
Refactoring Practices in the Context of Modern Code Review:
An Industrial Case Study at Xerox

Eman Abdullah AlOmar∗, Hussein AlRubaye†, Mohamed Wiem Mkaouer∗, Ali Ouni‡, Marouane Kessentini§
∗Rochester Institute of Technology, Rochester, NY, USA

†Xerox Corporation, Rochester, NY, USA
‡ETS Montreal, University of Quebec, Montreal, QC, Canada

§University of Michigan, Dearborn, MI, USA
eman.alomar@mail.rit.edu, hussein.alrubaye@xerox.com, mwmvse@rit.edu, ali.ouni@etsmtl.ca, marouane@umich.edu

Abstract—Modern code review is a common and essential
practice employed in both industrial and open-source projects
to improve software quality, share knowledge, and ensure con-
formance with coding standards. During code review, developers
may inspect and discuss various changes including refactoring
activities before merging code changes in the code base. To date,
code review has been extensively studied to explore its general
challenges, best practices and outcomes, and socio-technical
aspects. However, little is known about how refactoring activities
are being reviewed, perceived, and practiced.

This study aims to reveal insights into how reviewers develop
a decision about accepting or rejecting a submitted refactoring
request, and what makes such review challenging. We present an
industrial case study with 24 professional developers at Xerox.
Particularly, we study the motivations, documentation practices,
challenges, verification, and implications of refactoring activities
during code review.

Our study delivers several important findings. Our results
report the lack of a proper procedure to follow by developers
when documenting their refactorings for review. Our survey
with reviewers has also revealed several difficulties related to
understanding the refactoring intent and implications on the
functional and non-functional aspects of the software. In light of
our findings, we recommended a procedure to properly document
refactoring activities, as part of our survey feedback.

Index Terms—Refactoring, Code Review, Software Quality

I. INTRODUCTION

The role of refactoring has been growing in practice beyond
simply improving the internal structure of the code without
altering its external behavior [1] to become a widespread
concept for the agile methodologies, and a de-facto practice to
reduce technical debt [2]. In parallel, contemporary software
projects adopt code review, a well-established practice for
maintaining software quality and sharing knowledge about
the project [3], [4]. Code review is the process of manually
inspecting new code changes to verify their adherence to
standards and its freedom from faults [3]. Modern code review
has emerged as a lightweight, asynchronous, and tool-based
process with reliance on a documentation of the inspection
process, in the form of a discussion between the code change
author and the reviewer(s) [5].

Refactoring, just like any code change, has to be reviewed,
before being merged into the code base. However, little is
known about how developers perceive and practice refactoring
during the code review process, especially that refactoring, by

definition, is not intended to alter to the system’s behavior, but
to improve its structure, so its review may differ from other
code changes. Yet, there is not much research investigating
how developers review code refactoring. The research on
refactoring has been focused on its automation by identifying
refactoring opportunities in the source code, and recommend-
ing the adequate refactoring operations to perform [6]–[8].
Moreover, the research on code reviews has been focused on
automating it by recommending the most appropriate reviewer
for a given code change [3]. However, despite the critical role
of refactoring and code review, the innate relationship between
them is still largely unexplored in practice.

The goal of this paper is to understand how developers
review code refactoring, i.e., what criteria developers rely on
to develop a decision about accepting or rejecting a submitted
refactoring change, and what makes this process challenging.
This paper seeks to gain practical insights from the existing
relationship between refactoring and code review through the
investigation of five main research questions:
RQ1. What motivates developers to apply refactorings in the
context of modern code review?

RQ2. How do developers document their refactorings for code
review?

RQ3. What challenges do reviewers face when reviewing
refactoring changes?

RQ4. What mechanisms are used by developers and reviewers
to ensure the correctness after refactoring?

RQ5. How do developers and reviewers assess and perceive
the impact of refactoring on the source code quality?

To address these research questions, we surveyed 24 pro-
fessional software developers, from the research and develop-
ment team, at Xerox. Our survey questions were designed to
gather the necessary information that can answer the above-
mentioned research questions and insights into the review
practices of refactoring activities in an industrial setting.
Moreover, we perform a pilot study by comparing between
code reviews related to refactoring, and the remaining code
reviews, in terms of time to resolution and number of ex-
changed responses. Our findings indicate that refactoring-
specific code reviews take longer to be resolved and typically

348

2021 IEEE/ACM 43rd International Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP)

978-1-6654-3869-8/21/$31.00 ©2021 IEEE
DOI 10.1109/ICSE-SEIP52600.2021.00044

20
21

 IE
EE

/A
C

M
 4

3r
d

In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 S

of
tw

ar
e

En
gi

ne
er

in
g:

 S
of

tw
ar

e
En

gi
ne

er
in

g
in

 P
ra

ct
ic

e
(I

C
SE

-S
EI

P)
 |

97
8-

1-
66

54
-3

86
9-

8/
20

/$
31

.0
0

©
20

21
 IE

EE
 |

D
O

I:
10

.1
10

9/
IC

SE
-S

EI
P5

26
00

.2
02

1.
00

04
4

triggers more discussions between developers and reviewers
to reach a consensus. The survey with reviewers, has revealed
many challenges they are facing when they review refactored
code. We report them as part of our survey results, and we
provide some guidelines for developers to follow in order to
facilitate the review of their refactorings.

II. RELATED WORK

A. Surveys & Case Studies on Refactoring

Prior works have conducted literature surveys on refactoring
from different aspects. The focus of these surveys ranges
between investigating the impact of refactoring on software
quality [13], to comparing refactoring tools [9], and exploring
refactoring challenges and practices [10]–[12], [14], [15].
These studies are depicted in Table I.

Murphy-Hill & Black [9] surveyed 112 Agile Open North-
west conference attendees and found that refactoring tools are
underused by professional programmers. In an explanatory
survey involving 33 developers, Arcoverde et al. [10] studied
how developers react to the presence of design defects in
the code. Their primary finding indicates that design defects
tend to live longer due to the fact that developers avoid
performing refactoring to prevent unexpected consequences.
Yamashita & Moonen [11] performed an empirical study in
commercial software to evaluate the severity of code smells
and the usefulness of code smell-related tooling. The authors
found that 32% of the interviewed developers are unaware
of code smells, and refactoring tools should provide better
support for refactoring suggestions. Kim et al. [12] surveyed
328 professional software engineers at Microsoft to investigate
when and how they do refactoring. When surveyed, the de-
velopers cited the main benefits of refactoring to be: improved
readability (43%), improved maintainability (30%), improved
extensibility (27%) and fewer bugs (27%). When asked what
provokes them to refactor, the main reason provided was poor
readability (22%). Only one code smell, i.e., code duplication,
was reported (13%). Szoke et al. [13] conducted 5 large-scale
industrial case studies on the application of refactoring while
fixing coding issues; they have shown that developers tend
to apply refactorings manually at the expense of a large time
overhead. Sharma et al. [14] surveyed 39 software architects
asking about the problems they faced during refactoring tasks
and the limitations of existing refactoring tools. Their main
findings are: (1) fear of breaking code restricts developers
to adopt refactoring techniques; and (2) refactoring tools
need to provide better support for refactoring suggestions.
Newman et al. [15] conducted a survey of 50 developers
to understand their familiarity with transformation languages
for refactoring. They found that there is a need to increase
developer confidence in refactoring and transformation tools.

B. Refactoring Awareness & Code Review

Research on modern code review topics has been of import-
ance to practitioners and researchers. A considerable effort is
spent by the research community in studying traditional and
modern code review practices and challenges. This literature

has been includes case studies (e.g., [4], [16]), user studies
(e.g., [17]), and surveys (e.g., [3], [18]). However, most of the
above studies focus on studying the effectiveness of modern
code review in general, as opposed to our work that focuses on
understanding developers’ perception of code review involving
refactoring. In this section, we are only interested in research
related to refactoring-aware code review.

In a study performed at Microsoft, Bacchelli and Bird [3]
observed, and surveyed developers to understand the chal-
lenges faced during code review. They pointed out purposes for
code review (e.g., improving team awareness and transferring
knowledge among teams) along with the actual outcomes
(e.g., creating awareness and gaining code understanding). In
a similar context, MacLeod et al. [18] interviewed several
teams at Microsoft and conducted a survey to investigate the
human and social factors that influence developers’ experi-
ences with code review. Both studies found the following
general code reviewing challenges: (1) finding defects, (2)
improving the code, and (3) increasing knowledge transfer.
Ge et al. [16] developed a refactoring-aware code review tool,
called ReviewFactor, that automatically detects refactoring
edits and separates refactoring from non-refactoring changes
with the focus on five refactoring types. The tool was inten-
ded to support developers’ review process by distinguishing
between refactoring and non-refactoring changes, but it does
not provide any insights on the quality of the performed
refactoring. Inspired by the work of [16], Alves et al. [17]
proposed a static analysis tool, called RefDistiller, that helps
developers inspect manual refactoring edits. The tool compares
two program versions to detect refactoring anomalies’ type
and location. It supports six refactoring operations, detects
incomplete refactorings, and provides inspection for manual
refactorings.

To summarize, existing studies mainly focus on proposing
and evaluating refactoring tools that can be useful to support
modern code review, but the perception of refactoring in
code review remains largely unexplored. To the best of our
knowledge, no prior studies have conducted case studies in
an industrial setting to explore the following five dimensions:
(1) developers motivations to refactor their code, (2) how
developers document their refactoring for code review, (3)
the challenges faced by reviewers when reviewing refactoring
changes, (4) the mechanisms used by reviewers to ensure the
correctness after refactoring, and (5) developers and reviewers
assessment of refactoring impact on the source code’s quality.
Previous studies, however, discussed code review motivations
and challenges in general [3], [4], [18]. To gain more in-depth
understanding of the above-mentioned five dimensions, in this
paper, we surveyed several developers at Xerox.

III. STUDY DESIGN

A. Research Questions

RQ1. What motivates developers to apply refactorings
in the context of modern code review? Several motivations
behind refactoring have been reported in the literature [1],

349

Table (I) Related work in industrial case study & survey on refactoring.
Study Year Research Method Focus Single/Multi Company Subject/Object Selection Criteria # Participants

Murphy-Hill & Black [9] 2008 Survey Refactoring tools Yes/No programmers 112
Arcoverde et al. [10] 2011 Survey Longevity of code smells No/Yes belongs to development team 33
Yamashita & Moonen [11] 2013 Survey Developer perception of code smells No/Yes developers 85
Kim et al. [12] 2014 Survey & Interview Refactoring challenges & benefits Yes/No has change messages including "refactor*" 328

within last 2 years
Szoke et al. [13] 2014 Case Study & Survey Impact of refactoring on quality No/Yes developers 40
Sharma et al. [14] 2015 Survey Challenges & solutions for refactoring adoption Yes/No architects 39
Newman et al. [15] 2018 Survey Developer familiarity of transformation No/Yes has “development” in job title & not students 50

languages for refactoring or faculty members

 Review Request
 Open

 Review Request
 Under Revision

 Review Request
 Approved

 Review Request
 Under ReviewCreate Review

Request

Revisions Requested

Changes Approved

Reviewer Assigned

Revisions Completed

Figure (1) Review process overview.

[12], [19]–[21]. Our first research question seeks to understand
what motivations drive code review involving refactoring in
various development contexts to augment our understanding
of refactorings in theory versus in practice.

RQ2. How do developers document their refactorings
for code review? Since there is no consensus on how to
formally document refactoring activities [22]–[24], we aim in
this research question to explore what information developers
have explicitly provided, and what keywords developers have
used when documenting refactoring changes for a review.
This question aims to capture the taxonomy used and observe
whether it is currently helpful in providing enough insights for
reviewers to be able to adequately assess the proposed changes
to the software design.

RQ3. What challenges do reviewers face when reviewing
refactoring changes? We investigate the challenges associated
with refactoring, as well as the bad refactoring practices that
developers catch when reviewing refactoring changes. This
sheds light on how developers should mitigate some of these
challenges.

RQ4. What mechanisms are used by developers and
reviewers to ensure code correctness after refactoring?
We pose this research question to study current approaches
for testing behavior preservation of refactoring, and to get
an overview of what different criteria are addressed by these
approaches.

RQ5. How do developers and reviewers assess and per-
ceive the impact of refactoring on the source code quality?
Finally, in our last research question, we are interested in
understanding how refactoring connects current research and
practice. This helps exploring if the implications or outcomes
of refactoring-aware code review match what outlined in the
previous research questions.

B. Research Context and Setting

Host Company and Object of Analysis. To answer the
above-mentioned research questions, we conducted our survey

with developers from the research and development division,
at Xerox Research Center Webster (XRCW), currently Xerox’s
largest research center. The research and development di-
vision is responsible for implementing and maintaining the
software that is currently being shipped with Xerox Printers,
(i.e., ConnectKey interface technology1). The software is
directly connected to the hardware and performs various
operations going from basic scanning and printing to more
complex commands such as exchanging with cloud services.
The software is constructed using object-oriented, object-based
and markup languages. Despite being a legacy, around 20
years old, lengthy and complex software, the developers in
charge have been successfully evolving it to meet business
requirements and provide secure and reliable functionality to
end users. This reflects the maturity of the engineering process
within the research and development division, which raised
our interest to understand how they perform code review in
general, and how they review refactoring in particular.

Code Review Process at Xerox. The research and devel-
opment division uses a collaborative code review framework
allowing developers to directly tag submitted code changes
and request its assignment to a reviewer. Similar to existing
modern code review platforms, e.g., Gerrit2, a code change
author opens a code Review Request (ReR) containing a title, a
detailed description of the code change being submitted, writ-
ten in natural language, along with the current code changes
annotated. Once an ReR is submitted, it appears in the requests
backlog, open for reviewers to choose. If an ReR remains
open for more than 72 hours, a team leader would handle its
assignment to reviewers. Once reviewers are assigned to the
ReR, they inspect the proposed changes and comment on the
ReR’s thread, to start a discussion with the author, just like
a forum or a live chat. This way, the authors and reviewers
can discuss the submitted changes, and reviewers can request
revisions to the code being reviewed. Following up discussions
and revisions, a review decision is made to either accept (i.e.,
ship it!) or decline, and so the proposed code changes are
either “Merged” to production or “Abandoned”. An activity
diagram, modeling a simplified bird’s view of the code review
process, is shown in Figure 1.

C. Pilot Study and Motivation

Rationale. As we were analyzing the review process, to
prepare our survey, we had access to the code review plat-
form, containing the team’s history of processed ReRs for

1https://www.xerox.com/en-us/innovation/insights/connectkey-interface-technology
2https://www.gerritcodereview.com/

350

Table (II) Summary of survey questions (the full list is available in [25]).

Category Question

Background (1) How many years have you worked in the software industry?
(2) How many years have you worked on refactoring?
(3) How many years have you worked on code review?

Motivation (4) As a code change author, in which situation(s) you typically refactor the code?
Documentation (5) As a code change author, what information do you explicitly provide when documenting your refactoring activity?

(6) As a code change author, what phrases (keywords) have you used when documenting refactoring changes for a review?
Challenge (7) As a code reviewer, what challenges have you face when reviewing refactoring changes?

(8) As a code reviewer, what are the bad refactoring practices you typically catch when reviewing refactoring changes?
Verification (9) As a code change author/code reviewer, what mechanism(s) do you use to ensure the correctness after the application of refactoring?
Implication (10) As a code reviewer, what implication(s) do you typically experience as software evolves through refactoring?

(11) How strongly do you agree with each of the following statements?

• I have guidelines on how to document refactoring activities.
• I have guidelines on how to review refactoring activities while performing code review.
• Reviewing refactoring activities slow down the review process.
• Reviewing refactoring typically takes longer to reach a consensus.

Table (III) Participant professional development experience
in years.

Years of Experi-
ence

Industrial
Experience (%)

Refactoring Ex-
perience (%)

Code Review Ex-
perience (%)

1-5 9 (37.5%) 15 (62.5%) 14 (58.33%)
6-10 5 (20.83%) 3 (12.5%) 4 (16.66%)
11-15 4 (16.66%) 1 (4.16%) 2 (8.33%)
16+ 6 (25%) 5 (20.83%) 4 (16.66%)

the ConnectKey software system. After reviewing various
ReRs, we noticed the existence of a number of refactoring-
specific ReRs, i.e., requests to specifically review a refactored
code. The existence of such refactoring ReRs raised our
curiosity to further study in deeper whether these ReRs are
more difficult to resolve than other non-refactoring ReRs. We
hypothesize that refactoring ReRs, take longer time and trigger
more discussions between developers and reviewers before
reaching a decision and closing the ReR. If such hypothesis
holds, then it further justifies the need for a more detailed
survey targeting these refactoring ReRs.

Extraction of Review Requests Metadata. We aim to
identify all recent refactoring ReRs. Similarly to Kim et al.
[12], we start with scanning the ReRs repository to distin-
guish ReRs whose title or description contains the keyword
“refactor*”. We only considered recent reviews, which were
created between January 2019 and December 2019. We chose
to analyze recent ReRs to maximize the chance of developers,
who authored or reviewed them, as still within the company.
We manually analyze the extracted set to verify that each
selected ReR is indeed about requesting the review of a
proposed refactoring. This extraction and filtering process
resulted in identifying 161 refactoring ReR. To perform the
comparison, we need to sample 161 non-refactoring ReR from
the remaining ones in the review framework. To ensure the
representativeness of the sample, we use the stratified random
sampling by choosing ReRs which were (1) created between
January 2019 and December 2019; (2) created by the same
set of authors of the refactoring ReRs; and (3) created to
update the same subsystem(s) that were also updated by the
refactoring ReRs.

We then compared both groups based on two factors: (1) re-
view duration (time from starting the review until a decision of
close/merge is made), and (2) number of exchanged responses
(i.e., review comments) between the author and reviewer(s).
Figure 2 reports the boxplots depicting the distribution of
each group values, clustered by two above-mentioned factors.
To test the significance of the difference between the groups
values, we use the Mann-Whitney U test, a non-parametric
test that checks continuous or ordinal data for a significant
difference between two independent groups. Our hypothesis
is formulated to test whether the values of the refactoring
ReRs group is significantly higher than the values of the
non-refactoring ReRs group. The difference is considered
statistically significant if the p-value is less than 0.05.

Pilot Study Results. According to Figure 2, refactoring
code reviews take longer to be completed than the non-
refactoring code reviews, as the difference was found to be
statistically significant (i.e., p< 0.05). Similarly, refactoring
code reviews were found to significantly trigger longer dis-
cussion between the code author and the reviewers before
reaching a consensus (i.e., p< 0.05). This motivates us to
better understand the challenges reviewers face when review-
ing refactoring. We designed our survey to ask developers
of this team about the kind of problems that triggers them
to refactor, and to close the loop, we asked reviewers about
what they foresee when they are assigned a refactoring code
review, along with the issues they typically face for that type
of assignment. The next subsection details our survey design.

D. Research Method

To answer our research questions, we follow a mixture
qualitative and quantitative survey questions, as demonstrated
in Creswell’s design [26]. The quantitative analysis was per-
formed by the analysis of ReRs metadata, and the comparison
between refactoring ReRs and non-refactoring ReRs, in terms
of time to completion and number of exchanged responses.
Developers survey constitutes the qualitative aspect that we
are going to detail in the next section.

Survey Design. For our survey design, we followed the
guidelines proposed by Kitchenham and Pfleeger [27]. To

351

(a) Review duration

(b) Number of exchanged responses

Figure (2) Boxplots of (a) review duration and (b) number
of exchanged responses, for refactoring and non-refactoring
code review.

increase the participation rate, we made our survey anonym-
ous. The survey consisted of 11 questions that are divided
into 2 parts. The first part of the survey includes demo-
graphics questions about the participants. In the second part,
we asked about the (1) motivations behind refactoring, (2)
documentation of refactoring changes, (3) challenges faced
when reviewing refactoring, (4) verification of refactoring
changes, and (5) implications of refactoring on code quality.
As suggested by Kitchenham and Pfleeger [27], we constructed
the survey to use a 5-point ordered response scale (“Likert
scale”) question on the general refactoring-related code review,
2 open-ended questions on the refactoring documentation and
challenges, and 5 multiple choice questions on the refactor-
ing motivations, documentation, mechanisms and implications
with an optional “Other” category, allowing the respondents
to share thoughts not mentioned in the list. Table II contains
a summary of the survey questions; the full list is available
in [25]. In order to increase the accuracy of our survey, we
followed the guidelines of Smith et al. [28], and we targeted
developers who have previously been exposed to refactoring
in the considered project. So instead of broadcasting the
survey to the entire development body, we only intend to
contact developers who have previously authored or reviewed
a refactoring code change. We performed this subject selection
criteria to ensure developers’ familiarity with the concept of
refactoring so that they can be more prepared to answer the
questions. This process resulted in emailing 38 target subjects
who are currently active developers and regularly perform
code reviews. Participation in the survey was voluntary. In
total, 24 developers participated in the survey (yielding a
response rate of 63%, which is considered high for software
engineering research [28]). The industrial experience of the

respondents ranged from 1 to 35 years, their refactoring
experience ranged from 1 to 30 years, and their experience
in code review ranged from 1 to 25 years. On average, the
participants had 10.7 years of experience in industry, 7.5 years
of experience in refactoring, and 6.97 years of experience in
code review. Table III summarizes developers’ experience in
industry, refactoring and code review.

IV. RESULTS & DISCUSSIONS

A. RQ1. What motivates developers to apply refactorings in
the context of modern code review?

Figure 3 shows developers’ intentions when they refactor
their code. The Code Smell and BugFix categories had the
highest number of responses, with a response ratio of 23.7%
and 22.4%, respectively. The category Functional was the
third popular category for refactoring-related commits with
21.1%, followed by the Internal Quality Attribute and External
Quality Attribute, which had a ratio of 17.1% and 14.5%,
respectively. However, we observe that all motivations do not
significantly vary as all of them are in the interval 14.5% to
23.7% with no dominant category, as can be seen in Figure 3.
Only one participant selected the “other” option stating that,
“When i feel it’s painful to fulfill my current task without
refactoring”.

If we refer to the Fowler’s refactoring book [1], refactoring
is mainly solicited to enforce best design practices, or to cope
with design defects. With bad programming practices, i.e.,
code smells, earning 24% of developer responses, these results
do not deviate from the Fowler’s refactoring guide. However,
even though the code smell resolution category is prominent,
the observation that we can draw is that motivations driving
refactoring vary from structural design improvement to feature
additions and bug fixes, i.e., developers interleave refactoring
with other development tasks. This observation is aligned with
the state-of-the-art studies by Kim et al. [12], Silva et al.
[19], and AlOmar et al. [21]. The sum of the design-related
categories, namely code smell, internal, and external quality
attributes represent the majority with 55.3%. These categories
encapsulate all developers’ design-improvement changes that
range from low level refactoring changes such as renaming
elements to increase naming quality in the refactored design,
and decomposing methods to improve the readability of the
code, up to higher level refactoring changes such as re-
modularizing packages by moving classes, reducing class-level
coupling, increasing cohesion by moving methods, etc.

Summary: According to the survey, coping with poor
design and coding style is the main driver for de-
velopers to apply refactoring in their code changes.
Yet, functional changes and bug fixing activities often
trigger developers to refactor their code as well.

B. RQ2. How do developers document their refactorings for
code review?

When we asked developers, “what information do you expli-
citly provide when documenting your refactoring activity?”, 21

352

Code Smell
23.7% Internal QA

17.1%

Functional
21.1%

BugFix
22.4%

External QA 14.5%

Other 1.3%

Figure (3) Developers’ refactoring motivations for code re-
view.

out of the 24 developers (91.3%) indicated that they explicitly
mention the motivation behind the application of refactoring
such as ‘improving readability’ and ‘eliminate code smell’.
Moreover, only 8 out of the 24 developers (34.8%) indicated
their refactoring strategy by stating explicitly the type of
refactoring operation they perform in their submitted code
change description, such as ‘move class’. We observe that
developers are eager to explain the rationale of their refact-
oring more than the actual refactoring operations performed.
Due to the nature of inspection, developers need to develop a
“case” to justify the need for refactoring, in order to convince
the reviewers. Therefore, the majority of participants (91.3%)
focus on reporting the motivation rather than the operation.
Moreover, the identification of the operations can be deducted
by the reviewers when they inspect the code before and after
its refactoring. Finally, only a few respondents (6 participants)
responded that they thoroughly document their refactoring by
reporting both the motivation and operation. Moreover, when
we asked, “what typical keywords you use when documenting
refactoring changes for a review?”, the developers answers
contain various refactoring phrases. Table IV enumerates these
patterns (keywords in bold indicate that the keyword was
mentioned by more than one developer).

Table IV is quite revealing in several ways. First, we observe
that developers state the motivation behind refactoring, and
that some of these patterns are not restricted only to fixing
code smells, as in the original definition of refactoring in
Fowler’s book [1]. Second, developers tend to use a variety of
textual patterns to document their refactoring activities, such as
‘refactor’, ‘clean up’, and ‘best practice’. These patterns can
be (1) generic to describe the act of refactoring without giving
any details; or (2) specific to give more insights on how mainly
provide a generic description/motivation of the refactoring
activity such as ’improving readability’. A common trend
amongst developers is that they either report a problem to
indicate that refactoring action is needed (e.g., ‘duplicate’,
‘bugs’, ‘bad code’, etc.), or they state the improvement to the
code after the application of refactoring (e.g., ‘best practice’,
‘ease of use’, ‘improving code quality’, etc.). By looking at
the refactoring discussion (see Figure 2), we realized that
developers do ask for more details to understand the performed

Table (IV) List of refactoring keywords reported by the
participants.

Patterns

(1) allow easier integration with (16) fix (31) remove legacy code
(2) bad code (17) improving code quality (32) replace hard coded
(3) bad management (18) loose coupling (33) reorganiz*
(4) best practice (19) moderniz* (34) restructur*
(5) break out (20) modif* (35) rewrit*
(6) bugs (21) modulariz* (36) risks
(7) cleanup (22) not documented (37) simply
(8) cohesion (23) open close (38) single responsibility
(9) comment (24) optimiz* (39) single level of abstraction
(10) complexity (25) performance per function
(11) consistency (26) readability (40) splitting logic
(12) decouple (27) redundancy (41) strategy pattern
(13) duplicate (28) refactor* (42) stress test results
(14) ease of use (29) regression (43) testing
(15) extract class (30) remov* (44) uncomment

refactoring activities.

Summary: Developers rarely report specific refactor-
ing operations as part of their documentation. Instead,
they use general keywords to indicate the motivation
behind their refactorings. Nevertheless, several pat-
terns are solicited by developers to describe their re-
factorings. With the lack of refactoring documentation
guidelines, reviewers are forced to ask for more details
in order to recognize the need for refactoring.

C. RQ3. What challenges do reviewers face when reviewing
refactoring changes?

As shown in Figure 4, we report the main challenges faced
by reviewers when inspecting a refactoring review request.
The majority of the developers (17 respondents (70.8%))
communicated that they were concerned about avoiding the
introduction of regression in system’s functionality. Interest-
ingly, refactoring by default, ensures the preservation of the
system’s behavior through a set of pre and post conditions,
yet, reviewers main focus was to validate the behavior of
the refactored code. In this context, a recent study have
shown that developers do not rely on built-in refactoring
in their Integrated Development Environments (IDEs) and
they perform refactoring manually [19], e.g., when moving
a method from one class to another, instead of activating
the ‘move method’ from the refactoring menu, developers
prefer to cut and paste the method declaration into its new
location, and manually update any corresponding memberships
and dependencies. Such process is error prone, and therefore,
reviewers tend to treat refactoring like any other code change
and inspect the functional aspect of any refactored code.

In Figure 4, 14 developers (58.3%) revealed the need to
investigate the impact of refactoring on software quality.
Such investigation is not trivial, as it has been the focus of
a plethora of previous studies (e.g., [29]), finding that not
all refactoring operations have beneficial impact on software
quality, and so developers need to be careful as various design
and coding defects may require different types of refactorings.
In this context, we identified, in our previous study [23] which

353

structural metrics (coupling, complexity, etc.) are aligned
with the developer’s perception of quality optimization when
developers explicitly mention in their commit messages that
they refactor to improve these quality attributes. Interestingly,
we observed that, not all structural metrics capture developers
intentions of improving quality, which indicated the existence
of a gap between what developers consider to be a design
improvement, and their measurements in the source code.
When asked about their quality verification process, developers
use, as part of their internal process, the Quality Gate of
SonarQube. While SonarQube is a popular, widely adopted
quality framework, it suffers, like any other static analysis
tools, from the high false positiveness of its findings, when
it is not properly tuned.

A moderate subset of 11 developers (45.8%) were con-
cerned about having inadequate documentation about refact-
oring, whereas 10 developers (41.7%) were concerned about
understanding the motivations for refactoring changes. 9 de-
velopers (37.5%) found that reviewing refactoring changes in a
timely manner is difficult, whereas 6 of them (25%) found that
the challenge is centered around understanding how refactor-
ing changes were implemented. In addition to these challenges,
two participants stated, “The quality of code readability (being
able to understand what the code author intended to do with
the logic/algorithm even without documentation”, and “Style
changes or personal preference that the author holds and feels
strongly about”.

To get a more qualitative sense, we also study bad refactor-
ing practices that reviewers catch when reviewing refactoring
changes. We analyzed the survey responses to this open ques-
tion to create a comprehensive high-level list of bad refactoring
practices that are being caught by reviewers. These practices
are centered around five main topics: (1) interleaving refact-
oring with multiple other development-related tasks, (2) lack
of refactoring documentation, (3) avoiding refactoring negative
side effects on software quality, (4) inadequate testing, and (5)
lack of design knowledge. In the rest of this subsection, we
provide more in-depth analysis of these refactoring practices.

Challenge #1: Interleaving refactoring with multiple other
development-related tasks. One participant indicated that,
“Refactoring changes are intermixed with bug fix changes”
and another mentioned “Refactoring after adding to many
features”, indicating that these practices are not desirable when
performing or reviewing refactoring changes. This suggests
that interleaving refactoring with bug fixes and new features
could be a challenge from a reviewer’s point of view. Even
though we did not ask a specific question concerning interleav-
ing refactorings with other development-related context, three
participants acknowledged that mixing refactoring with any
other activity is a potential problem. This can be explained by
the fact that behavior preservation cannot be guaranteed and
it may introduce new bugs.

Challenge #2: Lack of refactoring documentation. In con-
trast with how developers document bug fixes and functional
changes, the documentation of refactoring seems to be vague

and unstructured. If we refer to our findings in our previ-
ous research question, developers lack guidelines on how to
describe their refactoring activities, and they refer to their
personal interpretation to justify their decisions. To mitigate
this ambiguity, there is a need for proper methodology that
articulates how developers should document refactoring code
changes. Reviewers did explicitly share their concerns during
the survey:

“1. Lack of documentation, 2. Inconsistent variable nam-
ing, 3. Unorganized code, 4. No explanation why changes
were made [...]”; “[...],no guideline, different guidelines
used in the project, bad code practices”; “[...] Not enough
comments”

Challenge #3: Avoiding refactoring negative side effects on
software quality. The majority of the participants commented
that wrongly naming code elements and duplicate code are the
common bad refactoring practices that they typically catch. It
has been proven by previous studies that a developer may
accidentally introduce a design anti-pattern while trying to
fix another (e.g., [30]). One mentioned example was how a
long method (large in lines of code, and has more than one
functionality) can be fixed by splitting the method into two,
using the extract method refactoring operation. However, if the
split does not create two cohesive methods (i.e., segregation
of concerns), then the results could be two tightly coupled
methods, which one method can envy the other method’s
attributes (i.e., feature envy anti-pattern). Thus, it is part of the
code review to verify the impact of refactoring on the software
design from different perspectives (e.g., code smell removal,
adherence to object-oriented design practices such as SOLID
and GRASP, etc.). We report samples of the participants’
comments below to illustrate this challenge:

“Poorly named methods, poorly named variables, lack of
basic Object Oriented Design principles and concepts,
increased complexity, increased coupling.”; “duplication,
low-cohesion”; “Code refactoring does not follow the
coding standards set by the project. [...]”; “Tight coup-
ling, Lack of tests, convoluted logic, inconsistent variable
names, outdated comments”

Challenge #4: Inadequate testing. By default, refactoring is
supposed to preserve the behavior of the software. Ideally,
using the existing unit tests to verify that the behavior is
maintained should be sufficient. However, since refactoring
can also be interleaved with other tasks, then there might be a
change in the software’s behavior, and so, unit tests, may not
capture such changes if they were not revalidated to reflect
the newly introduced functionality. This can be a concern
if developers are unaware of such non behavior preserving
changes, and so, deprecated unit tests will not guarantee the
refactoring correctness. The following reviewers’ comments
illustrate this challenge:

“1) Not testing refactor code changes on all potential
impacted areas 2) Not adding newly named functions to
old test suites [...]”; “[...] partial testing process”; “[...]

354

No follow-up testing”; “[...] No regression testing”; “Tight
coupling, Lack of tests [...]”

Challenge #5: Lack of design knowledge. Developers typ-
ically refactor classes and methods that they recently and
frequently change. So, the more they change the same code
elements, the more confident they become about their design
decisions. However, not all team members have access to all
software codebase, and so they do not draw the full picture
of the software design, which makes their decision adequate
locally, but not necessarily at the global level. Moreover,
developers only reason on the actual screenshot of the current
design, and there is no systematic way for them to recognize
its evolution by, for instance, accessing previously performed
refactorings. This may also narrow their decision making, and
they may end up reverting some previous refactorings. These
concerns along others were also raised by participants, for
instance, one participant stated:

“Lack of knowledge about existing design patterns in code
(strategy, builder, etc.) and their context along with lack
of knowledge about SOLID principles (especially open
close and dependency inversion). I’ve seen people claim
that the code cannot be tested but in reality the problem
is in the way they’ve structured their code.”

It is clear that the code review plays also a major role in
knowledge transfer between junior and senior developers, and
in educating software practitioners about writing clean code
that meet quality standards.

Summary: Challenges of reviewing refactored code
inherits challenges of reviewing traditional code
changes, as refactoring can also be mixed with func-
tional changes. Reviewers also report the lack of
refactoring documentation, and inspect any negative
side effects of refactorings on design quality The
inadequate testing of such changes hinder the safety
of the performed refactoring. Finally, the lack of de-
veloper’s exposure to whole system design can reduce
the visibility of their refactoring decision making.

D. RQ4. What mechanisms are used by developers and re-
viewers to ensure code correctness after refactoring?

Developers reported mechanisms to verify the application
of refactoring (see Figure 5). 23 of the participants (95.8%)
refer to testing the refactored code; 17 (70.8%) reported
doing manual validation; 11 (45.8%) brought up ensuring the
improvement of software quality metrics; 9 (37.5%) mentioned
using visualization techniques; and 9 (37.5%) selected running
static checkers and linters. Besides performing testing, two
participants mentioned in the “other” option: “Automated Test
Coverage”, and “Existing Unit tests”.

We observe that reviewers treat refactoring like any tra-
ditional code change, and they unit-test it for correctness.
This eventually minimizes the introduction of faults. However,
when developers assume refactoring is preserving the behavior,

while it is not, then they may not have updated their unit
tests, and so their execution later by reviewers can become
unpredictable, i.e., some test cases may or may not fail because
of their deprecation. Furthermore, some refactoring operations,
such as ’extract method’, do create new code elements that
are not covered by unit tests. So reviewers need to enforce
developers to write test cases for any newly introduced code.

Reviewers also refer to the quality gate to inspect if they
refactoring did not introduce any design debt or anti-patterns
in the system. Yet, the manual inspection of the code is still the
rules, some reviewers refer to visualizing the code before and
after refactoring to verify the completeness of the refactoring.

Summary: Since reviewers unit test refactoring, just
like any other code change, developers need to add or
update unit tests to the newly introduced or refactored
code. Furthermore, reviewers are manually inspecting
the refactored code to guarantee its correctness.

E. RQ5. How do developers and reviewers assess and perceive
the impact of refactoring on the source code quality?

As can be seen from Figure 6, all participants (24, 100%)
replied that the code becomes more readable and understand-
able. Intuitively, the main purpose of refactoring, is to ease
the maintenance and evolution of software. So reviewers,
implicitly consider refactoring to be an opportunity to clean
the code and make it adhere to the team’s coding conventions
and style. Also, 12 (50%) indicated that it becomes easier to
pass Sonar Qube’s Quality Gate. So, it is expected that the
refactored code does not increase the quality deficit index, if
not decreasing it. Finally, 11 (45.8%) stated their expectation
that refactored, through better renames, and more modular
objects, should reduce the code’s proneness to bugs.

Summary: Besides using Quality Gates and static
checkers to assess the impact of refactoring on the
software design, reviewers rate the success of refact-
oring to the extent to which the refactored code has
improved in terms of readability and understandability.

V. RECOMMENDATIONS

A. Recommendations for Practitioners

It is heartening for us to realize that developers refactor
their code and perform reviews for the refactored code. Our
main observation, from developers’ responses, is how the
review process for refactoring is being hindered by the lack
of documentation. Therefore, as part of our survey report to
the company, we designed a procedure for documenting any
refactoring ReR, respecting three dimensions that we refer to
as the three Is, namely, Intent, Instruction, and Impact. We
detail each one of these dimensions as follows:

Intent. According to our survey results, (cf., Figure 3), it
is intuitive that reviewers need to understand the purpose of
the intended refactoring as part of evaluating its relevance.

355

0 20 40 60 80 100

Understanding how refactoring
changes were implemented

Reviewing refactorings in
timely manner

Inadequate documentation
about refactoring

Understanding the motivation
behind refactoring

Understanding the impact of
refactoring on quality

Avoiding the introduction of
regression in system functionalities 70.8

58.3

45.8

41.7

37.5

25

Figure (4) Challenges faced by developers when reviewing
refactoring.

0 20 40 60 80 100

Running static checkers and
linters

Visualization of refactored
code

Ensuring the improverment
software quality metrics

Manual validation / experience

Testing by running the old
version and the new versions

and make sure they still
give the same result

95.8

70.8

45.8

37.5

37.5

Figure (5) Mechanisms used to ensure the correctness after
the application of refactoring.

0 20 40 60 80 100

Code becomes less prone
to bugs and errors

It becomes easier to
pass quality gate

Code becomes more
readable and understandable 100

50

45.8

Figure (6) Implications experienced as software evolves
through refactoring.

Therefore, when preparing the request for review, developers
need to start with explicitly stating the motivation of the
refactoring. This will provide the context of the proposed
changes, for the reviewers, so they can quickly identify how
they can comprehend it. According to our initial investigations,
examples of refactoring intents, reported in Table IV, include
enforcing best practices, removing legacy code, improving
readability, optimizing for performance, code clean up, and
splitting logic.

Instruction. Our second research question shows how rarely
developers report refactoring operations as part of their docu-
mentation. Developers need to clearly report all the refactor-
ing operations they have performed, in order to allow their
reproducibility by the reviewers. Each instruction needs to
state the type of the refactoring (move, extract, rename, etc.)
along with the code element being refactored (i.e., package,
class, method, etc.), and the results of the refactoring (the
new location of a method, the newly extracted class, the new
name of an identifier, etc.). If developers have applied batch or
composite refactorings, they need to be broken down for the

reviewers. Also, in case of multiple refactorings applied, they
need to be reported in their execution chronological order.

Impact. We observe from Figures 4 and 6 that practitioners
care about understanding the impact of the applied refactoring.
Thus, the third dimension of the documentation is the need to
describe how developers ensure that they have correctly imple-
mented their refactoring and how they verified the achievement
of their intent. For instance, if this refactoring was part of a
bug fix, developers need to reference the patch. If developers
have added or updated the selected unit tests, they need to
attach them as part of review request. Also, it is critical to self-
assess the proposed changes using Quality Gate, to report all
the variations in the structural measurements and metrics (e.g.,
coupling, complexity, cohesion, etc.), and provide necessary
explanation in case the proposed changes do not optimize the
quality deficit index.

Upon its acceptance for trial at Xerox, a set of developers
have adopted the Is procedure when submitting any refactoring
related code change. These developers were initially given
support for adopting it by us rewriting samples of their previ-
ous code review requests, using our template. We will closely
monitor its adoption, and perform any necessary tweaking. We
also plan on following up on whether this practice was able
to be beneficial for reviewers by (1) empirically validating
whether refactoring ReRs, using our template, take less time
to be reviewed, in comparison with other refactoring ReRs;
and (2) rescheduling another follow up interview with the
developers have been using it.
B. Recommendations for Research and Education

Program Comprehension. Refactoring for readability was
pointed out by the majority of participants. In contrast with
structural metrics, being automatically generated by the Qual-
ity Gate, reviewers are currently relying on their own in-
terpretation to assess the readability improvement, and such
evaluation can be subjective and time-consuming. There is
a need for a refactoring-aware code readability metrics that
specifically evaluate the code elements that were impacted
by the refactoring. Such metrics help in contextualizing the
measurement to fulfill the developer’s intention.

Teaching Documentation Best Practices. Prospective soft-
ware engineers are mainly taught how to model, develop and
maintain software. With the growth of software communities,
and their organizational and socio-technical issues, it is im-
portant to also teach the next generation of software engineers
the best practices of refactoring documentation. So far, these
skills can only be acquired by experience or training.

VI. THREATS TO VALIDITY

Construct & Internal Validity. Concerning the complete-
ness and correctness of our interpretation of open responses
within the survey, we did not extensively discuss all responses
because some of them are open to various interpretations,
and we need further follow up surveys to clarify them.
Concerning the selection criteria of the participants, we tar-
geted participants whose code review description included the
keyword “refactor*”. Since the validity of our study requires

356

familiarity with the concept of refactoring, we assume that
participants who used this keyword know the meaning and
the value of refactoring. Another potential threat relates to
the communication channel to identify the motivation driving
code review involving refactoring. We examined threaded
discussions and some situations may not have been easily
observable. For example, determining whether the reviewer
confusion was primarily caused by the refactoring and not
by another phenomenon is not practically easy to assess
through discussions. Interviewing developers would be a good
direction to consider in the future to capture such motivations.

External Validity. Concerning the representativeness of
the results, we designed our study with the goal of better
understanding developer perception of code review involving
refactoring actions within a specific company. Further research
in this regard is needed. As with every case study, the results
may not generalize to other contexts and other companies. But
extending this survey with the open-source communities is part
of our future investigation to challenge our current findings.

VII. CONCLUSION

Understanding the practice of refactoring code review is
of paramount importance to the research community and
industry. In this work, we aim to understand the motivations,
documentation, challenges, mechanisms and implications of
refactoring-aware code review by carrying out an industrial
case study of 24 software engineers at Xerox. In summary,
we found that: (1) refactoring is completed for a wide variety
of reasons, going beyond its traditional definition, such as
reducing the software’s proneness to bugs, (2) refactoring-
related patterns mainly demonstrate developer perception of
refactoring, but practitioners sometimes provide information
about refactoring operations performed in the source code, (3)
participants considered avoiding the introduction of regression
in system functionality as the main challenge during their re-
view, (4) although participants do use different static checkers,
testing is the main driver for developers to ensure correctness
after the application of refactoring, and (5) readability and
understandability improvement is the primary implications of
refactoring on software evolution.

VIII. ACKNOWLEDGEMENTS

We would like to thank the Software Development Man-
ager Wendy Abbott for approving the survey and all Xerox
developers who volunteered their time to participate in this
research.

REFERENCES

[1] M. Fowler, K. Beck, J. Brant, W. Opdyke, and d. Roberts, Refactoring: Improving
the Design of Existing Code. Boston, MA, USA: Addison-Wesley Longman
Publishing Co., Inc., 1999.

[2] W. Cunningham, “The wycash portfolio management system,” ACM SIGPLAN
OOPS Messenger, vol. 4, no. 2, pp. 29–30, 1992.

[3] A. Bacchelli and C. Bird, “Expectations, outcomes, and challenges of modern code
review,” in International conference on software engineering, pp. 712–721, 2013.

[4] C. Sadowski, E. Söderberg, L. Church, M. Sipko, and A. Bacchelli, “Modern
code review: a case study at google,” in International Conference on Software
Engineering: Software Engineering in Practice, pp. 181–190, 2018.

[5] A. Bosu, J. C. Carver, C. Bird, J. Orbeck, and C. Chockley, “Process aspects
and social dynamics of contemporary code review: Insights from open source
development and industrial practice at microsoft,” IEEE Transactions on Software
Engineering, vol. 43, no. 1, pp. 56–75, 2016.

[6] N. Tsantalis, T. Chaikalis, and A. Chatzigeorgiou, “Jdeodorant: Identification and
removal of type-checking bad smells,” in 2008 12th European Conference on
Software Maintenance and Reengineering, pp. 329–331, IEEE, 2008.

[7] W. Mkaouer, M. Kessentini, A. Shaout, P. Koligheu, S. Bechikh, K. Deb, and
A. Ouni, “Many-objective software remodularization using nsga-iii,” ACM Transac-
tions on Software Engineering and Methodology (TOSEM), vol. 24, no. 3, pp. 1–45,
2015.

[8] A. Ouni, M. Kessentini, H. Sahraoui, K. Inoue, and K. Deb, “Multi-criteria code
refactoring using search-based software engineering: An industrial case study,”
ACM Transactions on Software Engineering and Methodology (TOSEM), vol. 25,
no. 3, p. 23, 2016.

[9] E. Murphy-Hill and A. P. Black, “Refactoring tools: Fitness for purpose,” IEEE
software, vol. 25, no. 5, pp. 38–44, 2008.

[10] R. Arcoverde, A. Garcia, and E. Figueiredo, “Understanding the longevity of code
smells: preliminary results of an explanatory survey,” in Proceedings of the 4th
Workshop on Refactoring Tools, pp. 33–36, ACM, 2011.

[11] A. Yamashita and L. Moonen, “Do developers care about code smells? an
exploratory survey,” in Working Conference on Reverse Engineering (WCRE),
pp. 242–251, 2013.

[12] M. Kim, T. Zimmermann, and N. Nagappan, “An empirical study of refactor-
ingchallenges and benefits at microsoft,” IEEE Transactions on Software Engin-
eering, vol. 40, no. 7, pp. 633–649, 2014.

[13] G. Szőke, C. Nagy, R. Ferenc, and T. Gyimóthy, “A case study of refactoring large-
scale industrial systems to efficiently improve source code quality,” in International
Conference on Computational Science and Its Applications, pp. 524–540, Springer,
2014.

[14] T. Sharma, G. Suryanarayana, and G. Samarthyam, “Challenges to and solutions
for refactoring adoption: An industrial perspective,” IEEE Software, vol. 32, no. 6,
pp. 44–51, 2015.

[15] C. D. Newman, M. W. Mkaouer, M. L. Collard, and J. I. Maletic, “A study on
developer perception of transformation languages for refactoring,” in International
Workshop on Refactoring, pp. 34–41, 2018.

[16] X. Ge, S. Sarkar, J. Witschey, and E. Murphy-Hill, “Refactoring-aware code
review,” in IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC), pp. 71–79, 2017.

[17] E. L. Alves, M. Song, T. Massoni, P. D. Machado, and M. Kim, “Refactoring
inspection support for manual refactoring edits,” IEEE Transactions on Software
Engineering, vol. 44, no. 4, pp. 365–383, 2017.

[18] L. MacLeod, M. Greiler, M.-A. Storey, C. Bird, and J. Czerwonka, “Code reviewing
in the trenches: Challenges and best practices,” IEEE Software, vol. 35, no. 4,
pp. 34–42, 2017.

[19] D. Silva, N. Tsantalis, and M. T. Valente, “Why we refactor? confessions of
github contributors,” in Proceedings of the 2016 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, FSE 2016, (New York, NY,
USA), pp. 858–870, ACM, 2016.

[20] E. Murphy-Hill, C. Parnin, and A. P. Black, “How we refactor, and how we know
it,” IEEE Transactions on Software Engineering, vol. 38, pp. 5–18, Jan 2012.

[21] E. A. AlOmar, A. Peruma, M. W. Mkaouer, C. Newman, A. Ouni, and M. Kes-
sentini, “How we refactor and how we document it? on the use of supervised
machine learning algorithms to classify refactoring documentation,” Expert Systems
with Applications, p. 114176, 2020.

[22] E. A. AlOmar, M. W. Mkaouer, and A. Ouni, “Can refactoring be self-affirmed?
an exploratory study on how developers document their refactoring activities in
commit messages,” in 2019 IEEE/ACM 3rd International Workshop on Refactoring
(IWoR), pp. 51–58, IEEE, 2019.

[23] E. A. AlOmar, M. W. Mkaouer, A. Ouni, and M. Kessentini, “On the impact of
refactoring on the relationship between quality attributes and design metrics,” in
2019 ACM/IEEE International Symposium on Empirical Software Engineering and
Measurement (ESEM), pp. 1–11, IEEE, 2019.

[24] E. A. AlOmar, M. W. Mkaouer, and A. Ouni, “Toward the automatic classification
of self-affirmed refactoring,” Journal of Systems and Software, vol. 171, p. 110821,
2020.

[25] AlOmar., https://smilevo.github.io/self-affirmed-refactoring/, 2020 (last accessed
October 16, 2020).

[26] J. W. Creswell, “Research design: Quantitative, qualitative and mixed methods,”
2009.

[27] B. A. Kitchenham and S. L. Pfleeger, “Personal opinion surveys,” in Guide to
advanced empirical software engineering, pp. 63–92, Springer, 2008.

[28] E. Smith, R. Loftin, E. Murphy-Hill, C. Bird, and T. Zimmermann, “Improving
developer participation rates in surveys,” in 2013 6th International Workshop on
Cooperative and Human Aspects of Software Engineering (CHASE), pp. 89–92,
IEEE, 2013.

[29] G. Bavota, A. De Lucia, M. Di Penta, R. Oliveto, and F. Palomba, “An experimental
investigation on the innate relationship between quality and refactoring,” Journal
of Systems and Software, vol. 107, pp. 1–14, 2015.

[30] F. Palomba, G. Bavota, M. Di Penta, F. Fasano, R. Oliveto, and A. De Lucia,
“On the diffuseness and the impact on maintainability of code smells: a large scale
empirical investigation,” Empirical Software Engineering, vol. 23, no. 3, pp. 1188–
1221, 2018.

357

