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A New Electrically Conducting
Metal-Organic Framework Featuring
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Tetrathiafulvalene Ligands
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Department of Chemistry, Clemson University, Clemson, SC, United States

A new electrically conducting 3D metal-organic framework (MOF) with a unique
architecture was synthesized using 1,2,4,5-tetrakis-(4-carboxyphenyl)benzene (TCPB)
a redox-active cis-dipyridyl-tetrathiafulvalene (Z-DPTTF) ligand. While TCPB formed
Zn5(C0O0), secondary building units (SBUs), instead of connecting the Zno-
paddlewheel SBUs located in different planes and forming a traditional pillared
paddlewheel MOF, the U-shaped Z-DPTTF ligands bridged the neighboring SBUs
formed by the same TCPB ligand like a sine-curve along the b axis that created a new
sine-MOF architecture. The pristine sine-MOF displayed an intrinsic electrical conductivity
of 1 x 107®S/m, which surged to 5 x 10" S/m after |, doping due to partial oxidation of
electron rich Z-DPTTF ligands that raised the charge-carrier concentration inside the
framework. However, the conductivities of the pristine and l,-treated sine-MOFs were
modest possibly because of large spatial distances between the ligands that prevented
ni-donor/acceptor charge-transfer interactions needed for effective through-space charge
movement in 3D MOFs that lack through coordination-bond charge transport pathways.
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INTRODUCTION

Metal organic frameworks (MOFs) are versatile materials with diverse structures, composition,
properties, and functions (Furukawa et al., 2013; Yuan et al., 2018). These characteristics of MOFs
have attracted researchers because of their potential applications in catalysis (Liu et al, 2014;
Dolgopolova and Shustova, 2016), guest separation (Li et al., 2012), storage (Sumida et al., 2012),
and delivery, light harvesting (Zhang and Lin, 2014; Liu et al., 2015; So et al., 2015; Maza et al., 2016;
Gordillo et al., 2019), ionic and electronic conduction (Horike et al., 2013; Ramaswamy et al., 2014;
Stavila et al., 2014; Sun et al., 2016; Stassen et al., 2017), and sensing (D’Alessandro, 2016; Lustig et al.,
2017; Khatun et al., 2019), among other advanced applications (Rice et al., 2020). Introducing redox-
active ligands is a rather simple way to elicit multifunctionality in MOFs, a strategy that has been widely
adopted in recent years (Ding et al., 2021). One of the most commonly used redox-active ligands is
tetrathiafulvalene (TTF) (Segura and Martin, 2001; Canevet et al., 2009; Wang et al., 2017b), a sulfur
containing electron-rich molecule that possesses two easily accessible redox states, i.e., TTF " radical
cation and TTF*" dication that has been widely employed as an electron donor in optoelectronic (Wang
et al,, 2017b), conductive (Narayan et al.,, 2012; Sun et al,, 2016), and magnetic materials (Wang et al.,
2017a). Equipped with two pyridyl groups on the TTF core, dipyridyl tetrathiafulvalene (DPTTEF)
ligand not only inherits the redox properties of parent TTF, but also becomes capable of coordinating
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metal ions. The Z-DPTTF ligand, however, exists in a mixture of E
and Z-isomers, with the latter surprisingly being the major isomer.
The E isomer adopts a nearly linear shape, whereas the Z-isomer
adopts a U-shape, which is probably one of the reasons why this
ligand has not been as extensively incorporated in MOFs (Yin et al.,
2016; Sherman et al, 2020; Weng et al,, 2020) as other TTF
derivatives (Park et al., 2015; Wang et al,, 2015; Su et al., 2017;
Wang et al., 2017a; Leong et al., 2018; Wang et al., 2019). Herein,
we report the synthesis of a new electrically conducting sine-MOF
[Zn, (DPTTF)TCPBe3DMA], featuring 1,2,4,5-tetrakis-(4-
carboxyphenyl)benzene (TCPB) and Z-DPTTF where the
former formed Zn,(COO), paddlewheel nodes while the latter
connected the adjacent nodes formed by the same TCPB ligands
via axial coordination in such a way that two U-shaped Z-DPTTF
ligands axially coordinated to the same Zn, paddlewheel node
completed a sine-wave propagating along the b-axis. This new sine-
MOF displayed a 50-fold increase in room temperature electrical
conductivity from 1 x 107 to 5 x 1077 S/m after I, doping largely
due to partial oxidation of the electron rich Z-DPTTF ligands,
which enhanced the charge-carrier concentration.

EXPERIMENTAL SECTION

Materials

Reagents, starting materials, and solvents were purchased from
Sigma-Aldrich, Acros Organic, TCI America and EMD
Chemicals and used as received. Z-DPTTF ligand was
prepared following a literature protocol (Han et al., 2007).

Preparation of sine-MOF

To a solution of Z-DPTTF ligand (7.2 mg, 0.02 mmol) in DMAc
(2 ml) placed in a screw-capped vial, a separately prepared solution
of Zn(NOs),#6H,0 (11.9 mg, 0.04 mmol) and TCPB (11.2 mg,
0.02 mmol) in 2:1 DMAc/H,0 mixture (1.5 ml) was added slowly.
Once all these starting materials were fully dissolved upon gentle
shaking, 1 M HNOj ethanolic solution (20 pl) was added to it. The
resulting mixture was then heated in an oven at 80°C for 24 h. The
resulting dark-red crystals (48%) were used for single-crystal x-ray
diffraction (SXRD) analysis and the corresponding evacuated
powder was used for electrical and optical measurements.
Elemental analysis: Calc. for Zn,Cs5,H3,0,055:N,: C 55.92, H
3.34, and S 11.48%. Found: C 56.01, H 3.44, and S 11.53%

Preparation of I, Doped sine-MOF

The dark-red colored evacuated sine-MOF powder was placed in
a small open vial, which was then placed inside a larger screw-
capped vial containing few I, chips. The larger vial was capped
tightly and sealed with parafilm tape to keep the sine-MOF
crystals exposed to iodine vapor for 3 days, which caused the
sine-MOF powder to turn black. The I,-treated sine-MOF vial
was removed from the I, chamber, left open overnight, and finally
washed thoroughly with hexane until the washing solution
became colorless indicating that the material was free of any
physisorbed  I,. Elemental  analysis: Calc. for
Zn,CssH50014S,N,1 50 C 46.77, H 3.57, S 9.08%, and I 13.48.
Found: C 46.97, H 2.80, S 8.24, and I 13.44%.

Electrically Conducting Sinusoidal MOF

RESULTS AND DISCUSSION

Synthesis, Structural Characterization, and

Thermogravimetric Analysis of sine-MOF
A solvothermal reaction between Zn,(NOs),#6H,0O, TCPB, and
Z-DPTTF in a DMAc/H,O mixture at 80°C for 24 h yielded dark-
red sine-MOF crystals. SXRD analysis revealed that sine-MOF [Zn,
(DPTTF)TCPBe3DMA],, crystallized in an orthorhombic space
group Pnma (Figures 1A,B and Supplementary Figure S1). The
TCPB ligands formed Zn,(COO), paddlewheel nodes, but unlike
typical pillared paddlewheel MOFs, they did not form 2D sheets of
these nodes in sine-MOF. Instead, they formed a 3D framework
thanks to a significant twist of TCPB ligand, which was evident from
large dihedral angles (ca. 43-47°) between the central benzene ring and
terminal benzoate rings. The axial sites of the Zn,(COO), paddlewheel
nodes were occupied by Z-DPTTF ligands, although these dipyridyl
ligands did not act as typical pillars found in pillared paddlewheel
MOFs. Instead, each U-shaped Z-DPTTF ligand bridged two adjacent
Zn, nodes formed by two 1,3-benzoate groups of the same TCPB
ligand. Each Zn, paddlewheel node carried one U-shaped Z-DPTTF
ligand at the top axial position and another at the bottom axial
position, which then bridged two adjacent Zn, nodes from the top and
bottom axial positions, respectively. Thus, the consecutive Zn, nodes
located along the b-axis were connected by U-shaped Z-DPTTF
ligands in an alternating top/bottom fashion that resembled a full
sine-wave (Figure 1C), prompting us to label this new architecture as
sine-MOF. The formation of this uncommon architecture was made
possible by the bent geometry of Z-DPTTF ligands having an angle of
36" between the two dithiolene rings and a dihedral angle of 10°
between two cis-pyridyl rings. The bent geometry and short central
C=C bond length (1.34 A) of Z-DPTTF indicated that they existed in
the neutral form in pristine sine-MOF (Gao et al., 2014; Su et al.,, 2017).
Due to an alternate up/down orientation of Z-DPTTF ligands, sine-
MOF lacks intermolecular m—mt and SeeeS interactions between the
TTF cores, but it enjoys - interaction between the dithiolene rings
of Z-DPTTF and two benzoate rings of TCPB ligand that have a
centroid-to-centroid distance of 3.66 A (Supplementary Figure S2).
The experimental powder X-ray pattern (PXRD) of pristine
sine-MOF was consistent with the simulated one obtained from
the SXRD analysis, which confirmed the phase purity and
crystallinity of the evacuated bulk material (Figure 2). Iodine
is a mild oxidant that is known to chemically oxidize TTF and
other electron rich m-systems (Su et al., 2017; Gordillo et al,
2020). Exposure of pristine sine-MOF crystalline powder to I,-
vapors afforded a black material that was washed thoroughly with
hexanes until the wash solution became colorless indicating that
no residual physisorbed I, was left in the I,-treated sine-MOF.
The PXRD pattern of the I,-treated sine-MOF matched with that
of the pristine material, confirming the retention of its structural
integrity and crystallinity (Supplementary Figure S3).
Thermogravimetric analysis (TGA) was performed on
vacuum-dried pristine and I,-treated sine-MOF samples in N,
atmosphere (Figure 3). The TGA profile of pristine sine-MOF
revealed a gradual 10% weight loss until 300°C corresponding to
the loss of solvent molecules, followed by a sharp 33% weight loss
due to framework decomposition. The TGA profile of the I,-
doped sine-MOF displayed an initial weight loss of 14%
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Electrically Conducting Sinusoidal MOF

FIGURE 1 | (A) Crystal structure of sine-MOF [Zn, (DPTTF)TCPB®3DMA],, viewed along the ¢ axis. (B) The paddlewheel-like SBUs formed by the TCPB ligands are
connected by axially coordinated U-shaped Z-DPTTF ligands extended along the b-axis. (C) A view of the sinusoidal thread formed by Z-DPTTF ligands by bridging
adjacent SBU units along the b axis and the nt-rt interactions between the dithiolene rings of the TTF core and two benzoate moieties of the TCPB ligand with a centroid-
to-centroid distance of 3.66 A. Solvent molecules and H atoms are omitted for clarity. Atom legends: cyan, Zn(ll); blue, N; red, O; yellow, S; and gray, C.
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FIGURE 2 | PXRD pattern of pristine sine-MOF showing retention of the
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FIGURE 3 | TGA profiles of pristine (black) and I,-treated (red)
wavy-MOF.

corresponding to the loss of MeOH and water molecules,
followed by another significant weight loss step above 400°C
that corresponded to framework decomposition.

Optical and Electrochemical Properties of
sine-MOF
The diffuse reflectance spectra (DRS) of pristine and I,-doped
sine-MOFs were measured. Pristine sine-MOF displayed a broad
band centered on 480 nm, which was ca. 60 nm red-shifted with
respect to the UV-vis absorption spectrum (Ay.x) of Z-DPTTF
recorded in DMF (Figures 4A,B). From the onset of the Ay«
peak of the Z-DPTTF ligand its optical bandgap of 2.3 eV was
calculated. The optical bandgaps of pristine and I,-treated sine-
MOFs (E; = 1.8 and 1.2 €V, respectively) (Figure 4B) were
narrower than that of the free ligand, probably because of m-n
and m-donor/acceptor interactions between the Z-DPTTF and
TCPB ligands in pristine and I,-treated wavy MOFs, respectively.
The results from the corresponding Tauc plot (Figure 4C) were
in good agreement with those determined from DRS and revealed
~0.6-0.7 eV narrower bandgap for the I,-doped sine-MOF with
respect to the pristine MOF. The narrower bandgap of I,-treated
sine-MOF is likely due to a partial oxidation of the Z-DPTTF
ligands to Z-DPTTF"" radical cations within the framework.
Solid state cyclic voltammetry (CV) (Figure 5) and square wave
voltammetry (SWV) (Supplementary Figure S4) were used to
investigate the redox properties of sine-MOF. TTF compounds
are known to display two reversible one electron oxidation steps
corresponding to TTF™" and TTF*" formation. The CV of pristine
sine-MOF displayed two quasi-reversible oxidation processes
(Figure 5A) with anodic peaks at 0.68 and 0.96 V (vs Ag/AgCl,
0.1 M BuyNPF in MeCN) corresponding to stepwise one-electron
oxidation of Z-DPTTF to Z-DPTTF"* and Z-DPTTF**. The anodic
peaks of I,-doped wavy-MOF (Figure 5B) appeared toward more
positive potentials at 0.79 and 1.05V suggesting that such I,-
mediated partially oxidized framework was more difficult to
oxidize electrochemically than pristine sine-MOF.
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FIGURE 4 | (A) UV-vis absorption spectrum of Z-DPTTF ligand in DMF. (B) Diffusion reflectance spectra of pristine (black) and I,-treated (red) sine-MOF. (C) The
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FIGURE 5 | Cyclic Voltammograms of (A) pristine and (B) lo-treated sine-MOF (vs Ag/AgCl, 0.1 M BusNPFg in MeCN).
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FIGURE 6 | Solid-state EPR spectra of pristine (black) and I-treated
(red) sine-MOF.

Solid-state electron paramagnetic resonance (EPR) confirmed the
presence of Z-DPTTF*" radical cations within the sine-MOF. A
weak EPR signal (Figure 6) was present in pristine sine-MOF

indicating that most of the Z-DPTTF ligands were in the neutral
state and that a small percentage may have been oxidized by air as
has been previously reported for other TTF-based MOFs. (Narayan
etal., 2012; Park et al., 2015; Su et al,, 2017; Wang et al., 2017a; Leong
etal,, 2018). In contrast, a strong EPR signal (g = 2.006) was observed
(Figure 6) for I,-treated sine-MOF indicating that a significant
population of Z-DPTTF ligands were oxidized to paramagnetic
Z-DPTTF"" radical cations. The elemental analysis data of I,-
treated sine-MOF (vide supra) corresponded to an empirical
formula of Zn,CssHs0014S4N51; 5. Based on the I/S ratio, we
estimated that there was roughly one I~ anion for two DPTTF
ligands (each DPTTF has four S atoms), meaning that approximately
half of the DPTTF ligands were partially oxidized to DPTTF""
radical cations, which were accompanied by an equal number of I~
counterions for charge balance. Furthermore, based on the empirical
formula and quantitative EPR analysis, we estimated that the pristine
sine-MOF possessed 6.8 x 10" spins/mg or 7.6 x 10" spins/mol,
which corresponded to only 0.01% DPTTF"" population (possibly
produced by negligible aerobic oxidation). In contrast, the I,-treated
sine-MOF possessed 2.6 x 10'® spins/mg or 3.6 x 10** spins/mol,
which corresponded to a noticeably higher 6.1% DPTTEF™"
population. Thus, elemental analysis and quantitative EPR
analysis together helped us quantify the DPTTF™" population in
the I,-treated partially oxidized sine-MOF.
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FIGURE 7 | Linear -V relationships of pristine (black) and I,-treated (red)
sine-MOF measured by two-probe method.

Conductivity Measurements of Pristine and
I>-Treated sine-MOFs

Finally, we measured the room temperature electrical conductivity
of pressed pellets of pristine and I,-treated sine-MOFs, which
provided us insights into the effect of partial oxidation of
Z-DPTTF ligands in the latter. DC-sweep measurements of
pressed sine-MOF-pellets sandwiched between two conductive
stainless-steel electrodes coated with Ag paste were conducted.
Both materials displayed linear current-voltage (I-V) responses
between -1 and +1V (Figure 7), confirming ohmic contact
between the pellets and electrodes. From the slopes of the
corresponding I-V curves, the electrical conductivity of pristine
and L,-treated sine-MOFs was determined to be 1 x 107 and 5 x
1077 S/m, respectively. The 50-fold higher conductivity of I-treated
sine-MOF was attributed to partial oxidation of Z-DPTTF ligands
to Z-DPTTF"", which enhanced the charge carrier concentration.
However, the increase was modest and the conductivity was still
lower than other I,-treated TTF-based MOFs possibly because sine-
MOF lacked sufficient m—mt or SeeeS interactions between the
Z-DPTTF ligands, which hindered through-space charge
movement, while the Zn, paddlewheel nodes were not
conducive to through-bond charge movement. As result, pristine
and I,-treated sine-MOFs likely relied on less effective charge
hopping mechanism, which caused modest conductivities even
though the latter possessed larger number of mobile charge
carriers due to the presence of DPTTF"" radical cations.
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