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Abstract: Personalized marketing has emerged as a critical marketing strategy as
a result of the success of e-commerce and the accessibility of digital marketing
data. It is well known that different groups of customers might react differently
to the same marketing strategy, owing to their individual preferences. As such, we
propose a pairwise subgrouping approach that can be used to identify subgroups
and categorize similar marketing effects into groups. Specifically, we model cus-
tomers’ purchase decisions as binary responses under a generalized linear model
framework, while incorporating their longitudinal correlation. We penalize the
pairwise distances between heterogeneous effects to formulate subgroups, where a
subgroup is associated with a unique marketing effect. We establish the theoreti-
cal consistency of the subgroup identification in the sense that the true underlying
segmentation structure can be recovered successfully. Here, we also establish the
parameter estimation consistency. We conduct numerical studies and apply the
proposed approach to IRI marketing data on in-store display marketing effects.
The results show that the proposed method outperforms competing methods in
terms of identifying subgroups and estimating marketing effects.

Key words and phrases: Alternating direction and method of multipliers, indi-
vidualized modeling, marketing segmentation, minimax concave penalty, subgroup
identification.

1. Introduction

Personalized marketing has emerged as a critical marketing strategy as a re-
sult of the success of e-commerce and the accessibility of digital marketing data.
Understanding customers’ shopping behaviors and preferences enables effective
individualized marketing strategies that accommodate consumers’ specific needs
and better serve business entities. Machine learning techniques facilitate the
acquisition, processing, and analysis of large volumes of marketing data, thus
providing effective estimates and predictions for personalized marketing strate-
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gies.

This study employs data on consumer packaged goods purchases, developed
by the IRI for research purposes (Bronnenberg, Kruger and Mela (2008)). The
IRI recruited panelists to track their purchases on a weekly basis over 11 years
in two major markets: Eau Claire, Wisconsin, and Pittsfield, Massachusetts
(Kruger and Pagni (2008)). In this longitudinal data set, customers are exposed
to multiple marketing promotion strategies, such as in-store displays, price re-
ductions, and advertisements. We hypothesize that individuals’ heterogeneous
preferences lead to them having different reactions to a given marketing strategy.
Therefore, it is crucial that we identify those customers who are more likely to
purchase products under certain marketing promotion strategies. This is espe-
cially useful when we cannot apply multiple marketing strategies to the entire
population of customers. Therefore, we propose an effective customer segmenta-
tion strategy that can be used to estimate the unobserved marketing effects of
promotion strategies on the purchasing decisions of subgroups of customers over
time.

Cluster analyses are popular statistical approaches to market segmenta-
tion (Wedel and Kamakura (2012)). This approach groups customers based
on their similarities on observed features, such as demographic characteristics,
past-purchase behaviors, and other collected information. However, a traditional
cluster analysis cannot be used to distinguish and identify subgroups based on un-
observed marketing effects on individuals. Here it is feasible to apply a two-stage
procedure, which estimates individual marketing effects first, and then applies a
clustering approach, such as the K-means (Hartigan and Wong (1979)) or mixture
model (Dempster, Laird and Rubin (1977)). However, in order to achieve consis-
tent clustering, the two-stage procedure requires that estimations of individual
effects in the first step be accurate. Alternatively, we can use the mixture regres-
sion model (Wedel and Kamakura (2012)) with dependent variables to cluster
subjects into segments and estimate the effects of each component simultaneously
using the expectation-maximization (EM) algorithm. However, this requires as-
suming an underlying distribution assumption of the mixture regression model,
which may be restrictive in practice. In addition, the joint likelihood of correlated
binary data under the mixture model assumption becomes complicated, making
implementation infeasible. Moreover, the aforementioned methods all require a
prespecified number of clusters.

More recent clustering methods based on the penalized regression model
make it feasible to model heterogeneous effects and select the number of sub-



HETEROGENEOUS LONGITUDINAL CLUSTERING 605

groups for clustering subjects. For example, Pan, Shen and Liu (2013) proposed
a center-based subgrouping method for multivariate vectors using grouping pur-
suit, and Chi and Lange (2015) formulated clustering as a splitting problem using
convex optimization. Then Ma and Huang (2017) clustered subjects by model-
ing subject-specific intercepts, and Ma and Huang (2016) incorporated subject-
specific coefficients for treatment variables. Austin, Pan and Shen (2016) pro-
posed a pairwise penalized regression model with a truncated Li-penalty. How-
ever, the above methods target responses under linear regression model frame-
works for independent data, which cannot be applied to longitudinal binary re-
sponses.

Moreover, the model-based approach is a common strategy for cluster anal-
yses involving longitudinal data, especially for longitudinal trajectories. Coffey,
Hinde and Holian (2014), Ng et al. (2006), and Luan and Li (2003) used a mix-
ture of mixed-effects models to identify the underlying membership of time-course
gene expression data. McNicholas and Murphy (2010) proposed a family of mix-
ture models with a covariance structure specifically designed for longitudinal data
to account for dependent relationships between measurements at different time
points. However, the aforementioned longitudinal clustering problems are only
feasible for continuous responses. Here, researchers assume a Gaussian mixture
model framework and employ the EM algorithm to identify appropriate clusters.

As such we propose a pairwise subgrouping approach to identify subgroups
of similar marketing effects for longitudinal binary outcomes. Specifically, we
model customers’ purchase decisions as binary responses under a generalized
linear model framework that also considers the longitudinal correlations of these
responses. We formulate subgroups by penalizing the pairwise distances between
individual effects, where a subgroup is associated with a marketing effect. We
establish the theoretical consistency of the subgroup identification in the sense
that the true underlying segmentation structure can be recovered successfully.
Here we also establish the parameter estimation consistency.

The proposed method has several advantages. First, we can simultaneously
identify and estimate unique marketing effects for different subgroups, which
allows us to borrow information from subjects within the same subgroup to es-
timate the marketing effects more efficiently. This circumvents the restriction of
the two-stage procedure in classical clustering methods, which requires an accu-
rate estimation of the individual effects. In addition, we can select the optimal
number of clusters automatically, in contrast to the traditional cluster analysis,
which requires prespecifying the number of clusters. In general, our method is
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less restrictive, because we do not need to specify a full likelihood, as mixture
models do. Another advantage is that we can incorporate the serial correlation
arising from the longitudinal data to improve the estimation efficiency.

The rest of the paper is organized as follows. Section 2 introduces the subject-
wise model formulation. In Section 3, we propose a pairwise subgrouping ap-
proach and the corresponding implementation algorithm. Here we also establish
the theoretical properties of the identification and estimation consistency of the
segmented subgroups. In Section 4, we perform numerical simulations and com-
pare the proposed approach with existing approaches. We illustrate our method
using IRI data in Section 5. Section 6 concludes the paper.

2. A Subject-Wise Model Framework

In this section, we discuss the general framework of the subject-wise model.
Rather than assuming the traditional homogeneous model, where all subjects
have a common coefficient for each covariate, we consider the heterogeneity effect
for some covariates of interest from some subjects. Let X;; be the covariates
corresponding to the individual effects 3; with dimension p, and let Z;; be the
covariates corresponding to a homogeneous effect o with dimension ¢ across
subjects. Specifically, the mean function of the binary responses for the subject-
wise model incorporating individual effects 3; is

and the corresponding variance is a function of the mean:
0ij(Bis @) = pi5(Bis @) (1 — pij (B, @),

where h(-) is the inverse logit link function and y;; denotes a binary. To simplify
the notation, we assume that the number of repeated measurements from each
subject is the same, such that n; = n, for all ¢, although our method is not
restricted to balanced data.

Let @ = (B',a’) be the coefficient vector defined on © = {0 : § ¢ RNP+4},
where B = (B,...,8%) is an Np-dimensional individual parameter vector as-
sociated with covariates X = diag(X;), where X; = (X/;,..., X/,). We denote
Z=(Zy,...,Zy) ,where Z; = (Z],,..., Z!,)),and u(0) = (n1(0)', ..., un(0)"),
where p;(0) = (11(0), ..., nin(0))". The matrix representation of the model in
(2.1) is p(0) = A(UB), with U = (X, Z).

Our goal is to estimate the coefficients of interest, where we assume that the
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individual parameters exhibit a certain subgrouping structure. Specifically, let
G = (G(1),...,G(N)) be the subgrouping membership, where G(i) € {1,..., K}
is a subgrouping mapping for subject i, and K (K < N) is the number of distinct
group effects. Consequently, the corresponding subspace of 8 under the sub-
grouping partition is ©9 = {6 : B; = B; € RP for any G(i) = G(j) =k, 1 < k <
K; and a € R?}. Let n = (v, &’)" be the coefficient vector under subgrouping
partition G, where ~ is the Kp-dimensional subgrouping effect. That is, 8; = v«
it G(i) = k.

3. Methodology and Theory
3.1. A pairwise grouping approach

In this section, we propose a pairwise grouping (PG) approach to simulta-
neously identify the subgrouping structure G and estimate the subgrouping and
homogeneous effects in 8. Here, we only require that the first two moments of the
binary responses exist; therefore, we apply a quasi-likelihood with the following
objective function:

Qnn(0) = Ina(8) + Y P(Bi—Bj, M), (3.1)

1<i<j<N

where [y, (6) is a negative quasi-loglikelihood, P(-,\f) is a penalty function of
the pairwise distance between individual effects 3;’s, and a tuning parameter A
determines the closeness of the pairwise differences.

The quasi-likelihood score corresponding to the derivative of [y, (0) is

N
gnn(0) = > Di(0)"Vi(6) 7 (Y: — ui(6)),

i=1
where D;(0) = 0p;(0)/0607, and V;(0) is the covariance matrix for each sub-
ject. We incorporate the correlation information between repeated measure-
ments using a common working correlation structure in V;(0) = V;(0,p) =
A;(0)'2R(p)Ai(6)/2, where A;(0) = diag(c;;(0)) is the diagonal matrix of the
variances, and R(p) is a working correlation matrix with a correlation coefficient
p. Liang and Zeger (1986) introduce several commonly used working correlation
matrices, such as the exchangeable and the first-order autoregressive correlation
structures. Note that Iy, (0) = — Zf\il > i—11yij log(rij () + (1 — yij) log(1 —
1ij(0))} if an independence structure is assumed.
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One advantage of the proposed approach is its ability to balance model par-
simony and model complexity by grouping subjects with similar individual pa-
rameters. To ensure the sparseness of the pairwise differences between individual
effects and to achieve nearly unbiased parameter estimations, we apply the min-
imax concave penalty (MCP, Zhang, 2010) using

t
P~ 37) = I~ 5l A Pt = [ (12 5 )
where the parameter 7 controls the concavity of the penalization, and || - || is
denoted as the Lo-norm of the vectors. In addition, we only require the first two
moments of the responses under the quasi-likelihood framework, as opposed to
specifying the full likelihood function. This allows us to incorporate the correla-
tion information between repeated observations without needing a complex joint

distribution for the correlated longitudinal binary data.

3.2. Implementation

To achieve computational feasibility, we propose an alternating direction and
method of multipliers (ADMM) algorithm (Boyd et al. (2011)) to minimize the
objective function (3.1). Note that the MCP penalty introduces nonconvexity to
the objective function. Furthermore the penalization term leads to nonseparable
parameters of 3; in the estimation. To overcome these problems, rather than
solving the original optimization directly, we introduce a set of constraints with
v;j = 3;—B;j, for 1 <i < j < N. Then we consider a new constraint optimization
problem

I(Igl}vn an(0)+P(U), s.t. Vij :,Bi—ﬂj, 1 §Z<] SN, (32)
where v = (v;5)]<;j<n and P(v) = >, ; Pr([[v]], Af). To solve (3.2), we use
the ADMM algorithm with the augmented Lagrangian function

Ei@(g?Ua )‘) = an(H) + ZPT(||Uij|’> )‘f)
1<j

+ gz 18 = Bj — vii|I> + > AL(Bi — B — vij),

1<j 1<j

(3.3)

where k is a fixed augmented parameter, and A = ()\;])’1 <i<j<N 18 the Lagrangian

multiplier. The ADMM algorithm has the advantage of decomposing (3.2) into
several small pieces, which can be solved more easily. Specifically, we update the
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estimations of 8, v, and A sequentially at the (s+ 1)th iteration step, as follows:
66+ = argmin Qnn(0, o), )\(5)), (3.4)

(7]

v = argmin Qn, (0T, v, X)), (35)

1 1 1 1
For the first minimization problem in (3.4), we apply the Newton-Raphson
algorithm to solve the quasi-likelihood estimating equations and, thus, obtain

the global minimizer. That is, we minimize
Qua(8,0, X)) = 1,(8) + 5 DB — 51|,

where & = v+r"1A, D = (Dij)1<icj<ns Dij = (ei—e;)' @1, ® is the Kronecker
product, and e; is an N-dimensional vector with one at the ith component, and
zeros elsewhere. An advantage of this approach is that we do not need to specify
a likelihood function explicitly. Instead, the minimization of Qny (0, v, X))
under the quasi-likelihood framework yields the following estimating equations
with respect to 3 and «:

OQNn (68,0 X))
0BT
GQNn(B,U(S), )\(8))
oaT
where V (0, p) = diag(Vi(0,p)) and A(0) = diag(A;(0)).
The Newton-Raphson algorithm updates the estimation of 8 at the mth

=-XTAO)V(6,0) (Y — u(6)) + DT (DB — "),

=-ZTAO)V(8,p) (Y — u(B)),

inner step iteratively using

6(5+1,m+1) _ 6(s+1,m) _ (XTMX + HDTD)*1 (XTMO(M(B(SJrl,m)) N Y)
+HDT(D,3(S+1’m) o 6(8)))7

and
asTLm+l) _ o (s+1m) _ (ZTMZ)—lzTMO(u(9(8+1,m)) -Y),

where M = A(0)V (0, p) ' A(0) and My = A(0)V (0,p)~!. Consequently, we
obtain ¢t1) once the Newton-Raphson algorithm converges. In addition, we
can estimate the correlation coefficient p using moment estimations based on
the residuals from the generalized linear model (Liang and Zeger (1986)). Note
that M becomes A(@), and M, becomes the identity matrix if an independence
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structure is assumed. Under independence, the minimizer from the Newton-
Raphson algorithm is identical to the ordinary logistic regression estimation.

For the second minimization function in (3.5), because it is a convex function

with respect to each vy, for 7 > 1/k, vgjﬂ) can be updated using the following
explicit solution:
uis if [l > Ay,
oyt =1 (1) 1 (5D
07 - s+1) . s+
ij T (1 — ||u§+1)||> +uij if HUU | <7TAg,

where 0 = Af/k and ul(-;ﬂ) = ,BZ(SH) - ,BJ(SH) - /\Z(.;)/ﬁ. This allows us to
implement parallel computing for each (i, j), which speeds up the computation.

The convergence of the proposed ADMM algorithm is not trivial, owing to
the nonconvexity of the primal objective function in (3.2); see Wang, Yin and
Zeng (2015), Hong, Luo and Razaviyayn (2016), and Li and Pong (2015) for
further information. For the pairwise penalization problem considered in this
study, without imposing additional conditions on the estimated sequence, we
establish a general convergence property for a family of objective functions and
penalty functions that have the following regularity properties: (1) (boundedness)
the primal objective function Iy, (0) 4+ P(v) is lower bounded and coercive; that
is, it “grows rapidly” when the values of the parameters diverge on the feasible
set; (2) (smoothness) both I, (0) and P(v) are Lipschitz differentiable, yielding
a sufficient descent on L, and a convergent gradient, along with the iteration
process. More detailed conditions are summarized as Conditions R1-R3 in the

Supplementary Material.

Proposition 1. Suppose the regularity conditions R1-R3 in the Supplementary
Material hold for the objective function in (3.2). Then for a sufficiently large ,
the proposed ADMM algorithm satisfies:

(i) (Primal residual convergence) lim,_,o0 |7 > = 0, () = DBG) — v();
(ii) (Dual residual convergence) lim,_,o |0 — v+ || = 0;

(iii) (Estimation convergence) the estimated sequence (8, v(*), X(*)) is bounded,
and has at least one limit point (0*,v*, X*), where each limit point is a sta-
tionary point of the augmented Lagrangian function L, in (3.3).

Primal residual convergence implies that the primal feasibility is achieved;
that is, 87 — B8] —v;; =0 (1 <i < j < N). Therefore, this limit point satisfies
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the optimality conditions. For the proposed model, we check that the conditions
in Proposition 1 are satisfied, yielding the following corollary.

Corollary 1. For the objective function in (3.1) with the MCP penalty, for a
sufficiently large K, the estimation sequence generated by the ADMM algorithm
converges to a stationary point of (3.1) subsequently.

In fact, in addition to the MCP penalty adopted in this study, the proof
of Corollary 1 can be applied to show the convergence of the ADMM for other
penalty functions, including the SCAD, Ly,-norm (p > 1) and truncated Li-
penalty (TLP). As a result of the nonconvexity, the obtained solution could be
a local optimum of the objective function in (3.1). In practice, we can search
through multiple initial values or select appropriate “warm-start” initial values
to obtain the global optimal solution. We outline the detailed ADMM algorithm
as follows.

Algorithm 1 ADMM algorithm
Initialize: a(?), B0, A©) and v, k and 7 > 1/k are fixed.
For s =0,1,2,...
Stepl: update ot and gls+1)
Initialize: a*T10) = os) g+1.0) = g(s)
Newton-Raphson iteration for a(st1:m+1) and gls+1m+1) yntil

||18(s+1,m+1) _ ﬂ(s+1,m)” + Ha(s—i-l,nL+1) _ a(s-l—l,m)” < €.

Step2: update vi(;ﬂ), foralll1<i<j<N
Step3: update )\z(-;-ﬂ), foralll1<i<j<N
Step4: Iterate Steps 1-3 until ||+ || < ¢ and [0+ — 0G| < e,.

In nonconvex optimization, it is critical to choose an appropriate initializa-
tion of the parameters, because this will yield an ideal solution and significantly
fewer iterations. Here, instead of setting the initial values of A and v© to
zero, we start with all observations in one cluster, and then split subjects into
several groups. The initial value is set as

0 = argmin iy, (0) + /\gfo)Dﬁ,
0co

where /\gco) is a small number, such that each subject forms its own subgroup.

In addition, we provide a modified BIC-type model-selection criterion to



612 ZHU, TANG AND QU

select the tuning parameter A\ that determines the complexity of the model by
fusing similar 3;. The BIC-type criterion is defined as

N n
BICy, ==Y > 2 (yz-j log(p3y) + (1 — y3;) log (1 — ﬁg)) +dy log(Nn)df, (3.6)
i=1 j=1

where df = Kp + q is the effective degrees of freedom, and K is the estimated
number of subgroups of heterogeneous effects. For each Ay, ﬁf‘j = h(XijBf‘ +
Zijd/\) is the corresponding estimated probability. Here, the first term of BIC',
in (3.6) is the quasi-likelihood for binary data under the independence model
criterion (Pan (2001)), and the second term depends on N through dy to allow
for greater penalization in more complex models (Wang, Li and Leng (2009); Ma
and Huang (2017)). This is because the parameter space in our setting diverges
as the sample size grows. In our analysis, we let dy = clog(Np + q), where c is
a positive constant.

The computation cost of the proposed method could increase quickly as the
sample size increases, owing to the pairwise fusion. Nevertheless, these obsta-
cles can be overcome through implementing parallel computing. In addition,
by adopting the MCP penalty in the proposed model, the pairwise coefficients
with large differences are no longer penalized, which can significantly reduce the
computational cost.

3.3. Theoretical properties

In this section, we establish the theoretical properties of the proposed method.
In particular, we investigate the subgroup identification consistency, and show
the estimation consistency of the oracle estimators when the true subgrouping
membership is known. We denote Apax(-) and Apin(-) as the maximum and min-
imum eigenvalues, respectively, of a specific matrix, and ||«|| as the Lo-norm of
the vector . Let 7, = Amax(R(p) ' R?), where R is the true correlation matrix
and R(p) corresponds to the working correlation matrix. We denote the true
parameters of interest as 8°, 3%, a”, and n°. We require the following conditions
and assumptions to establish the Theorem 1:

(C1) : Tn_l)‘min(cn(oo)) — 00, where

N
Co(0°) =Y Di(6°)T A;(6°) "' />R(p) ' Ai(6°) /2 D;(6").
=1
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C2) : min 0_39% > 7A¢, and Af > T%/2)\mjn C,(6° _1/21", for a constant

(©2): | min [80-BY] > 7y, and s (Ca(6°))
r > 0.

Theorem 1. If conditions (C1-C2) and regularity conditions (A1-A2) provided

in the Supplementary Material are satisfied, for any fized N, there exists a local

minimizer @ = argmin Qn,(0), with 8 € B,(r) = {0 : 7',1_1/2||C’n(00)1/2(0 -

0°)|| < r}, for some constant r > 0, such that as n — oo, we have
P(g - gU) - 17

where G is the estimated subgrouping membership, and G° is the true subgrouping
membership.

Theorem 1 indicates that the proposed method can identify the true sub-
grouping structure with probability tending to one, when we have a sufficient
number of repeated measurements for each subject. Note that condition (C1)
depends on both the true and the working correlation structures when the re-
sponses are correlated. When R? and R(p) are independent, (C1) requires the
marginal information matrix C,(8°) only. Furthermore, condition (C1) reduces
t0 Amin(C) = 00, with C' = diag{3_; XiTinj, >°: Z1 Z;}, if the variances of the
binary responses are bounded away from zero and X7 Z = 0 is satisfied. This
condition is typical in classical regression problems. In the extreme case when
RY is exchangeable, we require the specification of R(p) to be close to the true
correlation matrix. Otherwise, if we use an independent working correlation,
then we need a stronger condition on the covariates, such that )\min(é) /n — 0.
See Fahrmeir and Kaufmann (1986) for a detailed discussion on the increase in
the magnitude of the coefficients associated with relevant predictors when the
number of repeated measurements increases.

Remark 1. Because the true parameter value (6°) is unknown, there could be a
gap between the computational optimum solution (éNn) of the sample objective
function and the theoretical optimum solution stated in Theorem 1, which en-
joys the statistical property. However, the location of the computational global
minimizer is determined by the consistent unpenalized estimator (6y,), which
minimizes the objective function Iy, (@) and converges to 8°. As the number of
repeated measurements increases (n — 00), under certain regularity conditions,
it is standard to show that, for any > 0, we have P(||@n, — 6°|| < r) — 1.
This indicates that the unpenalized estimator lies in the neighborhood of the
true parameter values. This implies that the global minimizer éNn also lies in
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the neighborhood of the true parameter values with probability tending to one,
yielding an oracle property.

With a known underlying subgrouping membership, the oracle model has a
mean function

/»L*('rl) = h(Wn)’ W = (X’ Z)’ (37)

where X = XA is obtained from a a subgrouping mapping transformation
Anpxkp- That is, A = § ® Ip, where the ith row of 4 is a K-dimensional vector,
with one at the kth component and zeros elsewhere, for the kth subgroup sub-
jects. Consequently, we obtain the oracle estimators n°" = arg min,cgxp+q I3, (1),
where [}, (1) is the negative quasi-likelihood, the corresponding quasi-likelihood
score is

N
Gan(m) =D D () Vi(n, p) (Vi — i (n)),
=1

and D} (n) = Op;(n)/on".

In the following, we define the cluster size of the total number of subjects in
subgroup k as S, = Zf\il I(G(i) = k), and impose the condition (C3) to establish
Theorem 2.

(C3) : 7, Amin(C () — 0o, where

N
Ci(n°) =Y _Dim")" Ai(n°) " *R(p) " Ai(n°) 2D} (n°).
i=1

Theorem 2. Under condition (C3) and regularity conditions (A3-A4) in the
Supplementary Material, the oracle estimators are consistent, such that 7‘{1/2
|CEm)2 (7" — nO)|| = O,(1).  Furthermore, if (A5-A7) are satisfied and

X1Z =0, we have C(n°) = diag{O(nS1)1,,...,0(nSk)I,, O(nN)I,}.

Theorem 2 provides the convergence rate for the oracle estimators. The sub-
group identification consistency from Theorem 1 indicates that we can recover the
underlying subgroup membership of the heterogeneous effects with probability
approaching one. Therefore, the proposed estimator 6 has the same convergence
rate as the oracle estimators. When conditions (A5-AT) are satisfied, the infor-
mation accumulated from the subjects within the same subgroup enables us to
achieve a convergence rate that depends on the cluster size.
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4. Simulation Study

In this section, we conduct simulation studies to investigate the estimation
performance on both the subgrouping and population parameters, as well as
the identification accuracy on the subgrouping membership. We compare our
method with the oracle, K-means, homogeneous, and subject-wise models. The
oracle model uses the generalized estimating equations (GEE) approach assuming
the group membership is known, which, in general, performs best in terms of
estimation accuracy. The K-means model is implemented in two steps. That is,
we perform the K-means clustering using the same initial values as those in the
proposed approach. Then, we fit a GEE model based on the K-means clustering
result. The aforementioned models all consider the subgrouping information. We
also compare two misspecified models that ignore the subgrouping structure of
the covariate effects: a homogeneous model, in which we assume a common 3;
for all subjects, and the subject-wise model in (2.1), in which we assume that
each subject has its own group.

We calculate the squared errors (SE) of the estimations for the subgrouping
and population parameters in order to evaluate the estimation accuracy. We
define SE = ||& — aP||? for the population parameter estimation, and SE =
Zi]L 18 — BY|1?/N = 18 — B8°||2/N for the subgrouping parameter estimations.
Consequently, the root mean squared error (RMSE) is calculated based on 100
simulations, where RMSE = (Ziozol SE,/100)'/2, and SE, is the squared error
in each simulation. In order to evaluate the performance of subgrouping identi-
fication by the proposed method, we calculate the agreement between the true
and estimated membership using several well-known external indices: the Rand
index (Rand (1971)), adjusted Rand index (Hubert and Arabie (1985)), and
Jaccard index (Jaccard (1912)). A larger value, closer to one, indicates better

subgrouping performance.

4.1. Example 1: two subgroups

This simulation considers two subgroups, where the mean response p;; =
hXi;jBi + Zijor), for i = 1,...,100 and j = 1,...,10; the two-group effects
B; = +1.2, with equal group size 50; and the population parameter o« = 0.35.
The covariates X;; are generated from a mixture of two uniform distributions
alU(0.5,1.5) + (1 — a)U(—1.5,—0.5), with a ~ Bernoulli(0.5), and Z;; generated
from N(0,0.52). In addition, the serial correlations within subjects are gener-
ated from either independence, AR(1), or exchangeable (EX), with a correlation
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Table 1. RMSEs of the pairwise-grouping (PG) method and oracle model (Oracle) under
each working correlation specification, the K-means (Kmeans) model with a correctly
specified correlation structure, the homogeneous model (Homogeneous), and the subject-
wise model (Subjectwise).

True model Independence AR(1) EX
Methods « I5) « 15} « B8
Oracléeing 0.1537  0.1063  0.1462 0.1317  0.1674 0.2821
Oracleg, 0.1544  0.1064  0.1394 0.1284  0.1742 0.2807
Oracleey 0.1541 0.1064  0.1439 0.1299  0.1528 0.2765
Kmeans 0.1513  0.5941 0.1514 0.8007  0.1947 1.0726

Homogeneous  0.1624 1.2010  0.1576 1.2023  0.1397 1.2023
Subjectwise 0.1782  6.6705  0.1960  10.0688  0.2828  13.7400

PGina 0.1498  0.4152  0.1575 0.7029  0.1853 0.9223
PGy 0.1511  0.4312  0.1488 0.6611  0.1823 0.8827
PGy 0.1531  0.4197  0.1528 0.6907  0.1584 0.8155

coefficient p = 0.3.

We fix the augmented penalty parameter as k = 1 and the concavity param-
eter as 7 = 3 in the MCP penalty, because the choice of values for these two
fixed parameters is not critical to be subgrouping identification in our numer-
ical studies. In the modified BIC-type criterion in (3.6), the constant c is set
to 5 or 10, which lead to similar results. In Table 1, we compare the methods’
estimations using the RMSE, and show that the proposed PG approach has an
RMSE closest to that of the oracle approach for the subgrouping parameters.
The homogeneous model and the subject-wise model tend to exhibit poor per-
formance, with a large discrepancy between the estimated and true subgrouping
parameters, because these two models are misspecified. The subject-wise model
performs especially poorly because the logistic regression is unstable when the
data presents “perfect separation.”

The K-means approach outperforms the two misspecified models because it
incorporates a subgrouping structure. In addition, it is important to incorporate
any serial correlation in the parameter estimations, because correctly specify-
ing the correlation structure improves the accuracy of both types of parameter
estimations. For example, the PG approach that uses an exchangeable corre-
lation has an RMSE of 0.8155 for the subgrouping parameter estimation when
the true serial correlation is exchangeable. This improves the PG method under
the independence structure by almost 12%. In terms of estimating the shared
parameter o, the methods all exhibit similar performance, with an exception of
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Figure 1. Box plots of the squared errors of the methods in Example 1 when the true
correlation is exchangeable.
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Figure 2. A typical solution path for BAZ in Example 1.

the subject-wise model.

To visualize the performance of the estimation precision and efficiency, we
present box plots of the squared errors in Figure 1 in which the true correlation is
exchangeable. We do not provide the results for the subject-wise model, because
it produces extremely large squared errors and large variations. Figure 1 shows
that the proposed approach has smaller squared errors and variations than those
of the K-means model. In addition, correctly specifying the correlation structure
leads to a more efficient estimation.

Figure 2 illustrates a solution path for the subgrouping selection with differ-
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Table 2. Evaluation of membership identifiability in Example 1.

True model = Methods Rand Adj-Rand Jaccard
PGing 0.9466 0.8931 0.8995

Independence PG, 0.9390 0.8780 0.8835
PG, 0.9408 0.8816 0.8869

Kmeans  0.8830 0.7670 0.8460

PGing 0.8588 0.7176 0.7537

PG, 0.8714 0.7428 0.7728

AR(1) PG, 0.8617 0.7233 0.7582
Kmeans  0.8030 0.6070 0.7130

PGing 0.8389 0.6777 0.7183

EX PG, 0.8454 0.6907 0.7306
PG, 0.8499 0.6997 0.7389

Kmeans  0.7970 0.5940 0.6230

ent values of the tuning parameter \. As the tuning parameter A increases, the
PG approach merges subjects into subgroups. Then the BIC selects the optimal
model when A € [0.15,0.27], where the estimated parameters for the two groups
are quite close to the true parameters. We also investigate the performance of
the subgrouping identification by the PG approach and the K-means method, be-
cause both partition subjects into subgroups. The three indices in Table 2 show
that the PG method outperforms the K-means method for larger index values, in-
dicating better membership recovery. Here, the proposed PG approach achieves
effective estimation and subgrouping identification simultaneously, because it can
automatically borrow within-group information to boost its estimation precision
and efficiency. As a result, it is able to recover the subgrouping structure. In
contrast, the K-means method is implemented in two steps. Here, the clustering
in the second step relies heavily on the accuracy of the parameter estimations
in the first step, which does not use subgrouping information. In addition, the
proposed PG approach with a correct specification of the correlation structure
improves the identification of the subgrouping structure.

4.2. Example 2: a homogenous model

In this section, we investigate the performance of the proposed approach
when the model is misspecified. Here, we assume there is a subgrouping structure,
and that the true setting has no subgrouping, but does have homogeneous effects.
The model is generated similarly to that in Example 1, except that the true
parameter f3; = 0.75, for all subjects, and X;; are generated from N (0, 0.5%). In
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Table 3. RMSEs of the pairwise-grouping (PG) method and oracle model (Oracle), under
each working correlation specification, and the subject-wise model (Subjectwise).

True model Independence AR(1) EX
Methods « 153 « 15} « I}
Oracleing 0.1363 0.1352 0.1793 0.3062 0.2668 0.5147
Oracleq, 0.1367 0.1361 0.1411 0.2058 0.16564 0.2524
Oraclecy 0.1358 0.1348 0.1624 0.2539 0.1441 0.2097

Subjectwise  0.1681 3.0709 0.2313 4.6983 0.3332 4.4588

PGina 0.1363 0.1352 0.1793 0.3062 0.2668 0.5147
PG, 0.1368 0.1361 0.1403 0.2029 0.16564 0.2524
PG, 0.1358 0.1348 0.1626 0.2547 0.1451 0.2125

this case, the homogeneous model is the same as the oracle model and, thus, is
omitted from the comparison.

Table 3 displays the estimation comparisons. The proposed method per-
forms almost identically to the oracle method. In addition, correctly specifying
the correlation structure produces the smallest squared errors for the parameter
estimation. The K-means method is not included here because it also identi-
fies one cluster, and therefore is identical to the oracle approach. However, the
subject-wise model tends to overfit the model, leading to larger squares errors. In
addition, the RMSEs for B in the subject-wise model are almost 20 times those
of the PG method with the exchangeable working correlation. Furthermore, the
PG approach with a correctly specified correlation structure leads to a 60% im-
provement of the RMSE, over that of the PG approach with an independence
working correlation when the true correlation is exchangeable.

Figure 3 provides a solution path when the true model is homogeneous,
which shows a quite different pattern to that of Example 1 when there is sub-
group structure. Figure 3 shows that individual parameters merge as A increases.
Furthermore, there are no obvious subgrouping patterns among the estimates.
The estimated number of clusters is one for all 100 simulations, indicating that
the proposed method is able to identify the correct grouping structure.

5. Application to IRI Marketing Data

In this section, we analyze IRI marketing data. Specifically, we divide cus-
tomers into subgroups to investigate the effects of certain marketing promotion
strategies on their buying decisions. The IRI created an academic-use data set
containing sales data on 30 consumer packaged-goods categories from 47 markets
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Figure 3. A typical solution path for B; in Example 2.

in the United States. To better understand customers’ purchasing behaviors, the
IRI recruited panelists to track their purchases on a weekly basis over 11 years
for two major markets: Eau Claire, Wisconsin, and Pittsfield, Massachusetts
(Kruger and Pagni (2008)). This longitudinal marketing data recorded the pur-
chases made by each panelist on a weekly basis, including data on the product
category, quantity, and total price, as well as on ongoing marketing promotion
strategies, such as price reductions, in-store displays, and advertisements related
to the products.

In this application, we focus on coffee consumption. Specifically, we examine
whether customers purchase more units of coffee if there is an ongoing in-store
display event. Our response of interest is one if the customer buys more than one
unit of coffee and zero otherwise. In all, 6,140 panelists purchased coffee during
the 11-year window. However, the frequencies of their store visits are highly
skewed, with almost 80% of customers purchasing coffee fewer than 50 times, and
the most frequent shoppers purchasing coffee up to 396 times. Here, we analyze
a data subset containing 174 customers who purchased coffee products between
25 and 50 times. To compare the prediction power of the methods, we divide
the data into a training data set containing the first 20 repeated measurements,
with the remaining longitudinal measurements treated as the testing data set.
In addition to estimating the subgrouping effect of the in-store displays, we also
include a time lag variable (Weeklag) in the model from the previous purchase,
corresponding to the population parameter:

logit(pij) = oo + o log(Weeklag) + 5 Iisplay -
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Here, ag and o are population parameters, 5; denotes an individual effect that
might present a subgrouping pattern, and Ip;splay is an indicator variable denoting
whether there an in-store display event was present when the customer made the
purchase.

We identify three subgroups of display effects among these panelists using
the PG method with exchangeable correlation. Specifically, 83 customers show
a moderate negative display effect on purchasing more than one unit of coffee,
with a coefficient of -0.243, 64 customers share a subgroup of a mild positive
effect of 0.935, and the remaining 27 customers exhibit a larger positive effect
of 2.190. Note that the correlation structures have no effect on the subgroup
membership, but show different prediction accuracies as measured by the area
under the curve (AUC), in Figure 4. In particular, the PG method with the
exchangeable correlation produces the largest prediction power, with an AUC
of 0.6372, of the three working correlation structures. On the other hand, the
subject-wise model has an AUC of 0.5959, and the homogeneous model has an
AUC of 0.6018. The result for the K-means approach is not provided because it
selects only one cluster, which is essentially the same as the homogeneous model.

The above subgrouping analysis indicates that there are two groups of cus-
tomers who are more likely to buy more coffee products when in-store displays are
present. We confirm this finding by refitting the model using the GEE method,
given the subgroups identified by the proposed method. Table 4 illustrates the
refitted “display” effects for each identified subgroup, and the 95% confidence in-
tervals of the corresponding odds ratios. The “display” effect estimates are quite
similar between the PG approach and the GEE, given the identified subgroups.
In addition, the odds ratios of the GEE estimators confirm that there are two
segments of customers who are more likely to purchase more than one unit of
coffee products, with odds ratios of 2.630 and 9.155, respectively. In contrast, the
first subgroup of customers are less likely to purchase more coffee even if there

is an in-store display event.

6. Discussion

In this paper we propose a PG approach that simultaneously identifies and
estimates the subgrouping effects for longitudinal binary outcomes. A key strat-
egy of the proposed method that is borrows information across subjects by pe-
nalizing the pairwise differences of the coefficients. This allows us to recover the
true subgrouping memberships effectively. The proposed method is formulated
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Figure 4. The AUC for prediction under various methods.

Table 4. Subgroup in-store display effect estimations and 95% confidence intervals of the
odds ratios for each subgroup.

Subgrouping effects Odds ratio
95% Confidence Intervals

Lower level Upper level

Subgroup size PG estimation GEE estimation GEE Estimation

83 -0.243 -0.290 0.748 0.632 0.886
64 0.935 0.967 2.630 2.220 3.110
27 2.190 2.214 9.155 7.420 11.30

under a quasi-likelihood model framework, which requires a specification of the
first two moments only and is better able to handle correlated binary data. In
addition, we incorporate serial correlations that arise from repeated binary re-
sponses in order to improve the estimation efficiency. An additional advantage
of the proposed approach is that, in contrast to some classical cluster analysis
methods, it does not require prespecifying the number of clusters in advance.
In the real-data application, we identified three subgroups of customers,
among which two groups have different incentives to purchase additional prod-
ucts when in-store display events are present. The third group of customers
shows an adverse effect from in-store displays in terms of purchasing additional
products. In order to better explain the marketing effects on each individual and
recommend suitable marketing strategies for targeted subgroups of customers,
it would be worth investigating the relationship between subgroup membership
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and other individual characteristics, such as demographic information from each
household. The additional information on individuals could also be useful in
designing personalized marketing strategies for new customers whose purchasing
history information is not available.

Supplementary Material

The online Supplementary Material includes the regularity conditions of
(A1-A7), and proofs of Proposition 1 and Theorems 1-2.
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