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Abstract—Given a set of vectors vi,...,v, € R? and a
matroid M = ([n],Z), we study the problem of finding a
basis S of M such that det (3, ¢ viv; ) is maximized. This
problem appears in a diverse set of areas, such as experimental
design, fair allocation of goods, network design, and machine
learning. The current best results include an e*-estimation
for any matroid of rank % [8] and a (1 + ¢)“-approximation
for a uniform matroid of rank £ > d + % [30], where the
rank k > d denotes the desired size of the optimal set. Our
main result is a new approximation algorithm for the general
problem with an approximation guarantee that depends only
on the dimension d of the vectors, and not on the size k of the
output set. In particular, we show an (O(d))"-estimation and an
(O(d))ds-approximation for any matroid, giving a significant
improvement over prior work when £k > d.

Our result relies on showing that there exists an optimal solu-
tion to a convex programming relaxation for the problem which
has sparse support; in particular, no more than O(d?) variables
of the solution have fractional values. The sparsity results rely
on the interplay between the first order optimality conditions
for the convex program and matroid theory. We believe that the
techniques introduced to show sparsity of optimal solutions to
convex programs will be of independent interest. We also give
a new randomized rounding algorithm that crucially exploits
the sparsity of solutions to the convex program. To show the
approximation guarantee, we utilize recent works on strongly
log-concave polynomials [8], [4] and show new relationships
between different convex programs [33], [6] studied for the
problem. Finally, we show how to use the estimation algorithm
to give an efficient deterministic approximation algorithm.
Once again, the algorithm crucially relies on sparsity of the
fractional solution to guarantee that the approximation factor
depends solely on the dimension d.

I. INTRODUCTION

Choosing a diverse representative set of items from a large
corpus is a common problem studied in a variety of areas,
including machine learning, information retrieval, statistics,
and optimization [27], [17], [16], [34]. For example, consider
the problem of choosing a subset from a large data set to
train a machine learning algorithm; or of displaying a small
set of images out of a large set of relevant images to a
search query. In these contexts, one aims to choose a small
and diverse representative set of items from a large data set.
Diversity here can be modeled in many different ways, and
the choice of a diversity measure can significantly affect
both practical performance and the algorithmic complexity
of finding a diverse set. Both general and application-specific
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diversity criteria have been proposed in the past [22], [15],
[16], [40], [13].

In this work, we focus on a popular geometric model
of the problem above. While it naturally captures problems
in data retrieval and statistics, we show that it also en-
compasses problems in fair allocation of goods, network
design, counting, and optimization. We assume that data
are represented as points in the d-dimensional Euclidean
space, so that choosing a subset of items corresponds to
selecting a subset of d-dimensional vectors. A number of
natural diversity measures can be formulated in terms of
functions of the eigenvalues of the matrix given by the sum
of outerproducts of the selected vectors. Some examples
are the determinant, the trace, the harmonic mean of the
eigenvalues, and the minimum eigenvalue. In this work, we
focus on the determinant as the diversity measure. We study
the determinant maximization problem with general com-
binatorial constraints which makes the model rich enough
to include many of the problems mentioned above. In
particular, we consider matroid constraints, which capture
cardinality constraints, partition constraints, and many more
as special cases. This allows modeling constraints imposed
by, e.g., budget, feasibility, or fairness considerations.

In an instance of the DETERMINANT MAXIMIZATION
problem (under a general matroid constraint), we are given
a set of n vectors vq,...,v, € R? and a matroid M =
([n],Z) with set of bases B, and our goal is to find a set

. . T .
S € B that maximizes det (Ziesvivi ) i.e.

max{det (szvr> :SEB}. @9
€S

We denote by k the rank of the matroid M, which is the
size of all the bases in B. We denote the combinatorial
optimization problem (1) by D-OPT and its optimum value
by OPT.

A number of special cases of D-OPT have been stud-
ied, in which either the choice of vectors or the matroid
is restricted [39], [10], [38], [1], [35]. We highlight two
illustrative examples. Under cardinality constraints, in which
B consists of all subsets of [n] of size k, the problem is
hard to approximate to a factor better than (1 + ¢)¢ for
some ¢ > 0 when k = d [26], [18], [20], and Nikolov [32]



gave an e?-approximation for k < d.! Interestingly, when
k > d, improved guarantees are known [38], [1], [35] with
the current best (1+-¢)?-approximation when k > d-+¢ [30].

For general matroids, a series of works [33], [6], [37],
[8] have focused on the case when k < d, and the latest
results of Anari, Oveis-Gharan, and Vinzant [8] imply an
e?F_estimation algorithm. These results were first proved
for the special case when the generating polynomial for the
matroid is a real stable polynomial [6]. Recent and exciting
advances on completely log-concave polynomials [8] (and
the equivalent notion of Lorentzian polynomials [11]) allow
the techniques of [6] to be generalized to all matroids.
While these results are not stated when £ > d, the analysis
naturally yields an e**-estimation algorithm even in that
case. Such a dependence on k is often exorbitant since k
can be much larger than d in many applications. Moreover,
the hardness result mentioned above only shows that the
approximation factor needs to depend exponentially on d,
but not necessarily on k.2 A starting point for this work is a
result showing that these existing techniques are incapable
of removing the dependence on k for general matroid
constraints. In the extended version [29], we show that any
algorithm which solves a convex relaxation and rounds the
fractional solution without using the structure of the vectors
yields an approximation factor necessarily dependent on k
even when d = 2.

A. Our Results and Contributions

Our main result is an algorithm that estimates the objec-
tive of the DETERMINANT MAXIMIZATION problem under
a general matroid constraint.

Theorem 1.1 There is an efficiently computable convex pro-
gram whose objective value estimates the objective of the
DETERMINANT MAXIMIZATION problem under a general
matroid constraint within a multiplicative factor of (O(d))%.

As outlined earlier, an approximation factor depending
only on d cannot be obtained by rounding an arbitrary
optimal solution to any of the known convex relaxations of
the problem. Our work introduces two key ideas to bypass
this bottleneck. First, we show that a convex programming
relaxation always has an optimal sparse fractional solution,
and, in particular, one with no more than O(d2) fractional
variables, out of a total of n variables. The proof of this
fact relies crucially on the first order optimality conditions
of the convex program. A straightforward presentation of
the first order optimality conditions leads to a system of

IFor k < d, the objective is naturally replaced by the product of the k
highest eigenvalues of the matrix, rather than the determinant, which is the
product of all d eigenvalues

2Since the objective is the determinant of d X d matrices, and the
determinant is homogeneous of degree d, exponential dependence on d
is an appropriate scaling.
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(exponentially many) non-linear constraints over an expo-
nential number of variables. We interpret these constraints
using matroid theory and reformulate them as a system of
(exponentially many) linear inequalities. Then, we apply
combinatorial optimization techniques such as uncrossing in
order to show that any basic feasible solution to the system
of inequalities must be sparse, again using the inherent
matroid structure of the linear constraints.

Second, we give a new randomized algorithm that rounds
such a sparse solution for any matroid, giving the desired
result. Our algorithm crucially uses the near-integral struc-
ture of optimal solutions, and thus differs significantly from
previous rounding algorithms, which are oblivious to any
such structure. The main challenge in the design of the
algorithm is that the non-linearity of the objective function
implies that even an integral variable cannot be included
in the solution with probability 1. Our rounding proceeds in
two phases: we first randomly round the fractional variables,
and then we randomly choose which of the integral variables
to include in a solution, while maintaining feasibility. We
again rely on matroid theory to show that the random
solution obtained has large objective value in expectation.

This combination of techniques from convex optimization
and matroid theory, which we use in order to find a sparse
optimal solution of a convex program with exponentially
many constraints, appears to be novel and may be of
independent interest.

We also consider the special case of partition matroids
due to its significant applications and note that an improved
approximation algorithm can be obtained for this case. We
observe that the roadblock in achieving an approximation
factor independent of & for general matroids does not appear
in the case of partition matroids. Thus, the standard random-
ized rounding algorithm also achieves e©(?)-approximation
by generalizing the results on Nash Social Welfare in [5].

Deterministic Algorithms.: A challenge for the DETER-
MINANT MAXIMIZATION problem under a general matroid
constraint has been the lack of frue approximation algo-
rithms that achieve the same guarantees as the estimation
algorithms. Most results [33], [6], [8], [4], [37] give ran-
domized algorithms whose guarantees hold in expectation
and are not known to hold with high probability or de-
terministically. The few existing efficient algorithms with
high probability or deterministic guarantees either work
only for restricted classes of matroids, such as uniform
matroids [32], [2], [35] or partition matroids with a constant
number of parts [14], or rely on special structure of the input
vectors (or both) [7], [19], [15], [9]. Ebrahimi, Straszak and
Vishnoi [21] gave the most general algorithmic results that
apply to all regular matroids, but the approximation factors
they achieved depend on the size of the ground set and not
just the dimension of vectors, as aimed in our work.

We utilize the existence of sparse optimal solutions to
our convex programming relaxation to give an efficient



deterministic algorithm achieving an approximation factor
that only depends on the dimension d of the vectors, and
not on the size k of the output set or the size n of the input.

Theorem L.2 There is a polynomial time deterministic algo-
rithm for the DETERMINANT MAXIMIZATION problem that

gives an (O(d))d3 -approximation.

The above result is achieved by using the optimal ob-
jective value of the convex program as an estimate of
the value of an optimal solution, and reducing the search
problem of finding an approximately optimal solution to
estimation. We have shown that some optimal solution to the
convex program has at most O(d?) fractional variables, and,
therefore, has support of size k + O(d?). Then, producing a
feasible solution (which has size k) requires finding O(d?)
elements of the support of the optimal solution to exclude
from the solution: the remaining k elements form the output.
Thus, the sparsity allows us to argue that the estimation
problem needs to be recursively solved only O(d?) times,
which is crucial in guaranteeing an approximation factor that
depends only on d.

We remark the guarantee is worse than is achieved (in
expectation) by the randomized algorithm. Obtaining true
approximation algorithms that match the performance of the
estimation algorithms remains a challenging open problem
for the DETERMINANT MAXIMIZATION problem under a
general matroid constraint, even in the case of a partition
constraint.

B. Applications

As mentioned earlier, DETERMINANT MAXIMIZATION
models problems in many different areas and our results
imply new approximations for many of these problems. We
give details for some of them below.

Experimental Design.: In the optimal experimental
design problem for linear models, the goal is to infer an
unknown 6* € R? from a possible set of linear measure-
ments of the form y; = v;'—B* + n;. Here, vy,...,v, € R
are known vectors, and 7, . . ., 1, are independent Gaussian
noises with mean O and variance 1. In some settings,
performing all of the n measurements might be infeasible,
and combinatorial constraints such as matroid constraints
can be used to define the feasible sets of measurements.
Given a set S C [n] of measurements, an estimator @ for 0*
is obtained via solving the least squares regression problem
mingera Y ;c5(yi — v, 0)2. The error @ — 0* is distributed
as a d-dimensional Gaussian N g(), (ZiES viv;'—) _1). Min-
imizing the volume of the confidence ellipsoid, or equiv-
alently the determinant of the covariance matrix of the
error, is referred to as D-optimal design in statistics [34].
Our results directly imply improved approximability for D-
optimal design under a general matroid constraint.
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Nash Social Welfare.: In the indivisible goods alloca-
tion problem the goal is to allocate, i.e. partition, m goods
among d agents so that some notion of social welfare and/or
fairness is achieved. Each agent ¢ has utility u;(j) for good
j € [m], and if S; are the goods assigned to agent i,
then her utility is u;(S;) = > ,cg, ui(j). A well studied
objective in this context is Nash social welfare (NSW),

: . d v oo
which asks to maximize (Hi:l ul(Sz)) . This objective
interpolates between maximally efficient and maximally
egalitarian allocations — see [31], [12] for more extensive
background. Maximizing the NSW can be formulated as an
instance of DETERMINANT MAXIMIZATION under a parti-
tion constraint, as observed in [7]. For each agent ¢ and good
J» wWe create a vector v(; ;) = \/u;(j)e;, where e; is the i-
th standard basis vector of R%, and form a partition matroid
M whose bases B consist of all sets S C [d] x [m] such
that [{i : (¢,7) € S}| =1 for all j € [m]. Then, a feasible
solution S € B corresponds to an allocation of the goods,
and the determinant det (waes V(w-)vaj)) is equal to
the NSW objective. Our results recover those in [7] and
further allow us to give an O(d)-estimation algorithm when
the allocation (Si,...,Sq) is required to satisfy additional
matroid constraints. For example, the works [24], [25], [23]
considered allocations such that Ule S; is a basis of a
matroid M’. We can model this setting by defining our
constraint matroid M so that S C [d] x [m] is a basis of
M if and only if |{i : (i,5) € S}| = 1 for all j € [m)]
and {j : Jis.t. (4,5) € S} is a basis of M’. Our results
then imply an O(d)-estimation algorithm and an O(d)? -
approximation algorithm for maximizing NSW subject to
these general matroid constraints.

Network Design Problems.: In general, the goal in
network design problems is to pick a subset F' of the edges
of an undirected graph G = (V, E') with non-negative edge
weights w such that the subgraph H = (V,F) is well-
connected. One measure of connectivity is to maximize the
total weight of spanning trees in H = (V, F'), where the
weight of a tree is defined as the product of the weights of its
edges (see [28] and references therein for other applications).
This natural network design problem is a special case
of the DETERMINANT MAXIMIZATION problem. For each
(i,§) € E, we introduce a vector v(; ; € {0,1, -1}V with
(V)i = /WGy (Viig))i = —/Wj). and the rest of
the coordinates set to zero. Observe that ) vev, s
exactly the Laplacian of H = (V, F), and the determinant
of the Laplacian® gives the number of spanning trees in H.
Our results imply an O(|V|)!V|-estimation algorithm, and
O(|V|)‘V‘3-appr0ximation algorithm for this problem under
a general matroid constraint.

3We remark that the Laplacian is always singular, but we can first project
the vectors v, orthogonal to the all-ones vector and take the determinant
in d — 1 dimensions.



C. Technical Overview

Our starting point is a variant of the convex relaxation
introduced in [33] for the partition matroid. Let the set of
input vectors be V = {vy,...,v,} C R% For a matroid
M = ([n],Z), we denote by Zs(M) := {S € T:|S|=s}
the set of all independent sets of size s. We denote by P(M)
the matroid base polytope of M, which is the convex hull
of the indicator vectors of the bases. For any vector z € R"
and a subset S C [n], we let 2(S) = > ;g 2. We let
Z:={z € R" : VS € Zy(M),z(S) > 0}. Our convex
relaxation is

= log det Zmiez"viv;r . @
i€[n]

sup inf ¢g(x,2)
xeP(M)2€2

For ease of notation, we define f(x) := inf,c z g(x, z), the
inner infimum of (2).

Similar but somewhat different convex programs have
been studied by [7], [6], [37], [36]. (The relationship of our
convex program to these also plays a crucial role in our anal-
ysis: see below.) The estimation algorithms in these works
rely on a simple randomized algorithm to round a fractional
optimal solution x*. The analysis of the algorithm relies on a
positive correlation property: the algorithm outputs a random
solution such that all elements of an independent set S of
size d are included with probability at least L - [, .z},
where « is some function of k. This property, combined
with inequalities for real stable and completely log-concave
polynomials, leads to an « - e?(9-estimation algorithm.
We show that there exist fractional optimal solutions x*
such that no rounding scheme has this positive correlation
property for any a which is a function of d and independent
of k. So, the dependence on k is inherent to all the previous
algorithms which round an arbitrary optimal solution x* and
do not consider the structure of the vectors to obtain some
structure on the optimal x*.

Our first technical result is to show that there always
exists an optimal solution that has at most O(d?) fractional
variables. We briefly describe how to obtain such a sparse
optimal solution. Let x* denote an optimal solution to the
convex program (similar reasoning works for near optimal
solutions as well). We first show that, using a series of
careful preprocessing steps, we can assume that there exists
a z* attaining the infimum in f(x*) = inf,cz g(x*,2).
We then use first order optimality conditions that give a
sufficient condition for another solution x to be optimal (i.e.,
to have f(x) = f(x*)). These conditions, however, present
two significant obstacles: first, the conditions are not linear
in x, and, second, they ask for the existence of an exponen-
tially sized dual solution as a certificate of optimality. We
address the first problem by noticing that insisting that the
entire matrix (Zie[n] rrefiviv] ) does not change when
x* changes to x leads to the optimality conditions becoming
a system of linear equations in exponentially many variables.
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We then use the simple, yet elegant fact from matroid theory
that minimum weight bases of a matroid under a linear
weight function form the base set of another matroid. We use
this combinatorial fact to observe that the existence of the
exponentially sized dual solution is equivalent to insisting
that a vector, whose coordinates are linear functions of x,
is in the base polytope of a new matroid. Putting all of this
together reduces the search for the new optimal solution x to
solving a system of exponentially many linear inequalities.
Now, in the familiar territory of matroid polytopes, we apply
standard uncrossing methods and show that every extreme
point solution of the system of these linear inequalities has
only O(d?) fractional variables.

Finally, we give a new randomized algorithm that gives
an O(d)%-estimation algorithm in the presence of O(d?)
fractional variables. Since the objective is non-linear, we
cannot just pick all variables set to 1 and apply a randomized
algorithm to fractional elements. Indeed, the variables set
to 1 must also be dropped from the final solution with
certain probability. We show that given a solution x with at
most O(d?) fractional values, our rounding scheme outputs
a random solution such that for any independent set .S of
size d, all elements of S are picked with probability at
least (O(d))_d [I;cg =i To show that this property implies
the random solution output by the algorithm achieves an
O(d)? approximation in expectation, we utilize recent and
exciting work on strongly log-concave polynomials [8], [4]
and the equivalent notion of Lorentzian polynomials [11].
While the analysis using strongly log-concave distributions
naturally utilizes a different convex programming relaxation
introduced in [6], the aforementioned sparsity result is not
applicable to these convex programs. To this end, we show
that the convex programming relaxation considered in our
work is stronger than the convex programming relaxation
from [6]. The relationship between the various convex
programs for this problem and their respective strengths and
weaknesses outlined by our results may be of independent
interest.

D. Organization

In Section II, we discuss our convex relaxation, some
technical issues in solving the relaxation, our main technical
result, and the first order optimality conditions for the relax-
ation. In Section III, we show the existence of an optimal
solution with at most O(d?) fractional values. In Section IV,
we give the randomized algorithm to round a solution of
the relaxation with few fractional values. In Section V, we
give our deterministic approximation algorithm that gives a
guarantee that only depends on d. We refer the reader to an
extended version [29] for complete proofs.

E. Related Work

Uniform Matroid:: DETERMINANT MAXIMIZATION is
NP-hard even for uniform matroid [39]. Koutis [26] showed



that there exists a constant ¢ > 0 such that it is NP-hard to
approximate better than a factor of (1 + c¢)? [26]. Let k
be the rank of the uniform matroid. Bouhtou et al. [10]
gave a (%)d—approximation algorithm based on rounding
the solution of a natural concave relaxation. Nikolov [32]
improved the result to a eF-approximation when k < d.
Wang et al. [38] improved the approximation ratio of (1+4¢)?
when k£ > d; Allen-Zhu et al. [3] improved the bound on
k to give (1 + ¢)?-approximation when k = Q (). This
was improved by Singh et al. [35] who gave a (1 + ¢)%-
approximation when k = (% + 6% log %) Recently, this
was improved by Madanet al. [30] who gave a (1 + ¢€)9-
approximation when k& > d + %

General Matroid:: Nikolov and Singh [33] gave a
ed-approximation for DETERMINANT MAXIMIZATION with
partition matroid of rank d. Let k be the rank of a general
matroid. Anari and Gharan [6] gave a e**-approximation
when the generating polynomial for the matroid is real-
stable. This corresponds to the Strongly Rayleigh matroids
which includes both uniform and partition matroids. This
was generalized by Anari, Gharan, and Vinzant [8] who
gave a e?F-approximation for any matroid. While the result
in [8] is not stated for k£ > d, it can be easily deduced
from the analysis. Algorithms in [33], [6], [8] are estimation
algorithms as they estimate the optimum value up to a certain
approximation factor, but do not yield a solution in polyno-
mial time. Straszak and Vishnoi [37] gave a polynomial time
algorithm without output a O(v/ke”)-approximate solution
for partition matroid.

II. CONVEX PROGRAM AND OPTIMALITY CONDITIONS

Our algorithm for DETERMINANT MAXIMIZATION under
a general matroid constraint is based on solving a convex
relaxation and rounding an optimal solution of the convex re-
laxation to an integral solution. In this section, we formulate
this convex relaxation, show that it is efficiently solvable,
and prove some of its properties which are crucial for the
rounding algorithm.

A. Formulation of the Convex Program

Let V = {vi,...,v,} be input vectors. For a matroid
M = ([n],Z), we denote by Z,(M) := {S €Z:|S|=s}
the set of all independent sets of size s. We denote by P (M)
the matroid base polytope of M, which is the convex hull
of all of the bases. For any vector z € R™ of real numbers
and a subset S C [n], we let 2(S5) = >, g2 We let
Z:={zecR":VS € Zy(M),2(S) > 0}. We introduce the
optimization problem

)ziggg(x,z) := log det

E ;€7 Vv

i€[n]

3

sup
x€P(M
For ease of notation, we also let f(x) := inf,cz g(x, z), the

inner infimum of (3). The above program is a convex relax-
ation, as shown in Nikolov and Singh [33]. Unfortunately, it
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is not clear whether the outer supremum and inner infimum
are attained at some x* and finite z*. While the supremum
over x can be approximated, our approach relies crucially
on the inner infimum being achieved exactly at some finite
z*. We first show the following technical lemma that gives
a sufficient condition for the infimum to be achieved based
on KKT conditions and Slater’s qualification of constraints.
We say that the vectors {v; : i € [n]} C R? are in general
position if any subset of size d is linearly independent.

Lemma IL1 Let x € P(M) be such that max;cpy) z; < 1
and f(x) = inf,cz g(x,2) is finite, and suppose that the
vectors {v; : i € [n]} are in general position. Then, g(x,z)
attains its infimum over z € Z at some z* € Z.

In general, an instance of our problem may not satisfy the
conditions of the lemma: the given vectors need not be in
general position, and every optimal x may have value 1 on
some coordinates. A preprocessing step is enough to show
that both of these assumptions can be made with a slight
loss in optimality by modifying the input instance [29]. This
is achieved by modifying the matroid by introducing two
parallel copies of each element as well as perturbing the
vectors slightly to put them in general position. From here
on, we assume that these modifications have been carried
out, and we use M and V to denote the resulting matroid
and vectors, respectively.

These reductions allow us to formulate the following
stronger convex program where we place an additional upper
bound on the coordinates of x:

i inf g(x,2) :=

log det Z xie®iv; v

i€[n]

sup
x€P(M)N]o,

“

We denote the convex program (4) by CP, its optimum value
by OPTcp, and an optimal solution by (x*,z*). We denote
by OPT, the optimal value of the DETERMINANT MAXI-
MIZATION problem. Based on the discussion above, we show
the following lemma, which also gives the polynomial time
solvability of the convex program.

Lemma I1.2 For any € > 0, there is a polynomial time
algorithm that returns x* € P(M) N [0, %}n such that
inf ez g(x*,z) > log (OPT) — e. Moreover, there exists z*
attaining the infimum in inf,c z g(x*, 2).

Our main algorithmic result is to show that the value of the
convex program OPTcp gives a good approximation of the
optimal value OPT of the DETERMINANT MAXIMIZATION
problem. The theorem below immediately implies Theo-
rem L.1.



Theorem I1.3 The optimum value OPTcp of the convex
program gives a (2e°d)®-approximation to the value of the
optimum, I.e.,

log (OPT) — € < OPT¢p < log (OPT) + O(dlogd). (5)

Moreover, there is a polynomial time algorithm that, given
x* attaining OPTcp and z* attaining the infimum in
inf ez g(x*,2z), returns a random set S € T such that

det <Z vivy

i€S

E

)] > (2¢°d)~¢ (OPT).

We now outline the ideas behind proving Theo-
rem I1.3. First, we obtain the KKT optimality conditions of
inf ez g(x,2) in Section II-B. In Section III, we show that
the KKT conditions can be related to a new matroid defined
by minimum weight bases of the original matroid under
the weight function z*. We then apply uncrossing methods
on matroids to show that there is always an optimal sparse
solution — in particular, one with at most O(d?) fractional
variables. In Section IV, we give a rounding algorithm
that uses the fact that number of fractional variables is
bounded, and we prove Theorem II.3 building on inequalities
proved in [6] and [8] for stable and completely log concave
polynomials, respectively.

B. Optimality Conditions

Recall the notation f(x) = inf,cz g(x,2). In the follow-
ing result, we state a sufficient condition that some feasible
solution x € P(M) satisfies f(x) = f(x*), where x* is an
(approximately) optimal solution to CP as returned by the
algorithm in Lemma IL.2. The result is obtained by applying
the general KKT conditions to the optimization problem
inf,ez g(x,2).

Lemma IL4 Suppose x* € P(M) N [0, %]n is a feasible
solution for CP such that the infimum over Z in CP
is achieved, and let z* € argmin, .z g(x*,z). For any
X € P(M), suppose that there exists X € RidO(M)
that B
1. for all S € Ty(M) with z*(S) # 0, we have \g = 0,
2. for all i € [n], we have #e*v]X v,
DoSeT (M)ies As Where X = S arerivv], and

330 areriviv =300 detivivy
Then, f(x) = f(x*). Moreover, there exists X\ € RidO(M)
such that the above three conditions hold with X = x*.

such

We remark that the above criteria ask for the existence
of exponentially sized vector A in order to certify that x
is optimal. In the next section, we show that the above
condition is equivalent to showing a certain vector is in the
base polytope of another matroid derived from M.
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ITII. SMALL SUPPORT SOLUTIONS TO CP
A. Preserving the Value of a Solution

In this section, we show that there is always an optimal
solution to CP that has small number of fractional com-
ponents. Indeed, given any solution x such that the inner
infimum of CP is attained, we show how to obtain a sparse
solution whose objective is no worse.

Theorem IIL.1 (Sparsity of an optimal solution) Ler x*
be a solution to CP such that the inner infinum of CP is
attained. Then there exists a solution X € P(M) such that

1) f(x) = f(x*), and

2) fien]:0<i;<1}| gz((dgl)ﬂz).
Moreover, such a solution X can be found in polynomial
time.

Proof: Given x*, a solution to CP, we let z* be
an optimal solution to inf,cz g(x*,z). Also, let X =
2 icn xre viv] . We assume that supp(x*) = {1,...,n}
since for any ¢ with 7 = 0, we can update the instance by
deleting these elements. Observe that this does not effect the
optimality (restricted to supp(x*)) of z* .

We first give a simpler description than Lemma I1.4 for
a solution X to have an objective better than f(x*). This
relies on the following basic lemma.

Lemma IIL.2 Let B* = {S € Z,;: 2*(S) = 0}. Then, B* is
a basis of another matroid M* = ([n|,I*). Additionally, if
M admits an independence oracle, then M* also admits an
independence oracle.

Proof: Since z*(S) > 0 for all S € Z,, the basis of
74 included in Z* are the minimum weight bases under the
weight function z. Minimum weight bases of a matroid form
the bases of another matroid, and the independence oracle
can be implemented in polynomial time. ]
We now have the following simpler description for x to
be optimal building on Lemma I.4. Let M* be the matroid
in Lemma IIL.2 and let 7* : 2"} — Z, denote the rank
function of M™.

Lemma IIL.3 Let x* be a solution of CP and z*
arg min, ¢ z g(x*,2z). Let x € R be such that

1) x € P(M),

2) the vector w € R defined as w; = i’iezi*v:X’lvi
for each i € [n] satisfies w € P(M*), where X =
Zie[n] x;‘ezf viv,

3) Yiem) ZeFviv] = 2 ieln) zre*iv;v,, and

4) supp(x) C supp(x*).

Then f(x) = f(x*).

Proof: We show that the above conditions imply that
the conditions of Lemma II.4 are satisfied. Indeed, we only

€



min 0 (6)
st. Y m<r(S)VOCSC] ()
€S
z([n]) =r(ln]) =k ®
inezfviTXflvi <r*(S)VOCSCn] )
i€S
Z xieZ;ViTX_lvi =r*([n])) =d (10)
i€[n]
Zmelvv erzvl (11
x5 > O Vi € [n] (12)

Figure 1. Linear program to obtain a sparse solution.

need to show the existence of A € RZ4(M) a5 claimed. Since
w e R s in P(M*), we have W = 3 gy s Xs
where ys € RI" is the indicator vector of set S and
> seB(me) Hs = 1. Observe that for each S € B(M*), we
have z*(S) = 0. Thus, setting \g = pg for S € B(M*) and
As = 0 for all other sets in Zgq(M) satisfies the conditions
of Lemma IL.4. n

Now the above conditions can be formulated as a feasibil-
ity system over the following linear constraints as given in
Figure 1, and we call the formulated linear program LPy opr.
Here, constraints (7)-(8) insist that x € P(M) and (9)-
(10) insist that the vector (z;e* v;X~1v;);en) € P(M*).
Constraints (11) insist that the matrix X does not change
when the solution changes to x from x*. For ease of
notation, we let w, be the vector (CL’Z'GZ; V,-Xflvi)ie[n].

From basic uncrossing methods we obtain the following
lemma characterizing any extreme point of the above linear
program. Recall that a collection C of sets is a chain if for all
A, B €C, we have A C B or B C A. Again, we focus on
supp(x) since x remains extreme after removing coordinates
with z; = 0. Thus, we assume that [n] = supp(x).

Lemma II1.4 [f x is an extreme point of the linear program
LP, opr, then there exist chains C1,Co C 2™ and P C
[d] x [d] such that
1) z(S) r(S) for each S € Ci, wy(S) r*(S)
for each S € Co, and O et viv]) i
(S8, wresivyv] ) for each (j,k) € P,
2) the linear constramts corresponding to sets in Cy,Cs
and pairs in P are linearly independent, and
3) Isupp(x)| = C1] + |Ca| + | P|.

Let x be an extreme point of the linear program LPy opr.
Such an x can be found in polynomial time. Let C;
{S1,...,5} where S; C Sy... C S;. Then, we have
x(S;) = r(S;). Since x; > 0 for all i € [n], we have
1 < r(S) < r(S2)... < r(S;)) < k and from the
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integrality of the rank function, we obtain that |C;| =1 < k.
Similarly, Cg\ < r*([n]) <d, and clearly |P| < (dﬂ) since
Sr mefvv] and SOF ) xre® vyv,| are d x d symmetric
matrices. Therefore supp(x) < k +d + (d+1) In what

follows we argue all but 2 (d + (d+1)> coordinates are set
to 1.

For ease of notation, we let Sy = (). Observe that if |S; \
Si—1] =1forany 1 < j <1, say {i} = 5;\ Sj_1, then
x; = x(9;) —x(Sj-1) = r(S;) —r(S;-1) which is an non-
negative integer. Since x; > 0, we obtain that z; = 1. Let
I'={1<j<k:|S;\Sj_1] = 1}. Observe that there are
at least |I| variables set to 1. But since every set .S; with
j ¢ I contains at least two elements in S; \ S;_1, we have

[supp(x)| = 1] +2(1 — [1]).

But from Lemma II1.4, we have

d+1
|[supp(x)] §l+d+< 5 )

Combining the two inequalities, we get |I| > | —d —
(dgl) > |supp(x)| — 2(d + (dgl)). This implies that the
number of fractional variables is at most supp(z) — |I] <
2(d+ (“41). ]

IV. RANDOMIZED ROUNDING ALGORITHM

In this section, we give our randomized rounding algo-
rithm and prove the guarantee on its performance claimed
in Theorem IL.3.

Throughout this section, we assume that the algorithm
receives an input x € P(M) such that

|{i:0<xi<1}|<2<<d;1)+d).

We first describe the rounding algorithm, presented in Al-
gorithm 1. It is obvious that Algorithm 1 runs in polynomial
time.

For ease of notation we denote v = (2e3d)~¢
Zq = Zqy(M). We first claim that every independent subset
S of R; U Ry of size d is contained in the output set with
probability at least . The claim can only be true if the
ground set R; U Rs, which has been restricted to the support
of x, is small.

Lemma IV.1 Let T denote the random set returned by
Algorithm 1. Then, for any set S C Ry U Rs such that
S € I, we have

P[SCT]>~.

Lemma IV.l1 implies a lower bound on the expected
objective value of the solution returned.



Algorithm 1 Rounding Algorithm
1: Input: a matroid M = ([n],Z), x € P(M).
2: Output: a set S € 7.

3: procedure ROUNDING(z,Z)

4: Rl(—{i20<$i<1},R2<—{i2$i:1}

5 T+ 0

6 for ¢ in R, do

7: if T U {i} € Z then

8: T < T U {i} with probability %

9 for i in R> do

10: if TU{i} € 7 then

11 T « T U {i} with probability 1

12: if T is not a basis then

13: Extend 7" to a basis (e.g. by going through

each element in [n] \ 7" and add it to T if T remains

independent until 7" is a basis)
return 7'

Lemma IV.2 Algorithm I returns an independent setT € 1
with expected objective value

/)

Next, we relate this lower bound to the objective of the
convex relaxation CP in a two-step procedure. Building on
results by [8], the lower bound on the expected objective of
the algorithm can be bounded in terms of objective of a dif-
ferent convex relaxation as described in Lemma IV.3. Proof
of the lemma is inferred from the inequality proved in [8] on
completely log-concave polynomials by observing that the
polynomials (in y and z variables) det (Z?:l rryiviv] )
and ) SeT, 2["\S are completely log-concave. Here we use

. W\ & n @i
the notation ()™ := [, ( )

EWZdet

SeZy

E |det <Zviv

ieT

( E l’iViV;r

i€S

Yiwq
a;

Lemma IV.3 For any x* > 0,

]

det (Z? 1 TTYiViV

()"

To finish the proof of Theorem II.3, we show that the
convex relaxation CP is stronger than the convex relaxation
studied in [8]. The proof of the following lemma is deferred
to the full version.

Z det

SeZy

( E TIVV

i€S

>e 2 sup inf

a€P(Ty) y,w>0

1) (Ssez )
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Lemma IV4 For any x* > 0,
det (300, afyiviv

QEP(T,)Y>W>0 ()

(szv v ) |

Note that we cannot directly use the convex relaxation
of [8] and avoid the two-step procedure for our problem.
Algorithm 1 and the proof of Lemma IV.1 require that the
solution x is sparse, and we do not know if such property
holds true for the convex relaxation of [8].

Before we prove Lemmas IV.1 and IV.2, we present the
proof of the main result of our paper.

Proof of Theorem IL3: We first show (5) Recall that

f(x) = inf,czlogdet (Zle n] Ti€” iviv]l ). Let (x*,z*)
be an optimal solution to CP, so we have f(x*) = OPTcp.
The first inequality of (5) follows from Lemma IL2. It
remains to show the second inequality.

By Theorem IIL1, there exists x € P(M) such that
f&) = f(x*)and [{i € [n] | 0 < 2 < 1} <

i) (Esez, v?)

sup inf

> inf det
zEZ

Z det

S€eZq

(o

i€S

sup  inf

2 (dH) + d) Let T € 7 be the random solution returned
by Algorithm 1 given an input x %. We apply Lem-
mas IV.2, IV.3, and IV.4 successively and in this order to
get
E |det (Z vazT>1 > (2¢3d)~ )
ieT
> (2e3d) e 2 (13)
det (YIL, Ziyivivi') (Csez, w)
a€P(T,) Y W>0 (%)
> (2¢°d)~? inf det Fietiviv)
> (2¢e°d) Inf de (;xe vvz>

= (2¢°d) ¢ 1nf det (Z xre*iv;v; ) = (2¢°d)"% - OPTcp
(14)

where the first of the two equalities follows from Theo-
rem IIL.1.

On the other hand, for any 7' € Z, we have
det (3,cp viv{ ) < OPT, and therefore

E |det (Z viv;r>

i€T
Combining (14) and (15) proves the second inequality of
(5).

Given a solution x* and z* attaining the infimum
in infyezdet (Y1 afev;v]), the efficiency of the
randomized algorithm that satisfies (14) follows from the
efficiency of obtaining a sparse solution (by Theorem III.1)

< OPT. (15)




and of the rounding Algorithm 1.

Now we prove Lemmas IV.1 and IV.2.
Proof of Lemma IV.1: We need to prove that for any .S C
R; U R5 such that S € Z,

P[S C T] > (2¢3d) .

Let Sy = SN Ry and Sy = SN Ry. Since z; = 1 for any
i € Ry and x € P(M), we have Ry € Z. Since S € 7 and
S1 C S, we have S; € Z. We first claim the following.

Claim IV.5 There exists Y C Ry \ So such that |Y| < |S|
and S U(R2\Y) € T.

Proof: Recall that S = S U S € 7 and Ry € 7.
If |[R2| < |S1U S|, then Y = R, satisfies the condition.
Else, by the definition of matroids, there exists an element
i € Ry \ (51U S3) such that S; U Sy U {i} € Z. Since
S1N Ry =0, we get that i € R»\ Sa. Repeating this process
for |Ro| — |S1 U S3| times, we obtain a set W C Ry \ So
of size |Ra| — |S1 U Sa| such that S; U S UW € Z. If
Y = RQ\(SQUW), then SlU(RQ\Y) =S1USUW e 1.
Since W has size |Ra|—|S1USz|, Y has size |Rz| — (|Rz| —
51U S2|) = [S2] = |51 U Sa| — [S2] < [Su. u
Let Y C Ry \ Sy be a set such that S; U (R \Y) € Z.
Next, we prove a lower bound on P[S C T'. Note that S is
a disjoint union of S; and S5. Hence,

P[SCT)|=P[S; CT and S, CT]
>P[TNR; =57 and Sy C T
>PTNY =0and TNRy =5, and Sy C T
=P[TNY =0]-PITNR =8, |TNY = 0]
PSS CT|TNY =0, TN Ry = 5]

Next, we lower bound each of the probabilities.

1) P[T'NY = (]: Consider the event that 7 NY = {. It
happens if for each ¢ € Y, ¢ is not added to 7" during
the execution of the algorithm. Let 7" be the set T
before the iteration considering . If 7/ U {i} € Z, 7 is
not added to T" with probability 1. If 7" U {i} € Z, i is
not added to 7" with probability 1/2. Hence, for each
i € T, i is not added to T with probability at least 1/2.
Probability that none of the elements of Y are added
to T is therefore at least (%)ly‘. Since |Y] < |S;

)

1

[S1]
;)

IP’[YOT(Z)]>(

2) PITNRy =51 | TNY = (]: Since all elements of Ry
are considered before the elements of Ry (and hence

Y), we have

P[TNR, =5, | TNY =0] =P[TNR, = S]. (16)
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To get TN Ry = Sy, we must have (R \ S1)NT =0
and S; C T'. Hence,

P[TﬂRl = Sl] = ]P)[Tﬁ (R1\ 51) = @]

P[S; C T[T (R \ S1) =0]. an

As argued above, for any element i € R;\ S, the prob-
ability that 4 is not in T" (regardless of other elements) is

atleast 1— 2. Hence, P[TN(R1\S1)] > (1 — é)‘Rl\Sll
which is equal to (1 — é)mlell since S; C R;.

Since S € Z and S; C S, we have S; € Z. Consider
an element ¢ € S; and the set 7" being the set T before
the algorithm processes the element 4. If no element of
Ry \ Sy is picked, then T"U{i} C S;. Hence, T'U{i} €
Z, and the probability that the element ¢ is picked is é.
Hence, if no element of R; \ S; is picked, then every
element of S is picked with probability 5 This implies
that

Combining (16)-(18), we get

1 1

[S1]
- . 18
d) (18)
[R1]—]S1] [S1]
P[TNRy = Sy | TNY = 0] > (1 - d> (d> .
3PS, CT | TNY =0, TN R, = S;]: Consider an
element i € Sy. Let 77 be the set T just before the
algorithm considers the element . If 7/ N R; = 5
and 7' NY =0, then T"U{i} C S; U (R2\Y). By
Claim IV.5, S;U(R2\Y') € Z. Hence, if T"NRy = 54
and T"'NY = (. Then, T’ U {i} € Z, and ¢ is added to
T with probability 1/2. Therefore,
>S2|

Combining the bounds on the three probabilities, we get

)

Since |S| = d and S is a disjoint union of S; and Ss,
we have |S1| + |S2| = d. Also, by the assumption of the

Ry <2 ((dH) + d). Hence,
1 [S1]
i)

2
Pls 1] > (;)d(l_;>2((d§1)+d) (1_2)51(
) ()

1

P[S; CT |TNY =0,TNRy =5] = (2

1

2

1

d

1

ngﬂz< 5

theorem,

Since |S;1| < d, we have

swena (3 (-2)
(;d)d (1 1)d(d+l)+d

1

d

d



__3
e~ @+2, Hence,

(263d) ¢

1.5
e~ d >

For d > 2, we have 1 — %
P[S CT] > (2d) e =

finishing the proof of Lemma IV.1 O

Proof of Lemma IV.2: By Lemma IV.1, forany S C R1UR,
such that S € Z,, we have P[S C T] > (2€3d)_d. The
rounding Algorithm 1 returns a solution 7" of expected value

E | det (Zviv? ) Z det (Zv )

€T i€S
P[S C T]det (Z vw?)
i€S
where we apply the Cauchy-Binet formula to obtain the first
equality. Since we only pick elements of R;URs which form
an independent set, we have

E | det (Z viv;] )]

Z P[S C T]det (Z ViV
ics
>

SCR1UR2:S€Zy
3 5\ —d
> (26 d) det Zvi
SCR1UR2:SEZ,y €S

2

SC[n):|S|=d

]

For each i € [n], we have 0 < x; < 1. Hence,

E |det (;viviT)] >
>

-
I
SCR1UR»:S€T4

For S € Z; such that S ¢ R; U Rs, there exists
i € S such that x; = 0. Hence for S € Z; such that
S ¢ Ry URy, ZzES‘E VzV has rank at most d — 1 and
det (3,cg@iviv; ) = 0. Therefore,

oo g

finishing the proof of Lemma IV.2.

(2¢3d) ™"

det (Z T;V;V

i€S

Z det

SeZy

E |det (Z viv,

i€T

(o

€S

V. DETERMINISTIC ALGORITHM

In this section, we prove Theorem 1.2 and give the de-
terministic algorithm achieving the claimed guarantee. The
algorithm reduces the ground set in each iteration until the
ground set is itself an independent set. Given any V' C [n],
we let My = (V,I‘V) denote the matroid obtained by
deleting all elements not in V' from M. Moreover, we let
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CP(V) denote the convex program when the ground set and
the matroid are V and ./\/l‘v, respectively, and we consider
only vectors indexed by V. We let OPT¢p(V) denote optimal
value of the convex program CP(V). We denote by r(V') the
rank of the matroid My .

We first describe the deterministic rounding algorithm,
presented in Algorithm 2.

Algorithm 2 Deterministic Algorithm

([n], ).

Input: a matroid M =

I:

2: Output: a basis S € 7.

3: procedure ROUNDING

4 Let x be optimal solution to CP such that |{i €
n] : 0 < a3} < k+2 ((‘”1) +d) as returned by

Theorem III.1.

5 Let V<« {i€[n]:0<ux}.
6: while V ¢ 7 do
7: i < argmax;cy., v\ ;1) =r(v) OPTce(V \ {j})

(breaking a tie arbitrarily)
V< V\{i}
return

8:

Observe that V_is initialized to a set of size at most
E+ 2 ((d+1) +d) along with r(V) k. Moreover,
OPTcp(V) = OPTcp initially, since we just remove all
elements with z; = 0 from the ground set.

In each iteration of the while loop, we decrease the size
of V by one, and thus there can be at most 2 ((d+1) + d)
iterations of the while loop. In each iteration, we do not
decrease the rank of V' from k, so the final output, by
construction, is an independent set of size k and hence
feasible. To prove the guarantee, we show that in each
iteration,

OPTcp(V '\ {i}) = B - OPTcp(V') 19)

where 3 = (2¢°d)~? = O(d)~?. Also, the relaxation is
exact after the last iteration because V is a basis after
the while loop terminates. Thus, the objective value of the
returned solution is at least

ﬂ2((d;—1)+d) . OPTCP7
giving an approximation factor O(d)zd((d§1)+d) = O(d)”
2 3
O(1)3% 1egd = O(d)4", as claimed.
It only remains to prove (19). From the guarantee of the

randomized algorithm given in Theorem II.3, there exists a
basis S € Zyy with S C V such that

T
E VjVJ

jES

> - OPTcp(V). (20)

Let j € V \ S where j must exist since V' ¢ Z. Then
r(V\ {j}) = r(S) = k since S is a basis. We have
OPTcp(V\{j}) > det (3, g VeV, ) , because the indicator



vector x of S C V' \ {j} is a solution to CP(V \ {j})
of value det (Zee g veveT). Together with (20), and be-
cause i is chosen to maximize OPTcp(V \ {j}) over j
s.t. 7(V\{j}) = k., we have established (19). This completes
the proof of Theorem 1.2.
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