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Abstract—Given a set of vectors v1, . . . ,vn ∈ Rd and a
matroid M = ([n], I), we study the problem of finding a
basis S of M such that det

(∑
i∈S viv

�
i

)
is maximized. This

problem appears in a diverse set of areas, such as experimental
design, fair allocation of goods, network design, and machine
learning. The current best results include an e2k-estimation
for any matroid of rank k [8] and a (1 + ε)d-approximation
for a uniform matroid of rank k ≥ d + d

ε
[30], where the

rank k ≥ d denotes the desired size of the optimal set. Our
main result is a new approximation algorithm for the general
problem with an approximation guarantee that depends only
on the dimension d of the vectors, and not on the size k of the
output set. In particular, we show an (O(d))d-estimation and an
(O(d))d

3

-approximation for any matroid, giving a significant
improvement over prior work when k � d.

Our result relies on showing that there exists an optimal solu-
tion to a convex programming relaxation for the problem which
has sparse support; in particular, no more than O(d2) variables
of the solution have fractional values. The sparsity results rely
on the interplay between the first order optimality conditions
for the convex program and matroid theory. We believe that the
techniques introduced to show sparsity of optimal solutions to
convex programs will be of independent interest. We also give
a new randomized rounding algorithm that crucially exploits
the sparsity of solutions to the convex program. To show the
approximation guarantee, we utilize recent works on strongly
log-concave polynomials [8], [4] and show new relationships
between different convex programs [33], [6] studied for the
problem. Finally, we show how to use the estimation algorithm
to give an efficient deterministic approximation algorithm.
Once again, the algorithm crucially relies on sparsity of the
fractional solution to guarantee that the approximation factor
depends solely on the dimension d.

I. INTRODUCTION

Choosing a diverse representative set of items from a large

corpus is a common problem studied in a variety of areas,

including machine learning, information retrieval, statistics,

and optimization [27], [17], [16], [34]. For example, consider

the problem of choosing a subset from a large data set to

train a machine learning algorithm; or of displaying a small

set of images out of a large set of relevant images to a

search query. In these contexts, one aims to choose a small

and diverse representative set of items from a large data set.

Diversity here can be modeled in many different ways, and

the choice of a diversity measure can significantly affect

both practical performance and the algorithmic complexity

of finding a diverse set. Both general and application-specific

diversity criteria have been proposed in the past [22], [15],

[16], [40], [13].

In this work, we focus on a popular geometric model

of the problem above. While it naturally captures problems

in data retrieval and statistics, we show that it also en-

compasses problems in fair allocation of goods, network

design, counting, and optimization. We assume that data

are represented as points in the d-dimensional Euclidean

space, so that choosing a subset of items corresponds to

selecting a subset of d-dimensional vectors. A number of

natural diversity measures can be formulated in terms of

functions of the eigenvalues of the matrix given by the sum

of outerproducts of the selected vectors. Some examples

are the determinant, the trace, the harmonic mean of the

eigenvalues, and the minimum eigenvalue. In this work, we

focus on the determinant as the diversity measure. We study

the determinant maximization problem with general com-

binatorial constraints which makes the model rich enough

to include many of the problems mentioned above. In

particular, we consider matroid constraints, which capture

cardinality constraints, partition constraints, and many more

as special cases. This allows modeling constraints imposed

by, e.g., budget, feasibility, or fairness considerations.

In an instance of the DETERMINANT MAXIMIZATION

problem (under a general matroid constraint), we are given

a set of n vectors v1, . . . ,vn ∈ Rd and a matroid M =
([n], I) with set of bases B, and our goal is to find a set

S ∈ B that maximizes det
(∑

i∈S viv
�
i

)
, i.e.

max

{
det

(∑
i∈S

viv
�
i

)
: S ∈ B

}
. (1)

We denote by k the rank of the matroid M, which is the

size of all the bases in B. We denote the combinatorial

optimization problem (1) by D-OPT and its optimum value

by OPT.

A number of special cases of D-OPT have been stud-

ied, in which either the choice of vectors or the matroid

is restricted [39], [10], [38], [1], [35]. We highlight two

illustrative examples. Under cardinality constraints, in which

B consists of all subsets of [n] of size k, the problem is

hard to approximate to a factor better than (1 + c)d for

some c > 0 when k = d [26], [18], [20], and Nikolov [32]
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gave an ed-approximation for k ≤ d.1 Interestingly, when

k > d, improved guarantees are known [38], [1], [35] with

the current best (1+ε)d-approximation when k ≥ d+ d
ε [30].

For general matroids, a series of works [33], [6], [37],

[8] have focused on the case when k ≤ d, and the latest

results of Anari, Oveis-Gharan, and Vinzant [8] imply an

e2k-estimation algorithm. These results were first proved

for the special case when the generating polynomial for the

matroid is a real stable polynomial [6]. Recent and exciting

advances on completely log-concave polynomials [8] (and

the equivalent notion of Lorentzian polynomials [11]) allow

the techniques of [6] to be generalized to all matroids.

While these results are not stated when k > d, the analysis

naturally yields an e2k-estimation algorithm even in that

case. Such a dependence on k is often exorbitant since k
can be much larger than d in many applications. Moreover,

the hardness result mentioned above only shows that the

approximation factor needs to depend exponentially on d,

but not necessarily on k.2 A starting point for this work is a

result showing that these existing techniques are incapable

of removing the dependence on k for general matroid

constraints. In the extended version [29], we show that any

algorithm which solves a convex relaxation and rounds the

fractional solution without using the structure of the vectors

yields an approximation factor necessarily dependent on k
even when d = 2.

A. Our Results and Contributions

Our main result is an algorithm that estimates the objec-

tive of the DETERMINANT MAXIMIZATION problem under

a general matroid constraint.

Theorem I.1 There is an efficiently computable convex pro-
gram whose objective value estimates the objective of the
DETERMINANT MAXIMIZATION problem under a general
matroid constraint within a multiplicative factor of (O(d))d.

As outlined earlier, an approximation factor depending

only on d cannot be obtained by rounding an arbitrary

optimal solution to any of the known convex relaxations of

the problem. Our work introduces two key ideas to bypass

this bottleneck. First, we show that a convex programming

relaxation always has an optimal sparse fractional solution,

and, in particular, one with no more than O(d2) fractional

variables, out of a total of n variables. The proof of this

fact relies crucially on the first order optimality conditions

of the convex program. A straightforward presentation of

the first order optimality conditions leads to a system of

1For k < d, the objective is naturally replaced by the product of the k
highest eigenvalues of the matrix, rather than the determinant, which is the
product of all d eigenvalues

2Since the objective is the determinant of d × d matrices, and the
determinant is homogeneous of degree d, exponential dependence on d
is an appropriate scaling.

(exponentially many) non-linear constraints over an expo-

nential number of variables. We interpret these constraints

using matroid theory and reformulate them as a system of

(exponentially many) linear inequalities. Then, we apply

combinatorial optimization techniques such as uncrossing in

order to show that any basic feasible solution to the system

of inequalities must be sparse, again using the inherent

matroid structure of the linear constraints.

Second, we give a new randomized algorithm that rounds

such a sparse solution for any matroid, giving the desired

result. Our algorithm crucially uses the near-integral struc-

ture of optimal solutions, and thus differs significantly from

previous rounding algorithms, which are oblivious to any

such structure. The main challenge in the design of the

algorithm is that the non-linearity of the objective function

implies that even an integral variable cannot be included

in the solution with probability 1. Our rounding proceeds in

two phases: we first randomly round the fractional variables,

and then we randomly choose which of the integral variables

to include in a solution, while maintaining feasibility. We

again rely on matroid theory to show that the random

solution obtained has large objective value in expectation.

This combination of techniques from convex optimization

and matroid theory, which we use in order to find a sparse

optimal solution of a convex program with exponentially

many constraints, appears to be novel and may be of

independent interest.

We also consider the special case of partition matroids

due to its significant applications and note that an improved

approximation algorithm can be obtained for this case. We

observe that the roadblock in achieving an approximation

factor independent of k for general matroids does not appear

in the case of partition matroids. Thus, the standard random-

ized rounding algorithm also achieves eO(d)-approximation

by generalizing the results on Nash Social Welfare in [5].

Deterministic Algorithms.: A challenge for the DETER-

MINANT MAXIMIZATION problem under a general matroid

constraint has been the lack of true approximation algo-

rithms that achieve the same guarantees as the estimation

algorithms. Most results [33], [6], [8], [4], [37] give ran-

domized algorithms whose guarantees hold in expectation

and are not known to hold with high probability or de-

terministically. The few existing efficient algorithms with

high probability or deterministic guarantees either work

only for restricted classes of matroids, such as uniform

matroids [32], [2], [35] or partition matroids with a constant

number of parts [14], or rely on special structure of the input

vectors (or both) [7], [19], [15], [9]. Ebrahimi, Straszak and

Vishnoi [21] gave the most general algorithmic results that

apply to all regular matroids, but the approximation factors

they achieved depend on the size of the ground set and not

just the dimension of vectors, as aimed in our work.

We utilize the existence of sparse optimal solutions to

our convex programming relaxation to give an efficient
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deterministic algorithm achieving an approximation factor

that only depends on the dimension d of the vectors, and

not on the size k of the output set or the size n of the input.

Theorem I.2 There is a polynomial time deterministic algo-
rithm for the DETERMINANT MAXIMIZATION problem that
gives an (O(d))

d3

-approximation.

The above result is achieved by using the optimal ob-

jective value of the convex program as an estimate of

the value of an optimal solution, and reducing the search

problem of finding an approximately optimal solution to

estimation. We have shown that some optimal solution to the

convex program has at most O(d2) fractional variables, and,

therefore, has support of size k+O(d2). Then, producing a

feasible solution (which has size k) requires finding O(d2)
elements of the support of the optimal solution to exclude

from the solution: the remaining k elements form the output.

Thus, the sparsity allows us to argue that the estimation

problem needs to be recursively solved only O(d2) times,

which is crucial in guaranteeing an approximation factor that

depends only on d.

We remark the guarantee is worse than is achieved (in

expectation) by the randomized algorithm. Obtaining true

approximation algorithms that match the performance of the

estimation algorithms remains a challenging open problem

for the DETERMINANT MAXIMIZATION problem under a

general matroid constraint, even in the case of a partition

constraint.

B. Applications

As mentioned earlier, DETERMINANT MAXIMIZATION

models problems in many different areas and our results

imply new approximations for many of these problems. We

give details for some of them below.

Experimental Design.: In the optimal experimental

design problem for linear models, the goal is to infer an

unknown θ� ∈ Rd from a possible set of linear measure-

ments of the form yi = v�
i θ

� + ηi. Here, v1, . . . ,vn ∈ Rd

are known vectors, and η1, . . . , ηn are independent Gaussian

noises with mean 0 and variance 1. In some settings,

performing all of the n measurements might be infeasible,

and combinatorial constraints such as matroid constraints

can be used to define the feasible sets of measurements.

Given a set S ⊆ [n] of measurements, an estimator θ̂ for θ∗

is obtained via solving the least squares regression problem

minθ∈Rd

∑
i∈S(yi −v�

i θ)
2. The error θ̂− θ� is distributed

as a d-dimensional Gaussian N
(
0,
(∑

i∈S viv
�
i

)−1
)

. Min-

imizing the volume of the confidence ellipsoid, or equiv-

alently the determinant of the covariance matrix of the

error, is referred to as D-optimal design in statistics [34].

Our results directly imply improved approximability for D-

optimal design under a general matroid constraint.

Nash Social Welfare.: In the indivisible goods alloca-

tion problem the goal is to allocate, i.e. partition, m goods

among d agents so that some notion of social welfare and/or

fairness is achieved. Each agent i has utility ui(j) for good

j ∈ [m], and if Si are the goods assigned to agent i,
then her utility is ui(Si) =

∑
j∈Si

ui(j). A well studied

objective in this context is Nash social welfare (NSW),

which asks to maximize
(∏d

i=1 ui(Si)
)1/d

. This objective

interpolates between maximally efficient and maximally

egalitarian allocations – see [31], [12] for more extensive

background. Maximizing the NSW can be formulated as an

instance of DETERMINANT MAXIMIZATION under a parti-

tion constraint, as observed in [7]. For each agent i and good

j, we create a vector v(i,j) =
√

ui(j)ei, where ei is the i-
th standard basis vector of Rd, and form a partition matroid

M whose bases B consist of all sets S ⊆ [d] × [m] such

that |{i : (i, j) ∈ S}| = 1 for all j ∈ [m]. Then, a feasible

solution S ∈ B corresponds to an allocation of the goods,

and the determinant det
(∑

(i,j)∈S v(i,j)v
�
(i,j)

)
is equal to

the NSW objective. Our results recover those in [7] and

further allow us to give an O(d)-estimation algorithm when

the allocation (S1, . . . ,Sd) is required to satisfy additional

matroid constraints. For example, the works [24], [25], [23]

considered allocations such that
⋃d

i=1 Si is a basis of a

matroid M′. We can model this setting by defining our

constraint matroid M so that S ⊆ [d] × [m] is a basis of

M if and only if |{i : (i, j) ∈ S}| = 1 for all j ∈ [m]
and {j : ∃i s.t. (i, j) ∈ S} is a basis of M′. Our results

then imply an O(d)-estimation algorithm and an O(d)d
2

-

approximation algorithm for maximizing NSW subject to

these general matroid constraints.

Network Design Problems.: In general, the goal in

network design problems is to pick a subset F of the edges

of an undirected graph G = (V ,E) with non-negative edge

weights w such that the subgraph H = (V ,F ) is well-
connected. One measure of connectivity is to maximize the

total weight of spanning trees in H = (V ,F ), where the

weight of a tree is defined as the product of the weights of its

edges (see [28] and references therein for other applications).

This natural network design problem is a special case

of the DETERMINANT MAXIMIZATION problem. For each

(i, j) ∈ E, we introduce a vector v(i,j) ∈ {0, 1,−1}V with

(v(i,j))i =
√
w(i,j), (v(i,j))j = −√

w(i,j), and the rest of

the coordinates set to zero. Observe that
∑

e∈F vev
�
e is

exactly the Laplacian of H = (V ,F ), and the determinant

of the Laplacian3 gives the number of spanning trees in H .

Our results imply an O(|V |)|V |-estimation algorithm, and

O(|V |)|V |3 -approximation algorithm for this problem under

a general matroid constraint.

3We remark that the Laplacian is always singular, but we can first project
the vectors ve orthogonal to the all-ones vector and take the determinant
in d− 1 dimensions.
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C. Technical Overview
Our starting point is a variant of the convex relaxation

introduced in [33] for the partition matroid. Let the set of

input vectors be V = {v1, . . . ,vn} ⊂ Rd. For a matroid

M = ([n], I), we denote by Is(M) := {S ∈ I : |S| = s}
the set of all independent sets of size s. We denote by P(M)
the matroid base polytope of M, which is the convex hull

of the indicator vectors of the bases. For any vector z ∈ Rn

and a subset S ⊆ [n], we let z(S) :=
∑

i∈S zi. We let

Z := {z ∈ Rn : ∀S ∈ Id(M), z(S) ≥ 0}. Our convex

relaxation is

sup
x∈P(M)

inf
z∈Z

g(x, z) := log det

⎛⎝∑
i∈[n]

xie
ziviv

�
i

⎞⎠ . (2)

For ease of notation, we define f(x) := infz∈Z g(x, z), the

inner infimum of (2).
Similar but somewhat different convex programs have

been studied by [7], [6], [37], [36]. (The relationship of our

convex program to these also plays a crucial role in our anal-

ysis: see below.) The estimation algorithms in these works

rely on a simple randomized algorithm to round a fractional

optimal solution x�. The analysis of the algorithm relies on a

positive correlation property: the algorithm outputs a random

solution such that all elements of an independent set S of

size d are included with probability at least 1
α · ∏i∈S x∗

i ,

where α is some function of k. This property, combined

with inequalities for real stable and completely log-concave

polynomials, leads to an α · eO(d)-estimation algorithm.

We show that there exist fractional optimal solutions x�

such that no rounding scheme has this positive correlation

property for any α which is a function of d and independent

of k. So, the dependence on k is inherent to all the previous

algorithms which round an arbitrary optimal solution x� and

do not consider the structure of the vectors to obtain some

structure on the optimal x�.
Our first technical result is to show that there always

exists an optimal solution that has at most O(d2) fractional

variables. We briefly describe how to obtain such a sparse

optimal solution. Let x� denote an optimal solution to the

convex program (similar reasoning works for near optimal

solutions as well). We first show that, using a series of

careful preprocessing steps, we can assume that there exists

a z� attaining the infimum in f(x�) = infz∈Z g(x�, z).
We then use first order optimality conditions that give a

sufficient condition for another solution x to be optimal (i.e.,

to have f(x) = f(x�)). These conditions, however, present

two significant obstacles: first, the conditions are not linear

in x, and, second, they ask for the existence of an exponen-

tially sized dual solution as a certificate of optimality. We

address the first problem by noticing that insisting that the

entire matrix
(∑

i∈[n] x
�
i e

ziviv
�
i

)
does not change when

x� changes to x leads to the optimality conditions becoming

a system of linear equations in exponentially many variables.

We then use the simple, yet elegant fact from matroid theory

that minimum weight bases of a matroid under a linear

weight function form the base set of another matroid. We use

this combinatorial fact to observe that the existence of the

exponentially sized dual solution is equivalent to insisting

that a vector, whose coordinates are linear functions of x,

is in the base polytope of a new matroid. Putting all of this

together reduces the search for the new optimal solution x to

solving a system of exponentially many linear inequalities.

Now, in the familiar territory of matroid polytopes, we apply

standard uncrossing methods and show that every extreme

point solution of the system of these linear inequalities has

only O(d2) fractional variables.

Finally, we give a new randomized algorithm that gives

an O(d)d-estimation algorithm in the presence of O(d2)
fractional variables. Since the objective is non-linear, we

cannot just pick all variables set to 1 and apply a randomized

algorithm to fractional elements. Indeed, the variables set

to 1 must also be dropped from the final solution with

certain probability. We show that given a solution x with at

most O(d2) fractional values, our rounding scheme outputs

a random solution such that for any independent set S of

size d, all elements of S are picked with probability at

least (O(d))
−d ∏

i∈S xi. To show that this property implies

the random solution output by the algorithm achieves an

O(d)d approximation in expectation, we utilize recent and

exciting work on strongly log-concave polynomials [8], [4]

and the equivalent notion of Lorentzian polynomials [11].

While the analysis using strongly log-concave distributions

naturally utilizes a different convex programming relaxation

introduced in [6], the aforementioned sparsity result is not

applicable to these convex programs. To this end, we show

that the convex programming relaxation considered in our

work is stronger than the convex programming relaxation

from [6]. The relationship between the various convex

programs for this problem and their respective strengths and

weaknesses outlined by our results may be of independent

interest.

D. Organization

In Section II, we discuss our convex relaxation, some

technical issues in solving the relaxation, our main technical

result, and the first order optimality conditions for the relax-

ation. In Section III, we show the existence of an optimal

solution with at most O(d2) fractional values. In Section IV,

we give the randomized algorithm to round a solution of

the relaxation with few fractional values. In Section V, we

give our deterministic approximation algorithm that gives a

guarantee that only depends on d. We refer the reader to an

extended version [29] for complete proofs.

E. Related Work

Uniform Matroid:: DETERMINANT MAXIMIZATION is

NP-hard even for uniform matroid [39]. Koutis [26] showed
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that there exists a constant c > 0 such that it is NP-hard to

approximate better than a factor of (1 + c)d [26]. Let k
be the rank of the uniform matroid. Bouhtou et al. [10]

gave a
(
n
k

)d
-approximation algorithm based on rounding

the solution of a natural concave relaxation. Nikolov [32]

improved the result to a ek-approximation when k ≤ d.

Wang et al. [38] improved the approximation ratio of (1+ε)d

when k ≥ d2

ε . Allen-Zhu et al. [3] improved the bound on

k to give (1 + ε)d-approximation when k = Ω
(

d
ε2

)
. This

was improved by Singh et al. [35] who gave a (1 + ε)d-

approximation when k = Ω
(
d
ε + 1

ε2 log
1
ε

)
. Recently, this

was improved by Madanet al. [30] who gave a (1 + ε)d-

approximation when k ≥ d+ d
ε .

General Matroid:: Nikolov and Singh [33] gave a

ed-approximation for DETERMINANT MAXIMIZATION with

partition matroid of rank d. Let k be the rank of a general

matroid. Anari and Gharan [6] gave a e2k-approximation

when the generating polynomial for the matroid is real-

stable. This corresponds to the Strongly Rayleigh matroids

which includes both uniform and partition matroids. This

was generalized by Anari, Gharan, and Vinzant [8] who

gave a e2k-approximation for any matroid. While the result

in [8] is not stated for k > d, it can be easily deduced

from the analysis. Algorithms in [33], [6], [8] are estimation

algorithms as they estimate the optimum value up to a certain

approximation factor, but do not yield a solution in polyno-

mial time. Straszak and Vishnoi [37] gave a polynomial time

algorithm without output a O(
√
kek)-approximate solution

for partition matroid.

II. CONVEX PROGRAM AND OPTIMALITY CONDITIONS

Our algorithm for DETERMINANT MAXIMIZATION under

a general matroid constraint is based on solving a convex

relaxation and rounding an optimal solution of the convex re-

laxation to an integral solution. In this section, we formulate

this convex relaxation, show that it is efficiently solvable,

and prove some of its properties which are crucial for the

rounding algorithm.

A. Formulation of the Convex Program
Let V = {v1, . . . ,vn} be input vectors. For a matroid

M = ([n], I), we denote by Is(M) := {S ∈ I : |S| = s}
the set of all independent sets of size s. We denote by P(M)
the matroid base polytope of M, which is the convex hull

of all of the bases. For any vector z ∈ Rn of real numbers

and a subset S ⊆ [n], we let z(S) :=
∑

i∈S zi. We let

Z := {z ∈ Rn : ∀S ∈ Id(M), z(S) ≥ 0}. We introduce the

optimization problem

sup
x∈P(M)

inf
z∈Z

g(x, z) := log det

⎛⎝∑
i∈[n]

xie
ziviv

�
i

⎞⎠ . (3)

For ease of notation, we also let f(x) := infz∈Z g(x, z), the

inner infimum of (3). The above program is a convex relax-

ation, as shown in Nikolov and Singh [33]. Unfortunately, it

is not clear whether the outer supremum and inner infimum

are attained at some x� and finite z�. While the supremum

over x can be approximated, our approach relies crucially

on the inner infimum being achieved exactly at some finite

z�. We first show the following technical lemma that gives

a sufficient condition for the infimum to be achieved based

on KKT conditions and Slater’s qualification of constraints.

We say that the vectors {vi : i ∈ [n]} ⊆ Rd are in general
position if any subset of size d is linearly independent.

Lemma II.1 Let x ∈ P(M) be such that maxi∈[n] xi < 1
and f(x) = infz∈Z g(x, z) is finite, and suppose that the
vectors {vi : i ∈ [n]} are in general position. Then, g(x, z)
attains its infimum over z ∈ Z at some z∗ ∈ Z .

In general, an instance of our problem may not satisfy the

conditions of the lemma: the given vectors need not be in

general position, and every optimal x may have value 1 on

some coordinates. A preprocessing step is enough to show

that both of these assumptions can be made with a slight

loss in optimality by modifying the input instance [29]. This

is achieved by modifying the matroid by introducing two

parallel copies of each element as well as perturbing the

vectors slightly to put them in general position. From here

on, we assume that these modifications have been carried

out, and we use M and V to denote the resulting matroid

and vectors, respectively.

These reductions allow us to formulate the following

stronger convex program where we place an additional upper

bound on the coordinates of x:

sup
x∈P(M)∩[0, 12 ]

n
inf
z∈Z

g(x, z) := log det

⎛⎝∑
i∈[n]

xie
ziviv

�
i

⎞⎠
(4)

We denote the convex program (4) by CP, its optimum value

by OPTCP, and an optimal solution by (x�, z�). We denote

by OPT, the optimal value of the DETERMINANT MAXI-

MIZATION problem. Based on the discussion above, we show

the following lemma, which also gives the polynomial time

solvability of the convex program.

Lemma II.2 For any ε > 0, there is a polynomial time
algorithm that returns x� ∈ P(M) ∩ [

0, 1
2

]n
such that

infz∈Z g(x�, z) ≥ log (OPT)− ε. Moreover, there exists z�

attaining the infimum in infz∈Z g(x�, z).

Our main algorithmic result is to show that the value of the

convex program OPTCP gives a good approximation of the

optimal value OPT of the DETERMINANT MAXIMIZATION

problem. The theorem below immediately implies Theo-

rem I.1.
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Theorem II.3 The optimum value OPTCP of the convex
program gives a (2e5d)d-approximation to the value of the
optimum, i.e.,

log (OPT)− ε ≤ OPTCP ≤ log (OPT) +O(d log d). (5)

Moreover, there is a polynomial time algorithm that, given
x� attaining OPTCP and z� attaining the infimum in
infz∈Z g(x�, z), returns a random set S ∈ I such that

E

[
det

(∑
i∈S

viv
T
i

)]
≥ (2e5d)−d (OPT) .

We now outline the ideas behind proving Theo-

rem II.3. First, we obtain the KKT optimality conditions of

infz∈Z g(x, z) in Section II-B. In Section III, we show that

the KKT conditions can be related to a new matroid defined

by minimum weight bases of the original matroid under

the weight function z�. We then apply uncrossing methods

on matroids to show that there is always an optimal sparse

solution – in particular, one with at most O(d2) fractional

variables. In Section IV, we give a rounding algorithm

that uses the fact that number of fractional variables is

bounded, and we prove Theorem II.3 building on inequalities

proved in [6] and [8] for stable and completely log concave

polynomials, respectively.

B. Optimality Conditions

Recall the notation f(x) = infz∈Z g(x, z). In the follow-

ing result, we state a sufficient condition that some feasible

solution x̂ ∈ P(M) satisfies f(x̂) = f(x�), where x� is an

(approximately) optimal solution to CP as returned by the

algorithm in Lemma II.2. The result is obtained by applying

the general KKT conditions to the optimization problem

infz∈Z g(x, z).

Lemma II.4 Suppose x� ∈ P(M) ∩ [
0, 1

2

]n
is a feasible

solution for CP such that the infimum over Z in CP

is achieved, and let z� ∈ argminz∈Z g(x�, z). For any
x̂ ∈ P(M), suppose that there exists λ ∈ R

Id(M)
≥0 such

that

1. for all S ∈ Id(M) with z�(S) �= 0, we have λS = 0,
2. for all i ∈ [n], we have x̂ie

z�
i v�

i X
−1vi =∑

S∈Id(M):i∈S λS where X =
∑n

i=1 x
�
i e

z�
i viv

�
i , and

3.
∑n

i=1 x
�
i e

z�
i viv

�
i =

∑n
i=1 x̂ie

z�
i viv

�
i .

Then, f(x̂) = f(x�). Moreover, there exists λ ∈ R
Id(M)
≥0

such that the above three conditions hold with x̂ = x�.

We remark that the above criteria ask for the existence

of exponentially sized vector λ in order to certify that x̂
is optimal. In the next section, we show that the above

condition is equivalent to showing a certain vector is in the

base polytope of another matroid derived from M.

III. SMALL SUPPORT SOLUTIONS TO CP

A. Preserving the Value of a Solution

In this section, we show that there is always an optimal

solution to CP that has small number of fractional com-

ponents. Indeed, given any solution x such that the inner

infimum of CP is attained, we show how to obtain a sparse

solution whose objective is no worse.

Theorem III.1 (Sparsity of an optimal solution) Let x�

be a solution to CP such that the inner infimum of CP is
attained. Then there exists a solution x̂ ∈ P(M) such that

1) f(x̂) = f(x�), and
2) |{i ∈ [n] : 0 < x̂i < 1}| ≤ 2

((
d+1
2

)
+ d

)
.

Moreover, such a solution x̂ can be found in polynomial
time.

Proof: Given x�, a solution to CP, we let z� be

an optimal solution to infz∈Z g(x�, z). Also, let X =∑
i∈[n] x

�
i e

z�
i viv

�
i . We assume that supp(x�) = {1, . . . ,n}

since for any i with x�
i = 0, we can update the instance by

deleting these elements. Observe that this does not effect the

optimality (restricted to supp(x�)) of z� .

We first give a simpler description than Lemma II.4 for

a solution x̂ to have an objective better than f(x�). This

relies on the following basic lemma.

Lemma III.2 Let B� = {S ∈ Id : z�(S) = 0}. Then, B� is
a basis of another matroid M� = ([n], I�). Additionally, if
M admits an independence oracle, then M� also admits an
independence oracle.

Proof: Since z�(S) ≥ 0 for all S ∈ Id, the basis of

Id included in I� are the minimum weight bases under the

weight function z. Minimum weight bases of a matroid form

the bases of another matroid, and the independence oracle

can be implemented in polynomial time.

We now have the following simpler description for x̂ to

be optimal building on Lemma II.4. Let M� be the matroid

in Lemma III.2 and let r� : 2[n] → Z+ denote the rank

function of M�.

Lemma III.3 Let x� be a solution of CP and z� ∈
argminz∈Z g(x�, z). Let x̂ ∈ R[n] be such that

1) x̂ ∈ P(M),
2) the vector w ∈ R[n] defined as wi = x̂ie

z�
i v�

i X
−1vi

for each i ∈ [n] satisfies w ∈ P(M�), where X =∑
i∈[n] x

�
i e

z�
i viv

�
i ,

3)
∑

i∈[n] x̂ie
z�
i viv

�
i =

∑
i∈[n] x

�
i e

z�
i viv

�
i , and

4) supp(x̂) ⊆ supp(x�).
Then f(x̂) = f(x�).

Proof: We show that the above conditions imply that

the conditions of Lemma II.4 are satisfied. Indeed, we only
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min 0 (6)

s.t.
∑
i∈S

xi ≤ r(S) ∀ ∅ � S � [n] (7)

x([n]) = r([n]) = k (8)∑
i∈S

xie
z�
i v�

i X
−1vi ≤ r�(S)∀ ∅ � S � [n] (9)∑

i∈[n]

xie
z�
i v�

i X
−1vi = r�([n]) = d (10)

n∑
i=1

xie
z�
i viv

�
i =

n∑
i=1

x�
i e

z�
i viv

�
i (11)

xi ≥ 0 ∀i ∈ [n] (12)

Figure 1. Linear program to obtain a sparse solution.

need to show the existence of λ ∈ RId(M) as claimed. Since

w ∈ R[n] is in P(M�), we have w =
∑

S∈B(M�) μSχS

where χS ∈ R[n] is the indicator vector of set S and∑
S∈B(M�) μS = 1. Observe that for each S ∈ B(M�), we

have z�(S) = 0. Thus, setting λS = μS for S ∈ B(M�) and

λS = 0 for all other sets in Id(M) satisfies the conditions

of Lemma II.4.

Now the above conditions can be formulated as a feasibil-

ity system over the following linear constraints as given in

Figure 1, and we call the formulated linear program LPx-OPT.

Here, constraints (7)-(8) insist that x ∈ P(M) and (9)-

(10) insist that the vector (xie
z�
i viX

−1vi)i∈[n] ∈ P(M�).
Constraints (11) insist that the matrix X does not change

when the solution changes to x from x�. For ease of

notation, we let wx be the vector (xie
z�
i viX

−1vi)i∈[n].

From basic uncrossing methods we obtain the following

lemma characterizing any extreme point of the above linear

program. Recall that a collection C of sets is a chain if for all

A,B ∈ C, we have A ⊆ B or B ⊆ A. Again, we focus on

supp(x) since x remains extreme after removing coordinates

with xi = 0. Thus, we assume that [n] = supp(x).

Lemma III.4 If x is an extreme point of the linear program
LPx-OPT, then there exist chains C1, C2 ⊆ 2[n] and P ⊆
[d]× [d] such that

1) x(S) = r(S) for each S ∈ C1, wx(S) = r�(S)
for each S ∈ C2, and (

∑n
i=1 xie

z�
i viv

�
i )jk =

(
∑n

i=1 x
�
i e

z�
i viv

�
i )jk for each (j, k) ∈ P ,

2) the linear constraints corresponding to sets in C1, C2
and pairs in P are linearly independent, and

3) |supp(x)| = |C1|+ |C2|+ |P |.
Let x be an extreme point of the linear program LPx-OPT.

Such an x can be found in polynomial time. Let C1 =
{S1, . . . ,Sl} where S1 ⊂ S2 . . . ⊂ Sl. Then, we have

x(Si) = r(Si). Since xi > 0 for all i ∈ [n], we have

1 ≤ r(S1) < r(S2) . . . < r(Sl) ≤ k and from the

integrality of the rank function, we obtain that |C1| = l ≤ k.

Similarly, |C2| ≤ r�([n]) ≤ d, and clearly |P | ≤ (
d+1
2

)
since∑n

i=1 xie
z�
i viv

�
i and

∑n
i=1 x

�
i e

z�
i viv

�
i are d×d symmetric

matrices. Therefore, supp(x) ≤ k + d +
(
d+1
2

)
. In what

follows we argue all but 2
(
d+

(
d+1
2

))
coordinates are set

to 1.

For ease of notation, we let S0 = ∅. Observe that if |Sj \
Sj−1| = 1 for any 1 ≤ j ≤ l, say {i} = Sj \ Sj−1, then

xi = x(Sj)− x(Sj−1) = r(Sj)− r(Sj−1) which is an non-

negative integer. Since xi > 0, we obtain that xi = 1. Let

I = {1 ≤ j ≤ k : |Sj \ Sj−1| = 1}. Observe that there are

at least |I| variables set to 1. But since every set Sj with

j /∈ I contains at least two elements in Sj \ Sj−1, we have

|supp(x)| ≥ |I|+ 2(l − |I|).
But from Lemma III.4, we have

|supp(x)| ≤ l + d+

(
d+ 1

2

)
.

Combining the two inequalities, we get |I| ≥ l − d −(
d+1
2

) ≥ |supp(x)| − 2(d +
(
d+1
2

)
). This implies that the

number of fractional variables is at most supp(x) − |I| ≤
2(d+

(
d+1
2

)
).

IV. RANDOMIZED ROUNDING ALGORITHM

In this section, we give our randomized rounding algo-

rithm and prove the guarantee on its performance claimed

in Theorem II.3.

Throughout this section, we assume that the algorithm

receives an input x ∈ P(M) such that

|{i : 0 < xi < 1}| ≤ 2

((
d+ 1

2

)
+ d

)
.

We first describe the rounding algorithm, presented in Al-

gorithm 1. It is obvious that Algorithm 1 runs in polynomial

time.

For ease of notation we denote γ = (2e3d)−d and

Id = Id(M). We first claim that every independent subset

S of R1 ∪ R2 of size d is contained in the output set with

probability at least γ. The claim can only be true if the

ground set R1∪R2, which has been restricted to the support

of x, is small.

Lemma IV.1 Let T denote the random set returned by
Algorithm 1. Then, for any set S ⊆ R1 ∪ R2 such that
S ∈ Id, we have

P[S ⊆ T ] ≥ γ.

Lemma IV.1 implies a lower bound on the expected

objective value of the solution returned.
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Algorithm 1 Rounding Algorithm

1: Input: a matroid M = ([n], I), x ∈ P(M).
2: Output: a set S ∈ I.

3: procedure ROUNDING(x, I)

4: R1 ← {i : 0 < xi < 1} ,R2 ← {i : xi = 1}
5: T ← ∅
6: for i in R1 do
7: if T ∪ {i} ∈ I then
8: T ← T ∪ {i} with probability 1

d

9: for i in R2 do
10: if T ∪ {i} ∈ I then
11: T ← T ∪ {i} with probability 1

2

12: if T is not a basis then
13: Extend T to a basis (e.g. by going through

each element in [n] \ T and add it to T if T remains

independent until T is a basis)
return T

Lemma IV.2 Algorithm 1 returns an independent set T ∈ I
with expected objective value

E

[
det

(∑
i∈T

viv
�
i

)]
≥ γ

∑
S∈Id

det

(∑
i∈S

xiviv
�
i

)
.

Next, we relate this lower bound to the objective of the

convex relaxation CP in a two-step procedure. Building on

results by [8], the lower bound on the expected objective of

the algorithm can be bounded in terms of objective of a dif-

ferent convex relaxation as described in Lemma IV.3. Proof

of the lemma is inferred from the inequality proved in [8] on

completely log-concave polynomials by observing that the

polynomials (in y and z variables) det
(∑n

i=1 x
�
i yiviv

�
i

)
and

∑
S∈Id

z[n]\S are completely log-concave. Here we use

the notation
(
yw
α

)α
:=

∏n
i=1

(
yiwi

αi

)αi

.

Lemma IV.3 For any x� ≥ 0,

∑
S∈Id

det

(∑
i∈S

x�
iviv

�
i

)

≥ e−2d sup
α∈P (Id)

inf
y,w>0

det
(∑n

i=1 x
�
i yiviv

�
i

) (∑
S∈Id

wS
)(

yw
α

)α .

To finish the proof of Theorem II.3, we show that the

convex relaxation CP is stronger than the convex relaxation

studied in [8]. The proof of the following lemma is deferred

to the full version.

Lemma IV.4 For any x� ≥ 0,

sup
α∈P (Id)

inf
y,w>0

det
(∑n

i=1 x
�
i yiviv

�
i

) (∑
S∈Id

wS
)(

yw
α

)α
≥ inf

z∈Z
det

(
n∑

i=1

x�
i e

ziviv
�
i

)
.

Note that we cannot directly use the convex relaxation

of [8] and avoid the two-step procedure for our problem.

Algorithm 1 and the proof of Lemma IV.1 require that the

solution x is sparse, and we do not know if such property

holds true for the convex relaxation of [8].

Before we prove Lemmas IV.1 and IV.2, we present the

proof of the main result of our paper.

Proof of Theorem II.3: We first show (5). Recall that

f(x) = infz∈Z log det
(∑

i∈[n] xie
ziviv

�
i

)
. Let (x�, z�)

be an optimal solution to CP, so we have f(x�) = OPTCP.

The first inequality of (5) follows from Lemma II.2. It

remains to show the second inequality.

By Theorem III.1, there exists x̂ ∈ P(M) such that

f(x̂) = f(x�) and |{i ∈ [n] | 0 < x̂i < 1}| ≤
2
((

d+1
2

)
+ d

)
. Let T ∈ I be the random solution returned

by Algorithm 1 given an input x = x̂. We apply Lem-

mas IV.2, IV.3, and IV.4 successively and in this order to

get

E

[
det

(∑
i∈T

viv
�
i

)]
≥ (2e3d)−d

∑
S∈Id

det

(∑
i∈S

x̂iviv
�
i

)
≥ (2e3d)−de−2d· (13)

sup
α∈P (Id)

inf
y,w>0

det
(∑n

i=1 x̂iyiviv
�
i

) (∑
S∈Id

wS
)(

yw
α

)α
≥ (2e5d)−d inf

z∈Z
det

(
n∑

i=1

x̂ie
ziviv

�
i

)

= (2e5d)−d inf
z∈Z

det

(
n∑

i=1

x�
i e

ziviv
�
i

)
= (2e5d)−d · OPTCP

(14)

where the first of the two equalities follows from Theo-

rem III.1.

On the other hand, for any T ∈ I, we have

det
(∑

i∈T viv
�
i

) ≤ OPT, and therefore

E

[
det

(∑
i∈T

viv
�
i

)]
≤ OPT. (15)

Combining (14) and (15) proves the second inequality of

(5).

Given a solution x� and z� attaining the infimum

in infz∈Z det
(∑n

i=1 x
�
i e

ziviv
�
i

)
, the efficiency of the

randomized algorithm that satisfies (14) follows from the

efficiency of obtaining a sparse solution (by Theorem III.1)
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and of the rounding Algorithm 1.

Now we prove Lemmas IV.1 and IV.2.

Proof of Lemma IV.1: We need to prove that for any S ⊆
R1 ∪R2 such that S ∈ Id,

P[S ⊆ T ] ≥ (2e3d)−d.

Let S1 = S ∩ R1 and S2 = S ∩ R2. Since xi = 1 for any

i ∈ R2 and x ∈ P(M), we have R2 ∈ I. Since S ∈ I and

S1 ⊆ S, we have S1 ∈ I. We first claim the following.

Claim IV.5 There exists Y ⊆ R2 \ S2 such that |Y | ≤ |S1|
and S1 ∪ (R2 \ Y ) ∈ I.

Proof: Recall that S = S1 ∪ S2 ∈ I and R2 ∈ I.

If |R2| ≤ |S1 ∪ S2|, then Y = R2 satisfies the condition.

Else, by the definition of matroids, there exists an element

i ∈ R2 \ (S1 ∪ S2) such that S1 ∪ S2 ∪ {i} ∈ I. Since

S1∩R2 = ∅, we get that i ∈ R2 \S2. Repeating this process

for |R2| − |S1 ∪ S2| times, we obtain a set W ⊆ R2 \ S2

of size |R2| − |S1 ∪ S2| such that S1 ∪ S2 ∪ W ∈ I. If

Y = R2 \ (S2∪W ), then S1∪ (R2 \Y ) = S1∪S2∪W ∈ I.

Since W has size |R2|−|S1∪S2|, Y has size |R2|−(|R2|−
|S1 ∪ S2|)− |S2| = |S1 ∪ S2| − |S2| ≤ |S1|.

Let Y ⊆ R2 \ S2 be a set such that S1 ∪ (R2 \ Y ) ∈ I.

Next, we prove a lower bound on P[S ⊆ T ]. Note that S is

a disjoint union of S1 and S2. Hence,

P[S ⊆ T ] = P[S1 ⊆ T and S2 ⊆ T ]

≥ P[T ∩R1 = S1 and S2 ⊆ T ]

≥ P[T ∩ Y = ∅ and T ∩R1 = S1 and S2 ⊆ T ]

= P[T ∩ Y = ∅] · P[T ∩R1 = S1 | T ∩ Y = ∅]·
P[S2 ⊆ T | T ∩ Y = ∅,T ∩R1 = S1]

Next, we lower bound each of the probabilities.

1) P[T ∩ Y = ∅]: Consider the event that T ∩ Y = ∅. It

happens if for each i ∈ Y , i is not added to T during

the execution of the algorithm. Let T ′ be the set T
before the iteration considering i. If T ′ ∪ {i} �∈ I, i is

not added to T with probability 1. If T ′ ∪{i} ∈ I, i is

not added to T with probability 1/2. Hence, for each

i ∈ T , i is not added to T with probability at least 1/2.

Probability that none of the elements of Y are added

to T is therefore at least
(
1
2

)|Y |
. Since |Y | ≤ |S1|,

P[Y ∩ T = ∅] ≥
(
1

2

)|S1|
.

2) P[T ∩R1 = S1 | T ∩Y = ∅]: Since all elements of R1

are considered before the elements of R2 (and hence

Y ), we have

P[T ∩R1 = S1 | T ∩Y = ∅] = P[T ∩R1 = S1]. (16)

To get T ∩R1 = S1, we must have (R1 \ S1)∩ T = ∅
and S1 ⊆ T . Hence,

P[T ∩R1 = S1] = P[T ∩ (R1 \ S1) = ∅]·
P[S1 ⊂ T | T ∩ (R1 \ S1) = ∅]. (17)

As argued above, for any element i ∈ R1\S1, the prob-

ability that i is not in T (regardless of other elements) is

at least 1− 1
d . Hence, P[T∩(R1\S1)] ≥

(
1− 1

d

)|R1\S1|

which is equal to
(
1− 1

d

)|R1|−|S1|
since S1 ⊆ R1.

Since S ∈ I and S1 ⊆ S, we have S1 ∈ I. Consider

an element i ∈ S1 and the set T ′ being the set T before

the algorithm processes the element i. If no element of

R1\S1 is picked, then T ′∪{i} ⊂ S1. Hence, T ′∪{i} ∈
I, and the probability that the element i is picked is 1

d .

Hence, if no element of R1 \ S1 is picked, then every

element of S1 is picked with probability 1
d . This implies

that

P[S1 ⊆ T | T ∩ (R1 \ S1) = ∅] =
(
1

d

)|S1|
. (18)

Combining (16)-(18), we get

P[T∩R1 = S1 | T∩Y = ∅] ≥
(
1− 1

d

)|R1|−|S1| (1

d

)|S1|
.

3) P[S2 ⊆ T | T ∩ Y = ∅,T ∩ R1 = S1]: Consider an

element i ∈ S2. Let T ′ be the set T just before the

algorithm considers the element i. If T ′ ∩ R1 = S1

and T ′ ∩ Y = ∅, then T ′ ∪ {i} ⊆ S1 ∪ (R2 \ Y ). By

Claim IV.5, S1∪ (R2 \Y ) ∈ I. Hence, if T ′∩R1 = S1

and T ′ ∩ Y = ∅. Then, T ′ ∪ {i} ∈ I, and i is added to

T with probability 1/2. Therefore,

P[S2 ⊆ T | T ∩ Y = ∅,T ∩R1 = S1] =

(
1

2

)|S2|
.

Combining the bounds on the three probabilities, we get

P[S ⊆ T ] ≥
(
1

2

)|S1| (
1− 1

d

)|R1|−|S1| (1

d

)|S1| (1

2

)|S2|
.

Since |S| = d and S is a disjoint union of S1 and S2,

we have |S1| + |S2| = d. Also, by the assumption of the

theorem, |R1| ≤ 2
((

d+1
2

)
+ d

)
. Hence,

P[S ⊆ T ] ≥
(
1

2

)d (
1− 1

d

)2((d+1
2 )+d)(

1− 1

d

)−|S1| (1

d

)|S1|
.

Since |S1| ≤ d, we have

P[S ⊆ T ] ≥
(
1

2

)d (
1− 1

d

)2((d+1
2 )+d)(

1− 1

d

)−d (
1

d

)d

=

(
1

2d

)d (
1− 1

d

)d(d+1)+d
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For d ≥ 2, we have 1− 1
d ≥ e−

1.5
d ≥ e−

3
d+2 . Hence,

P[S ⊆ T ] ≥ (2d)
−d

e−3d =
(
2e3d

)−d

finishing the proof of Lemma IV.1 �

Proof of Lemma IV.2: By Lemma IV.1, for any S ⊆ R1∪R2

such that S ∈ Id, we have P[S ⊂ T ] ≥ (
2e3d

)−d
. The

rounding Algorithm 1 returns a solution T of expected value

E

[
det

(∑
i∈T

viv
�
i

)]
= E

⎡⎢⎣ ∑
S∈(Td)

det

(∑
i∈S

viv
�
i

)⎤⎥⎦
=

∑
S⊆[n]:|S|=d

P [S ⊆ T ] det

(∑
i∈S

viv
�
i

)
where we apply the Cauchy-Binet formula to obtain the first

equality. Since we only pick elements of R1∪R2 which form

an independent set, we have

E

[
det

(∑
i∈T

viv
�
i

)]
=

∑
S⊆R1∪R2:S∈Id

P [S ⊆ T ] det

(∑
i∈S

viv
�
i

)

≥ (
2e3d

)−d ∑
S⊆R1∪R2:S∈Id

det

(∑
i∈S

viv
�
i

)
.

For each i ∈ [n], we have 0 ≤ xi ≤ 1. Hence,

E

[
det

(∑
i∈T

viv
�
i

)]
≥

(
2e3d

)−d ∑
S⊆R1∪R2:S∈Id

det

(∑
i∈S

xiviv
�
i

)
.

For S ∈ Id such that S �⊆ R1 ∪ R2, there exists

i ∈ S such that xi = 0. Hence, for S ∈ Id such that

S �⊆ R1 ∪ R2,
∑

i∈S xiviv
�
i has rank at most d − 1 and

det
(∑

i∈S xiviv
�
i

)
= 0. Therefore,

E

[
det

(∑
i∈T

viv
�
i

)]
≥ (

2e3d
)−d ∑

S∈Id

det

(∑
i∈S

xiviv
�
i

)
finishing the proof of Lemma IV.2. �

V. DETERMINISTIC ALGORITHM

In this section, we prove Theorem I.2 and give the de-

terministic algorithm achieving the claimed guarantee. The

algorithm reduces the ground set in each iteration until the

ground set is itself an independent set. Given any V ⊆ [n],
we let M|V = (V , I|V ) denote the matroid obtained by

deleting all elements not in V from M. Moreover, we let

CP(V) denote the convex program when the ground set and

the matroid are V and M|V , respectively, and we consider

only vectors indexed by V . We let OPTCP(V) denote optimal

value of the convex program CP(V). We denote by r(V ) the

rank of the matroid M|V .

We first describe the deterministic rounding algorithm,

presented in Algorithm 2.

Algorithm 2 Deterministic Algorithm

1: Input: a matroid M = ([n], I).
2: Output: a basis S ∈ I.

3: procedure ROUNDING

4: Let x be optimal solution to CP such that |{i ∈
[n] : 0 < xi}| ≤ k + 2

((
d+1
2

)
+ d

)
as returned by

Theorem III.1.

5: Let V ← {i ∈ [n] : 0 < xi}.

6: while V /∈ I do
7: i ← argmaxj∈V :r(V \{j})=r(V ) OPTCP(V \ {j})

(breaking a tie arbitrarily)

8: V ← V \ {i}
return V

Observe that V is initialized to a set of size at most

k + 2
((

d+1
2

)
+ d

)
along with r(V ) = k. Moreover,

OPTCP(V ) = OPTCP initially, since we just remove all

elements with xi = 0 from the ground set.

In each iteration of the while loop, we decrease the size

of V by one, and thus there can be at most 2
((

d+1
2

)
+ d

)
iterations of the while loop. In each iteration, we do not

decrease the rank of V from k, so the final output, by

construction, is an independent set of size k and hence

feasible. To prove the guarantee, we show that in each

iteration,

OPTCP(V \ {i}) ≥ β · OPTCP(V ) (19)

where β = (2e5d)−d = O(d)−d. Also, the relaxation is

exact after the last iteration because V is a basis after

the while loop terminates. Thus, the objective value of the

returned solution is at least

β2((d+1
2 )+d) · OPTCP,

giving an approximation factor O(d)2d((
d+1
2 )+d) = O(d)d

3 ·
O(1)3d

2 log d = O(d)d
3

, as claimed.

It only remains to prove (19). From the guarantee of the

randomized algorithm given in Theorem II.3, there exists a

basis S ∈ I|V with S ⊆ V such that

det

⎛⎝∑
j∈S

vjv
�
j

⎞⎠ ≥ β · OPTCP(V ). (20)

Let j ∈ V \ S where j must exist since V /∈ I. Then

r(V \ {j}) = r(S) = k since S is a basis. We have

OPTCP(V \{j}) ≥ det
(∑

e∈S vev
�
e

)
, because the indicator
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vector x of S ⊆ V \ {j} is a solution to CP(V \ {j})
of value det

(∑
e∈S vev

�
e

)
. Together with (20), and be-

cause i is chosen to maximize OPTCP(V \ {j}) over j
s.t. r(V \{j}) = k, we have established (19). This completes

the proof of Theorem I.2.
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