
Secure Outsourced Top-k Selection Queries against
Untrusted Cloud Service Providers

Xixun Yu∗, Yidan Hu†, Rui Zhang†, Zheng Yan∗‡, and Yanchao Zhang§
∗State Key Lab on Integrated Services Networks, School of Cyber Engineering, Xidian University, Xi’an, 710071, China

†Department of Computer and Information Sciences, University of Delaware, Newark, DE, 19716, USA
‡Department of Communications and Networking, Aalto University, Espoo, 02150, Finland

§School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ, 85287, USA

xxyu@stu.xidian.edu.cn,{yidanhu,ruizhang}@udel.edu,zyan@xidian.edu.cn,yczhang@asu.edu

Abstract—As cloud computing reshapes the global IT industry,
an increasing number of business owners have outsourced their
datasets to third-party cloud service providers (CSP), which in
turn answer data queries from end users on their behalf. A
well known security challenge in data outsourcing is that the
CSP cannot be fully trusted, which may return inauthentic or
unsound query results for various reasons. This paper considers
top-k selection queries, an important type of queries widely used
in practice. In a top-k selection query, a user specifies a scoring
function and asks for the k objects with the highest scores. Despite
several recent efforts, existing solutions can only support a limited
range of scoring functions with explicit forms known in advance.
This paper presents three novel schemes that allow a user to
verify the integrity and soundness of any top-k selection query
result returned by an untrusted CSP. The first two schemes
support monotone scoring functions, and the third scheme
supports scoring functions comprised of both monotonically non-
decreasing and non-increasing subscoring functions. Detailed
simulation studies using a real dataset confirm the efficacy
and efficiency of the proposed schemes and their significant
advantages over prior solutions.

I. INTRODUCTION

As cloud computing revolutionizing the global IT industry,

data outsourcing has gained increasing popularity among busi-

ness owners. In a typical data outsourcing system, a data owner

outsources its dataset to a third-party cloud service provider

(CSP), which in turn answers various types of data queries

from many users on behalf of the data owner. In comparison

with hosting the dataset and query services over dedicated

infrastructure, data outsourcing offers significant benefits to

data owners such as high elasticity, easy management and

maintenance, and cost saving.

This paper considers top-k selection queries [1], an im-

portant type of queries which ask for the top k objects

among a dataset ranked by a user-defined scoring function.

In a typical top-k selection query, a user specifies a scoring

function over multiple attributes of the object, and the CSP

needs to return the k objects of which the scores are the

highest. As an example, consider a dataset of used cars

with two attributes price and mileage shown in Table 1.

A user interested in buying a cheap car with low mileage

may issue a top-3 selection query with a scoring function

SCORE = 0.8∗PRICE+0.5∗MILEAGE. The scores of the four

records are 56,000, 50,000, 49,000, and 47,000, respectively.

TABLE I
USED CAR

ID PRICE MILEAGE
1 $ 20,000 80,000

2 $ 25,000 60,000

3 $ 30,000 50,000

4 $ 40,000 30,000

The top 3 objects with respect to the scoring function is then

the fourth, third, and second cars. Top-k selection queries have

many real-world applications and have attracted significant

attentions from both academia and industry.

A well known security challenge in data outsourcing is that

the CSP cannot be fully trusted, which may return forged

or unsound query result in response to users’ queries [2]. In

the context of top-k selection queries, the CSP may return

tampered or forged objects or replace one or multiple top-k
objects with the ones that are authentic but not among the top

k. For example, the CSP may return some objects to prompt

associated businesses with financial interests. These situations

call for effective mechanisms to allow users to verify both the

authenticity and soundness of any top-k selection query result

returned by the CSP. A query result is considered authentic
if all the returned objects are among the data owner’s dataset

and have not been tampered with and sound if it contains the

k objects of which the scores are highest with respect to the

user’s scoring function.

Despite significant efforts on authenticating outsourced

query processing, authenticating outsourced top-k selection

queries poses unique challenges and has so far received very

limited attention. In particular, the ranking of the objects

with respect to a top-k selection query is determined by the

user-defined scoring function, which cannot be predicted in

advance. In addition, any practical system needs to support a

wide range of scoring functions that are difficult to enumerate

in advance. These challenges make it difficult to predetermine

the ranking of the objects and also render existing solutions on

authenticating outsourced top-k queries over a single attribute

[3]–[10] inapplicable. To the best of our knowledge, Ref. [12],

[15] are the only two existing solutions for authenticating
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outsourced top-k selection queries that support user defined

scoring functions over multiple attributes. They, however,

require that the scoring functions to have explicit forms

known in advance so that the order of the objects can be

precomputed for every possible query. As this assumption

may not hold in practice, there is thus a pressing need for

developing effective mechanisms for authenticating outsourced

top-k selection queries that support a broader range of scoring

functions.

In this paper, we tackle this challenge by introducing three

novel schemes for authenticating outsourced top-k selection

queries with user-defined scoring functions over multiple at-

tributes against an untrusted CSP. All three schemes explore

a partial preference relationship among objects by having the

CSP return some additional objects in addition to the top k
objects to prove that there is no other object with a score

higher than the lowest score among the returned top k objects.

The first two schemes support monotone scoring functions but

differ in which additional objects need be returned for query

result verification. The third scheme further supports scoring

functions comprised of both monotonically non-decreasing

and non-increasing subscoring functions. Our contributions in

this paper can be summarized as follows.

• We introduce three novel schemes for authenticating

outsourced top-k selection queries that allow the user to

verify both the integrity and soundness of any query result

returned by an untrusted CSP.

• We confirm the efficacy and efficiency of the proposed

schemes and their advantages over prior solutions via

detailed simulation studies using a real dataset.

The rest of the paper is structured as follows. Section II

discusses the related work. Section III presents the system,

adversary, and query models and our design goals. We present

two basic schemes in Section IV and an advanced scheme in

Section V. We report the simulation results of the proposed

schemes in Section VI and finally conclude this paper in

Section VII.

II. RELATED WORK

Our work is mostly related to the studies on authenticating

outsourced top-k queries. Yu et al. [5], [6] introduced a

verifiable top-k query scheme for tiered sensor networks by

introducing encrypted dummy readings to ensure query-result

completeness. In [3], [8], Zhang et al. introduced several

techniques for verifiable top-k queries in two-tiered sensor

networks by chaining adjacent objects using cryptographic

techniques. This technique was later used in [4], [9] to au-

thenticate outsourced spatial top-k queries against an untrusted

location service provider, in which the top-k queries are over

the records within a user-defined geographic region. Similar

problems have also been studied in [7], [10], [13]. Common

to all these solutions [3]–[10], [13] is that they target top-k
queries over a single attribute with no explicit scoring function.

There have been very limited efforts on authenticating top-

k queries with user-defined scoring functions over multiple

attributes. Tsou et al. [14] introduced SFTopk, a solution for

verifiable top-k selection queries over multiple attributes but

only support scoring functions as the conjunction or sum

of the attributes. Yang et al. [15] introduced a scheme for

authenticating outsourced function queries that can support

top-k selection queries with a limited scoring functions. Their

scheme treats objects as function templates and user inputs

as variables and precomputes all the subspaces in which the

objects exhibit distinct orders. In contrast, we do not assume

the scoring function to have any explicit form but consists

of monotonically non-increasing or non-decreasing subscoring

functions, for which the technique [15] is inapplicable. More

recently, Zhu et al. [11], [12] proposed a solution that supports

the same scoring functions as [15] by partitioning the domain

of a dataset into grids with each containing at most one real or

dummy record and chaining adjacent grids using cryptographic

techniques to enable query result verification. Unfortunately,

the total number of grids under their solution is nd, where n
is the number of records and d is the number of attributes.

This leads to a high computation complexity of O(nd).
Authenticating outsourced queries has received significant

attentions over the past decade. Many different types of

queries have been investigated, including range queries [16],

[17], skyline queries [9], [18], [19], kNN queries [20]–[22],

shortest-path queries [23], SQL queries [24]–[26], the most

recent data queries [27], [28], sliding windows queries [29],

grouped aggregation queries [30], etc. None of these works

consider the top-k selection query over multiple attributes, and

they are orthogonal to our work in this paper.

III. PROBLEM FORMULATION

In this section, we introduce the system, query, and adver-

sary models, as well as our design goals.

A. System Model

We consider a data outsourcing system comprising a data

owner, a third-party CSP, and many users. The data owner has

a dataset D consisting of n objects {oi|1 ≤ i ≤ n}. Each ob-

ject oi has d attributes and is denoted by oi = (ai,1, . . . , ai,d),
where ai,j is the jth attribute for all 1 ≤ j ≤ d. We assume

that the range of every attribute is known in advance and

denote the range of the jth attribute by Rj = [rjmin, r
j
max].

Equivalently, we can view the dataset D as a set of n points in

the d-dimensional Euclidian space. The data owner outsources

the dataset D to the CSP, which in turn answers top-k selection

queries from the users on behalf of the data owner.

B. Top-k Selection Query Model

We consider top-k selection query in this paper. Specifically,

any user can issue a top-k selection query by specifying 〈F, k〉,
where k is the number of objects requested and F is a scoring

function that maps every object in D to a real value in the

range (−∞,∞). The user may ask for the objects with the k
highest or lowest scores under F . Our subsequent discussion

focuses on one user and assumes that the user is requesting

the highest ranked objects. More specifically, the user requests

for a set of k objects O ⊆ D such that for all oi ∈ O and
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oj ∈ D \ O, F (oi) ≥ F (oj). Note that the query result for

a top-k selection query may not be unique as there could be

multiple objects sharing the same score.

In this paper, we assume that the scoring function is a

separable function with the following form

F (oi) =

d∑
j=1

fj(ai,j) , (1)

where fj(·) is the subscoring function defined over the jth

attribute for all 1 ≤ j ≤ d. In addition, we assume that each

subscoring function fj is either monotonically non-decreasing

or non-increasing within the range Rj . We assume that the

scoring function F cannot be predicted in advance.

C. Adversary Model

We assume that the communications among the three parties

are protected by proper cryptographic techniques and that

the data owner is trusted to follow all system operations. In

contrast, the CSP may return tampered objects or objects with

scores not among the top k with respect to scoring function

F in response to the user’s queries. We further assume that

the user has no prior knowledge about dataset D but knows

the data owner’s public key.

D. Design Goals

We aim to enable the end users to verify the correctness of

any top-k selection query result returned by the CSP. Let O
be the set of k objects returned by the CSP in response to the

user’s query. The user needs to verify whether the query result

satisfies the following two conditions.

• Query-result integrity: Every returned object must belong

to D and have not be tampered with, i.e., O ⊆ D.

• Query-result soundness: Every returned object must have

a score no lower than every other object with respect to

F , i.e., for all ox ∈ O and oy ∈ D \O, F (ox) ≥ F (oy).

A query result is considered correct if and only if it passes

both verifications.

IV. TWO BASIC SCHEMES

In this section, we introduce two basic schemes that support

monotone scoring functions.

A. Overview

The two basic schemes both ensure the integrity of every

object returned by the CSP using efficient cryptographic primi-

tives and require the CSP to return some additional information

to prove the soundness of the query result.

Suppose that the user issues a top-k selection query with

scoring function F . Without loss of generality, suppose that

F (o1) ≥ F (o2) ≥ · · · ≥ F (on). Since there may be multiple

objects that share the same score with respect to F , a sound

query result must include all the objects with scores higher

than F (ok) and one or multiple objects with scores equal to

F (ok). Equivalently, a sound query result must contain all the

objects in D with scores higher than the lowest score among

the top k objects. Based on this idea, both basic schemes

require the CSP to return some additional objects to prove

that there is no object in D \ O with a score higher than the

lowest score among the top k objects. They, however, differ

in which objects besides the top k need be returned for query-

result verification.

B. Basic Scheme 1

Let J = {1, . . . , d} be the set of attribute indexes. When

all the subscoring functions f1, . . . , fd are monotonically

non-decreasing (or non-increasing), the scoring function F
is monotone. Scheme 1 explores a fundamental property of

monotone scoring function.

Lemma 1. Assume that all subscoring functions f1, . . . , fd
are monotonically non-decreasing. For any two objects ox and
oy , if F (ox) > F (oy), then there must exist j ∈ J such that
ax,j > ay,j .

Proof: We prove this lemma by contradiction. Let ox =
(ax,1, . . . , ax,d) and oy = (ay,1, . . . , ay,d) be two arbitrary

objects. Assume that fj is monotonically non-decreasing for

all j ∈ J and that F (ox) > F (oy). By definition of the

scoring function, we have
∑

j∈J fj(ax,j) >
∑

j∈J fj(ay,j).
Now suppose that ax,j ≤ ay,j for all j ∈ J . It follows that∑d

j=1 fj(ax,j) ≤ ∑d
j=1 fj(ay,j) and thus F (ox) ≤ F (oy),

which leads to a contradiction. The lemma is therefore proved.

Scheme 1 determines the additional objects that need be

returned for soundness verification based on Lemma 1. Let

O = {oλ1
, . . . , oλk

} be the set of top k objects with respect

to the scoring function F chosen by the CSP, where F (oλ1
) ≥

· · · ≥ F (oλk
). We hereafter refer to oλk

as the critical object
with respect to F . Based on Lemma 1, Scheme 1 requires the

CSP to return every object that has at least one attribute larger

than the corresponding attribute of the critical object oλk
so

that the user is able to verify that there is no object in D \O
with score higher than F (oλk

).
In what follows, we detail the three phases of Scheme 1, in-

cluding data preprocessing at the data owner, query processing

at the CSP, and query-result verification at the user.

1) Data Preprocessing: Assume that the data owner has a

dataset D = {oi}ni=1, where oi = (ai,1, . . . , ai,d). The data

owner processes the dataset D as follows.

First, the data owner sorts the objects according to their

jth attribute values in a descending order for each j ∈ J
to create d sorted lists L1, . . . , Ld. Consider the jth attribute

as an example. Let (πj(1), . . . , πj(n)) be a permutation of

(1, . . . , n) such that aπj(1),j ≥ aπj(2),j ≥ · · · ≥ aπj(n),j for

all 1 ≤ j ≤ d. The jth sorted list is then given by

Lj = 〈oπj(1), oπj(2), . . . , oπj(n)〉.
Further denote by π−1

j (·) the inverse permutation of πj(·). It

follows that object oπj(i) is ranked ith and object oi is ranked

π−1
j (i)th in list Lj for all 1 ≤ i ≤ n.

The data owner then creates a one-way hash chain for each

list Lj . Specifically, the data owner first computes hi = H(oi)
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for all 1 ≤ i ≤ n, where H(·) denotes a cryptographic

hash function such as SHA-256. For each list Lj , j ∈ J , the

data owner constructs a one-way hash chain by recursively

computing

σj,x =

{
H(hπj(x)||σj,x+1) if 1 ≤ x ≤ n,

h∗ if x = n+ 1 ,
(2)

where ”||” denotes concatenation and h∗ is a publicly known

special string.

The data owner further constructs a Merkle hash tree over

σ1,1, σ2,1, . . . , σd,1 and signs the root of the Merkle hash tree

using its private key. Finally, the data owner sends the CSP

the dataset D, the d lists L1, . . . , Ld, and its signature on the

Merkle hash tree root. On receiving the information, the CSP

can compute all the non-root nodes of the Merkle hash tree.

2) Query Processing: Assume that the user issues a top-

k selection query with a scoring function F . On receiving

the query, the CSP first computes the top k objects with

respect to F using an efficient algorithm such as [31]. As

discussed earlier, the top k objects may not be unique if

multiple objects share the same score. Let the top k ob-

jects selected by the CSP be O = {oλ1 , . . . , oλk
}, where

F (oλ1
) ≥ · · · ≥ F (oλk

) and oλk
is the critical object. Further

let J+ = {j|fj is not a constant function, j ∈ J} be the set

of indexes of subscoring functions that are not a constant

function. To prove the soundness of the query result to the

user, i.e., oλ1 , . . . , oλk
are indeed the top k objects with respect

to F , we require the CSP to additionally return all the objects

with at least one attribute j ∈ J+ larger than the corresponding

attribute of the critical object oλk
.

Specifically, for every attribute j ∈ J+, the CSP finds all

the objects that are ranked higher than the critical object oλk
in

the list Lj . Since object oλk
is ranked π−1

j (λk)th in the list Lj ,

the subset of objects ranked no lower than the critical object

oλk
in list Lj is given by Vj = {oi|1 ≤ π−1

j (i) ≤ π−1
j (λk)}.

Further let V =
⋃

j∈J+ Vj . It follows that O ⊆ V , because

for each object oλx , 1 ≤ x ≤ k, there must exist at least one

list Lj , j ∈ J+ such that oλx is ranked higher than oλk
.

Denote by A(σj,1) the subset of internal nodes of the Merkle

hash tree needed for computing the root of the Merkle hash

tree from leaf node σj,1 for all j ∈ J . The CSP returns the

following information as the query result.

• Every object in V along with its ID {〈i, oi〉|oi ∈ V }.

• The IDs of the top k objects, λ1, . . . , λk.

• For each j ∈ J+, the ID of every object oi ∈ Vj ,

i.e., {i|1 ≤ π−1
j (i) ≤ π−1

j (λk)}, along with element

σj,π−1
j (λk)+1.

•
⋃

j∈J+ A(σj,1), which is the union of internal nodes in

the Merkle hash tree needed for computing the root from

every leaf node in {σj,1|j ∈ J+} and the data owner’s

signature on the root of the Merkle hash tree.

3) Query-result Verification: On receiving the query result,

the user verifies its integrity and soundness as follows.

Integrity verification. First, for every attribute j ∈ J+,

the user computes the σj,1 from the returned information.

Consider attribute j as an example. For each πj(x), 1 ≤
x ≤ π−1

j (λk), the user computes hπj(x) = H(oπj(x)). With

hπj(1), hπj(2), . . . , hλk
, σj,π−1

j (λk)+1, the user further com-

putes σj,1 according to Eq. (2). Next, for each σj,1, j ∈ J+,

the user computes the root of the Merkle hash tree using the

A(σj,1). If all the {σj,1|j ∈ J+} lead to the same root, the user

further verifies the data owner’s digital signature on the root of

the tree. If all the verifications succeed, the user considers the

query result authentic and proceeds to verify its soundness.
Soundness verification. Given IDs λ1, . . . , λk, the user iden-

tifies the top k objects as O = {oλ1
, . . . , oλk

}. The user then

verifies whether F (oλ1) ≥ · · · ≥ F (oλk
). If so, the user iden-

tifies oλk
as the critical object and proceeds to check whether

there exists any object in V \ O that has a higher score than

F (oλk
). Let V ′

j = {oi|1 ≤ i ≤ n, 1 ≤ π−1
j (i) < π−1

j (λk)}
for all j ∈ J+ and V ′ =

⋃
j∈J+ V ′

j . The user further verifies

if F (oi) ≤ F (oλk
) for all oi ∈ V ′ \O. If all the verifications

succeed, the user considers the query result sound.

C. Basic Scheme 2
Different from Scheme 1 that requires the CSP to return

every object with at least one attribute higher than the cor-

responding attribute of the critical object, Scheme 2 explores

a novel preference tree structure to determine the additional

objects that need be returned for query result verification. We

first define a preference relationship among objects.

Definition 1. For any two objects ox and oy , object ox is
preferable to object oy , denoted by ox 
 oy , if and only if
ax,j ≥ ay,j for all j ∈ J .

We then have the following lemma.

Lemma 2. For any two objects ox and oy , if ox 
 oy ,
then F (ox) ≥ F (oy) for any non-negative monotone scoring
function.

The proof is straightforward and omitted due to the space

constraints.
We now introduce a novel preference tree structure to

represent a dataset D = {oi}ni=1. Specifically, we introduce

a special object o0 with a0,j = rjmax for all j ∈ J . Let

D′ = D
⋃{o0}. A preference tree T consists of n+ 1 nodes

with each corresponding to one unique object in D′, and

every parent object is preferable to all of its children objects.

It is easy to see that the object o0 would be the root of

any preference tree representation of D as o0 
 oi for all

1 ≤ i ≤ n. Note that the preference tree representation of

the dataset D may not be unique, as the same object could

be the children of different objects. We will hereafter denote

by oV the object corresponding to node V and use oV and V
interchangeably when no confusion arises.

Given a preference tree T representing the dataset D, we

can convert any top-k selection query over D into a top-k
selection query over T by requiring the query result to exclude

the special object o0. We then have the following lemma.

Lemma 3. Let T be a preference tree corresponding to a
dataset D and F a monotone scoring function. For any object
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ox ∈ D, the subset of objects with scores no lower than F (ox)
form a subtree rooted at o0.

Proof: Let O+
x = {oi|0 ≤ i ≤ n, F (oi) ≥ F (ox)}. It

suffices to prove that for any node oy ∈ O+
x its parent node

also belongs to O+
x , which is apparent as the parent node must

have a score no lower than oy .

Based on the above property, we can further define two

subtrees of T with respect to an object ox. Specifically, we

define a preference subtree with respect to object ox, denoted

by Tox , as a subtree of T formed by O+
x = {oi|0 ≤ i ≤

n, F (oi) ≥ F (ox)}. We also define the expanded preference
subtree with respect to object ox, denoted by T e

ox , as the

subtree of T formed by all the nodes in Tox in addition to

the nodes of which the parent has a score higher than F (ox).
Scheme 2 explores the above property to determine the

additional objects that needs to be returned for query-result

verification. Suppose that oλ1
, . . . , oλk

are the top k objects

selected by the CSP with respect to F , where F (oλ1
) ≥ · · · ≥

F (oλk
). Scheme 2 requires the CSP to return all the objects

in the expanded preference subtree T e
oλk

whereby the user can

verify that all the objects in the preference subtree Toλk
have

been returned and that no other object besides oλ1
, . . . , oλk

has a score higher than F (oλk
). In what follows, we detail

the three phases of Scheme 2.

1) Data Preprocessing: First, the data owner constructs a

preference tree T from the dataset D. As discussed earlier,

the preference tree constructed from the dataset D may not be

unique. Since we require the CSP to return all the objects in

expanded preference subtree T e
oλk

for query result verification,

it is necessary to minimize the number of children nodes that

each node has to reduce the communication cost.

Based on this observation, we introduce a divide-and-

conquer algorithm for constructing a preference tree T from

the dataset D. Since the special object o0 should be the root

of T , the algorithm recursively constructs a preference tree

T rooted at o0. In each subproblem, we take a parent node

ox (i.e., o0 in the initial call) and a set of descendant nodes

E (i.e., D in the initial call) as input where ox 
 oy for all

oy ∈ E and performs the following two tasks.

• Task 1: Find a subset of objects C ⊆ E to be the

immediate children of ox.

• Task 2: Partition the remaining objects E \ C into |C|
possibly empty subsets and assign one subset to each

object in C as its descendants.

Let us take a look at the first task. Given a parent object

ox and a set of descendant objects E, we select the subset of

objects in E to each of which no other object is preferable

as the immediate children of ox. Doing so can minimize the

number of children nodes of ox. Special attention need be

given to the case of multiple objects having exactly same

attributes. In particular, for any two objects oy and oz , if

oy = oz , then we have both oy 
 oz and oz � oy . In this

case, we can select either one of oy and oz as ox’s immediate

children node, as the other identical object can be the children

of the selected object.

Now we discuss how to assign the remaining objects E \C
to each of the children objects C. Our intuition is that the

deeper the tree is, the fewer children nodes each non-leaf node

has, the fewer nodes in any expanded preference subtree on

average, and vice versa. Based on this idea, we iteratively

assign children objects to each object in C by maximizing the

number of objects assigned in each iteration. Specifically, we

first construct a bipartite graph from C and E \C where each

vertex corresponds to a unique object in E. There is an edge

between object ox ∈ C and oy ∈ E \C if and only if ox 
 oy .

We then find the object in C with the largest degree and assign

all the objects incident to C as its decedents. We then remove

objects that have been assigned from the bipartite graph and

proceed to the next iteration. This process continues until all

the objects in E \ C have been assigned.

Once the two tasks are accomplished, we recursively con-

struct a subtree rooted at each node in C with the assigned

descendant nodes until the entire tree is constructed.

Given the preference tree T , the data owner further con-

structs a preference hash tree to encode the preference tree

structure using cryptographic hash functions.

Definition 2. (Preference Hash Tree) A preference hash tree
T is a tree constructed from a preference tree T with the same
structure, where every node v corresponds to one unique node
in T and consists of the following fields.

• v.id: the ID of object ov.
• v.hash = H(ov): the hash of object ov.
• v.cid = 〈u.id|u ∈ v.children〉: The list of the IDs of the

children objects.
• v.chash = H(||u∈v.childrenu): The hash of the concatena-

tion of its children objects.

The preference hash tree T can be easily constructed from

the preference tree T in a bottom-up fashion. Specifically, for

every leaf node v that corresponds to object ov, we set v.id = ∅
and v.chash = ∅, where ∅ is a publicly known special string

indicating that v is a leaf node. We then set v.id and v.hash
as the ID and the hash of ov, respectively. Now consider a

non-leaf node u that corresponds to object ou with a set of

children nodes u.children. Similar to the leaf node, we first

compute u.chash = H(||v∈u.childrenv).

Once the preference hash tree T is constructed, the data

owner sends all the objects {oi}ni=1, the preference hash tree

T, and its signature over the root of T to the CSP.

2) Query Processing: Assume that the data user submits a

top-k selection query with scoring function F . On receiving

the query, the SP constructs the query result as follows.

The CSP first finds a set of k objects with the highest

scores O = {oλ1
, . . . , oλk

}, where F (oλ1
) ≥ F (oλ2

) ≥ · · · ≥
F (oλk

) and oλk
is the critical object. We define the preference

hash subtree Toλk
with respect to object oλk

as the subtree of

T formed by objects O+
x = {oi|0 ≤ i ≤ n, F (oi) ≥ F (oλk

)},

and the expanded preference hash subtree Te
oλk

with respect to

object oλk
as the subtree of T formed by Toλk

in addition to

the nodes of which the parent has a score higher than F (oλk
).
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The CSP then constructs the query result based on the

expanded preference hash subtree Te
oλk

. For every node v ∈
Te
oλk

, the CSP returns

Rv = 〈ov, v.id, v.hash, v.cid, v.chash〉 . (3)

Moreover, the CSP also returns the IDs of the top k objects

λ1, . . . , λk and the data owner’s signature on the root of T.

3) Query-Result Verification: On receiving the query result,

the user first reconstructs expanded preference hash subtree

Te
oλk

based on the received {Rv|v ∈ Te
oλk

} and then verifies

its integrity and soundness as follows.

Integrity verification. First, for every received Rv, v ∈ Te
oλk

,

the user verifies if v.hash = H(ov). Second, for every non-leaf

node v of Te
oλk

, the user obtains the list of its children from

v.cid and checks if v.chash = H(||u∈v.childrenu). Finally, the

user verifies the data owner’s signature on the root of the T.

If all the verifications succeed, the user considers the query

result authentic.

Soundness verification. The user identifies the top k objects

oλ1
, . . . , oλk

based on the received IDs λ1, . . . , λk. The user

then checks if F (oλ1
) ≥ · · · ≥ F (oλk

) and identifies the

critical object oλk
. The user further checks if there is any

other object with score higher than oλk
among all the returned

objects other than oλ1 , . . . , oλk
. If not, the user checks if all

the nodes in expanded preference subtree Te
oλk

have been

returned. Specifically, for every leaf node v ∈ Te
oλk

, the user

checks whether either one of following two conditions holds

• Condition 1: The corresponding object has a score equal

or lower than F (oλk
).

• Condition 2: The object has a score higher than F (oλk
)

but has no child, i.e., v.cid = ∅.

If all the verifications succeed, the user considers the query

result sound.

V. AN ADVANCED SCHEME

In this section, we introduce an advanced scheme that sup-

ports any scoring function F comprised of both monotonically

non-decreasing and non-increasing subscoring functions.

A. Overview

The advanced scheme is designed by generalizing the prop-

erty characterized by Lemma 1. Let F = (f1, . . . , fd) be a

scoring function comprised of monotonically non-decreasing

and non-increasing subscoring functions. Further let J↑ and J↓
be the sets of indexes of non-decreasing and non-increasing

subscoring functions, respectively, where J↑
⋃
J↓ = J and

J↑
⋂
J↓ = ∅. We have the following Lemma as a generaliza-

tion of Lemma 1.

Lemma 4. Let F be a scoring function comprised of monoton-
ically non-decreasing subscoring functions {fj |j ∈ J↑} and
monotonically non-increasing subscoring functions {fj |j ∈
J↓}. Let J1, . . . , Js be a family of subsets of J↑ such that⋃s

i=1 Ji = J↑ and J ′
1, . . . , J

′
t be a family of subsets of J↓

such that
⋃s

i=1 Ji = J↓. For any two objects ox and oy , if

F (ox) > F (oy), then there must exist either i ∈ {1, . . . , s}
such that ∑

j∈Ji

fj(ax,j) >
∑
j∈Ji

fj(ay,j) ,

or i ∈ {1, . . . , t} such that∑
j∈J′

i

fj(ax,j) <
∑
j∈J ′

i

fj(ay,j) .

The proof is similar to that of Lemma 1 and omitted here

due to space limitations. Based on Lemma 4, we define a

partial preference relationship as follows.

Definition 3. Let J ′ ⊆ J be a subset of attributes. For any
two objects ox and oy , object ox is preferable to object oy
with respect to attributes J ′, denoted by ox 
J ′ oy , if and
only if ax,j ≥ ay,j for all j ∈ J ′.

For any subset of attributes Jx ∈ J , we can define both a

partial preference tree Tx and an inverse partial preference
tree T−

x . Specifically, a partial preference tree Tx with respect

to Jx is similar to a preference tree with the exception that

for every parent node ox and children node oy , ox 
Jx oy .

Similarly, an inverse partial preference tree T−
x is a tree in

which for every parent node ox and children node oy , ox �Jx

oy . Given a partial preference tree Tx and an inverse partial

preference tree T−
x , we can construct the corresponding partial

preference hash tree Tx and the inverse partial preference hash

tree T−
x accordingly.

Under the advance scheme, the data owner constructs a

partial preference hash tree and an inverse partial preference

hash tree for every non-empty subset Jx ⊆ J . On receiv-

ing a top-k selection query, the CSP divides the scoring

function F = (f1, . . . , fd) into the subset of monotonically

non-decreasing subscoring functions {fj |j ∈ J↑} and the

subset of monotonically non-increasing subscoring functions

{fj |j ∈ J↓} and constructs one partial query result for each

of them. On receiving the query result, the user verifies the

soundness of the query result according to Lemma 4. In what

follows, we details its operations.

B. Data Preprocessing

Given a dataset D, the data owner first generates the family

of non-empty subsets of index set J as P = {Jx|Jx ⊆ 2J \
{∅}}. It follows that |P| = 2d − 1.

For each subset Jx ∈ P , the data owner constructs a partial

preference hash tree Tx as in Scheme 2 with the exception

that every parent node is preferable to all of its children nodes

with respect to Jx. The data owner also constructs an inverse

partial preference hash tree T−
x in which every children node

is preferable to its parent node with respect to Jx and the root

node is another special object o−0 = (a1min, . . . , a
d
min). The da-

ta owner then sends {oi|1 ≤ i ≤ n} and {〈Tx,T
−
x 〉|Jx ∈ P}

along with its signature on the root of every partial preference

hash tree and inverse partial preference hash tree to the CSP.
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C. Query Processing

Assume that the user issues a top-k selection query with a

scoring function F . The CSP first finds the top k objects with

respect to F as O = {oλ1 , . . . , oλk
} where F (oλ1) ≥ · · · ≥

F (oλk
) and oλk

is the critical object.

The CSP then separately constructs one partial query result

for the subset of non-decreasing subscoring functions and

another for the subset of non-increasing subscoring functions.

Recall that J↑ and J↓ are the sets of indexes of non-decreasing

and non-increasing subscoring functions, respectively. It is

easy to see that J↑ ∈ P and J↓ ∈ P . Without loss of generality,

assume that Jx = J↑ and Jy = J↓.

For Jx ∈ P and the corresponding partial preference tree

Tx, we define the critical partial preference hash subtree

Tx(oλ) as the subtree of Tx formed by nodes with partial

score no lower than oλk
, i.e., {oi|0 ≤ i ≤ n,

∑
j∈Jx

fj(ai,j) ≥∑
j∈Jx

fj(aλk,j)}. The expanded partial preference hash sub-

tree Te
x(oλ) can be defined accordingly. For every node

v ∈ Te
x(oλ), the partial query result Rv is given by

Rv = 〈v.id, v.hash, v.cid, v.chash〉 . (4)

The partial query result for Jx is then RJx
= {Rv|v ∈

Te
x(oλ)}.

Similarly, for Jy ∈ P and corresponding partial prefer-

ence hash tree T−
y , we define the critical partial preference

hash subtree T−
y (oλ) as the subtree of T−

y formed by nodes

with partial score no higher than oλk
, i.e., {oi|0 ≤ i ≤

n,
∑

j∈Jy
fj(ai,j) ≤ ∑

j∈Jy
fj(aλk,j)}. The expanded criti-

cal partial preference hash subtree T−,e
x (oλ) can be defined

accordingly. For every node v ∈ T−,e
x (oλ), the partial query

result Rv is given by Eq. (4). The partial query result for Jy
is then RJy = {Rv|v ∈ T−,e

x (oλ)}.

The complete query result in response to the top-k selection

query consists of the following pieces of information.

• All the involved objects {ov|v ∈ Te
x(oλ)

⋃
T−,e
y (oλ)}.

• The IDs of the top k objects λ1, . . . , λk.

• The two partial query results RJx
and RJy

.

• The data owner’s signature on the roots of Tx and T−
y .

D. Query Result Verification

On receiving the query result, the user first verifies the

integrity of all the returned information based on the corre-

sponding partial preference hash trees and the data owner’s

signatures on the roots as in Scheme 2.

The user then checks if F (oλ1
) ≥ · · · ≥ F (oλk

) and identi-

fies the critical object as oλk
whereby to verify the soundness

of the query result based on Lemma 4. Specifically, for each

ov where v ∈ Te
x(oλ) and ov is not among oλ1 , . . . , oλk

,

the user checks whether it has a partial score higher than∑
j∈Jx

fj(aλk,j). Similarly, for each ov where v ∈ T−,e
y (oλ)

and ov is not among oλ1
, . . . , oλk

, the user checks whether it

has a partial score lower than
∑

j∈Jy
fj(aλk,j). Finally, the us-

er checks whether all the nodes in Te
x(oλ) and T−,e

x (oλ) have

been returned. Specifically, for each leaf node of Te
x(oλ), the

user checks whether either it has no children or it has a partial

TABLE II
DEFAULT SIMULATION SETTINGS

Para. Value Description
n 8,000 The number of objects
d 5 The number of attributes
k 250 The number of objects requested

|H(·)| 256 The length of hash in bit
1024 The length of data owner’s signature in bit

score no lower than
∑

j∈Jx
fj(aλk,j). For each leaf node of

T−,e
y (oλ), the user checks whether either it has no children or

it has a partial score no higher than
∑

j∈Jx
fj(aλk,j). If no

violation is found, the user considers the query result sound.

E. Discussions

While our primary motivation behind the advanced scheme

is to support scoring functions comprised of both monotonical-

ly non-decreasing and non-increasing functions, the advanced

scheme can also be adopted to minimize the communication

and computation costs. Given {〈Tx,T
−
x 〉|Jx ∈ P}, the CSP

can construct multiple authentic and sound valid query results

in response to a top-k selection query. Suppose that all the

subscoring functions are monotonically non-decreasing. We

call a subset P ⊂ P a cover of J+ if the following two

conditions hold.

• Condition 1:
⋃

Jx∈P Jx = J+, i.e., the union of the

subsets covers J+.

• Condition 2: Jx
⋂
Jy = ∅ for any Jx, Jy ∈ P , i.e., there

is no overlap between any two subsets.

For every valid cover P , the CSP can construct a query result

consisting of a partial query result Rx for every Rx ∈ P .

Since different covers would have different sets of expanded

preference subtrees, they would require different numbers of

additional objects to be returned and thus incur different

communication and computation costs. Intuitively, the CSP

may examine all the covers to find the optimal query result

with the minimal number of additional objects. Moreover, the

data owner may choose to construct preference subtrees only

for some of the subsets of J to reduce the computation and

communication cost as long as a valid cover can be found for

any J . There is thus a trade-off among the computation costs

of the three phases. We leave the investigation of these issues

as our future work due to space constraints.

VI. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed

schemes using detailed simulation studies.

A. Simulation Setting

We implemented the three proposed schemes in Python and

tested them on a desktop equipped with an i7-8700 CPU,

16GB RAM, and 64-bit Win10 OS. We choose SHA-256

for the cryptographic hash function and 1024-bit RSA as the

digital signature scheme. We used a public dataset [32] for our
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(a) Preprocessing comp. cost (b) Owner-CSP comm. cost (c) CSP comp. cost (d) Query comm. cost (e) User comp. cost

Fig. 1. Comparison of Scheme 1, Scheme 2, Scheme 3, ZWC, and YCH with n varying from 2,000 to 20,000.

(a) Preprocessing comp. cost (b) Owner-CSP comm. cost (c) CSP comp. cost (d) Query comm. cost (e) User comp. cost

Fig. 2. Comparison of Scheme 1, Scheme 2, Scheme 3, ZWC, and YCH with d varying from 2 to 7.

simulation, which consists of 22,365 records of NBA players,

and each record is comprised of 13 numeric attributes about

different performance statistics of the player, from which we

randomly select 2 to 7 attributes. We also generates top-k
selection queries with random linear scoring functions. Table II

summarizes our default settings unless mentioned otherwise.

We compare the three schemes with the two solutions

proposed in [11], [12] (refer to as ZWC hereafter) and [15]

(referred to as YCH hereafter). Despite their assumptions of

scoring functions having explicit forms, they are the only two

that can support scoring functions over multiple attributes.

Also note that the performance of ZWC [11], [12] is based

on our best-effort estimation due to its high computation and

communication costs.

We use five metrics in our simulation studies, including (1)

preprocessing computation cost, which is the amount of time

incurred by preprocessing the dataset D at the data owner, (2)

owner-CSP communication cost, which is the amount of extra

information in bits transmitted from the data owner to the CSP,

(3) query computation cost, which is amount of time incurred

by the CSP for processing a top-k selection query, (4) CSP
communication cost, which is the amount of extra information

in bits transmitted from the the CSP to the user in response to

a top-k selection query, and (5) user computation cost, which

is the amount of time needed for verifying a query result.

B. Simulation Results

In this subsection, we report out simulation results. We

assume that all subscoring functions are monotonically non-

decreasing in Sections VI-B1 to VI-B3 to allow comparison

among the three proposed schemes and postpone to evaluation

of mixed subscoring functions to Section VI-B4.

1) Impact of n: Figs.1(a) to 1(e) compare the performance

of Schemes 1 to 3, ZWC, and YCH with the number of objects

n varying from 2000 to 20000.

Fig. 1(a) compares the preprocessing computation cost

under the five schemes. As we can see, the preprocessing

computation cost increases as n increases under all five

schemes as expected. Among them, Schemes 1 has the low-

est preprocessing computation cost, followed by Schemes 2,

Scheme 3, YCH, and ZWC. The reason is that the data

owner only needs to sort d lists under Scheme 1, which is

very efficient. In contrast, the data owner needs to construct

one and 2d+1 − 2 preference hash trees under Scheme 2

and Scheme 3, respectively. YCH incurs higher preprocessing

computation cost than all three proposed schemes, as the data

owner needs to precompute all subspaces where the objects

exhibit distinct orders, and the total number of subspace is

O(n2) assuming linear scoring functions. All four schemes

incur significantly lower computation cost than ZWC, as ZWC

uses digital signature to chain every pair of adjacent grids, and

the number of grids is O(nd).

Fig. 1(b) compares the owner-CSP communication cost of

the five schemes. Similar to Fig. 1(a), the owner-CSP commu-

nication cost increase as n increases under all five schemes as

expected. Among them, Scheme 2 incurs the lowest owner-

CSP communication cost, followed by Scheme 1, Scheme 3,

and YCH and ZWC is the highest. The reason is that approx-

imately nd, n, and n2d+1 hashes need be transmitted from

the data owner to the CSP under Schemes 1 to 3, respectively,

whereas O(n2) and O(nd) digital signatures are needed under

YCH and ZWC, respectively.

Fig. 1(c) compares the CSP computation cost of the five

schemes. Note that Schemes 2 and 3 are equivalent when all

subscoring functions are monotonically non-decreasing as the

CSP only needs to construct the query result based on one

preference hash tree. We can see that the CSP computation

cost increases as n increases under all five schemes, which is

expected. The CSP computation cost under YCH is initially

higher than Schemes 1 to 3 but grows slower as n increases.

The reason is that the CSP needs to search a space-partition
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(a) CSP computation cost (b) Query communication cost (c) User computation cost

Fig. 3. Comparison of Scheme 1, Scheme 2, Scheme 3, ZWC, and YCH with k varying from 50 to 500.

(a) CSP computation cost (b) Query communication cost (c) User computation cost

Fig. 4. The impact of the number of non-decreasing subscoring functions on Scheme 3.

tree of depth O(log n) under YCH. Moreover, Schemes 2 and

3 incur lower CSP computation cost than Scheme 1, as the CSP

only needs to examine one preference subtree under Schemes 2

and 3 but d sorted list under Scheme 1. Both schemes 2 and

3 outperform YCH a large margin and ZWC by orders of

magnitude under the default setting.

Figs. 1(d) and 1(e) compare the query communication cost

and user computation cost of the five schemes. We can see

that the query communication cost and user computation

cost both increase as n increases under Schemes 1 to 3

and ZWC, which is expected. YCH incurs the lowest query

communication cost as the CSP only needs to return k digital

signatures independent of n. Schemes 2 and 3 incur lower CSP

computation cost and user computation cost than Scheme 1

as the CSP only needs to return one hash for every node in

one expanded preference hash tree under Schemes 2 and 3

and one hash for every node ranked higher than the critical

object in each of the d lists under Scheme 1. Moreover, YCH

incurs higher user computation cost than Schemes 2 and 3 as

it requires k expensive signature verifications. Moreover, all

three proposed schemes and YCH outperform ZWC by orders

of magnitude.

2) Impact of d: Figs. 2(a) to 2(e) compare the performance

of Schemes 1 to 3, ZWC, and YCH with d, i.e., the number

of attributes, varying from 2 to 7. As we can see, the

preprocessing computation cost, owner-CSP communication

cost, CSP computation cost, query communication cost, and

user computation cost of increase as the d increases under

all five schemes, which is anticipated. In contrast, the costs

under YCH is relatively insensitive to the change in d, as

they are mainly affected by n. Under the default setting, ZWC

incurs significantly higher costs than the other four schemes

except when d = 2. Among Schemes 1 to 3, Scheme 3

incurs the highest preprocessing computation cost, owner-CSP

communication cost, and CSP computation cost, due to the

2d+1 − 2 preference subtrees involved. Scheme 1 incurs the

lowest preprocessing computation cost, while Schemes 2 and 3

have the lowest CSP computation cost, query communication

cost, and user computation cost.

3) Impact of k: Figs. 3(a) to 3(c) compare the query

computation cost, query communication cost, and user compu-

tation cost of the five schemes with k varying from 50 to 500.

Generally speaking, the larger k, the higher CSP computation

cost, query communication cost, and user computation cost

for all five schemes, and vice versa, which is expected. ZWC

always incurs the highest costs among the five. YCH incurs

higher CSP computation cost and user computation cost but

lower query communication cost than Schemes 1 to 3, as it

requires the CSP to locate the subspace containing the query

point and the query result contains k digital signatures. In

contrast, the CSP only needs to examine d sorted lists and one

preference hash tree under Scheme 1 and Schemes 2 and 3,

respectively, resulting in lower CSP computation cost and user

computation cost. In addition, all three schemes primarily use

cryptographic hash functions for integrity verification, which

are more efficient than digital signatures.

4) Impact of The Number of Non-decreasing Subscoring
Functions: Figs. 4(a) to 4(c) show the query computation

cost, query communication cost, and user computation cost of

Scheme 3 with the number of monotonically non-decreasing
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subscoring functions, i.e., |J↑|, varying from 0 to d for d = 3
to 7. An interesting phenomenon we can observe is that the the

query computation cost, query communication cost, and user

computation cost sometimes fluctuate as |J↑| increases from 0

to d, which is particularly obvious when d = 7. The reason is

that the number of additional objects that need be returned for

query-result verification under Scheme 3 depends on the two

expanded partial preference hash trees. Specifically, an object

needs be returned if it belongs to either Te
x(oλ) or T−,e

y (oλ).
However, the number of nodes in an (inverse) expanded partial

preference hash tree is affected by the number of children

nodes each node has on average. When |J↑| is small, it is more

likely for one object to be preferable to another, which leads to

a deeper preference hash tree, fewer children nodes each node

has on average, and a smaller expanded partial preference tree.

As |J↑| increases, there will be fewer preference relationship

among objects, which leads to a wider preference hash tree

and more children nodes each node has on average. It is thus

not surprising to see that the query computation cost, query

communication cost, and user computation cost are the lowest

when |J↑| ≈ d/2, i.e., Te
x(oλ) are T−,e

y (oλ) have similar sizes.

VII. CONCLUSION

In this paper, we have introduced three novel schemes

for authenticating outsourced top-k selection queries against

an untrusted CSP. Exploring a partial preference relationship

among objects, the three schemes allow the user to verify

both the integrity and soundness of any top-k selection query

result returned by the CSP. Detailed simulation studies using a

real dataset confirm the efficacy of efficiency of the proposed

schemes and their significant advantages over prior solutions.
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