2021 IEEE/ACM 29th International Symposium on Quality of Service (IWQQS)

Secure Outsourced Top-£ Selection Queries against
Untrusted Cloud Service Providers

Xixun Yu*, Yidan Huf, Rui ZhangT, Zheng Yan**, and Yanchao Zhang§
*State Key Lab on Integrated Services Networks, School of Cyber Engineering, Xidian University, Xi’an, 710071, China
TDepartment of Computer and Information Sciences, University of Delaware, Newark, DE, 19716, USA
jr'Department of Communications and Networking, Aalto University, Espoo, 02150, Finland
§School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ, 85287, USA
xxyu@stu.xidian.edu.cn, { yidanhu,ruizhang } @udel.edu,zyan @xidian.edu.cn,yczhang @asu.edu

Abstract—As cloud computing reshapes the global IT industry,
an increasing number of business owners have outsourced their
datasets to third-party cloud service providers (CSP), which in
turn answer data queries from end users on their behalf. A
well known security challenge in data outsourcing is that the
CSP cannot be fully trusted, which may return inauthentic or
unsound query results for various reasons. This paper considers
top-k selection queries, an important type of queries widely used
in practice. In a top-k selection query, a user specifies a scoring
function and asks for the k objects with the highest scores. Despite
several recent efforts, existing solutions can only support a limited
range of scoring functions with explicit forms known in advance.
This paper presents three novel schemes that allow a user to
verify the integrity and soundness of any top-k selection query
result returned by an untrusted CSP. The first two schemes
support monotone scoring functions, and the third scheme
supports scoring functions comprised of both monotonically non-
decreasing and non-increasing subscoring functions. Detailed
simulation studies using a real dataset confirm the efficacy
and efficiency of the proposed schemes and their significant
advantages over prior solutions.

I. INTRODUCTION

As cloud computing revolutionizing the global IT industry,
data outsourcing has gained increasing popularity among busi-
ness owners. In a typical data outsourcing system, a data owner
outsources its dataset to a third-party cloud service provider
(CSP), which in turn answers various types of data queries
from many users on behalf of the data owner. In comparison
with hosting the dataset and query services over dedicated
infrastructure, data outsourcing offers significant benefits to
data owners such as high elasticity, easy management and
maintenance, and cost saving.

This paper considers top-k selection queries [1], an im-
portant type of queries which ask for the top £ objects
among a dataset ranked by a user-defined scoring function.
In a typical top-k selection query, a user specifies a scoring
function over multiple attributes of the object, and the CSP
needs to return the k objects of which the scores are the
highest. As an example, consider a dataset of used cars
with two attributes price and mileage shown in Table 1.
A user interested in buying a cheap car with low mileage
may issue a top-3 selection query with a scoring function
SCORE = 0.8«+PRICE+0.5%*MILEAGE. The scores of the four
records are 56,000, 50,000, 49,000, and 47,000, respectively.

978-1-6654-1494-4/21/$31.00 ©2021 IEEE

TABLE I

USED CAR
ID PRICE MILEAGE
1 | $20,000 80,000
2 | $ 25,000 60,000
3 $ 30,000 50,000
4 | $ 40,000 30,000

The top 3 objects with respect to the scoring function is then
the fourth, third, and second cars. Top-k selection queries have
many real-world applications and have attracted significant
attentions from both academia and industry.

A well known security challenge in data outsourcing is that
the CSP cannot be fully trusted, which may return forged
or unsound query result in response to users’ queries [2]. In
the context of top-k selection queries, the CSP may return
tampered or forged objects or replace one or multiple top-k
objects with the ones that are authentic but not among the top
k. For example, the CSP may return some objects to prompt
associated businesses with financial interests. These situations
call for effective mechanisms to allow users to verify both the
authenticity and soundness of any top-k selection query result
returned by the CSP. A query result is considered authentic
if all the returned objects are among the data owner’s dataset
and have not been tampered with and sound if it contains the
k objects of which the scores are highest with respect to the
user’s scoring function.

Despite significant efforts on authenticating outsourced
query processing, authenticating outsourced top-k selection
queries poses unique challenges and has so far received very
limited attention. In particular, the ranking of the objects
with respect to a top-k selection query is determined by the
user-defined scoring function, which cannot be predicted in
advance. In addition, any practical system needs to support a
wide range of scoring functions that are difficult to enumerate
in advance. These challenges make it difficult to predetermine
the ranking of the objects and also render existing solutions on
authenticating outsourced top-k queries over a single attribute
[3]-[10] inapplicable. To the best of our knowledge, Ref. [12],
[15] are the only two existing solutions for authenticating

2021 IEEE/ACM 29th International Symposium on Quality of Service (IWQQS)

outsourced top-k selection queries that support user defined
scoring functions over multiple attributes. They, however,
require that the scoring functions to have explicit forms
known in advance so that the order of the objects can be
precomputed for every possible query. As this assumption
may not hold in practice, there is thus a pressing need for
developing effective mechanisms for authenticating outsourced
top-k selection queries that support a broader range of scoring
functions.

In this paper, we tackle this challenge by introducing three
novel schemes for authenticating outsourced top-k selection
queries with user-defined scoring functions over multiple at-
tributes against an untrusted CSP. All three schemes explore
a partial preference relationship among objects by having the
CSP return some additional objects in addition to the top &
objects to prove that there is no other object with a score
higher than the lowest score among the returned top k objects.
The first two schemes support monotone scoring functions but
differ in which additional objects need be returned for query
result verification. The third scheme further supports scoring
functions comprised of both monotonically non-decreasing
and non-increasing subscoring functions. Our contributions in
this paper can be summarized as follows.

e We introduce three novel schemes for authenticating
outsourced top-k selection queries that allow the user to
verify both the integrity and soundness of any query result
returned by an untrusted CSP.

o We confirm the efficacy and efficiency of the proposed
schemes and their advantages over prior solutions via
detailed simulation studies using a real dataset.

The rest of the paper is structured as follows. Section II
discusses the related work. Section III presents the system,
adversary, and query models and our design goals. We present
two basic schemes in Section IV and an advanced scheme in
Section V. We report the simulation results of the proposed
schemes in Section VI and finally conclude this paper in
Section VII.

II. RELATED WORK

Our work is mostly related to the studies on authenticating
outsourced top-k queries. Yu et al. [5], [6] introduced a
verifiable top-k query scheme for tiered sensor networks by
introducing encrypted dummy readings to ensure query-result
completeness. In [3], [8], Zhang et al. introduced several
techniques for verifiable top-k queries in two-tiered sensor
networks by chaining adjacent objects using cryptographic
techniques. This technique was later used in [4], [9] to au-
thenticate outsourced spatial top-k queries against an untrusted
location service provider, in which the top-k queries are over
the records within a user-defined geographic region. Similar
problems have also been studied in [7], [10], [13]. Common
to all these solutions [3]-[10], [13] is that they target top-k
queries over a single attribute with no explicit scoring function.

There have been very limited efforts on authenticating top-
k queries with user-defined scoring functions over multiple
attributes. Tsou et al. [14] introduced SFTopk, a solution for

verifiable top-k selection queries over multiple attributes but
only support scoring functions as the conjunction or sum
of the attributes. Yang er al. [15] introduced a scheme for
authenticating outsourced function queries that can support
top-k selection queries with a limited scoring functions. Their
scheme treats objects as function templates and user inputs
as variables and precomputes all the subspaces in which the
objects exhibit distinct orders. In contrast, we do not assume
the scoring function to have any explicit form but consists
of monotonically non-increasing or non-decreasing subscoring
functions, for which the technique [15] is inapplicable. More
recently, Zhu et al. [11], [12] proposed a solution that supports
the same scoring functions as [15] by partitioning the domain
of a dataset into grids with each containing at most one real or
dummy record and chaining adjacent grids using cryptographic
techniques to enable query result verification. Unfortunately,
the total number of grids under their solution is n, where n
is the number of records and d is the number of attributes.
This leads to a high computation complexity of O(n?).

Authenticating outsourced queries has received significant
attentions over the past decade. Many different types of
queries have been investigated, including range queries [16],
[17], skyline queries [9], [18], [19], kNN queries [20]-[22],
shortest-path queries [23], SQL queries [24]-[26], the most
recent data queries [27], [28], sliding windows queries [29],
grouped aggregation queries [30], etc. None of these works
consider the top-k selection query over multiple attributes, and
they are orthogonal to our work in this paper.

III. PROBLEM FORMULATION

In this section, we introduce the system, query, and adver-
sary models, as well as our design goals.

A. System Model

We consider a data outsourcing system comprising a data
owner, a third-party CSP, and many users. The data owner has
a dataset D consisting of n objects {o0;|1 < i < n}. Each ob-
ject o; has d attributes and is denoted by o; = (a; 1, ..., Gi,qd),
where a; ; is the jth attribute for all 1 < j < d. We assume
that the range of every attribute is known in advance and
denote the range of the jth attribute by R; = [’ . .rd]
Equivalently, we can view the dataset D as a set of n points in
the d-dimensional Euclidian space. The data owner outsources
the dataset D to the CSP, which in turn answers top-k selection
queries from the users on behalf of the data owner.

B. Top-k Selection Query Model

We consider top-k selection query in this paper. Specifically,
any user can issue a top-k selection query by specifying (F, k),
where k is the number of objects requested and F is a scoring
function that maps every object in D to a real value in the
range (—o00,00). The user may ask for the objects with the k
highest or lowest scores under F'. Our subsequent discussion
focuses on one user and assumes that the user is requesting
the highest ranked objects. More specifically, the user requests
for a set of k objects O C D such that for all o, € O and

2021 IEEE/ACM 29th International Symposium on Quality of Service (IWQQS)

oj € D\ O, F(o;) > F(o;). Note that the query result for
a top-k selection query may not be unique as there could be
multiple objects sharing the same score.

In this paper, we assume that the scoring function is a
separable function with the following form

d
F(o) =) filaij), (1
j=1

where f;(-) is the subscoring function defined over the jth
attribute for all 1 < j < d. In addition, we assume that each
subscoring function f; is either monotonically non-decreasing
or non-increasing within the range [2;. We assume that the
scoring function F' cannot be predicted in advance.

C. Adversary Model

We assume that the communications among the three parties
are protected by proper cryptographic techniques and that
the data owner is trusted to follow all system operations. In
contrast, the CSP may return tampered objects or objects with
scores not among the top k with respect to scoring function
F' in response to the user’s queries. We further assume that
the user has no prior knowledge about dataset D but knows
the data owner’s public key.

D. Design Goals

We aim to enable the end users to verify the correctness of
any top-k selection query result returned by the CSP. Let O
be the set of k objects returned by the CSP in response to the
user’s query. The user needs to verify whether the query result
satisfies the following two conditions.

o Query-result integrity: Every returned object must belong
to D and have not be tampered with, i.e., O C D.
o Query-result soundness: Every returned object must have
a score no lower than every other object with respect to
F,ie., forall o, € O and 0, € D\ O, F(o,) > F(o,).
A query result is considered correct if and only if it passes
both verifications.

IV. TwWO BASIC SCHEMES

In this section, we introduce two basic schemes that support
monotone scoring functions.

A. Overview

The two basic schemes both ensure the integrity of every
object returned by the CSP using efficient cryptographic primi-
tives and require the CSP to return some additional information
to prove the soundness of the query result.

Suppose that the user issues a top-k selection query with
scoring function F'. Without loss of generality, suppose that
F(o1) > F(032) > -+ > F(0,). Since there may be multiple
objects that share the same score with respect to F', a sound
query result must include all the objects with scores higher
than F'(oy) and one or multiple objects with scores equal to
F(o,). Equivalently, a sound query result must contain all the
objects in D with scores higher than the lowest score among

the top k objects. Based on this idea, both basic schemes
require the CSP to return some additional objects to prove
that there is no object in D \ O with a score higher than the
lowest score among the top k& objects. They, however, differ
in which objects besides the top k need be returned for query-
result verification.

B. Basic Scheme 1

Let J = {1,...,d} be the set of attribute indexes. When
all the subscoring functions fi,..., fg are monotonically
non-decreasing (or non-increasing), the scoring function F'
is monotone. Scheme 1 explores a fundamental property of
monotone scoring function.

Lemma 1. Assume that all subscoring functions f1,..., fa
are monotonically non-decreasing. For any two objects o, and
oy, if F(oy) > F(oy), then there must exist j € J such that
Ag,j > Qy,j-

Proof: We prove this lemma by contradiction. Let o, =
(@z1,...,054) and oy = (ay1,...,ay4) be two arbitrary
objects. Assume that f; is monotonically non-decreasing for
all j € J and that F(0o,) > F(oy,). By definition of the
scoring function, we have 3. ; fi(az;) > >, filay,;).
Now suppose that a, g < ay,; for all j € J. It follows that
Sy filae,) < S5 filay,) and thus F(o,) < F(oy),
which leads to a contradiction. The lemma is therefore proved.

|

Scheme 1 determines the additional objects that need be
returned for soundness verification based on Lemma 1. Let
O = {o0x,,...,0x,} be the set of top &k objects with respect
to the scoring function F' chosen by the CSP, where F'(0y,) >
-+ > F(oy,). We hereafter refer to oy, as the critical object
with respect to F'. Based on Lemma 1, Scheme 1 requires the
CSP to return every object that has at least one attribute larger
than the corresponding attribute of the critical object 0y, so
that the user is able to verify that there is no object in D\ O
with score higher than F'(o0y,).

In what follows, we detail the three phases of Scheme 1, in-
cluding data preprocessing at the data owner, query processing
at the CSP, and query-result verification at the user.

1) Data Preprocessing: Assume that the data owner has a
dataset D = {o0;}!,, where o, = (a;1,...,a;4). The data
owner processes the dataset D as follows.

First, the data owner sorts the objects according to their
Jth attribute values in a descending order for each j € J
to create d sorted lists Ly, ..., Ly. Consider the jth attribute
as an example. Let (7;(1),...,7;(n)) be a permutation of
(1,...,n) such that Qri(1),j 2 Qrj(2),5 = 0 2 Qrj(n),j for
all 1 < j < d. The jth sorted list is then given by

Lj = <O7Tj(1)7 Or;(2)y s 071']'(71,)>'

Further denote by 7r7_1() the inverse permutation of ;(-). It
follows that object o, (;) is ranked ith and object o; is ranked
75! (i)th in list L; for all 1 <i < n.

The data owner then creates a one-way hash chain for each
list L;. Specifically, the data owner first computes h; = H (0;)

2021 IEEE/ACM 29th International Symposium on Quality of Service (IWQQS)

for all 1 < 4 < n, where H(-) denotes a cryptographic
hash function such as SHA-256. For each list L;,j € J, the
data owner constructs a one-way hash chain by recursively
computing

T = {Ii(h”j(”m’””“) flsowsno g
h ifr=n+1,

where denotes concatenation and h* is a publicly known

special string.

The data owner further constructs a Merkle hash tree over
01,1,021,--.,0q,1 and signs the root of the Merkle hash tree
using its private key. Finally, the data owner sends the CSP
the dataset D, the d lists L1, ..., Ly, and its signature on the
Merkle hash tree root. On receiving the information, the CSP
can compute all the non-root nodes of the Merkle hash tree.

2) Query Processing: Assume that the user issues a top-
k selection query with a scoring function F. On receiving
the query, the CSP first computes the top k£ objects with
respect to F' using an efficient algorithm such as [31]. As
discussed earlier, the top k£ objects may not be unique if
multiple objects share the same score. Let the top k ob-
jects selected by the CSP be O = {oy,,...,05,}, where
F(ox,) > --- > F(oy,) and oy, is the critical object. Further
let J© = {j|f; is not a constant function, j € J} be the set
of indexes of subscoring functions that are not a constant
function. To prove the soundness of the query result to the
user, i.e., 0y, , . .., 0y, are indeed the top k objects with respect
to F', we require the CSP to additionally return all the objects
with at least one attribute j € J* larger than the corresponding
attribute of the critical object oy, .

Specifically, for every attribute j € J¥, the CSP finds all
the objects that are ranked higher than the critical object 0, in
the list L;. Since object o0y, is ranked 77;1 (Ag)th in the list L,
the subset of objects ranked no lower than the critical object
oy, in list L; is given by V; = {041 < 7 (i) < ;' (M)}
Further let V = Ujeﬁ Vj. It follows that O C V, because
for each object 0y,,1 < x < k, there must exist at least one
list L;,j € J* such that oy, is ranked higher than oy,

Denote by A(o; 1) the subset of internal nodes of the Merkle
hash tree needed for computing the root of the Merkle hash
tree from leaf node o for all j € J. The CSP returns the
following information as the query result.

o Every object in V along with its ID {(i,0;)|o; € V}.

o The IDs of the top k objects, Ay, ..., \.

o For each j € J7T, the ID of every object o; € Vi,

ie., {i]ll < F;l(i> < w;l(Ak)}, along with element

Tjr st () +1°

» Ujes+ A(oj,1), which is the union of internal nodes in
the Merkle hash tree needed for computing the root from
every leaf node in {0;1|j € J*} and the data owner’s
signature on the root of the Merkle hash tree.

77”77

3) Query-result Verification: On receiving the query result,
the user verifies its integrity and soundness as follows.
Integrity verification. First, for every attribute j € JT,
the user computes the o;; from the returned information.

Consider attribute j as an example. For each wj(x), 1 <
x < w;l()\k), the user computes hy, ;) = H(0x,(x)). With
By 1)s Py (2) -+ o h)\k70'j7ﬂ_j—1()\k)+1, the user further com-
putes 0,1 according to Eq. (2). Next, for each ¢;1,j € J*,
the user computes the root of the Merkle hash tree using the
A(oj). Ifall the {o; 1|7 € JT} lead to the same root, the user
further verifies the data owner’s digital signature on the root of
the tree. If all the verifications succeed, the user considers the
query result authentic and proceeds to verify its soundness.
Soundness verification. Given IDs Ay, ..., A\, the user iden-
tifies the top k objects as O = {oy,, ..., 0, }. The user then
verifies whether F'(0y,) > --- > F(oy,). If so, the user iden-
tifies 0y, as the critical object and proceeds to check whether
there exists any object in V' \ O that has a higher score than
F(ox,) Let V] = {oi|1 <i <m,1 < '(i) <7 ' (M)}
for all j € J* and V' = (J,c ;+ V/. The user further verifies
if F(0;) < F(oy,) for all o; € V' \ O. If all the verifications
succeed, the user considers the query result sound.

C. Basic Scheme 2

Different from Scheme 1 that requires the CSP to return
every object with at least one attribute higher than the cor-
responding attribute of the critical object, Scheme 2 explores
a novel preference tree structure to determine the additional
objects that need be returned for query result verification. We
first define a preference relationship among objects.

Definition 1. For any two objects o, and o, object o, is
preferable fo object o,, denoted by o, = oy, if and only if
Qgj > Gy j forall j € J.

We then have the following lemma.

Lemma 2. For any two objects o, and oy, if 05 = o0y,
then F (o) > F(oy) for any non-negative monotone scoring
Sfunction.

The proof is straightforward and omitted due to the space
constraints.

We now introduce a novel preference tree structure to
represent a dataset D = {o;}"_;. Specifically, we introduce
a special object og with ag; = rd . for all j € J. Let
D’ = D J{oo}. A preference tree T consists of n + 1 nodes
with each corresponding to one unique object in D’, and
every parent object is preferable to all of its children objects.
It is easy to see that the object oy would be the root of
any preference tree representation of D as oy = o; for all
1 < ¢ < n. Note that the preference tree representation of
the dataset D may not be unique, as the same object could
be the children of different objects. We will hereafter denote
by oy the object corresponding to node V' and use oy and V'
interchangeably when no confusion arises.

Given a preference tree I' representing the dataset D, we
can convert any top-k selection query over D into a top-k
selection query over 1" by requiring the query result to exclude
the special object oy. We then have the following lemma.

Lemma 3. Let T be a preference tree corresponding to a
dataset D and F' a monotone scoring function. For any object

2021 IEEE/ACM 29th International Symposium on Quality of Service (IWQQS)

oy € D, the subset of objects with scores no lower than F(oy)
form a subtree rooted at 0.

Proof: Let Of = {0;]0 < i < n,F(0;) > F(oz)}. It
suffices to prove that for any node o, € OF its parent node
also belongs to O, which is apparent as the parent node must
have a score no lower than o,. u

Based on the above property, we can further define two
subtrees of 1" with respect to an object o,. Specifically, we
define a preference subtree with respect to object o,, denoted
by T,,, as a subtree of T formed by OF = {0;|0 < i <
n, F(o;) > F(o,)}. We also define the expanded preference
subtree with respect to object o, denoted by T7 , as the
subtree of 7" formed by all the nodes in 7, in addition to
the nodes of which the parent has a score higher than F(o,,).

Scheme 2 explores the above property to determine the
additional objects that needs to be returned for query-result
verification. Suppose that oy,,...,0y, are the top k objects
selected by the CSP with respect to F', where F'(0y,) > -+ >
F(oy,). Scheme 2 requires the CSP to return all the objects
in the expanded preference subtree T;j, ~ whereby the user can
verify that all the objects in the preference subtree 75, ~have
been returned and that no other object besides oy, ,...,0x,
has a score higher than F'(0y,). In what follows, we detail
the three phases of Scheme 2.

1) Data Preprocessing: First, the data owner constructs a
preference tree 7' from the dataset D. As discussed earlier,
the preference tree constructed from the dataset D may not be
unique. Since we require the CSP to return all the objects in
expanded preference subtree 7,7, ~ for query result verification,
it is necessary to minimize the number of children nodes that
each node has to reduce the communication cost.

Based on this observation, we introduce a divide-and-
conquer algorithm for constructing a preference tree 7' from
the dataset D. Since the special object oy should be the root
of T, the algorithm recursively constructs a preference tree
T rooted at og. In each subproblem, we take a parent node
0, (i.e., og in the initial call) and a set of descendant nodes
E (i.e., D in the initial call) as input where o, = o, for all
oy € E and performs the following two tasks.

o Task 1: Find a subset of objects C' C FE to be the
immediate children of o,,.

o Task 2: Partition the remaining objects E \ C into |C|
possibly empty subsets and assign one subset to each
object in C' as its descendants.

Let us take a look at the first task. Given a parent object
0, and a set of descendant objects F, we select the subset of
objects in E to each of which no other object is preferable
as the immediate children of o,. Doing so can minimize the
number of children nodes of o,. Special attention need be
given to the case of multiple objects having exactly same
attributes. In particular, for any two objects o, and o, if
oy = 0, then we have both o, = 0, and 0, = o,. In this
case, we can select either one of o, and o, as o,’s immediate
children node, as the other identical object can be the children
of the selected object.

Now we discuss how to assign the remaining objects F \ C
to each of the children objects C. Our intuition is that the
deeper the tree is, the fewer children nodes each non-leaf node
has, the fewer nodes in any expanded preference subtree on
average, and vice versa. Based on this idea, we iteratively
assign children objects to each object in C' by maximizing the
number of objects assigned in each iteration. Specifically, we
first construct a bipartite graph from C and F \ C' where each
vertex corresponds to a unique object in E. There is an edge
between object o, € C' and o, € E'\ C if and only if o, > o,.
We then find the object in C' with the largest degree and assign
all the objects incident to C' as its decedents. We then remove
objects that have been assigned from the bipartite graph and
proceed to the next iteration. This process continues until all
the objects in £\ C' have been assigned.

Once the two tasks are accomplished, we recursively con-
struct a subtree rooted at each node in C' with the assigned
descendant nodes until the entire tree is constructed.

Given the preference tree 7', the data owner further con-
structs a preference hash tree to encode the preference tree
structure using cryptographic hash functions.

Definition 2. (Preference Hash Tree) A preference hash tree
T is a tree constructed from a preference tree T with the same
structure, where every node v corresponds to one unique node
in T" and consists of the following fields.

e v.id: the ID of object o,.

e v.hash = H(o,): the hash of object o,.

e v.cid = (u.id|u € v.children): The list of the IDs of the
children objects.

o v.chash = H(||ucv.childrentt): The hash of the concatena-
tion of its children objects.

The preference hash tree T can be easily constructed from
the preference tree 7' in a bottom-up fashion. Specifically, for
every leaf node v that corresponds to object o,, we set v.id = ()
and v.chash = (), where) is a publicly known special string
indicating that v is a leaf node. We then set v.id and v.hash
as the ID and the hash of o,, respectively. Now consider a
non-leaf node u that corresponds to object o, with a set of
children nodes u.children. Similar to the leaf node, we first
compute u.chash = H(||veu.childrenV)-

Once the preference hash tree T is constructed, the data
owner sends all the objects {o;};, the preference hash tree
T, and its signature over the root of T to the CSP.

2) Query Processing: Assume that the data user submits a
top-k selection query with scoring function F'. On receiving
the query, the SP constructs the query result as follows.

The CSP first finds a set of k£ objects with the highest
scores O = {0y,,...,0x, }, where F(oy,) > F(oy,) > -+ >
F(o0y,) and oy, is the critical object. We define the preference
hash subtree T,, ~with respect to object 0, as the subtree of
T formed by objects O = {0;|0 <i < n, F(o0;) > F(ox,)},
and the expanded preference hash subtree T¢ ™ with respect to
object 0y, as the subtree of T formed by ka in addition to
the nodes of which the parent has a score higher than F'(0y,).

2021 IEEE/ACM 29th International Symposium on Quality of Service (IWQQS)

The CSP then constructs the query result based on the
expanded preference hash subtree Tﬁkk. For every node v €
T¢ , the CSP returns '

O>\’

R, = {(oy, v.id, v.hash, v.cid, v.chash) . 3)

Moreover, the CSP also returns the IDs of the top % objects
A1, ..., A\ and the data owner’s signature on the root of T.
3) Query-Result Verification: On receiving the query result,
the user first reconstructs expanded preference hash subtree
T¢, based on the received {R,|v € T§ } and then verifies
its 1ntegr1ty and soundness as follows.
Integrity verification. First, for every received R,,v € TgA s
the user verifies if v.hash = H(o,). Second, for every non- leaf
node v of T§, , the user obtains the list of its children from
v.cid and checks if v.chash = H(]|uev.childrent). Finally, the
user verifies the data owner’s signature on the root of the T.
If all the verifications succeed, the user considers the query
result authentic.
Soundness verification. The user identifies the top k& objects
O),,---,0y, based on the received IDs Ay, ..., A,. The user
then checks if F(oy,) > -+ > F(o0y,) and identifies the
critical object oy,. The user further checks if there is any
other object with score higher than o), among all the returned
objects other than oy,,...,0y,. If not, the user checks if all
the nodes in expanded preference subtree Tg, . have been
returned. Specifically, for every leaf node v € T, , the user
checks whether either one of following two condltlfons holds

o Condition 1: The corresponding object has a score equal
or lower than F'(oy,).

o Condition 2: The object has a score higher than F'(0y,)
but has no child, i.e., v.cid = 0.

If all the verifications succeed, the user considers the query
result sound.

V. AN ADVANCED SCHEME

In this section, we introduce an advanced scheme that sup-
ports any scoring function F' comprised of both monotonically
non-decreasing and non-increasing subscoring functions.

A. Overview

The advanced scheme is designed by generalizing the prop-
erty characterized by Lemma 1. Let F' = (f1,...,fq) be a
scoring function comprised of monotonically non-decreasing
and non-increasing subscoring functions. Further let J; and J|
be the sets of indexes of non-decreasing and non-increasing
subscoring functions, respectively, where J;|JJ, = J and
J+(J, = 0. We have the following Lemma as a generaliza-
tion of Lemma 1.

Lemma 4. Let F' be a scoring function comprised of monoton-
ically non-decreasing subscoring functions {f;|j € Jy} and
monotonically non-increasing subscoring functions {f;|j €
Ji}. Let Jy,...,Js be a family of subsets of Jr such that
Ui, Ji = Jy and Ji,...,J] be a family of subsets of J,
such that U‘;Zl Ji = J,. For any two objects o, and oy, if

F(oy) > F(oy), then there must exist either i € {1,...

such that
> filaws) > > filays)
JjEJ; Jj€Ji
ori€{l,...,t} such that

> filaay) <

jeg!

> filay,)

jeT!

The proof is similar to that of Lemma 1 and omitted here
due to space limitations. Based on Lemma 4, we define a
partial preference relationship as follows.

Definition 3. Letr J' C J be a subset of attributes. For any
two objects o, and oy, object o, is preferable to object o,
with respect to attributes J’, denoted by o, >y oy, if and
only if az; > ay j forall j € J'.

For any subset of attributes J, € J, we can define both a
partial preference tree T, and an inverse partial preference
tree T, . Specifically, a partial preference tree 7, with respect
to J, is similar to a preference tree with the exception that
for every parent node o, and children node oy, 0, =, 0.
Similarly, an inverse partial preference tree 7 is a tree in
which for every parent node o, and children node o, 0, =,
oy. Given a partial preference tree T, and an inverse partial
preference tree 7, , we can construct the corresponding partial
preference hash tree T, and the inverse partial preference hash
tree T accordingly.

Under the advance scheme, the data owner constructs a
partial preference hash tree and an inverse partial preference
hash tree for every non-empty subset J, C J. On receiv-
ing a top-k selection query, the CSP divides the scoring
function F' = (fi,..., fq4) into the subset of monotonically
non-decreasing subscoring functions {f;|; € J;} and the
subset of monotonically non-increasing subscoring functions
{f;lj € J,} and constructs one partial query result for each
of them. On receiving the query result, the user verifies the
soundness of the query result according to Lemma 4. In what
follows, we details its operations.

B. Data Preprocessing

Given a dataset D, the data owner first generates the family
of non-empty subsets of index set J as P = {J,|J, C 27\
{0}}. 1t follows that |P| = 2¢ — 1.

For each subset J, € P, the data owner constructs a partial
preference hash tree T, as in Scheme 2 with the exception
that every parent node is preferable to all of its children nodes
with respect to J,. The data owner also constructs an inverse
partial preference hash tree T, in which every children node
is preferable to its parent node with respect to J,, and the root
node is another special object oy = (al;, ... mm) The da-
ta owner then sends {0;|1 < i < n} and {(TI,T:L,)z € P}
along with its signature on the root of every partial preference
hash tree and inverse partial preference hash tree to the CSP.

2021 IEEE/ACM 29th International Symposium on Quality of Service (IWQQS)

C. Query Processing

Assume that the user issues a top-k selection query with a
scoring function F. The CSP first finds the top k& objects with
respect to F as O = {oy,,...,05,} where F(oy,) > -+ >
F(oy,) and oy, is the critical object.

The CSP then separately constructs one partial query result
for the subset of non-decreasing subscoring functions and
another for the subset of non-increasing subscoring functions.
Recall that J; and J| are the sets of indexes of non-decreasing
and non-increasing subscoring functions, respectively. It is
easy to see that J, € P and J| € P. Without loss of generality,
assume that J, = J; and J, = J|.

For J, € P and the corresponding partial preference tree
T,, we define the critical partial preference hash subtree
T.(ox) as the subtree of T, formed by nodes with partial
score no lower than oy, i.e., {0;|0 < i < n, Zje,z filai) >
>_jes, filax,,;)}. The expanded partial preference hash sub-
tree TS(0y) can be defined accordingly. For every node
v € T¢(0y), the partial query result R, is given by

R, = (v.id, v.hash, v.cid, v.chash) .)

The partial query result for J, is then R;, = {R,|v €
T¢(ox)}-

Similarly, for J, € P and corresponding partial prefer-
ence hash tree T,, we define the critical partial preference
hash subtree T (o)) as the subtree of T, formed by nodes
with partial score no higher than oy, ie., {0;]0 < i <
n, > es, ilaig) < 3ie; filax,;)}. The expanded criti-
cal partial preference hash subtree T_°(0y) can be defined
accordingly. For every node v € T_¢(0,), the partial query
result R, is given by Eq. (4). The partial query result for .J,
is then Ry, = {R,Jve T “(ox)}.

The complete query result in response to the top-k selection
query consists of the following pieces of information.

o All the involved objects {oy|v € T5(ox) U T, “(ox)}.

o The IDs of the top k objects Ay, ..., Ag.

o The two partial query results R, and Ry, .

o The data owner’s signature on the roots of T, and T, .

D. Query Result Verification

On receiving the query result, the user first verifies the
integrity of all the returned information based on the corre-
sponding partial preference hash trees and the data owner’s
signatures on the roots as in Scheme 2.

The user then checks if F(oy,) > -+ > F(o0,,) and identi-
fies the critical object as oy, whereby to verify the soundness
of the query result based on Lemma 4. Specifically, for each
oy where v € T¢(0y) and o, is not among oy,,...,0x,,
the user checks whether it has a partial score higher than
> jes, filax,,;). Similarly, for each o, where v € T (o))
and o, is not among o,,,...,0y,, the user checks whether it
has a partial score lower than g, ti (@x,,;)- Finally, the us-
er checks whether all the nodes in T¢ (o)) and T, (o)) have
been returned. Specifically, for each leaf node of T¢(0,), the
user checks whether either it has no children or it has a partial

TABLE II
DEFAULT SIMULATION SETTINGS

Para. | Value | Description

n 8,000 | The number of objects

d 5 The number of attributes

k 250 The number of objects requested
[H ()] 256 | The length of hash in bit

1024 | The length of data owner’s signature in bit

score no lower than >, ; fj(ax,,;). For each leaf node of
T, “(ox), the user checks whether either it has no children or
it has a partial score no higher than >, ; f;(ax, ;). If no
violation is found, the user considers the query result sound.

E. Discussions

While our primary motivation behind the advanced scheme
is to support scoring functions comprised of both monotonical-
ly non-decreasing and non-increasing functions, the advanced
scheme can also be adopted to minimize the communication
and computation costs. Given {(T,, T,)|J, € P}, the CSP
can construct multiple authentic and sound valid query results
in response to a top-k selection query. Suppose that all the
subscoring functions are monotonically non-decreasing. We
call a subset P C P a cover of JV if the following two
conditions hold.

o Condition 1: UJmeP J, = JT, ie., the union of the
subsets covers J 7.
« Condition 2: J, (" J, = 0 for any J,, J, € P, i.e., there
is no overlap between any two subsets.
For every valid cover P, the CSP can construct a query result
consisting of a partial query result R, for every R, € P.
Since different covers would have different sets of expanded
preference subtrees, they would require different numbers of
additional objects to be returned and thus incur different
communication and computation costs. Intuitively, the CSP
may examine all the covers to find the optimal query result
with the minimal number of additional objects. Moreover, the
data owner may choose to construct preference subtrees only
for some of the subsets of J to reduce the computation and
communication cost as long as a valid cover can be found for
any J. There is thus a trade-off among the computation costs
of the three phases. We leave the investigation of these issues
as our future work due to space constraints.

VI. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed
schemes using detailed simulation studies.

A. Simulation Setting

We implemented the three proposed schemes in Python and
tested them on a desktop equipped with an i7-8700 CPU,
16GB RAM, and 64-bit Winl0 OS. We choose SHA-256
for the cryptographic hash function and 1024-bit RSA as the
digital signature scheme. We used a public dataset [32] for our

2021 IEEE/ACM 29th International Symposium on Quality of Service (IWQQS)

21012{ [Scheme 1 2o
-6 Scheme 2 S
——="Scheme 3 g1o

g g
£ 1%l zwc £ 10m
1012
S

& 10

g 108

H—&—e—é—é—e—e—e_e
éloﬁw

10*
—— Scheme 1
—©— Scheme 2 10°
—9~Scheme 3 107
“— zZwC
~¥— YCH 10*

e e S

Query comp. cost (s)

Preprocessing col
=
‘i

100 N AR AR RN

510 10°
E10n —%— Scheme 1 B s
2 10 — Scheme 1
— Scheme 1 Faon -6~ Scheme 2 = ccheme 2
—6— Scheme 2 80 —— Scheme 3 S 10? & sch
—— Scheme 3 glo —— ZWC [Scheme 3
—— zwc £ 10° ~%- YCH . e
o Yew 8 100 S 100 ¥ YCH
< e o o o
5w W B0V T
S 106 x/—x’; *
50000009 1025 660090006920

4000 8000 12000 16000 20000 4000 8000 12000 16000 20000
n n

(a) Preprocessing comp. cost (b) Owner-CSP comm. cost

4000 8000 12000 16000 20000
n

(c) CSP comp. cost

4000 8000 12000 16000 20000 4000 8000 12000 16000 20000
n n

(d) Query comm. cost (e) User comp. cost

Fig. 1. Comparison of Scheme 1, Scheme 2, Scheme 3, ZWC, and YCH with n varying from 2,000 to 20,000.

s o102
210> Scheme 1 3 —%— Scheme 1 106{[—¢ Scheme 1 o 115 || Scheme 1 —%— Scheme 1
8 1g13|~©~ Scheme2 3 10%{|-6— Scheme 2 o —o- Scheme 2 Z10%1|-e~ scheme2 & 10%| o scheme 2
i —9— Scheme 3 || schemes § 10*|—4— Scheme 3 %1013 {|—9— Scheme 3 % q0¢]| - Scheme3
£101°|—— zZwc g 1071+ zwc S —— ZWC g || zwe S —— ZwWC
o 07| _YCH E que] |7 Yo g 10 E10 - yoH £ 10 o
2 O s o /
£ o 8 S 10 S
g 100 & 101 g 1 . o 100 . .
s 5 S g 10 g ¥ g
£ 100 8 &10-2 10~
5w ¢ 10 3 ﬂ":g 10 3 10 W 0 M—‘e
[)%—*——X—x—x—x o
3 5 4 5 & 71 3 5 4 5 & 1 FIE] 56 7 2 5 4 5 & 7 > 5 4 5 & 7
d d d d d

(a) Preprocessing comp. cost (b) Owner-CSP comm. cost

(c) CSP comp. cost

(d) Query comm. cost (e) User comp. cost

Fig. 2. Comparison of Scheme 1, Scheme 2, Scheme 3, ZWC, and YCH with d varying from 2 to 7.

simulation, which consists of 22,365 records of NBA players,
and each record is comprised of 13 numeric attributes about
different performance statistics of the player, from which we
randomly select 2 to 7 attributes. We also generates top-k
selection queries with random linear scoring functions. Table II
summarizes our default settings unless mentioned otherwise.

We compare the three schemes with the two solutions
proposed in [11], [12] (refer to as ZWC hereafter) and [15]
(referred to as YCH hereafter). Despite their assumptions of
scoring functions having explicit forms, they are the only two
that can support scoring functions over multiple attributes.
Also note that the performance of ZWC [11], [12] is based
on our best-effort estimation due to its high computation and
communication costs.

We use five metrics in our simulation studies, including (1)
preprocessing computation cost, which is the amount of time
incurred by preprocessing the dataset D at the data owner, (2)
owner-CSP communication cost, which is the amount of extra
information in bits transmitted from the data owner to the CSP,
(3) query computation cost, which is amount of time incurred
by the CSP for processing a top-k selection query, (4) CSP
communication cost, which is the amount of extra information
in bits transmitted from the the CSP to the user in response to
a top-k selection query, and (5) user computation cost, which
is the amount of time needed for verifying a query result.

B. Simulation Results

In this subsection, we report out simulation results. We
assume that all subscoring functions are monotonically non-
decreasing in Sections VI-B1 to VI-B3 to allow comparison
among the three proposed schemes and postpone to evaluation
of mixed subscoring functions to Section VI-B4.

1) Impact of n: Figs.1(a) to 1(e) compare the performance
of Schemes 1 to 3, ZWC, and YCH with the number of objects
n varying from 2000 to 20000.

Fig. 1(a) compares the preprocessing computation cost
under the five schemes. As we can see, the preprocessing
computation cost increases as n increases under all five
schemes as expected. Among them, Schemes 1 has the low-
est preprocessing computation cost, followed by Schemes 2,
Scheme 3, YCH, and ZWC. The reason is that the data
owner only needs to sort d lists under Scheme 1, which is
very efficient. In contrast, the data owner needs to construct
one and 29t1 — 2 preference hash trees under Scheme 2
and Scheme 3, respectively. YCH incurs higher preprocessing
computation cost than all three proposed schemes, as the data
owner needs to precompute all subspaces where the objects
exhibit distinct orders, and the total number of subspace is
O(n?) assuming linear scoring functions. All four schemes
incur significantly lower computation cost than ZWC, as ZWC
uses digital signature to chain every pair of adjacent grids, and
the number of grids is O(n?).

Fig. 1(b) compares the owner-CSP communication cost of
the five schemes. Similar to Fig. 1(a), the owner-CSP commu-
nication cost increase as n increases under all five schemes as
expected. Among them, Scheme 2 incurs the lowest owner-
CSP communication cost, followed by Scheme 1, Scheme 3,
and YCH and ZWC is the highest. The reason is that approx-
imately nd,n, and n29t! hashes need be transmitted from
the data owner to the CSP under Schemes 1 to 3, respectively,
whereas O(n?) and O(n?) digital signatures are needed under
YCH and ZWC, respectively.

Fig. 1(c) compares the CSP computation cost of the five
schemes. Note that Schemes 2 and 3 are equivalent when all
subscoring functions are monotonically non-decreasing as the
CSP only needs to construct the query result based on one
preference hash tree. We can see that the CSP computation
cost increases as n increases under all five schemes, which is
expected. The CSP computation cost under YCH is initially
higher than Schemes 1 to 3 but grows slower as n increases.
The reason is that the CSP needs to search a space-partition

2021 IEEE/ACM 29th International Symposium on Quality of Service (IWQQS)

103 .
. 51012 W 10
< 10 —% Scheme 1 <l 3¢ Scheme 1 G 103 —*%— Scheme 1
P
3 —©— Scheme 2 2 1010 —o6— Scheme 2 7 —©— Scheme 2
S 101 S g 10 —— Scheme 3
a —9— Scheme 3 . —— Scheme 3 °
o e | E T g
g —¥— YCH S 10 —7— YCH ? 10°
[>
2107 ¢ g p TV VY @ %10- W
. ERTY x—,: o000 3107 e 5
10-2 ;W 5 § g 1072 e,_e__e—e—e——e—é—e—e—e
100 200 300 400 500 100 200 300 400 500 100 200 300 400 500
k k k
(a) CSP computation cost (b) Query communication cost (c) User computation cost
Fig. 3. Comparison of Scheme 1, Scheme 2, Scheme 3, ZWC, and YCH with k varying from 50 to 500.
x10°
& X
0.031 4 O~ =8 0.16 R R
™ Q a
= =) S —0.14
) 2 A) &
2 361 ¢ 0.12 a_ v
S$0.02 © S S &
g a £ = C_Lo.lo S
£ —— d=3 £4:7 -4 £0.08
8 d=4 o = S 0.06 @
goo J% =5 g2 - % 0.00
3 -o— d=6 2 =6 30
—— d=7 =7 0.02
0 0.00
o 1 2 3 4 5 6 7 0o 1 2 3 4 5 6 7 o0 1 2 3 4 5 6 7

of non-decreasing subscoring functions

(a) CSP computation cost

of non-decreasing subscoring functions

(b) Query communication cost

of non-decreasing subscoring functions

(c) User computation cost

Fig. 4. The impact of the number of non-decreasing subscoring functions on Scheme 3.

tree of depth O(logn) under YCH. Moreover, Schemes 2 and
3 incur lower CSP computation cost than Scheme 1, as the CSP
only needs to examine one preference subtree under Schemes 2
and 3 but d sorted list under Scheme 1. Both schemes 2 and
3 outperform YCH a large margin and ZWC by orders of
magnitude under the default setting.

Figs. 1(d) and 1(e) compare the query communication cost
and user computation cost of the five schemes. We can see
that the query communication cost and user computation
cost both increase as n increases under Schemes 1 to 3
and ZWC, which is expected. YCH incurs the lowest query
communication cost as the CSP only needs to return & digital
signatures independent of n. Schemes 2 and 3 incur lower CSP
computation cost and user computation cost than Scheme 1
as the CSP only needs to return one hash for every node in
one expanded preference hash tree under Schemes 2 and 3
and one hash for every node ranked higher than the critical
object in each of the d lists under Scheme 1. Moreover, YCH
incurs higher user computation cost than Schemes 2 and 3 as
it requires k expensive signature verifications. Moreover, all
three proposed schemes and YCH outperform ZWC by orders
of magnitude.

2) Impact of d: Figs. 2(a) to 2(e) compare the performance
of Schemes 1 to 3, ZWC, and YCH with d, i.e., the number
of attributes, varying from 2 to 7. As we can see, the
preprocessing computation cost, owner-CSP communication
cost, CSP computation cost, query communication cost, and
user computation cost of increase as the d increases under
all five schemes, which is anticipated. In contrast, the costs
under YCH is relatively insensitive to the change in d, as

they are mainly affected by n. Under the default setting, ZWC
incurs significantly higher costs than the other four schemes
except when d = 2. Among Schemes 1 to 3, Scheme 3
incurs the highest preprocessing computation cost, owner-CSP
communication cost, and CSP computation cost, due to the
24+1 _ 2 preference subtrees involved. Scheme 1 incurs the
lowest preprocessing computation cost, while Schemes 2 and 3
have the lowest CSP computation cost, query communication
cost, and user computation cost.

3) Impact of k: Figs. 3(a) to 3(c) compare the query
computation cost, query communication cost, and user compu-
tation cost of the five schemes with k£ varying from 50 to 500.
Generally speaking, the larger &, the higher CSP computation
cost, query communication cost, and user computation cost
for all five schemes, and vice versa, which is expected. ZWC
always incurs the highest costs among the five. YCH incurs
higher CSP computation cost and user computation cost but
lower query communication cost than Schemes 1 to 3, as it
requires the CSP to locate the subspace containing the query
point and the query result contains k digital signatures. In
contrast, the CSP only needs to examine d sorted lists and one
preference hash tree under Scheme 1 and Schemes 2 and 3,
respectively, resulting in lower CSP computation cost and user
computation cost. In addition, all three schemes primarily use
cryptographic hash functions for integrity verification, which
are more efficient than digital signatures.

4) Impact of The Number of Non-decreasing Subscoring
Functions: Figs. 4(a) to 4(c) show the query computation
cost, query communication cost, and user computation cost of
Scheme 3 with the number of monotonically non-decreasing

2021 IEEE/ACM 29th International Symposium on Quality of Service (IWQQS)

subscoring functions, i.e., |J;|, varying from O to d for d = 3
to 7. An interesting phenomenon we can observe is that the the
query computation cost, query communication cost, and user
computation cost sometimes fluctuate as |J;| increases from 0
to d, which is particularly obvious when d = 7. The reason is
that the number of additional objects that need be returned for
query-result verification under Scheme 3 depends on the two
expanded partial preference hash trees. Specifically, an object
needs be returned if it belongs to either T¢ (o)) or T,*(0x).
However, the number of nodes in an (inverse) expanded partial
preference hash tree is affected by the number of children
nodes each node has on average. When |.J;| is small, it is more
likely for one object to be preferable to another, which leads to
a deeper preference hash tree, fewer children nodes each node
has on average, and a smaller expanded partial preference tree.
As | J4| increases, there will be fewer preference relationship
among objects, which leads to a wider preference hash tree
and more children nodes each node has on average. It is thus
not surprising to see that the query computation cost, query
communication cost, and user computation cost are the lowest
when | J3| ~ d/2,i.e., Tg(oy) are T, *°(0x) have similar sizes.

VII. CONCLUSION

In this paper, we have introduced three novel schemes
for authenticating outsourced top-k selection queries against
an untrusted CSP. Exploring a partial preference relationship
among objects, the three schemes allow the user to verify
both the integrity and soundness of any top-k selection query
result returned by the CSP. Detailed simulation studies using a
real dataset confirm the efficacy of efficiency of the proposed
schemes and their significant advantages over prior solutions.

ACKNOWLEDGEMENT

The authors would like to thank the anonymous reviewers
for their constructive comments and helpful advice. This
work was partially supported by National Natural Science
Foundation of China under Grant 62072351, Academy of
Finland under Grant 308087 and Grant 335262, US Nation-
al Science Foundation through grants CNS-1933069, CNS-
1824355, CNS-1651954 (CAREER), CNS-1718078 and CNS-
1933047.

REFERENCES

[1] L E Ilyas, G. Beskales, and M. A. Soliman, “A survey of top-k query
processing techniques in relational database systems,” ACM Comput.
Surv., vol. 40, no. 4, Oct. 2008.

[2] E. Mykletun, M. Narasimha, and G. Tsudik, “Authentication and in-
tegrity in outsourced databases,” ACM Trans. Storage, vol. 2, no. 2, p.
107-138, May 2006.

[3] R. Zhang, J. Shi, Y. Liu, and Y. Zhang, “Verifiable fine-grained top-k
queries in tiered sensor networks,” in JEEE INFOCOM’10, San Diego,
CA, USA, March 2010, pp. 1-9.

[4] R. Zhang, Y. Zhang, and C. Zhang, “Secure top-k query processing
via untrusted location-based service providers,” in I[EEE INFOCOM,
Orlando, FL, USA, March 2012, pp. 1170-1178.

[5] Chia-Mu Yu, Guo-Kai Ni, Ing-Yi Chen, E. Gelenbe, and Sy-Yen Kuo,
“Top-k query result completeness verification in sensor networks,” in
IEEE ICC’13, Budapest, Hungary, June 2013, pp. 1026-1030.

[6] C. Yu, G. Ni, L. Chen, E. Gelenbe, and S. Kuo, “Top-k query result
completeness verification in tiered sensor networks,” IEEE Transactions
on Information Forensics and Security, vol. 9, no. 1, pp. 109-124, 2014.

[71 D. Hua, Y. Geng, X. Fu, and Z. Qiang, “Evtq: An efficient verifiable
top-k query processing in two-tiered wireless sensor networks,” in /EEE
MSN’13, Dalian, China, Dec. 2013, pp. 206-211.

[8] R. Zhang, J. Shi, Y. Zhang, and X. Huang, “Secure top-k query
processing in unattended tiered sensor networks,” IEEE Transactions
on Vehicular Technology, vol. 63, no. 9, pp. 4681-4693, 2014.

[91 R. Zhang, J. Sun, Y. Zhang, and C. Zhang, “Secure spatial top-k
query processing via untrusted location-based service providers,” [EEE
Transactions on Dependable and Secure Computing, vol. 12, no. 1, pp.
111-124, Jan. 2015.

[10] R. Li, A. X. Liu, S. Xiao, H. Xu, B. Bruhadeshwar, and A. L. Wang,
“Privacy and integrity preserving top-k query processing for two-tiered
sensor networks,” IEEE/ACM Transactions on Networking, vol. 25,
no. 4, pp. 2334-2346, 2017.

[11] X. Zhu, J. Wu, W. Chang, G. Wang, and Q. Liu, “Authentication
of multi-dimensional top-k query on untrusted server,” in IEEE/ACM
IWQoS, 2018, pp. 1-6.

[12] X.Zhu, J. Wu, W. Chang, G. Wang, and Q. Liu, “Efficient authentication
of multi-dimensional top-k queries,” IEEE Access, vol. 7, pp. 4748—
4762, 2019.

[13] X. Ma, J. Liang, S. Yang, Y. Li, Y. Li, W. Ma, and T. Wang, “Sls-stq:
A novel scheme for securing spatial-temporal top-k queries in twsns-
based edge computing systems,” IEEE Internet of Things Journal, vol. 6,
no. 6, pp. 10093-10 104, 2019.

[14] Y.-T. Tsou, Y.-L. Hu, Y. Huang, and S.-Y. Kuo, “SFTopk: Secure
functional top-k query via untrusted data storage,” IEEE Access, vol. 3,
pp- 2875-2890, 2015.

[15] G. Yang, Y. Cai, and Z. Hu, “Authentication of function queries,” in
IEEE ICDE’16, Helsinki, Finland, May 2016, pp. 337-348.

[16] Y. Yang, S. Papadopoulos, D. Papadias, and G. Kollios, “Authenticated
indexing for outsourced spatial databases,” The VLDB Journal, vol. 18,
no. 3, pp. 631-648, Jun 2009.

[17] D. Yung, E. Lo, and M. L. Yiu, “Authentication of moving range
queries,” in CIKM’12, Maui, HI, 2012, pp. 1372-1381.

[18] Q. Chen, H. Hu, and J. Xu, “Authenticating top-k£ queries in location-
based services with confidentiality,” Proc. VLDB Endow., vol. 7, no. 1,
pp. 49-60, 2013.

[19] W. Chen, M. Liu, R. Zhang, Y. Zhang, and S. Liu, “Secure outsourced
skyline query processing via untrusted cloud service providers,” in /EEE
INFOCOM'’16, San Francisco, CA, USA, April 2016, pp. 1-9.

[20] M. L. Yiu, E. Lo, and D. Yung, “Authentication of moving knn queries,”
in /[EEE ICDE’11, Hannover, April 2011, pp. 565-576.

[21] L. Hu, W.-S. Ku, S. Bakiras, and C. Shahabi, “Spatial query integrity
with voronoi neighbors,” IEEE Transactions on Knowledge and Data
Engineering, vol. 25, no. 4, pp. 863-876, April 2013.

[22] L. Hu, Y. Jing, W.-S. Ku, and C. Shahabi, “Enforcing k£ nearest neighbor
query integrity on road networks,” in ACM SIGSPATIAL’12, Redondo
Beach, CA, Nov. 2012, pp. 422-425.

[23] M. L. Yiu, Y. Lin, and K. Mouratidis, “Efficient verification of shortest
path search via authenticated hints,” in /JEEE ICDE’10, Long Beach,
CA, March 2010, pp. 237-248.

[24] H. Pang, A. Jain, K. Ramamritham, and K.-L. Tan, “Verifying complete-
ness of relational query results in data publishing,” in ACM SIGMOD’05,
2005, p. 407-418.

[25] Y. Zhang, J. Katz, and J. Katzs, “Integridb: Verifiable SQL for out-
sourced databases,” in ACM CCS’15, Denver, CO, 2015, pp. 1480-1491.

[26] Y. Zhang, D. Genkin, J. Katz, D. Papadopoulos, and C. Papamanthou,
“vSQL: Verifying arbitrary SQL queries over dynamic outsourced
databases,” in IEEE Symposium on Security and Privacy, San Jose, CA,
May 2017, pp. 863-880.

[27] Y. Tang, T. Wang, L. Liu, X. Hu, and J. Jang, “Lightweight authentica-
tion of freshness in outsourced key-value stores,” in ACM ACSAC’14,
New Orleans, Louisiana, USA, 2014, p. 176-185.

[28] Y. Hu, R. Zhang, and Y. Zhang, “KV-Fresh: Freshness authentication
for outsourced multi-version key-value stores,” in IEEE INFOCOM 20,
Toronto, ON, Canada, July 2020, pp. 1638-1647.

[29] F.Li, K. Yi, M. Hadjieleftheriou, and G. Kollios, “Proof-infused streams:
Enabling authentication of sliding window queries on streams,” in
VLDB’07, Vienna, Austria, Sept. 2007, pp. 147-158.

[30] S. Nath and R. Venkatesan, “Publicly verifiable grouped aggregation
queries on outsourced data streams,” in [EEE ICDE’l3, Brisbane,
Australia, April 2013, pp. 517-528.

[31] R. Fagin, A. Lotem, and M. Naor, “Optimal aggregation algorithms for
middleware,” in ACM PODS’01, Santa Barbara, CA, 2001, p. 102-113.

[32] “Available at,” https://slamdunk.sports.sina.com.cn.

