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Abstract—The emerging Connected Vehicle (CV) technology is
widely expected to greatly enhance traffic safety and efficiency
by enabling vehicles, pedestrians, and infrastructures to commu-
nicate with one another. As a promising CV application, CV-
based traffic signal control aims to improve the traffic efficiency
at intersections by dynamically optimizing traffic signal control
plans based on the mobility information submitted by surround-
ing CVs. Effective CV-based traffic control relies on accurate
estimation of the queue length i.e., the number of vehicles
waiting at intersections, to determine the optimal traffic signal
control plans. Despite significant efforts on accurate queue length
estimation, the robustness of queue length estimation has so far
received very limited attention. A recent study has demonstrated
that it is possible for malicious CVs to significantly manipulate the
queue length estimation by reporting false mobility data, which
can cause severe traffic congestion. To tackle this challenge, we
introduce a robust queue length estimation mechanism that first
utilizes the mobility data reported by all the CVs waiting in the
queue to calculate multiple preliminary queue length estimates.
Then, the robust statistical methods are adopted to derive a
resulting estimated queue length whose accuracy is kept at an
acceptable level even though there exist multiple malicious CVs
in the queue. The simulation results confirm the effectiveness of
the proposed mechanism.

Index Terms—Security, Connected Vehicles, Intelligent Trans-
portation Systems, Data Spoofing Attack

I. INTRODUCTION

Connected vehicle (CV) technology is widely expected
to greatly improve traffic efficiency and safety by enabling
vehicles to communicate with other vehicles, transportation
infrastructures, and pedestrians. The CV-based traffic signal
control is one of the emerging CV applications, which relies
on wireless communication between CVs and traffic control
infrastructures to reduce congestion and improving traffic mo-
bility at road interactions. In a CV-based traffic signal control
system, vehicles equipped with communication capabilities
periodically report their speed, location, heading, etc. to the
infrastructures via the dedicated short-range communications
(DSRC), and the traffic control system determines the op-
timized traffic signal plans according to the current traffic
conditions at intersections.

The queue length at a signalized intersection, i.e., the
number of vehicles waiting in line, is one of the most crucial
parameters for determining optimal traffic signal control plans.
In particular, the optimal traffic signal plan is largely affected
by the estimated queue length, as the traffic signal control
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system needs to allocate sufficient time for the waiting vehicles
to pass the intersection. In the absence of CV-technology,
the queue length is currently estimated with the assistance of
vehicular detectors, such as inductive loop, video cameras, and
microwave sensors [1]. They not only incur high maintenance
costs but also fail to produce accurate estimates during heavy
traffic jams or bad weather. In contrast, the CV-based traffic
signal control system can operate normally under oversaturated
traffic flow conditions and low visibility conditions.

The current low market penetration rate of CVs makes
queue length estimation a challenging problem. Ideally, if all
the vehicles waiting at the intersection are equipped with CV
technologies, queue lengths would be easily obtained by count-
ing the number of CVs in queues. However, as the market pen-
etration of CV-based vehicles remains low and is not expected
to reach 0.95 before 2045 [2], queue length estimation needs
to be based on the reported data from sporadic CVs. Consider
as an example the Intelligent Traffic Signal System (I-SIG),
which is an arterial traffic signal application developed in the
Dynamic Mobility Applications (DMA) program launched by
the USDOT [3]. The I-SIG adopts the Estimation of Location
and Speed (EVLS) algorithm to estimate the trajectory data
of the non-connected vehicles [4]. Queue length needs to be
estimated in this process. To this end, the EVLS algorithm
utilizes the information of stopping positions and stopping
times reported by the last two CVs in the queue [5].

The overreliance on the stopping position of the last con-
nected vehicle for queue length estimation makes CV-based
traffic signal control systems vulnerable to data spoofing
attacks. In particular, a recent study [4] demonstrates that
even a single malicious CV can deceive the CV-based traffic
control system, I-SIG, into accepting a significantly inflated
queue length through reporting false mobility data. The in-
flated estimated queue length can cause the I-SIG to allocate
unnecessarily a long period for the lane with the malicious CV
and cause congestion or disrupt traffic flow at intersections,
resulting in worse traffic mobility than that without using the
I-SIG system. There is thus a pressing need for developing
a robust queue length estimation mechanism resilient to data
spoofing attacks to fully unleash the potential of CV-based
traffic signal control.

In this paper, we tackle this challenge by introducing the
design and evaluation of a robust queue length estimation
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mechanism for CV-based traffic signal control system. We
observe that the key to thwarting data spoofing attacks is to
fully utilize the mobility data of all the available CVs waiting
in the queue instead of the last one alone. Specifically, our
mechanism estimates the queue length based on each indi-
vidual CV’s report and then aggregates multiple estimates to
produce a final estimated queue length using robust statistical
methods. Our contributions in this paper can be summarized
as follows.

o« We introduce a novel robust queue length estimation
mechanism against data spoofing attacks for CV-based
traffic signal control systems.

o Detailed simulation studies confirm the effectiveness of
the proposed mechanism. For example, our mechanism
can reduce the capability of the attacker in terms of
skewing the resulting estimated queue length by 86.6%,
79.3%, and 70.4%, when the number of attacking CVs
in the queue is 1, 2, and 3, respectively.

The rest of the paper is structured as follows. We review
the related work in Section II and introduce the problem
formulation in Section III. We then present the proposed
mechanism in Section IV and report the simulation result in
Section V. This paper is finally concluded in Section VI.

II. RELATED WORK

As a serious threat to CVs and intelligent transportation
systems, data spoofing attacks have drawn growing attention
in recent years. Besides the position spoofing attack studied
in [4], the impact of arrival time spoofing attacks on different
backpressure-based scheduling algorithms in traffic signal con-
trol (TSC) was studied in [6]. In addition, Dedinsky et al. [7]
introduced a vision system against the data spoofing attacks
by monitoring the position of incoming vehicles and verifying
their behaviors. Moreover, Ta and Dvir [8] presented a secure
traffic congestion detection and management system to defend
against data spoofing attacks that using a vehicular public key
infrastructure. Li er al. [9] designed a blockchain-based and
decentralized architecture to secure the CV-based traffic signal
control systems. None of these works consider robust queue
length estimation.

Besides data spoofing attacks targeting traffic control sys-
tems, the vulnerabilities of connected/autonomous vehicles
(C/AV) have been exploited to attack a platoon of vehicles
[10], [11] or a single vehicle [12], [13]. Amoozadeh et al.
[10] and Abdo et al. [11] studied different security attacks on
Cooperative Adaptive Cruise Control, which can affect a group
of vehicles. Sun ef al. [12] explored the vulnerability of current
LiDAR-based perception architectures in AVs and perform
the LiDAR spoofing attack. Shen et al. [13] showed that the
Multi-Sensor Fusion (MSF) algorithms in AVs are vulnerable
to the strategically performed GPS spoofing attacks. These
works address different problems and are thus orthogonal to
our work.

The subject of queuing at signalized intersections has been
studied extensively in the past. As early as the 1940s and
1950s, Clayton [14], Wardorp [15], and Beckmann et al. [16]
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Fig. 1. [Illustration of a CV-based traffic control system at a four-arm
intersection.

discussed the queues at fixed-cycle traffic light. The inductive-
loop detector was introduced in the early 1960s and has be-
come the most widely used traffic sensor [17]. The traffic flow
data collected by inductive-loop detectors have been used to
estimate the queue length at intersections [18], [19]. Recently,
the emerging ITS and CV technologies have given rise to new
mechanisms for queue length estimation. There have been
two major approaches for queue length estimation in CV,
including shockwave theory approach [20]-[25] and statistical
approach [26]-[29]. Our proposed queue length estimation
mechanism belongs to the statistical approach. Comert and
Cetin [26] proposed to use the location information of the last
CV in the queue to estimate the queue length. Tiaprasert et
al. [27] applied the least-mean-square-error (LMSE) method
estimate the queue length. However, none of these solutions
can withstand the data spoofing attack addressed in this paper.

III. PROBLEM FORMULATION
A. System Model

We consider a CV-based traffic signal system at a four-
arm intersection shown in Fig. 1. The CV-based traffic signal
system periodically receives mobility report from nearby CVs
whereby to estimate the queue length of each lane to determine
the signal control plans. We focus on queue-length estimation
in this paper, and how to determine the optimal traffic signal
plan based on the estimated queue length is out of the scope
of this work.

We assume that the time is divided into epochs of the
same length. Our subsequent discussion considers a single
lane at a given epoch t. Assume that there are [ vehicles
in the lane waiting after the stop line, including m CVs
denoted by Vi,...,V,,, and | — m non-connected vehicles.
Each CV V; periodically broadcasts a status report containing
its location and velocity at a frequency of 10Hz. We denote
the status report broadcasted by CV V; during epoch ¢ by
Rii = (ID;,p;,v;,t), where ID; is the unique ID of V;
assigned by a trusted authority, e.g., the DMV, and p; and v;
are the position and velocity of V; in epoch ¢, respectively. We
assume that the length of each epoch is sufficiently small, e.g.,
100ms, such that each CV only broadcasts one status report. In
addition, for the CVs that are waiting in the queue, its speed is
typically low, e.g., lower than 2m/s, and the distance it travels
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during each epoch is negligible. Moreover, we assume that
every beacon message is digitally signed by the sender with
its private key to ensure the integrity of the message. We also
assume that the current CVs’ market penetration rate p € (0,1)
is known to the traffic control system. Given the status reports
from the m CVs, Ry 4, ..., Ry, ¢, the traffic control system S
intends to produce an estimated queue length L.

B. Adversary Model

We consider an adversary whose goal is to deceive the traffic
control system into producing an inflated estimated queue
length whereby to cause suboptimal traffic signal plans and
significant traffic congestion in other lanes and directions. In
particular, the prior study has shown that it is much easier
for the adversary to inflate the estimated queue length using
forged mobility reports containing fake locations that are far
away from the stop line. In contrast, it is much difficult
for the adversary to mislead the traffic control system into
significantly underestimating the queue length as long as there
is at least one legitimate CV reporting a location behind the
fake CVs.

We assume that the adversary has control over ¢ > 0
attacking CVs which may launch data spoofing attack by
submitting forged mobility reports under its instruction. A
forged mobility report may contain a fake location of the
adversary’s choice but must include a valid CV’s ID and
appropriate digital signature. The adversary may launch the
attack in different ways. First, it may have the CVs under its
control be physically present at the target lane. Second, it may
use a mobile device with a powerful transmitter to impersonate
the CVs and send forged mobility reports on their behalf from
a nearby location. In both cases, the adversary has the valid
security credentials, e.g., private keys issued to the IDs, and
can send mobility reports with proper digital signatures that
can pass the verification at the traffic control system, and we
thus will not differentiate the two cases hereafter.

C. Design Goals

We seek to design a robust queue length estimation mech-
anism to meet the following goals.

o Resilience against data spoofing attack: The estimated
queue length should be sufficiently accurate in the pres-
ence of data spoofing attacks.

o Accuracy in the absence of attack: The queue length
estimated by the proposed mechanism should be close to
existing solutions in the absence of data spoofing attacks.

IV. ROBUST QUEUE LENGTH ESTIMATION

In this section, we present a novel robust queue length
estimation mechanism that is resilient to the data spoofing
attacks.

A. Overview

We observe that the vulnerability of existing queue length
estimation techniques to data spoofing attacks stems from their
reliance on the reported position of the last CV in the queue.

In particular, the estimated queue length is largely affected by
the position of the last CV, which can be easily manipulated
by even a single malicious CV. To achieve robust queue length
estimation against data spoofing attacks, it is thus important
to minimize the impact of the last CV’s position. Based on
this observation, our mechanism estimates the queue length
from each individual CV report based on the CV’s reported
location, its ranking among all CVs, and the total number
of CVs using maximum likelihood estimation. The estimated
queue length from individual CV report is thus not affected by
the last CV’s location. Given a set of estimated queue lengths,
we then compute a final estimated queue length by aggregating
them using a robust estimator that is resilient to outliers.

In what follows, we detail to the two phases of the proposed
mechanism.

B. Queue Length Estimation from Individual CV Report

In this subsection, we introduce how to estimate the queue
length based on a single CV’s mobility report through maxi-
mum likelihood estimation.

First, we estimate the rankings of each CV among all the
CVs and among all the vehicles based on the m reports
Ry, ..., Ry . Specifically, we sort all the CVs according
to their distances to the stopping lines. For each report
R, = (ID;,p;,v;,t) received in epoch ¢, we first compute
the distance between its position p; and the stopping line as d;.
Without loss of generality, assume that dy < do < -+ < d,,.
It follows that CV Vj is ranked ith among all CVs. Moreover,
we estimate CV V;’s ranking in the queue as

| %
Ty = nlo

where h is the empirical value of the space headway, which
is the average distance between the front bumpers of two
successive vehicles and equals to the length of a vehicle plus
the gap between two successive vehicles.

Second, for each CV V, we estimate a queue length [,
based on CV V;’s rankings of each CV among all the CVs
and among all the vehicles. Let R. and R be the random
variables representing the rankings of a CV among all the
CVs and among all vehicles, respectively. Also let L and M
be the random variables representing the queue length and the
total number of CVs in the queue, respectively. Assume that
each vehicle in the queue is equally likely to be a CV with
probability p, i.e., the penetration rate. Observing a CV with
a ranking R, = 7 among all the CVs and a ranking R = 7;
among all the vehicles is equivalent to the event that there are
i — 1 CVs out of the first ; — 1 vehicles, the r;th vehicle in
the queue is a CV, and m — ¢ out of the last [ — r; vehicles
are CVs. The likelihood of the event given there are [ vehicles
waiting in the queue is given by
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Further define the likelihood function as

fill) = (?_f) (fn_’"z) prL=p) @)

The queue length estimated from report R; is then given by

li= 0, 3)

arg max
le{r;,..

lmax }

where [y.x 1s the maximum queue length determined by the
physical road condition known in advance. The problem in
Eq. (3) can be solved using either exhaustive search or the
Newton’s method.

C. Final Queue Length Estimate via Huber’s M-Estimators

Given estimated queue lengths il, .. .,im, we compute a
final estimated queue length using a robust estimator. The most
intuitive way is to estimate the queue length as the mean of
the m estimated queue lengths I1,...,l,. However, the mean
is not a robust measure and can be easily affected by a small
number of outliers, which makes the estimates vulnerable to
data spoofing attacks.

We choose the location M-estimator with Huber’s function
W [30] to produce a final estimated queue length. Specifically,
given m estimates of the queue length [ Tyeon- ,Zm, we compute
the final estimated queue length [ as the Huber’s M-estimator
[31], which is a robust estimator that generalizes sample mean
and sample median. Specifically, the Huber’s M-estimator of

l1,..., 1y, is the solution of the following problem
LN
d ( ) =0 4)
N g
i=1
where function VU is defined as
K ifzx> K,
U(x)=(x if |z| < K, 5)
-K ifz<—-K,

K > 0 is a factor which can be adjusted to balance the
accuracy and robustness of the estimate [32], and ¢ is a robust
measure of statistical dispersion.

A typical choice is the Normalized Median Absolute Devia-
tion about the median (MADN). Specifically, given Iy,
the Median Absolute Deviation about the median (MAD) is
defined as

MAD(ly, ... Median(|l1 — Imedl, - - - » [l — Imea|)- (6)

aim):

where fmed is the median of f17 o ,fm. The Normalized MAD

(MADN) is then defined as

. MAD(i,...

o l7n/
MADN(I1, ... D) = s ) %
4

where ® () is the quantile function for the standard normal
distribution, and ®~*(2) &~ 0.6745 is the MAD of a standard
normal random variable [33].

The Huber’s M-Estimators generalizes both mean and medi-
an. In particular, [ would be the median and mean of l1, ceey I
if K = 0 and oo, respectively. Note that there is no closed-
form expression for [ in Eq. (4), and we use the Newton’s
method to compute l.

V. SIMULATION EVALUATION

In this section, we evaluate the performance of the proposed
queue length estimation mechanism via detailed simulation
studies using MATLAB R2019b.

A. Simulation Settings

We compare the several variants of the proposed mechanism
with a Baseline mechanism [3], which is the I-SIG system
evaluated in [4]. As mentioned earlier, the I-SIG system esti-
mates the queue length using the last CV’s stopping location.
We subsequently refer to Huber K=1 and Huber K=2 as the
proposed mechanism with factor K set to 1 and 2, respectively.
In addition, we use Mean and Median to denote the two
special cases of the Huber’s M-estimator with the factor K
set to oo and 0, respectively. In our simulations, we set the
maximum queue length [, to 50, which serves as the farthest
stopping position any attacking CV can report. Without such
constraint, the attacker can report a false stopping position
that is infinitely far away from the stopping line, which is
impractical.

We use the Mean Absolute Percentage Error (MAPE) to
evaluate the performance of the different queue length estima-
tion methods, which is defined as

1o [it =1
MAPE = —
n; 7’

where n is the total number of runs, and [ and [* are the ground
truth queue length and the estimated queue length of the ith
run, respectively.

For each run of the simulation, we first randomly choose the
m — ¢ vehicles out of the total [ vehicles and then enumerate
all possible combinations of the remaining ¢ attacking CVs’
positions to find the one that leads to the largest Absolute
Percentage Error.

B. Simulation Results

We now report the simulation results where every data
point represents the average of 1,000 runs unless mentioned
otherwise.
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Fig. 2. Comparison of the five queue length estimation methods with different
market penetration rates of CVs p and different ground truth queue length.

1) Performance in the Absence of Attack: Fig. 2a shows the
MAPEs of the five queue length estimation methods where the
actual queue length [ = 20 and CVs’ market penetration rate
p varies from 0.1 to 0.9, and Fig. 2b shows the MAPEs of
the five queue length estimation methods when CVs’ market
penetration rate p = 0.4 and the actual queue length [ varies
from 10 to 45. Fig. 2a shows that in the absence of attack,
the proposed queue length estimation mechanisms, including
Mean, Huber K=1, Huber K=2, and Median achieve similar
MAPEs as the Baseline that relies on the stopping location of
the last CV. The MAPEs of the five methods are also lower
than 0.34 even when the CVs’ market penetration rate p is
only 0.1. If p reaches 0.5, which means half of vehicles on
the road are CVs, the MAPESs of the proposed mechanism will
be around 0.1. When the actual length is 20, an MAPE of 0.1
represents an error of two vehicles, which is quite acceptable
in practice. Fig. 2b shows that the proposed mechanism and the
Baseline method achieve similar MAPE under various actual
queue lengths with the Baseline method slightly outperforming
the other four methods when [ > 10.

2) Impact of CVs’ Market Penetration Rate p: Fig. 3
compares the MAPEs of the Baseline, Mean, Huber K=2,
Huber K=1, and Median with CVs’ market penetration rate
p varying from 0.1 to 0.9, where the actual queue length
[ = 20. As we can see, the MAPE of the Baseline method
is not affected by the change in the CVs’ market penetration
rate as the estimated queue length is determined by the last
CV’s position in the queue and the attacking CV will always
report the maximum value 50. In contrast, the MAPEs of the
proposed mechanisms including Mean, Huber K=2, Huber
K=1, and Median decrease as p increases, especially when
p increases from 0.1 to 0.3. This is because the proposed
mechanisms estimate the queue length by using the stopping
positions of all the CVs in the queue. If the number of
attacking CVs is fixed, the more normal CVs in the queue, the
weaker the impact attacking CVs can have on the estimated
queue length [. Moreover, for any fixed [, the expected number
of normal CVs in a queue increases as p increases. As we can
see from Fig. 3c, when p = 0.1, the MAPEs of the Mean,
Huber K=2, Huber K=1, and Median methods are similar to
that of the Baseline method. This is because when p = 0.1
and [ = 20, the expected number of normal CVs in the queue

equals to 2 which is smaller than the number of attacking CVs.
If the number of attacking CVs is close to, or even greater than
the number of normal CVs in the queue, the estimated queue
length I will be dominated by the attacking CVs, which is
similar to the Baseline method. However, generally speaking,
the proposed mechanisms including Mean, Huber K=1, Huber
K=2, and Median outperform the Baseline method.

3) Impact of the Actual Queue Length: Fig. 4 compares
the MAPEs of the Baseline, Mean, Huber K=2, Huber K=1,
and Median with the actual queue length [ varying from 10 to
45, where CVs’ market penetration rate p = 0.4. The MAPEs
of the five methods all decrease as [ increases. The reason is
that the longer the actual queue length, the smaller the relative
estimation error, and vice versa. Moreover, we can see from
Fig. 4a, Fig. 4b, and Fig. 4c, the more attacking CVs, the larger
the MAPEs of Huber K=1, Huber K=2, and Median, and
Mean, which is expected. Furthermore, the Huber K=2, Huber
K=1, and Median methods outperform the Mean method, as
they all use robust estimator to compute the final queue length.
Generally speaking, as long as there are sufficient normal CVs
in the queue, the impact of attacking CVs can be greatly
mitigated by normal CVs using robust estimators. In addition,
as [ increases from 10 to 30, the MAPEs of Mean, Huber
K=1, Huber K=2, and Median are significantly lower than
that of the Baseline method as they estimate the queue length
by aggregating individual estimated queue lengths instead of
relying on the position of the last CV. These results confirm the
advantage of the proposed method over the Baseline method.

4) Impact of the Number of Attacking CVs: Fig. 5 compares
the MAPEs of the Baseline, Mean, Huber K=1, Huber K=2,
and Median methods with the number of attacking CV(s)
varying from O to 3, where different CVs’ market penetration
rate p = 0.3 and 0.4 and the actual queue length | = 15
and 20. As Fig. 5 shows, the MAPE of the Baseline method
depends on whether there is an attacking CV or not but is
not affected by the number of attacking CV(s). The reason is
that the Baseline method estimates the queue length based on
the last attacking CV’s position. In contrast, the MAPEs of
the Mean, Huber K=2, Huber K=1, and Median methods all
increase as the number of attacking CVs increases, which is
expected. As we can see from Fig. 5b, Fig. 5c, and Fig. 5d,
the MAPE of the Baseline method is slightly lower than that
of Mean, Huber K=2, Huber K=1, and Median in the absence
of the attack. However, the Mean, Huber K=2, Huber K=1,
and Median significantly outperform Baseline when there is at
least one attacking CV. Meanwhile, the performance of Huber
K=2, Huber K=1, and Median are much better than that of
the Mean method in the presence of at least one attacking CV.

5) Comparison of Mean, Huber K = 2, Huber K = 1, and
Median: We now compare the Mean, Huber K=1, Huber K=2,
and Median methods. As shown in Fig. 3 and Fig. 4, with
different number of attacking CVs, the curves of Mean and
Median represent the upper and lower bounds of the MAPE
that the proposed mechanism can achieve through adjusting the
factor K, as they represent the Huber’s M-estimator with K =
oo and 0, respectively. Moreover, we can see from Fig. 3 and
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Fig. 5. Comparing the the five queue length estimation methods with p and [, where ¢ = 1, 2, and 3.

Fig. 4 that the proposed mechanism performs better with small
K than with large K. Therefore, the smaller the factor K,
the more robustness of the proposed queue length estimation
mechanism, and vice versa.

On the other hand, the factor K also affects the estimation
accuracy in the absence of the attack. As shown in Fig. 2a,
when there is no attacking CV, the Median method incurs
higher MAPE than the other three methods, especially when
the CVs’ market penetration rate p is between 0.1 and 0.3.
When p is above 0.3, all four methods have similar MAPE:s.
Moreover, Fig. 5 shows that the Mean method has a smaller
standard deviation in MAPE than the other three methods.
Fig. 2a and Fig. 5 reflect the fact that the accuracy of the

proposed mechanism increases as the factor K increases. In
addition, Fig. 2a shows that, in the absence of the attack,
Huber K=1 achieves the same level of estimation accuracy
as the Mean method. Meanwhile, Fig. 3 and Fig. 4 show that
Huber K=1 is as competitive as the Median method in the
presence of the attacks. Generally speaking, Huber K=1 is a
good option for the proposed mechanism. Fig. 5 shows that the
Median method is more robust in the presence of the attacks,
although its estimation accuracy is slightly lower than the other
methods in the absence of the attack. Therefore, when CVs’
market penetration rate p = 0.3 and 0.4, the Median method
is a preferable choice for the proposed mechanism.
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VI. CONCLUSION

In this paper, we have presented a novel robust queue
length estimation mechanism for CV-based traffic control
systems. Unlike prior schemes that estimate the queue length
based on the last CV’s position, the proposed mechanism
estimates the queue length from each individual CV’s report
based on their rankings among the CVs and all the vehicles
and then aggregates them to produce a final estimate using
Huber’s M-Estimators. By doing so, we greatly mitigate the
impact of attacking CVs reporting fake faraway positions from
the stopping line. Detailed simulation studies confirm that
the proposed mechanism outperforms prior solutions in the
presence of data spoofing attacks at a slight sacrifice of the
estimation accuracy in the absence of the attacks.
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