional setting apply-
ing an individual-wise Lasso model, and then incorporating
grouping effects through a similar strategy as in Theorem 3 of
this article.

Supplementary Materials

The online supplement contains all technical proofs, additional numerical
results, and computation details.
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