/Y

L/

Nautilus: An
Interactive Plug-
and-Play Search-
Based Software
Engineering

Framework

Thiago Nascimento Ferreira and Silvia Regina Vergilio,

Federal University of Parana

Marouane Kessentini, University of Michigan

// Nautilus Framework allows practitioners to
develop and experiment with several multi- and
many-objective evolutionary algorithms—guided
(or not) by human participation—in a few

steps with a minimum required background

in coding and search-based algorithms. //

IT IS A fact that there is a connection
between artificial intelligence (AI)
and software engineering (SE), which
is explored by many works in the

Digital Object Identifier 10.1109/MS.2020.3039694
Date of current version: 20 August 2021

0740-7459/21020211EEE

©SHUTTERSTOCK/PLATAA

literature.»2 We can find approaches
to solve different SE problems cover-
ing the whole software life cycle and
derived from all the AI subfields: 1)
knowledge representation, reason-
ing, and decision systems; 2) machine
learning; and 3) optimization. The

FEATURE: SBSE: A PLUG-AND-PLAY FRAMEWORK

optimization subfield refers to the se-
lection of a best element from some
set of available alternatives, which
is made based on some performance
criteria (objective functions) and a
search technique, such as the popular
evolutionary algorithms. An example
of an SE task to be optimized is to
find the minimal set of test cases that
satisfies a testing criterion, such as
all-branches.

The application of a search tech-
nique to solve SE problems is the
subject of the search-based SE (SBSE)
field.? In the last decade, we ob-
served an explosion in the number
of SBSE solutions for a great variety
of SE tasks. One possible reason for
this growth is due to the character-
istics of SE problems, which make
them more attractive than tradi-
tional problems in other engineer-
ing disciplines,* such as abstraction,
directly optimizing the engineering
material (e.g., the source code, mod-
els, and so on), and the availability
of well-defined software metrics
that can be optimized.

To ease the creation and implemen-
tation of optimization algorithms, re-
use techniques, such as application
programming interfaces, libraries, de-
sign patterns, and frameworks,’ can
be employed, increasing software pro-
ductivity, decreasing software devel-
opment and maintenance costs, and
improving the software quality by re-
ducing the number of bugs, as the re-
used part has already been tested and
evaluated. For instance, we note some
famous frameworks, largely used to
implement solutions for problems
from different areas: PISA,® jMetal,”
MOEA,? ECJ,Y PlatEMO,'° DES-
DEO,!! and DEAP.12

These frameworks contribute to
the success and popularity of SBSE
solutions for many SE tasks.* How-
ever, there are some challenges that

SEPTEMBER/OCTOBER 2021 | IEEE SOFTWARE 73

FEATURE: SBSE: A PLUG-AND-PLAY FRAMEWORK

need to be addressed to make these
solutions more useful for software
engineers in real-world settings. One
of these main challenges is the lack
of user-friendly frameworks that can
provide step-by-step support for soft-
ware engineers during the adoption
of existing search algorithms. In fact,
it is required that software engineers
should have a significant background
on optimization to adopt these algo-
rithms for their SE problems, includ-
ing refactoring, testing, and so on.
Furthermore, they may get lost with
a lot of details about the parameters’
tuning, type of change operators, and
solutions representation.

Even worse, the application con-
texts of SBSE currently encompass
a great number of objectives, con-
straints, and complex inputs as well
as outputs. Most SBSE problems are
multi- and many-objective, which are
not straightforward enough to adopt
or navigate through their results. An-
other practical issue is the usefulness
of the solutions generated. Many
times, users do not recognize the so-
lutions as good because these ones
were not generated considering their
needs, preferences, and contexts.

The use of many-objective evolu-
tionary algorithms and the participa-

tion of the user (developers, testers,
managers, practitioners, and decision
makers) in the creation of the SBSE
solutions can help solve these chal-
lenges. To this end, SBSE approaches
should provide different levels of au-
tomation, making small decisions and
invoking human participation with
more fundamental ones.

Most of the existing frameworks
do not even have an official user in-
terface with which the user can in-
teract. Although the frameworks are
platform independent, not one is in-
tegrated with cloud computing, which
could allow scalability and its use for
large-problem instances. They are not
available online as web applications,
supporting reports, or user customiza-
tions of some interface aspects.

To overcome these limitations, we
introduce Nautilus Framework: a free,
plug-and-play extendable and open
source Java web platform framework
that allows user feedback, captur-
ing, developing, and experimenting
with several multi- and many-objec-
tive evolutionary algorithms. In Nau-
tilus Framework, the users can just
“plug” their optimization problems
and “play” with the available optimiza-
tion algorithms. The purpose of Nau-
tilus Framework is to allow SE and

Al practitioners to develop their own
optimization algorithms to solve their
problems—guided (or not) by human
participation—Dby requiring a minimum
background in coding and search-based
algorithms. Table 1 lists a comparison
between Nautilus and other existing
frameworks found in the literature with
regard to their existing features.

The following principles have
guided the development of Nautilus
Framework:

o Simplicity and ease of use: Nau-
tilus works with jMetal, and as
a result, some optimization al-
gorithms provided by jMetal are
already available, which can be
easily executed and configured
via a user-friendly interface. To
this end, the user need only se-
lect an instance of a configured
problem in which he or she is
interested. After the execution,
the user can visualize and easily
choose or evaluate a solution.

e Portability: Nautilus is devel-
oped in Java, which allows for
its execution in machines with
different architectures and/or

Table 1. A comparison of existing frameworks.

v v v v v v v v

Multiobjective optimization

Cloud support v
User interface v
Preference support v
Web application v
User customization v
Pareto-front visualization v

74 IEEE SOFTWARE

WWW.COMPUTER.ORG/SOFTWARE | @ EEESOFTWARE

its running in distinct operat-
ing systems.

o Extensibility: New optimization
algorithms, search operators, and
optimization problems should be
easily added. To reach this princi-
ple, Nautilus supports plug-ins in
which the users can adapt their
needs or context to the tool.

o Performance and scalability: Nau-
tilus is a web platform application
that executes in cloud comput-
ing. This last characteristic allows
for automatic software updates,
mobility, performance, and scal-
ability. For instance, it is possible
to read large-problem instances
by splitting them in multiple small
subroutines and calculate objec-
tive functions or run multiple
algorithms in parallel.

o Customizability: Nautilus pro-
vides a multiuser system in which
each user can customize some
information and upload to the
tool his or her own problem
instances to be optimized. Also,
the users are able to change some
information they visualize about
the found solutions and custom-
ize some interface features.

Diverse SE problems are many-ob-
jective, that is, they are impacted by
more than three objectives. The pri-
oritization of test cases is one ex-
ample, as it is impacted by different
factors such as cost, size of the test
set to be used, and the ability to re-
veal faults; code coverage; and so on.
To deal with such problems, differ-
ent many-objective evolutionary al-
gorithms exist. They can be classified
into distinct categories!3
to the strategy implemented to deal

according

with the large/exponential number of
nondominated solutions, which are

possible for multiobjective problems.
For instance, the following are cat-
egories of algorithms supported by
Nautilus Framework: 1) NSGA-III,
an algorithm that uses the concept of
reference sets; 2) R-NSGA-IL, a pref-
erence-based algorithm that reduces
the number of solutions by working
with a region of interest provided by
the user; and 3) PCA-NSGA-II, an al-
gorithm based on dimensionality re-
duction that reduces the number of
solutions by discarding some redun-
dant and nonconflicting objectives.
However, the user is able to extend
the framework and implement his or
her preference-based, or dimensional-
ity-reduction algorithms. In addition
to this, the user can extend Nautilus
and implement mechanisms to com-
bine the aforementioned strategies.

Nautilus Framework has some non-
modifiable classes that provide a
predefined behavior and other ones
that can be extended to provide
some new functionalities.' The first
classes belong to the Nautilus Core
module, and the last classes belong
to Nautilus-Plug-In. Both modules
are represented in Figure 1, which
contains the Nautilus architecture.
Nautilus uses three main third-
party libraries: the jMetal framework,
as mentioned previously, for the op-
timization algorithms; MongoDB, a
general-purpose and document-based
database; and Spring Boot, a web ap-
plication framework and inversion
of the control container for the Java
platform. Besides Nautilus Core, and
Nautilus-Plug-In, Nautilus has a third
module, called Nautilus Web. All of
these are briefly described as follows.
Nautilus Core is the most impor-
tant module because it contains the
base classes required by the other
modules. For instance, it provides

the classes responsible for defining
the encoding type of the problems
supported, such as binary, integer,
and double encoding solutions. The
current version of Nautilus Core
uses the jMetal implementation for
generating solutions; however, in fu-
ture versions, we plan to release the
capability of connecting this module
to other optimization frameworks.

Nautilus-Plug-In is responsible for
providing extensible classes in which
the user can create his or her own
plug-ins for Nautilus and adapt his or
her needs to the tool. For instance, the
user can extend and create new opti-
mization algorithms, optimization
problems, mating operators, qual-
ity indicators, and preference mecha-
nisms (those provided in the loop).

Nautilus Web is the module re-
sponsible for providing a user in-
terface based on a web platform.
Through this interface, it is possible
to execute the algorithms, visualize
the found solutions, interact with
the tool, and provide the user pref-
erences and feedback about the so-
lutions. This module uses Nautilus
Core and Nautilus-Plug-In and is de-
veloped in Spring Boot by utilizing
MongoDB to save all of the gener-
ated solutions in a database.

As mentioned previously, the classes
of Nautilus-Plug-In can be instan-
tiated to add a new problem to be
solved as well as new algorithms,
including the preference-based ones.
In this section, we present an ex-
ample of extension for the variabil-
ity testing of software product lines
(VTSPLs) problem.'> This problem
refers to the selection of the best set
of products to be tested that can be
derived from the SPL. The selection
can take into account many factors:

SEPTEMBER/OCTOBER 2021 | IEEE SOFTWARE 75

FEATURE: SBSE: A PLUG-AND-PLAY FRAMEWORK

the size of the set; and the cost, prod-
uct similarity, pairwise coverage, and
possible faults.

We instantiate the VTSPLs problem
in Nautilus considering seven ob-
jective functions. To implement this
problem, it is necessary to extend
some classes such as AbstractProble-
mExtension, AbstractObjective, and
Instance. Some of these implementa-
tions are described as follows.
Algorithm 1 shows the code of
the AbstractProblemExtension class.
This class is one of the most impor-
tant classes during the problem

instantiation process. In this one, the
user can define which encoding type
the addressed optimization prob-
lem supports, the class responsible
for reading an instance file (a file with
required information to calculate the
objective functions), and the objective
functions to be optimized. In this al-
gorithm, SPL testing supports a binary
encoding, the instance file is in .txt for-
mat, and the objective functions are:
Number of Products, Alive Mutants,
Uncovered Pairs, Similarity, Cost, Un-
selected and Unimportant Features.

To calculate each one of the ob-
jectives of the VTSPLs problem,
the user needs to provide the cor-
responding implementation and

Nautilus-Plug-In
Algorithm Problem Quality Indicators
Mating Operators
Selection Crossover Mutation <j
Preferences
ltems Feedback Incorporation a
()
=
(%]
=
g
2
Nautilus-Core
Encoding Algorithms
Binary NSGA-II NSGA-IIl WASF-GA
Integer R-NSGA-II IBEA SPEA2 <:’
Double PCA-NSGA-II
R A
JL
Integration
jMetal MongoDB Spring Boot

FIGURE 1. The Nautilus Framework architecture.

76

extend the AbstractObjective class.
Algorithm 2 presents an example
of extension to calculate the num-
ber of products objective function.

1 @Extension
2 public class SPLProblemExiension
3 extends AbstractProblemExtension {

4
5 @Override
6 public Problem<?> getProblem
(Instance in,
7 List<AbstractObiective> obj) {
8 return new VTSPLProblem(in, obj);
9 1
10

1 @0verride

12 public String getName() {

13 return “VTSPL Problem”;

14 1

15

16 @Override

17 public Class<? Exiends Solution<?>>
18 supports() {

19 return BinarySolution.cluss;
20 3}

21

22 @Override

23 public List<AbstractObjective>

getObjectives() {
24 return Arrays.asList(
25 new NumberOfProducis(),
26 new AliveMutants(),
27 new UncoveredPairs(),
28 new NewSimilarity(),
29 new Cost(),
30 new UnselectedFeatures(),
31 new UnimportantFeatures()
32);
3}
34

35 @Override

36 public Instance getlnstance(Path path)}{
37 return new TXTlnstanceData(path);
38}

39}

Algorithm 1. Instantiating the VTSPLs
problem.

IEEE SOFTWARE | WWW.COMPUTER.ORG/SOFTWARE | @ EEESOFTWARE

The user must define a name for the
desired objective function and the
corresponding implementation. As
a default behavior, Nautilus consid-
ers that an objective function must
be minimized. However, this de-
fault behavior can be changed.

Regarding the Instance class, this
one is responsible for saving infor-
mation read from the input file (used
as a problem instance). This infor-
mation is used for evaluating the so-
lutions generated.

If the addressed problem requires
an optimization algorithm differ-
ent from those already implemented
in Nautilus, the user must extend
the AbstractAlgorithmExtension
class. To illustrate this, Algorithm 3
shows an extension in which the
SPEA2 algorithm, available in jMetal,
is added.

In this way, we can instantiate
Nautilus by extending the classes
with implementation of different al-
gorithms. But a preference-based
algorithm requires a different mech-
anism to provide or incorporate user
preferences. To this end, the user
can extend the AbstractPreference-
Extension class, as described in
Algorithm 4.

In the example, the user is re-
quired to provide feedback for some
solutions by using an ordinal scale
composed of items Not preferred,
No Opinion, and Preferred. The
feedback is provided interactively
and incorporated into the objective
functions by weighting them to the
next execution.

Once the required basic classes
are extended, the user can generate
a final plug-in file and upload it to
Nautilus by using the GUI provided
for this purpose.

In this section, we present some Nau-
tilus screenshots that illustrate the
use of the VTSPLs extension. First,
the user should sign up and log in to
the system. Then, the user can see in-
formation about all the executions
already performed and those that are
in execution. In Nautilus, an execu-
tion is associated with an algorithm
and its corresponding parameters
and with the Pareto front, which is
composed of the obtained nondomi-
nated solutions.

public class NumberOfProductsObjective
extends AbstractObijective {

@Override
public void beforeProcess(Instance i,
Solution<?> s) {
8 this.selectedProducts = 0;
9 1}
10
1 @0Override
12 public void process(Instance i,
Solution<?> s, inf id) {
13 selectedProducts++;
14 }
15
16 @Override
17 public double calculate(Instance
i, Solution<?> sol) {

1
2
3
4 protected inf selectedProducts;
5
6
7

18 return selectedProducts/
i.NumberOfProducis();

19 1}

20

21 @Override

22 public String getName() {

23 return “Number Of Product”;
“)

25}

To start a new execution, the
user needs to choose the problem
instance to be optimized and set
the algorithm parameters, such as
mating operators, number of evalu-
ations, and population size as well
as to specify the number of runs for
this setting. Once the optimization

1 @Extension
2 public closs SPEA2AlgorithmExtension
3 extends AbstractAlgorithmExtension {

4
5 @Override
6 public Algorithm<? exiends
Solution<?>>
7 getAlgorithm(Builder builder) {
8 return new SPEA2(builder);
9 1
10

1 @0verride

12 public String getName() {
13 return “SPEA2";
14}

15 }

Algorithm 3. Instantiating the SPEA
algorithm.

1 @Extension
2 public closs ConfidencePreferenceExtension

3 exiends AbstractPreferenceExtension {
4

5 @Override

6 public AbstractFeedback get
Feedback() {

7 return new OrdinalScale();

8 1}

9

10 @Override
1 public Abstractlncorporation

12 getIncorporation() {

13 return new WeightedGuidance();
14 }

15}

Algorithm 2. Instantiating an objective
function.

SEPTEMBER/OCTOBER 2021

Algorithm 4. Instantiating user
preferences.

IEEE SOFTWARE 77

FEATURE: SBSE: A PLUG-AND-PLAY FRAMEWORK

is done, the user can observe the so-
lutions (Figure 2), either by using a
chart or a table, both of which con-
tain the objective values.

Another important feature of this
page is customization. It is possible
to change some of the displayed

information (such as the chart color),
remove duplicated solutions from
the Pareto front, and normalize ob-
jective values. So, to open and visu-
alize a solution, simply click on the
circle in the chart. In this example,
solution number 60 was selected

Home / vtsplc-problem

Chart Solutions Correlation Parameters Settings

Objective Values

user@gmail.com ~

Profit Importance

Number of Tasks

FIGURE 2. The Nautilus execution page.

DB]

T — olalslalm
user@gmail.com -
Home / vtspl-problem / Solution 79 m
Show 10 + entries Search: Objectives
4+ Variable
1 Product #0: [JAMES, UserManagement, GUI, PC, Core, Modules, Calendar, % Oploctive Rew Normaiboedd
DB] 1 number-of-products 05294 05224
2 Product #1: [JAMES, UserManagement, LADP, GUI, PC, Core, Modules, 2 alive-mutants 0.0472 0.0602
Gsjeodar] 3 uncovered-pairs 00133 00185
3 Product #2: [JAMES, UserManagement, WSinterface, GUI, PC, Core, 4 sinilarity 08889 08889
Modules, Calendar, DB]
5 cost 05322 05269
4 Product #3: [JAMES, UserManagement, LADP, WSinterface, GUI, PC, Core,
Modules, Calendar] 6 unselected-features 0.0000 0.0000
5 Product #4: [JAMES, UserManagement, GUI, PDA, Core, Modules, 7 unimportant-features 0.4941 0.5001
Calendar, DB]
6 Product #5: [JAMES, UserManagement, GUI, PC, PDA, Core, Modules,
Calendar, DB]
Feedback for Number of Products
7 Product #6: [JAMES, UserManagement, WSinterface, GUI, PDA, Core,
Modules, Calendar, DB]
Not Preferred
8 Product #7: [JAMES, UserManagement, WSInterface, GUI, PC, PDA, Core, Preferred []
Modules, Calendar, DB]
9 Product #12: [JAMES, UserManagement, GUI, PC, Core, Modules, Forum, m

n Dradiint #11: [IAMER 1 learMananamant #+ WGlintarfara G DO Cora

FIGURE 3. The Nautilus solution page.

78

and, as a result, Nautilus presents
information about the selected solu-
tion, as illustrated in Figure 3.

It is possible to see the variables
from the selected solution and the
corresponding raw and normal-
ized objective values. Also, users
can provide their preferences about
the solutions by just sliding left or
right the component below the ob-
jective values. In this example, the
user provides a feedback Not Pre-
ferred, No Opinion, and Preferred
to the visualized solution. Again,
this component can be changed
by extending specific classes from
Nautilus-Plug-In as well as the kind
of information provided by the user.
If the user considers the solution
good, her or she can click on the
“Selected” button to end the search.

Using the VTSPLs problem, we con-
ducted an evaluation with a group
of 12 potential users of Nautilus.
This group was composed of prac-
titioners with different skills and
experiences with SPL, software test-
ing, and optimization algorithms,
of which 12 are currently Ph.D. stu-
dents and five have experience with
software development in companies.
The participants’ years of experience
in programming ranged, in general,
from two to 10.

Each participant executed a set of
different optimization algorithms,
including algorithms based on pref-
erences provided interactively. In the
end, they were asked to select a solu-
tion they considered good. After the
experiment, each participant com-
pleted a questionnaire that evaluated
their experience with using Nautilus.
The results are described as follows.

Regarding the time spent to get fa-
miliar with Nautilus eight participants

IEEE SOFTWARE | WWW.COMPUTER.ORG/SOFTWARE | @ EEESOFTWARE

(66.7%) took fewer than 10 min, dur-
ing which five of them spent fewer than
5 min. In addition, all users claimed to
have spent fewer than 10 min to ex-
plore the Pareto front by using visual-
ization support.

Figure 4 shows that seven par-
ticipants (58.3%) said it was easy to
learn how to operate the tool and
just one claimed difficulty. Moreover,
nine participants (75%) stated it was
easy to understand the task they were
asked to do. Still in this context, 10
participants (83.3%) asserted it was
easy to locate and identify relevant
solutions. In addition, 50% of the
users stated it was easy to use visual-
ization support for the Pareto front,
while the other 50% claimed it was
neither easy nor difficult. A total of
eight participants asserted that Nau-
tilus had a user-friendly interface,
that the navigation was very easy, and
that the error messages were helpful.
We also asked the users their opin-
ions about the organization of the in-
formation in the screen. In this case,
five participants (41.7%) stated the
information on the screen was clear,
four (33.3%) stated the information
was very clear, and just three partici-
pants (25%) chose the neutral option.

The users also opined about the
best features provided by Nautilus.
Figure 5 presents the results. For
most users, the best feature Nautilus
provided was its Pareto-front visual-
ization, followed by its interface and
cloud-computing support.

To better evaluate the users’ opin-
ions about the features provided by
Nautilus in comparison with existing
frameworks, we asked users with pre-
vious experience with other frame-
works to provide agreement rates
about each feature listed in Table 1.
The results are shown in Figure 6. For
most of the features, Nautilus pro-
vides better support in comparison

It Is Easy to Learning
to Operate the Tool

It Is Easy to
Understand the Task
You Were Asked to Do

It Is Easy to Locate
and Identify
Relevant Solutions

It Is Easy to Use the
Visualization
Support for the
Pareto-Front

The Tool Has a User
Friendly Interface

The Tool Is Easy to
Navigate

Error Messages Are
Helpful

0 10 20 30 40 50 60 70 80 90 100
(%)

[Strongly Agree [Agree Neutral & Disagree|

FIGURE 4. Users’ feedback.

Ease of Use

Interface

Cloud Computing
Based

Pareto-Front
Visualization

Algorithms

Provided

0 10 20 30 40 5 60 70 80 90
(%)

100

W Strongly Agree 1 Agree ' Neutral® Disagree M Strongly Disagree

FIGURE 5. Nautilus’ best features.

SEPTEMBER/OCTOBER 2021 IEEE SOFTWARE 79

FEATURE: SBSE: A PLUG-AND-PLAY FRAMEWORK

with existing frameworks. For the
latter, the users pointed out the lack
of support for user customization
and web applications and the exis-
tence of a user interface.

We also provided open questions,
allowing users to write about Nau-
tilus advantages and disadvantages
in comparison to other frameworks

they had previously used. Most of
them pointed out as an advantage
the support to Pareto-front visual-
ization and user interaction; for in-
stance, that the user can set some
parameters aiming to improve the
solutions generated. As a disadvan-
tage, the users mentioned the lack
of more optimization algorithms

Nautilus

Multiobjective
Optimization

Pareto Front
User Interface

User Preference
Support

Web Application

User Customization

0 10 20 30

Framework You Have Used

Multiobjective
Optimization

Pareto Front

User Interface

User Preference
Support

Web Application

33.33%

\ \ \
0 10 20 30

User Customization

40 50 60 70 80 90
(%)

L
33.33%

33.33%

40 50 60 70 80 90
(%)

100

B Very Good 1 Good

Neutral ™ Bad M Very Sad M No Support

FIGURE 6. The agreement rates regarding the features provided by Nautilus and

existing frameworks.

80 IEEE SOFTWARE

and a history of user actions. We in-
tend to address these limitations in
a future version of Nautilus.

his article introduced Nau-

tilus Framework, a plug

-and-play extendable and
Java web-based framework for
many-objective optimization with
human participation. Nautilus has
the following main features:

e plug-ins to allow extensibility

o the instantiation of different
problems to be optimized and
extension for implementing
search operators and many-ob-
jective functions

e the use of different optimization
algorithms, with an emphasis on
many-objective ones from the
categories based on user prefer-
ences, Pareto dominance, refer-
ence set, and dimensionality
reduction; some of these algo-
rithms and mating operators are
available in the framework, and
new ones can also be extended

e a user-friendly interface that al-
lows for visualizing solutions and
their objective values, capturing
user feedback, and customiza-
tion (that is, color, language, and
decimal separators and places)

e the calculation of some quality
indicators widely used in the
literature, such as hypervol-
ume and inverted generational
distance, and other ones for
preference-based algorithms,
such as hypervolume based on
R-metric and inverted gen-
erational distance based on
R-metric

e A web-based platform that
allows for scalability. The
framework can run in cloud
computing, supporting

WWW.COMPUTER.ORG/SOFTWARE | @IEEESOFTWARE

THIAGO NASCIMENTO FERREIRA is with the Federal
University of Parana (UFPR), Curitiba, 81.531-980, Brazil. His
main research interests are bioinspired computation, multiobjec-
tive optimization, and preference-based optimization algorithms
focused on search-based software engineering. Ferreira received
his Ph.D. in computer science from UFPR in 2019. Contact him at
tnferreira@inf.ufpr.br.

SILVIA REGINA VERGILIO is a professor of software
engineering (SE) in the computer science department of the
Federal University of Parana, Curitiba, 81.531-980, Brazil, where
she leads a research group on SE. Her research interests include
software testing, software reliability, software product lines,

and search-based SE (SBSE). She serves as the assistant editor
of Journal of Software Engineering: Research and Development
and acts as a peer reviewer for diverse international journals.
She serves on the program committee of numerous conferences
related to SBSE and software testing. Contact her at silvia@inf
.ufpr.br.

MAROUANE KESSENTINI is a tenured associate profes-
sor and leads a research group on software engineering (SE)
intelligence. Kessentini received his Ph.D. from the University of
Montréal, Québec, Canada, in 2012. He is a recipient of the pres-
tigious 2018 Distinguished Research Award from the President
of Tunisia, the University Distinguished Teaching (2017) Award,
the University Distinguished Digital Education (2018) Award,

the College of Engineering and Computer Science Distinguished
Research (2018) Award, and four Best Paper Awards. He has
received several grants from both industry and federal agencies
and has published more than 110 papers in top journals and
conferences. Contact him at marouane@umich.edu.

optimization problems with
large instances and many num-
bers of objectives.

An open source implementation
of Nautilus Framework is avail-
able at https://github.com/nautilus
-framework. The application of
optimization algorithms generate
solutions that have been proved to

increase the effectiveness and effi-
ciency of many SE tasks. Nautilus
Framework contributes to fulfilling
new demands required by today’s
software applications, allowing the
implementation of adaptive solu-
tions, considering real and many-
objective scenarios, and including
user participation in an interac-
tive way. The main Nautilus features

allow support to the construction of
AT solutions guided by human deci-
sions. As a future work, we intend to
extend Nautilus to work with other
optimization frameworks available
in the literature. @

Acknowledgments

This work is supported by CAPES
and CNPq grants 307762/2015-7 and
473899/2013-2. The corresponding
author is Thiago Nascimento Ferreira.

References

1. M. Harman, “The role of artificial
intelligence in software engineer-
ing,” in Proc. 1st Int. Workshop
Realizing Al Synergies Softw. Eng.
(RAISE), June 2012, pp. 1-6.

2. L. Ford, “Artificial intelligence and
software engineering: A tutorial intro-
duction to their relationship,” Artif.
Intell. Rev., vol. 1, no. 4, pp. 255-273,
Dec. 1987. doi: 10.1007/BF00142926.

3. M. Harman and B. F. Jones, “Search-
based software engineering,” Inf.
Softw. Technol., vol. 43, no. 14,
pp. 833-839, Dec. 2001. doi:
10.1016/50950-5849(01)00189-6.

4. M. Harman, S. A. Mansouri, and
Y. Zhang, “Search-based software
engineering: Trends, techniques and
applications,” ACM Comput. Surv.,
vol. 45, no. 1, pp. 1-61, 2012. doi:
10.1145/2379776.2379787.

5. A. V. Tsyganov and O. 1. Bulychov,
“Implementing parallel metaheuris-
tic optimization framework using
metaprogramming and design pat-
terns,” in Information Technology
Applications in Industry (Applied
Mechanics and Materials), vol. 263, J.
Zhang, Z. Wang, S. Zhu, and X. Meng,
Eds. Switzerland: Trans Tech Publica-
tions Ltd., Feb. 2013, pp. 1864-1873.

6. S. Bleuler, M. Laumanns, L. Thiele,
and E. Zitzler, “PISA — A platform
and programming language indepen-
dent interface for search algorithms,”

SEPTEMBER/OCTOBER 2021 | IEEE SOFTWARE 81

FEATURE: SBSE: A PLUG-AND-PLAY FRAMEWORK

in Proc. 2nd Int. Conf. Evolution-
ary Multi-Criterion Optimiz. (EMO
’03). Faro, Portugal: Springer-Verlag,
2003, pp. 494-508.

7. J. J. Durillo and A. J. Nebro, “jMetal:
A Java framework for multi-objective
optimization,” Adv. Eng. Softw., vol.

10.

Y. Tian, R. Cheng, X. Zhang, and
Y. Jin, “PlatEMO: A MATLAB
platform for evolutionary multi-
objective optimization,” IEEE
Comput. Intell. Mag., vol. 12, no.
4, pp. 73-87,2017. doi: 10.1109/
MCI.2017.2742868.

13.

14.

B. Li, J. Li, K. Tang, and X. Yao,
“Many-objective evolutionary algo-
rithms: A survey,” ACM Comput.
Surv., vol. 48, no. 1, p. 13, Sept.
2015. doi: 10.1145/2792984.

T. N. Ferreira, S. R. Vergilio, and
M. Kessentini, “Many-objective

42, no. 10, pp. 760-771, Oct. 2011. 11. V. Ojalehto and K. Miettinen, search-based selection of software
doi: 10.1016/j.advengsoft.2011.05.014. “DESDEO: An open framework for product line test products with

. D. Hadka, “MOEA Framework: A interactive multiobjective optimiza- Nautilus,” in Proc. 24th Int. Syst.
free and open source Java framework tion,” in Multiple Criteria Decision Softw. Prod. Line Conf. (SPLC *20)
for multiobjective optimization. User Making and Aiding. H. Sandra, M. -Demo Track, 2020, pp. 1-4. doi:
manual,” 2016. Accessed: Aug. 20, J. Geiger, and A. T. de Almeida, Eds. 10.1145/3382026.3431248.
2019. [Online]. Available: http:// New York: Springer-Verlag, 2019, 15. T. N. Ferreira, J. A. P. Lima, A. Strick-
www.moeaframework.org/ pp. 67-94. ler, J. N. Kuk, S. R. Vergilio, and A.

. E. O. Scott and S. Luke, “EC]J at 12. F.-A. Fortin, F.-M. De Rainville, M.-A. Pozo, “Hyper-heuristic based product

20: Toward a general metaheuristics
toolkit,” in Proc. Genetic Evolu-
tionary Comput. Conf. Companion
(GECCO ’19), 2019, pp. 1391-1398.

Gardner, M. Parizeau, and C. Gagné,
“DEAP: Evolutionary algorithms
made easy,” . Mach. Learn. Res.,
vol. 13, pp. 2171-2175, July 2012.

selection for software product line
testing,” IEEE Comput. Intell. Mag.,
vol. 12, no. 2, pp. 34-45, May. 2017.
doi: 10.1109/MCI.2017.2670461.

Computing in Science
& Engineering

The computational and data-centric problems faced
by scientists and engineers transcend disciplines.
There is a need to share knowledge of algorithms,
software, and architectures, and to transmit lessons-
learned to a broad scientific audience. Computing in
Science & Engineering (CiSE) is a cross-disciplinary,
international publication that meets this need

by presenting contributions of high interest and
educational value from a variety of fields, including
physics, biology, chemistry, and astronomy. CiSE
emphasizes innovative applications in cutting-edge
techniques. CiSE publishes peer-reviewed research
articles, as well as departments spanning news and
analyses, topical reviews, tutorials, case studies, and

more.

Read CiSE today! www.computer.org/cise

YEARS

= o $IEEE

SOCIETY

Digital Object Identifier 10.1109/MS.2021.3099679

82 IEEE SOFTWARE WWW.COMPUTER.ORG/SOFTWARE | @ EEESOFTWARE

