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IT IS A fact that there is a connection 
between artificial intelligence (AI) 
and software engineering (SE), which 
is explored by many works in the 

literature.1,2 We can find approaches 
to solve different SE problems cover-
ing the whole software life cycle and 
derived from all the AI subfields: 1) 
knowledge representation, reason-
ing, and decision systems; 2) machine 
learning; and 3) optimization. The 

optimization subfield refers to the se-
lection of a best element from some 
set of available alternatives, which 
is made based on some performance 
criteria (objective functions) and a 
search technique, such as the popular 
evolutionary algorithms. An example 
of an SE task to be optimized is to 
find the minimal set of test cases that 
satisfies a testing criterion, such as 
all-branches.

The application of a search tech -
nique to solve SE problems is the 
subject of the search-based SE (SBSE) 
field.3 In the last decade, we ob-
served an explosion in the number 
of SBSE solutions for a great variety 
of SE tasks. One possible reason for 
this growth is due to the character-
istics of SE problems, which make 
them more attractive than tradi-
tional problems in other engineer-
ing disciplines,4 such as abstraction, 
directly optimizing the engineering 
material (e.g., the source code, mod-
els, and so on), and the availability 
of well-defined software metrics 
that can be optimized.

To ease the creation and implemen-
tation of optimization algorithms, re-
use techniques, such as application 
programming interfaces, libraries, de-
sign patterns, and frameworks,5 can 
be employed, increasing software pro-
ductivity, decreasing software devel-
opment and maintenance costs, and 
improving the software quality by re-
ducing the number of bugs, as the re-
used part has already been tested and 
evaluated. For instance, we note some 
famous frameworks, largely used to 
implement solutions for problems 
from different areas: PISA,6 jMetal,7

MOEA,8 ECJ,9 PlatEMO,10 DES-
DEO,11 and DEAP.12

These frameworks contribute to 
the success and popularity of SBSE 
solutions for many SE tasks.4 How-
ever, there are some challenges that 
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need to be addressed to make these 
solutions more useful for software 
engineers in real-world settings. One 
of these main challenges is the lack 
of user-friendly frameworks that can 
provide step-by-step support for soft-
ware engineers during the adoption 
of existing search algorithms. In fact, 
it is required that software engineers 
should have a significant background 
on optimization to adopt these algo-
rithms for their SE problems, includ-
ing refactoring, testing, and so on. 
Furthermore, they may get lost with 
a lot of details about the parameters’ 
tuning, type of change operators, and 
solutions representation.

Even worse, the application con-
texts of SBSE currently encompass 
a great number of objectives, con-
straints, and complex inputs as well 
as outputs. Most SBSE problems are 
multi- and many-objective, which are 
not straightforward enough to adopt 
or navigate through their results. An-
other practical issue is the usefulness 
of the solutions generated. Many 
times, users do not recognize the so-
lutions as good because these ones 
were not generated considering their 
needs, preferences, and contexts.

The use of many-objective evolu-
tionary algorithms and the participa-

tion of the user (developers, testers, 
managers, practitioners, and decision 
makers) in the creation of the SBSE 
solutions can help solve these chal-
lenges. To this end, SBSE approaches 
should provide different levels of au-
tomation, making small decisions and 
invoking human participation with 
more fundamental ones.

Most of the existing frameworks 
do not even have an official user in-
terface with which the user can in-
teract. Although the frameworks are 
platform independent, not one is in-
tegrated with cloud computing, which 
could allow scalability and its use for 
large-problem instances. They are not 
available online as web applications, 
supporting reports, or user customiza-
tions of some interface aspects.

To overcome these limitations, we 
introduce Nautilus Framework: a free, 
plug-and-play extendable and open 
source Java web platform framework 
that allows user feedback, captur-
ing, developing, and experimenting 
with several multi- and many-objec-
tive evolutionary algorithms. In Nau-
tilus Framework, the users can just 
“plug” their optimization problems 
and “play” with the available optimiza-
tion algorithms. The purpose of Nau-
tilus Framework is to allow SE and 

AI practitioners to develop their own 
optimization algorithms to solve their 
problems—guided (or not) by human 
participation—by requiring a minimum 
background in coding and search-based 
algorithms. Table 1 lists a comparison 
between Nautilus and other existing 
frameworks found in the literature with 
regard to their existing features.

Nautilus Framework 
Principles
The fol lowing principles have 
guided the development of Nautilus 
Framework:

•	 Simplicity and ease of use: Nau-
tilus works with jMetal, and as 
a result, some optimization al-
gorithms provided by jMetal are 
already available, which can be 
easily executed and configured 
via a user-friendly interface. To 
this end, the user need only se-
lect an instance of a configured 
problem in which he or she is 
interested. After the execution, 
the user can visualize and easily 
choose or evaluate a solution.

•	 Portability: Nautilus is devel-
oped in Java, which allows for 
its execution in machines with 
different architectures and/or 

Table 1. A comparison of existing frameworks.

Feature Nautilus PISA jMetal MOEA ECJ PlatEMO DESDEO DEAP

Multiobjective optimization        

Cloud support  — — — — — — —

User interface  — —  —  — —

Preference support  —   —   —

Web application  — — — — — —

User customization  — —  —  — —

Pareto-front visualization  — —  —  — —
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its running in distinct operat-
ing systems. 

•	 Extensibility: New optimization 
algorithms, search operators, and 
optimization problems should be 
easily added. To reach this princi-
ple, Nautilus supports plug-ins in 
which the users can adapt their 
needs or context to the tool.

•	 Performance and scalability: Nau-
tilus is a web platform application 
that executes in cloud comput-
ing. This last characteristic allows 
for automatic software updates, 
mobility, performance, and scal-
ability. For instance, it is possible 
to read large-problem instances 
by splitting them in multiple small 
subroutines and calculate objec-
tive functions or run multiple 
algorithms in parallel.

•	 Customizability: Nautilus pro-
vides a multiuser system in which 
each user can customize some 
information and upload to the 
tool his or her own problem 
instances to be optimized. Also, 
the users are able to change some 
information they visualize about 
the found solutions and custom-
ize some interface features.

Many-Objective 
Algorithms
Diverse SE problems are many-ob-
jective, that is, they are impacted by 
more than three objectives. The pri-
oritization of test cases is one ex-
ample, as it is impacted by different 
factors such as cost, size of the test 
set to be used, and the ability to re-
veal faults; code coverage; and so on. 
To deal with such problems, differ-
ent many-objective evolutionary al-
gorithms exist. They can be classified 
into distinct categories13 according 
to the strategy implemented to deal 
with the large/exponential number of 
nondominated solutions, which are 

possible for multiobjective problems. 
For instance, the following are cat-
egories of algorithms supported by 
Nautilus Framework: 1) NSGA-III, 
an algorithm that uses the concept of 
reference sets; 2) R-NSGA-II, a pref-
erence-based algorithm that reduces 
the number of solutions by working 
with a region of interest provided by 
the user; and 3) PCA-NSGA-II, an al-
gorithm based on dimensionality re-
duction that reduces the number of 
solutions by discarding some redun-
dant and nonconflicting objectives.

However, the user is able to extend 
the framework and implement his or 
her preference-based, or dimensional-
ity-reduction algorithms. In addition 
to this, the user can extend Nautilus 
and implement mechanisms to com-
bine the aforementioned strategies.

Architecture
Nautilus Framework has some non-
modifiable classes that provide a 
predefined behavior and other ones 
that can be extended to provide 
some new functionalities.14 The first 
classes belong to the Nautilus Core 
module, and the last classes belong 
to Nautilus-Plug-In. Both modules 
are represented in Figure 1, which 
contains the Nautilus architecture.

Nautilus uses three main third-
party libraries: the jMetal framework, 
as mentioned previously, for the op-
timization algorithms; MongoDB, a 
general-purpose and document-based 
database; and Spring Boot, a web ap-
plication framework and inversion 
of the control container for the Java 
platform. Besides Nautilus Core, and 
Nautilus-Plug-In, Nautilus has a third 
module, called Nautilus Web. All of 
these are briefly described as follows.

Nautilus Core is the most impor-
tant module because it contains the 
base classes required by the other 
modules. For instance, it provides 

the classes responsible for defining 
the encoding type of the problems 
supported, such as binary, integer, 
and double encoding solutions. The 
current version of Nautilus Core 
uses the jMetal implementation for 
generating solutions; however, in fu-
ture versions, we plan to release the 
capability of connecting this module 
to other optimization frameworks.

Nautilus-Plug-In is responsible for 
providing extensible classes in which 
the user can create his or her own 
plug-ins for Nautilus and adapt his or 
her needs to the tool. For instance, the 
user can extend and create new opti-
mization algorithms, optimization 
problems, mating operators, qual-
ity indicators, and preference mecha-
nisms (those provided in the loop). 

Nautilus Web is the module re-
sponsible for providing a user in-
terface based on a web platform. 
Through this interface, it is possible 
to execute the algorithms, visualize 
the found solutions, interact with 
the tool, and provide the user pref-
erences and feedback about the so-
lutions. This module uses Nautilus 
Core and Nautilus-Plug-In and is de-
veloped in Spring Boot by utilizing 
MongoDB to save all of the gener-
ated solutions in a database. 

Extending Nautilus 
Framework
As mentioned previously, the classes 
of Nautilus-Plug-In can be instan-
tiated to add a new problem to be 
solved as well as new algorithms, 
including the preference-based ones. 
In this section, we present an ex-
ample of extension for the variabil-
ity testing of software product lines 
(VTSPLs) problem.15 This problem 
refers to the selection of the best set 
of products to be tested that can be 
derived from the SPL. The selection 
can take into account many factors: 
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the size of the set; and the cost, prod-
uct similarity, pairwise coverage, and 
possible faults.

Instantiating a 
New Problem
We instantiate the VTSPLs problem 
in Nautilus considering seven ob-
jective functions. To implement this 
problem, it is necessary to extend 
some classes such as AbstractProble-
mExtension, AbstractObjective, and 
Instance. Some of these implementa-
tions are described as follows.

Algorithm 1 shows the code of 
the AbstractProblemExtension class. 
This class is one of the most impor-
tant classes during the problem 

instantiation process. In this one, the 
user can define which encoding type 
the addressed optimization prob-
lem supports, the class responsible 
for reading an instance file (a file with 
required information to calculate the 
objective functions), and the objective 
functions to be optimized. In this al-
gorithm, SPL testing supports a binary 
encoding, the instance file is in .txt for-
mat, and the objective functions are: 
Number of Products, Alive Mutants, 
Uncovered Pairs, Similarity, Cost, Un-
selected and Unimportant Features.

To calculate each one of the ob-
jectives of the VTSPLs problem, 
the user needs to provide the cor-
responding implementation and 

extend the AbstractObjective class. 
Algorithm 2 presents an example 
of extension to calculate the num-
ber of products objective function. 
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FIGURE 1. The Nautilus Framework architecture. 

A lgorithm 1. Instantiating the VTSPLs 

problem.

   1  @Extension
   2  public class SPLProblemExtension
   3    extends AbstractProblemExtension {
   4  
   5    @Override
   6    public Problem<?> getProblem
     (Instance in,
   7    List<AbstractObjective> obj) {
   8    return new VTSPLProblem(in, obj);
   9    }
10 
11    @Override
12    public String getName() {
13    return “VTSPL Problem”;
14    }
15  
16    @Override
17    public Class<? Extends Solution<?>>
18    supports() {
19    return BinarySolution.class;
20    }
21  
22    @Override
23     public List<AbstractObjective> 

    getObjectives() {
24     return Arrays.asList(
25     new NumberOfProducts(),
26     new AliveMutants(),
27     new UncoveredPairs(),
28     new NewSimilarity(),
29     new Cost(),
30     new UnselectedFeatures(),
31     new UnimportantFeatures()
32     );
33    }
34  
35    @Override
36    public Instance getInstance(Path path){
37    return new TXTInstanceData(path);
38    }
39  }
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The user must define a name for the 
desired objective function and the 
corresponding implementation. As 
a default behavior, Nautilus consid-
ers that an objective function must 
be minimized. However, this de-
fault behavior can be changed.

Regarding the Instance class, this 
one is responsible for saving infor-
mation read from the input file (used 
as a problem instance). This infor-
mation is used for evaluating the so-
lutions generated.

Instantiating a New 
Algorithm
If the addressed problem requires 
an optimization algorithm differ-
ent from those already implemented 
in Nautilus, the user must extend 
the AbstractAlgorithmExtension
class. To illustrate this, Algorithm 3
shows an extension in which the 
SPEA2 algorithm, available in jMetal, 
is added.

In this way, we can instantiate 
Nautilus by extending the classes 
with implementation of different al-
gorithms. But a preference-based 
algorithm requires a different mech-
anism to provide or incorporate user 
preferences. To this end, the user 
can extend the AbstractPreference-
Extension class, as described in 
Algorithm 4.

In the example, the user is re-
quired to provide feedback for some 
solutions by using an ordinal scale 
composed of items Not preferred, 
No Opinion, and Preferred. The 
feedback is provided interactively 
and incorporated into the objective 
functions by weighting them to the 
next execution.

Once the required basic classes 
are extended, the user can generate 
a final plug-in file and upload it to 
Nautilus by using the GUI  provided 
for this purpose.

Using the VTSPLs 
Extension
In this section, we present some Nau-
tilus screenshots that illustrate the 
use of the VTSPLs extension. First, 
the user should sign up and log in to 
the system. Then, the user can see in-
formation about all the executions 
already performed and those that are 
in execution. In Nautilus, an execu-
tion is associated with an algorithm 
and its corresponding parameters 
and with the Pareto front, which is 
composed of the obtained nondomi-
nated solutions.

To start a new execution, the 
user needs to choose the problem 
instance to be optimized and set 
the algorithm parameters, such as 
mating operators, number of evalu-
ations, and population size as well 
as to specify the number of runs for 
this setting. Once the optimization 

Al gorithm 2. Instantiating an objective 

function.

   1  public class NumberOfProductsObjective
   2    extends AbstractObjective {
   3  
   4    protected int selectedProducts;
   5
   6    @Override
   7     public void beforeProcess(Instance i, 

   Solution<?> s) {
   8     this.selectedProducts = 0;
   9    }
10
11    @Override
12     public void process(Instance i, 

   Solution<?> s, int id) {
13     selectedProducts++;
14    }
15
16    @Override
17     public double calculate(Instance 

   i, Solution<?> sol) {
18      return selectedProducts/

 i.NumberOfProducts();
19    }
20
21    @Override
22    public String getName() {
23     return “Number Of Product”;
24    }
25  }

Al gorithm 3. Instantiating the SPEA 

algorithm.

   1  @Extension
   2  public class SPEA2AlgorithmExtension
   3     extends AbstractAlgorithmExtension {
   4
   5    @Override
   6     public Algorithm<? extends

    Solution<?>>
   7     getAlgorithm(Builder builder) {
   8     return new SPEA2(builder);
   9    }
10
11    @Override
12    public String getName() {
13     return “SPEA2”;
14    }
15  }

Algorithm 4. Instantiating user 

preferences.

   1  @Extension
   2   public class ConfidencePreferenceExtension
   3  extends AbstractPreferenceExtension {
   4
   5    @Override
   6     public AbstractFeedback get

   Feedback() {
   7     return new OrdinalScale();
   8    }
   9
10    @Override
11    public AbstractIncorporation
12     getIncorporation() {
13     return new WeightedGuidance();
14    }
15  }
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is done, the user can observe the so-
lutions (Figure 2), either by using a 
chart or a table, both of which con-
tain the objective values. 

Another important feature of this 
page is customization. It is possible 
to change some of the displayed 

information (such as the chart color), 
remove duplicated solutions from 
the Pareto front, and normalize ob-
jective values. So, to open and visu-
alize a solution, simply click on the 
circle in the chart. In this example, 
solution number 60 was selected 

and, as a result, Nautilus presents 
information about the selected solu-
tion, as illustrated in Figure 3.

It is possible to see the variables 
from the selected solution and the 
corresponding raw and normal-
ized objective values. Also, users 
can provide their preferences about 
the solutions by just sliding left or 
right the component below the ob-
jective values. In this example, the 
user provides a feedback Not Pre-
ferred, No Opinion, and Preferred
to the visualized solution. Again, 
this component can be changed 
by extending specific classes from 
Nautilus-Plug-In as well as the kind 
of information provided by the user. 
If the user considers the solution 
good, her or she can click on the 
“Selected” button to end the search.

Evaluating Nautilus 
Framework
Using the VTSPLs problem, we con-
ducted an evaluation with a group 
of 12 potential users of Nautilus. 
This group was composed of prac-
titioners with different skills and 
experiences with SPL, software test-
ing, and optimization algorithms, 
of which 12 are currently Ph.D. stu-
dents and five have experience with 
software development in companies. 
The participants’ years of experience 
in programming ranged, in general, 
from two to 10.

Each participant executed a set of 
different optimization algorithms, 
including algorithms based on pref-
erences provided interactively. In the 
end, they were asked to select a solu-
tion they considered good. After the 
experiment, each participant com-
pleted a questionnaire that evaluated 
their experience with using Nautilus. 
The results are described as follows.

Regarding the time spent to get fa-
miliar with Nautilus eight participants 

FIGURE 2. The Nautilus execution page. 

FIGURE 3. The Nautilus solution page. 
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(66.7%) took fewer than 10 min, dur-
ing which five of them spent fewer than 
5 min. In addition, all users claimed to 
have spent fewer than 10 min to ex-
plore the Pareto front by using visual-
ization support.

Figure 4 shows that seven par-
ticipants (58.3%) said it was easy to 
learn how to operate the tool and 
just one claimed difficulty. Moreover, 
nine participants (75%) stated it was 
easy to understand the task they were 
asked to do. Still in this context, 10 
participants (83.3%) asserted it was 
easy to locate and identify relevant 
solutions. In addition, 50% of the 
users stated it was easy to use visual-
ization support for the Pareto front, 
while the other 50% claimed it was 
neither easy nor difficult. A total of 
eight participants asserted that Nau-
tilus had a user-friendly interface, 
that the navigation was very easy, and 
that the error messages were helpful. 
We also asked the users their opin-
ions about the organization of the in-
formation in the screen. In this case, 
five participants (41.7%) stated the 
information on the screen was clear, 
four (33.3%) stated the information 
was very clear, and just three partici-
pants (25%) chose the neutral option.

The users also opined about the 
best features provided by Nautilus. 
Figure 5 presents the results. For 
most users, the best feature Nautilus 
provided was its Pareto-front visual-
ization, followed by its interface and 
cloud-computing support.

To better evaluate the users’ opin-
ions about the features provided by 
Nautilus in comparison with existing 
frameworks, we asked users with pre-
vious experience with other frame-
works to provide agreement rates 
about each feature listed in Table 1. 
The results are shown in Figure 6. For 
most of the features, Nautilus pro-
vides better support in comparison 
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with existing frameworks. For the 
latter, the users pointed out the lack 
of support for user customization 
and web applications and the exis-
tence of a user interface.

We also provided open questions, 
allowing users to write about Nau-
tilus advantages and disadvantages 
in comparison to other frameworks 

they had previously used. Most of 
them pointed out as an advantage 
the support to Pareto-front visual-
ization and user interaction; for in-
stance, that the user can set some 
parameters aiming to improve the 
solutions generated. As a disadvan-
tage, the users mentioned the lack 
of more optimization algorithms 

and a history of user actions. We in-
tend to address these limitations in 
a future version of Nautilus.

T his article introduced Nau-
tilus Framework, a plug
-and-play extendable and 

Java web-based framework for 
many-objective optimization with 
human participation. Nautilus has 
the following main features:

• plug-ins to allow extensibility
• the instantiation of different 

problems to be optimized and 
extension for implementing 
search operators and many-ob-
jective functions

• the use of different optimization 
algorithms, with an emphasis on 
many-objective ones from the 
categories based on user prefer-
ences, Pareto dominance, refer-
ence set, and dimensionality 
reduction; some of these algo-
rithms and mating operators are 
available in the framework, and 
new ones can also be extended

• a user-friendly interface that al-
lows for visualizing solutions and 
their objective values, capturing 
user feedback, and customiza-
tion (that is, color, language, and 
decimal separators and places)

• the calculation of some quality 
indicators widely used in the 
literature, such as hypervol-
ume and inverted generational 
distance, and other ones for 
preference-based algorithms, 
such as hypervolume based on 
R-metric and inverted gen-
erational distance based on 
R-metric

• A web-based platform that 
allows for scalability. The 
framework can run in cloud 
computing, supporting 
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optimization problems with 
large instances and many num-
bers of objectives. 

An open source implementation 
of Naut i lus Framework is avail-
able at https://github.com/nautilus
-framework. The application of 
optimization algorithms generate 
solutions that have been proved to 

increase the effectiveness and effi-
ciency of many SE tasks. Nautilus 
Framework contributes to fulfilling 
new demands required by today’s 
software applications, allowing the 
implementation of adaptive solu-
tions, considering real and many-
objective scenarios, and including 
user participation in an interac-
tive way. The main Nautilus features 

allow support to the construction of 
AI solutions guided by human deci-
sions. As a future work, we intend to 
extend Nautilus to work with other 
optimization frameworks available 
in the literature. 

Acknowledgments
This work is supported by CAPES 
and CNPq grants 307762/2015-7 and 
473899/2013-2. The corresponding 
author is Thiago Nascimento Ferreira.

References
1. M. Harman, “The role of artificial 

intelligence in software engineer-

ing,” in Proc. 1st Int. Workshop 

Realizing AI Synergies Softw. Eng. 

(RAISE), June 2012, pp. 1–6.

2. L. Ford, “Artificial intelligence and 

software engineering: A tutorial intro-

duction to their relationship,” Artif. 

Intell. Rev., vol. 1, no. 4, pp. 255–273, 

Dec. 1987. doi: 10.1007/BF00142926.

3. M. Harman and B. F. Jones, “Search-

based software engineering,” Inf. 

Softw. Technol., vol. 43, no. 14, 

pp. 833–839, Dec. 2001. doi: 

10.1016/S0950-5849(01)00189-6.

4. M. Harman, S. A. Mansouri, and 

Y. Zhang, “Search-based software 

engineering: Trends, techniques and 

applications,” ACM Comput. Surv., 

vol. 45, no. 1, pp. 1–61, 2012. doi: 

10.1145/2379776.2379787.

5. A. V. Tsyganov and O. I. Bulychov, 

“Implementing parallel metaheuris-

tic optimization framework using 

metaprogramming and design pat-

terns,” in Information Technology 

Applications in Industry (Applied 

Mechanics and Materials), vol. 263, J. 

Zhang, Z. Wang, S. Zhu, and X. Meng, 

Eds. Switzerland: Trans Tech Publica-

tions Ltd., Feb. 2013, pp. 1864–1873. 

6. S. Bleuler, M. Laumanns, L. Thiele, 

and E. Zitzler, “PISA – A platform 

and programming language indepen-

dent interface for search algorithms,” 

A
B

O
U

T
 T

H
E

 A
U

T
H

O
R

S

THIAGO NASCIMENTO FERREIRA is with the Federal 

University of Paraná (UFPR), Curitiba, 81.531-980, Brazil. His 

main research interests are bioinspired computation, multiobjec-

tive optimization, and preference-based optimization algorithms 

focused on search-based software engineering. Ferreira received 

his Ph.D. in computer science from UFPR in 2019. Contact him at 

tnferreira@inf.ufpr.br. 

SILVIA REGINA VERGILIO is a professor of software 

engineering (SE) in the computer science department of the 

Federal University of Paraná, Curitiba, 81.531-980, Brazil, where 

she leads a research group on SE. Her research interests include 

software testing, software reliability, software product lines, 

and search-based SE (SBSE). She serves as the assistant editor 

of Journal of Software Engineering: Research and Development
and acts as a peer reviewer for diverse international journals. 

She serves on the program committee of numerous conferences 

related to SBSE and software testing. Contact her at silvia@inf

.ufpr.br. 

MAROUANE KESSENTINI is a tenured associate profes-

sor and leads a research group on software engineering (SE) 

intelligence. Kessentini received his Ph.D. from the University of 

Montréal, Québec, Canada, in 2012. He is a recipient of the pres-

tigious 2018 Distinguished Research Award from the President 

of Tunisia, the University Distinguished Teaching (2017) Award, 

the University Distinguished Digital Education (2018) Award, 

the College of Engineering and Computer Science Distinguished 

Research (2018) Award, and four Best Paper Awards. He has 

received several grants from both industry and federal agencies 

and has published more than 110 papers in top journals and 

conferences. Contact him at marouane@umich.edu. 



82 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FEATURE: SBSE: A PLUG-AND-PLAY FRAMEWORK

in Proc. 2nd Int. Conf. Evolution-

ary Multi-Criterion Optimiz. (EMO 

’03). Faro, Portugal: Springer-Verlag, 

2003, pp. 494–508.

7. J. J. Durillo and A. J. Nebro, “jMetal: 

A Java framework for multi-objective 

optimization,” Adv. Eng. Softw., vol. 

42, no. 10, pp. 760–771, Oct. 2011. 

doi: 10.1016/j.advengsoft.2011.05.014.

8. D. Hadka, “MOEA Framework: A 

free and open source Java framework 

for multiobjective optimization. User 

manual,” 2016. Accessed: Aug. 20, 

2019. [Online]. Available: http://

www.moeaframework.org/

9. E. O. Scott and S. Luke, “ECJ at 

20: Toward a general metaheuristics 

toolkit,” in Proc. Genetic Evolu-

tionary Comput. Conf. Companion 

(GECCO ’19), 2019, pp. 1391–1398.

10. Y. Tian, R. Cheng, X. Zhang, and 

Y. Jin, “PlatEMO: A MATLAB 

platform for evolutionary multi-

objective optimization,” IEEE 

Comput. Intell. Mag., vol. 12, no. 

4, pp. 73–87, 2017. doi: 10.1109/

MCI.2017.2742868.

11. V. Ojalehto and K. Miettinen, 

“DESDEO: An open framework for 

interactive multiobjective optimiza-

tion,” in Multiple Criteria Decision 

Making and Aiding. H. Sandra, M. 

J. Geiger, and A. T. de Almeida, Eds. 

New York: Springer-Verlag, 2019, 

pp. 67–94. 

12. F.-A. Fortin, F.-M. De Rainville, M.-A. 

Gardner, M. Parizeau, and C. Gagné, 

“DEAP: Evolutionary algorithms 

made easy,” J. Mach. Learn. Res., 

vol. 13, pp. 2171–2175, July 2012.

13. B. Li, J. Li, K. Tang, and X. Yao, 

“Many-objective evolutionary algo-

rithms: A survey,” ACM Comput. 

Surv., vol. 48, no. 1, p. 13, Sept. 

2015. doi: 10.1145/2792984.

14. T. N. Ferreira, S. R. Vergilio, and 

M. Kessentini, “Many-objective 

search-based selection of software 

product line test products with 

Nautilus,” in Proc. 24th Int. Syst. 

Softw. Prod. Line Conf. (SPLC ’20) 

–Demo Track, 2020, pp. 1–4. doi: 

10.1145/3382026.3431248. 

15. T. N. Ferreira, J. A. P. Lima, A. Strick-

ler, J. N. Kuk, S. R. Vergilio, and A. 

Pozo, “Hyper-heuristic based product 

selection for software product line 

testing,” IEEE Comput. Intell. Mag., 

vol. 12, no. 2, pp. 34–45, May. 2017. 

doi: 10.1109/MCI.2017.2670461.

Computing in Science  
& Engineering
The computational and data-centric problems faced 
by scientists and engineers transcend disciplines. 
There is a need to share knowledge of algorithms, 
software, and architectures, and to transmit lessons-
learned to a broad scientific audience. Computing in 
Science & Engineering (CiSE) is a cross-disciplinary, 
international publication that meets this need 
by presenting contributions of high interest and 
educational value from a variety of fields, including 
physics, biology, chemistry, and astronomy. CiSE
emphasizes innovative applications in cutting-edge 
techniques. CiSE publishes peer-reviewed research 
articles, as well as departments spanning news and 
analyses, topical reviews, tutorials, case studies, and 
more.

Read CiSE today! www.computer.org/cise

Digital Object Identifier 10.1109/MS.2021.3099679


