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Abstract. Experimental design is a classical statistics problem, and its aim is to estimate an
unknown vector from linear measurements where a Gaussian noise is introduced in each
measurement. For the combinatorial experimental design problem, the goal is to pick a
subset of experiments so as to make the most accurate estimate of the unknown parameters.
In this paper, we will study one of the most robust measures of error estimation—the
D-optimality criterion, which corresponds to minimizing the volume of the confidence el-
lipsoid for the estimation error. The problem gives rise to two natural variants depending on
whether repetitions of experiments are allowed or not. We first propose an approximation
algorithm with a 1/e-approximation for the D-optimal design problem with and without
repetitions, giving the first constant-factor approximation for the problem. We then analyze
another sampling approximation algorithmandprove that it is asymptotically optimal. Finally,
forD-optimal designwith repetitions,we study adifferent algorithmproposed by the literature
and show that it can improve this asymptotic approximation ratio. All the sampling algorithms
studied in this paper are shown to admit polynomial-time deterministic implementations.

Funding: This work was supported by the Division of Computing and Communication Foundations
[Grant CCF-1717947; to M. Singh].
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1. Introduction
Experimental design is a classical problem in statistics (Atkinson et al. [5], Federer [18], Fedorov [19], Kirk [24],
Pukelsheim [32]), and recently, it has also been applied to machine learning (Allen-Zhu et al. [3], Wang
et al. [39]). In an experimental design problem, its aim is to estimate an m-dimensional vector β ∈ Rm from n
linear measurements of the form yi � aTi β + ε̃i for each i ∈ [n] :� {1, 2, . . . , n}, where vector ai ∈ Rm characterizes
the i experiment and {ε̃i}i∈[n] are independent and identically distributed (i.i.d.) Gaussian random variables
with zero mean and variance σ2 (i.e., ε̃i ∼ 1(0, σ2) for all i ∈ [n]). Because of limited resources, it might be quite
expensive to conduct all of the n experiments. Therefore, as a compromise, in the combinatorial experimental
design problem, we are given an integer k ∈ [m,n], and our goal is to pick k out of the n experiments so as to
make the most accurate estimate of the parameters denoted as β̂. Suppose that a size k subset of experiments
S ⊆ [n] is chosen; then, the most likelihood estimation of β (compare with Joshi and Boyd [22]) is given by

β̂ � ∑
i∈S

aia�i

( )−1∑
i∈S

yiai.

There are many criteria on how to choose the best estimation among all of the possible size k subsets of n
experiments (see Atkinson et al. [5] for a review). One of the most robust measures of error estimation is
known as D-optimality criterion, where the goal is to choose the best size k subset S to maximize
[det(∑i∈S aia�i )]1m: that is, the combinatorial optimization problem

max
S

f (S) :� det
∑
i∈S

aia�i

( )[ ]1
m

: Supp(S) ⊆ [n], |S| � k
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭, (1)

where Supp(S) denotes the support of set S and |S| denotes the cardinality of set S. Note that optimization
model (1) corresponds to minimizing the volume of the confidence ellipsoid for the estimation error β −β̂.
Equivalently, the objective function of (1) can be chosen as determinant itself (i.e., det(∑i∈S aia�i )) or log
determinant (log det(∑i∈S aia�i )) (Joshi and Boyd [22]). However, both objective functions are problematic for

1512

http://pubsonline.informs.org/journal/moor
mailto:mohitsinghr@gmail.com
mailto:wxie@vt.edu
https://orcid.org/0000-0001-5157-1194
https://orcid.org/0000-0001-5157-1194
https://doi.org/10.1287/moor.2019.1041


the following reasons: (1) the determinant function is nonconvex and has numerical issue, especially
when k,m,n are large; and (2) although log-determinant function is concave, it can also be numerically
unstable, in particular when the determinant is close to zero. Therefore, in this paper, we follow the work in
Sagnol and Harman [33] and consider mth root of determinant function, which is concave and numerically
stable.

In the problem description, the same experiment may or may not be allowed to choose multiple times. We
refer to the problem as D-optimal design with repetitions if we are allowed to pick an experiment more than once
and D-optimal design without repetitions otherwise. Correspondingly, for D-optimal design with repetitions and
without repetitions, in (1), the subset S denotes a multiset, where elements of S can be duplicated, and a
conventional set, where elements of S must be different from each other, respectively. The former problem has
been studied very extensively in statistics (Kirk [24], Pukelsheim [32], Sagnol and Harman [33]). The latter
problem has also been studied as the sensor selection problem (Joshi and Boyd [22]), where the goal is to find
the best subset of sensor locations to obtain the most accurate estimate of unknown parameters. It is easy to
see that D-optimal design with repetitions is a special case of the D-optimal design problem without rep-
etitions. To do so, for the D-optimal design with repetitions, we can create k copies of each vector, which
reduces to the D-optimal design without repetitions with nk vectors.

The remainder of the paper is organized as follows. Section 2 details the problem setting, reviews re-
lated literature, and summarizes our contributions. Section 3 develops and analyzes a randomized algorithm,
its approximation results, and deterministic implementation. Section 4 proposes another randomized algo-
rithm and its deterministic implementation as well as asymptotic behavior. Section 5 analyzes a random-
ized algorithm for D-optimal design with repetitions proposed by literature, and investigates its deterministic
implementation as well as approximation ratios. Finally, Section 6 concludes the paper.

1.1. Notations
The following notation is used throughout the paper. We use bold letters (e.g., x,A) to denote vectors or
matrices, and we use corresponding nonbold letters to denote their components. We let e be the all-ones
vector. We let R+,Q+,Z+ denote the sets of positive real numbers, rational numbers, and integers, respectively.
Given a positive integer N and a set Q, we let [N] :� {1, . . . ,N}, N! � ∏

i∈[N] i, |Q| denote its cardinality, Supp(Q)
denote the support of Q, and (QN) denote all of the possible subsets of Q with cardinality that equals N. Given a
multiset Q, for each i ∈ Supp(Q) ⊆ [n], we let function MQ(i) denote the number of occurrences of i in Q, and
for any i ∈ [n], Q(i) denotes its ith component. Given a matrix A and two sets R,T, we let det(A) denote its
determinant if A is a square matrix, let AR,T denote a submatrix of A with rows and columns from sets R,T, let
Ai denote ith column of matrix A, and let AR denote submatrix of A with columns from set R. For any positive
integer r, we let Ir denote r × r identity matrix. We use 6̃ to denote a random set. For notational convenience,
give a set S ∈ [n] and vector x ∈ Rn+, we define f (S) � [det(∑i∈S aia�i )]1m and f (x) � [det(∑i∈[n] xiaia�i )]1m. Additional
notation will be introduced as needed.

2. Model Formulation, Related Literature, and Contributions
2.1. Model Formulation
To formulate D-optimal design problem (1) as an equivalent mathematical program, we first let set B denote
the set of all nonnegative numbers (i.e., B � R+) if repetitions are allowed; otherwise, B � [0, 1]. Next, we
introduce integer decision variable xi ∈ B ∩ Z+ to represent how many times ith experiment will be chosen for
each i ∈ [n]. With the notation introduced, the D-optimal design problem can be formulated as a mixed integer
convex program:

w∗ :� max
x,w

w : w ≤ f (x) � det
∑
i∈[n]

xiaia�i

( )[ ] 1
m

,
∑
i∈[n]

xi � k, x ∈ Bn ∩ Zn
+

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭, (2)

where for notational convenience, we let f (x) denote the objective function. Note that, if B � R+, (2) is
equivalent to D-optimal design with repetitions, and if B � [0, 1], then (2) corresponds to D-optimal design
without repetitions.
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It can be easily shown that f (x) � [det(∑i∈[n] xiaia�i )]1m is concave in x (compare with Ben-Tal and Nemirovski
[8]). Therefore, a straightforward convex relaxation of (2) is to relax the binary vector x to continuous
(i.e., x ∈ [0, 1]n), which is formulated as below:

ŵ :� max
x,w

w : w ≤ det
∑
i∈[n]

xiaia�i

( )[ ]1
m

,
∑
i∈[n]

xi � k, x ∈ Bn
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭. (3)

Note that (3) is a tractable convex program (compare with Joshi and Boyd [22]); thus, it is efficiently solvable.
Recently, Sagnol and Harman [33] proposed an alternative second-order conic program formulation for (3),
which can be solved by a more effective interior point method or even off-the-shelf solvers (e.g., CPLEX,
Gurobi, and MOSEK). We remark that, according to Ben-Tal and Nemirovski [8], the time complexity of
solving (3) is O(n5).

2.2. Related Literature
As remarked earlier, experimental design is a classical area in statistics. We refer the reader to Pukelsheim [32,
chapter 9] on details about D-optimality criterion as well as other related (A,E,T) criteria. The combinatorial
version, where the number of each experiment that needs to be chosen is an integer as in (2), is also called
exact experimental design. It turns out that the D-optimality criterion is proven to be NP-hard (Welch [40]).
Thus, there has been plenty of works on heuristic methods, including local search and its variants, to obtain
good solutions (Fedorov [19], Joshi and Boyd [22]).

From an approximation algorithm viewpoint, D-optimal design has received a lot of attention recently. For
example, Bouhtou et al. [9] gave a (n/k)1m-approximation algorithm, and Wang et al. [39], building on Avron
et al. [6], gave a (1 + ε) approximation if k ≥ m2/ε. Recently, Allen-Zhu et al. [3] realized the connection
between this problem and matrix sparsification (Batson et al. [7], Spielman and Srivastava [37]) and used regret
minimization methods (Allen-Zhu et al. [2]) to obtain O(1)-approximation algorithm if k ≥ 2m and (1 + ε)
approximation when k ≥ O(m/ε2). We also remark that their results are general and also, applicable to other
optimality criteria.

Another closely related problem is the largest j-simplex problem, the problem description of which is
as follows: (Largest j-simplex problem) Given a set of n vectors a1, . . . ,an ∈ Rm and integer k ≤ m, pick a set of S
of k vectors to maximize the k root of the pseudodeterminant of X � ∑

i∈S aia�i (i.e., the geometric mean of
the nonzero eigenvalues of X).

The problem has also received much attention recently (Di Summa et al. [17], Khachiyan, [23], Nikolov [28]),
and Nikolov [28] gave a 1/e-approximation algorithm. Observe that the special case of k � m of this problem
coincides with the special case of k � m for the D-optimal design problem. Indeed, Nikolov’s algorithm,
although applicable, results in a e− k

m approximation for the D-optimal design problem. Recently, matroid
constrained versions of the largest j-simplex problem have also been studied (Anari and Gharan [4], Nikolov
and Singh [29], Straszak and Vishnoi [38]).

The D-optimality criterion is also closely related to constrained submodular maximization (Nemhauser et al.
[27]), a classical combinatorial problem, for which there has been much progress recently (Calinescu et al. [14],
Krause and Golovin [25]). Indeed, the set function m log f (S) :� log det(∑i∈S aia�i ) is known to be submodular
(Shamaiah et al. [34]). Unfortunately, this submodular function is not necessarily nonnegative, a prerequisite
for all of the results on constrained submodular maximization, and thus, these results are not directly ap-
plicable. We also remark that, for a multiplicative guarantee for the det objective, we would aim for an
additive guarantee for log det objective.

2.3. Contributions
In this paper, we make several contributions to the approximations of D-optimal design problems both with
and without repetitions. Our approximation algorithms are randomized, where we sample k experiments out
of n with given marginals. This type of sampling procedure has been studied intensively in the approximation
algorithms, and many different schemes have been proposed (Brewer and Hanif [11]), where most of them
exhibit a negative correlation of various degrees (Brändén and Jonasson [10]). In this work, we will study
sampling schemes, which exhibit approximate positive correlation and prove the approximation ratios of these
algorithms.

All of the proposed approximations come with approximation guarantees. Given an approximation ratio
γ ∈ (0, 1], a γ-approximation algorithm for D-optimal design returns a solution x̄∈Bn∩Zn+ such that

∑
i∈[n] x̄i � k
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and f (x̄) ≥ γw* (i.e., the solution is feasible and has an objective value at least γ times the optimal value). The
approximation ratios of our randomized algorithms only hold in the sense of expectation. To improve them,
we further propose polynomial time deterministic implementations for all of the randomized algorithms with
iterated conditional expectation method, which also achieve the same approximation guarantees. The fol-
lowing is a summary of our contributions:

1. We develop a 1/e-approximation algorithm and its polynomial time deterministic implementation, giving
the first constant factor approximation for D-optimal design problem for both with and without repetitions.
Previously, constant factor approximations were known only for a restricted range of parameters (Allen-Zhu
et al. [3], Avron et al. [6], Wang et al. [39]) (see related work for details).

2. We study a different sampling algorithm and its polynomial time deterministic implementation, showing
that its solution is (1 − ε) optimal if k ≥ 4m/ε + 12/ε2 log(1/ε) for any given ε ∈ (0, 1). These results substantially
improve the previous work (Allen-Zhu et al. [3], Wang et al. [39]).

3. For D-optimal design with repetitions, we investigate a simple randomized algorithm similar to that in
Nikolov [28], study its polynomial time deterministic implementation, and provide a significant different
analysis of the approximation guarantee. We show that the proposed algorithm yields (1 − ε) approximation
for the D-optimal design problem with repetitions when k ≥ (m − 1)/ε.

Note that the preliminary version of the paper appeared in the ACM-SIAM Symposium on Discrete Algorithms
(Singh and Xie [35]). Compared with [35], this paper has the following major improvement: (1) For the
constant factor approximation algorithm presented in Section 3, we simplify its polynomial time deterministic
implementation and improve its analysis. (2) For the asymptotically optimal algorithm in Section 4, we
simplify its sampling procedure and derive its polynomial time deterministic implementation. (3) For the
approximation algorithm of D-optimal design with repetitions, we improve its approximation ratio analysis
and propose its polynomial time deterministic implementation.

3. Approximation Algorithm for D-optimal Design Problem
In this section, we will propose a sampling procedure and prove its approximation ratio. We also develop an
efficient way to implement this algorithm, and finally, we will show its polynomial time deterministic
implementation with the same performance guarantees.

First of all, we note that, for D-optimal design problem with repetitions (i.e., B � R+ in (2)), it can be
equivalently reformulated as D-optimal design problem without repetitions by creating k copies of vectors
{ai}i∈[n]. Therefore, the approximation for D-optimal design problem without repetitions directly applies to
that with repetitions. Hence, in this section and the next sections, we will only focus on D-optimal design
problem without repetitions (i.e., in (2) and (3), we only consider B � [0, 1]).

3.1. Sampling Algorithm and Its Efficient Implementation
In this subsection, we will introduce a sampling procedure and explain its efficient implementation.

In this sampling algorithm, we first suppose (̂x, ŵ) to be an optimal solution to the convex relaxation (3),
where x̂ ∈ [0, 1]n with

∑
i∈[n] x̂i � k and ŵ � f (̂x). Then, we randomly choose a size k subset 6̃ according to the

following probability:

P 6̃ � S
[ ]

�
∏

j∈S x̂j∑
S̄∈ [n]

k

( ) ∏
i∈S̄ x̂i

(4)

for every S ∈ ([n]k ), where ([n]k ) denotes all of the possible size k subsets of [n].
Note that the sampling procedure in (4) is not an efficient implementable description, because there are (nk)

candidate subsets to be sampled from. Therefore, we propose an efficient way (i.e., Algorithm 1) to obtain a
size k random subset 6̃ with probability distribution in (4). We first observe a useful way to compute the
probabilities in Algorithm 1 efficiently.

Observation 1. Suppose x ∈ Rt and integer 0 ≤ r ≤ t; then,
∑

S∈([t]r )
∏

i∈S xi is the coefficient of yr of the polynomial∏
i∈[t](1 + xiy).
In fact, it has been shown that the product of two polynomials with degree at most t can be done in O(t log t)

amount of time by the fast Fourier transform (Cooley and Tukey [16]). Thus, by the divide-and-conquer
approach, it takes O(t log2 t) time to expand the polynomial

∏
i∈[t](1 + xiy) (i.e., it takes O(t log2 t) time to

compute the coefficient of yr of the polynomial
∏

i∈[t](1 + xiy)).
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Note that we need to compute the probability P[6̃ � S] in (4) efficiently. The main idea of the efficient
implementation is to sample elements one by one based on conditioning on the chosen elements and unchosen
elements and update the conditional probability distribution sequentially. Indeed, suppose that we are given a
subset of chosen elements S with |S| < k and a subset of unchosen elements T with |T| < n − k, which can be
empty; then, probability that the jth experiment with j ∈ [n] \ (S ∪ T) will be chosen is equal to

P j will be chosen|S,T[ ] � x̂j
∑

S̄∈ [n]\(S∪T)
k−1−|S|

( ) ∏
τ∈S̄ x̂τ

( )
∑

S̄∈ [n]\(S∪T)
k−|S|

( ) ∏
τ∈S̄ x̂τ

( ) .

In the formula, the denominator and numerator can be computed efficiently based on Observation 1. Thus, we
flip a coin with success rate equal to the probability, which clearly has the following two outcomes: if j is
chosen, then update S :� S ∪ {j}; otherwise, update T :� T ∪ {j}. Then, go to the next iteration, and repeat this
procedure until |S| � k. By applying iterated conditional probability, the probability that S is chosen equal to∏

j∈S x̂j
/
(∑

S̄∈([n]k )
∏

j∈S̄ x̂j) (i.e., (4)) holds. The detailed implementation is shown in Algorithm 1. Note that the time

complexity of Algorithm 1 is O(n2).
Algorithm 1 Efficient Implementation of Sampling Procedure (4) with Constant Factor Approximation
1. Suppose that (̂x, ŵ) is an optimal solution to the convex relaxation (3) with B � [0, 1], where x̂ ∈ [0, 1]n with∑

i∈[n] x̂i � k and ŵ � f (̂x)
2. Initialize chosen set 6̃ � ∅ and unchosen set T � ∅
3. Two factors: A1 � ∑

S̄∈([n]k )
∏

i∈S̄ x̂i,A2 � 0
4. for j � 1, . . . ,n do
5. if |6̃| �� k then
6. break
7. else if |T| � n − k then
8. 6̃ � [n] \ T
9. break

10. end if
11. Let A2 � (∑

S̄∈([n]\(6̃∪T)
k−1−|6̃| )

∏
τ∈S̄ x̂τ)

12. Sample a (0, 1) uniform random variable U
13. if x̂jA2/A1 ≥ U then
14. Add j to set 6̃
15. A1 � A2
16. else
17. Add j to set T
18. A1 � A1 − x̂jA2
19. end if
20. end for
21. Output 6̃

3.2. m-wise α-positively Correlated Probability Distributions
In this subsection, we will introduce the main proof idea of the approximation guarantees, which is to analyze
the probability distribution (4) and show that it is approximately positively correlated (Byrka et al. [13]). The
formal derivation will be in the next subsection.

Recall that a set of random variables X1, . . . ,Xn is pairwise positively correlated if, for each i, j ∈ [n], we have
E[XiXj] ≥E[Xi] ·E[Xj], which for {0, 1}-valued random variables, translates to P[Xi � 1,Xj � 1] ≥P[Xi � 1]·
P[Xj � 1]. This definition aims to capture settings where random variables are more likely to take similar values
than independent random variables with the same marginals. More generally, given an integer m, {0, 1}-valued
random variables X1, . . . ,Xn are called m-wise positively correlated random variables if P[Xi � 1 ∀i ∈ T] ≥∏

i∈T Pr[Xi � 1] for all T ⊆ [n] where |T| � m. We provide an generalized definition of positive correlation that is
crucial to our analysis.
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Definition 1. Given x ∈ [0, 1]n such that
∑

i∈[n] xi � k for integer k ≥ 1, let μ be a probability distribution on subsets of
[n] of size k. LetX1, . . . ,Xn denote the indicator randomvariables; thus,Xi � 1 if i ∈ 6̃ and 0 otherwise for each i ∈ [n]
where random set 6̃ of size k is sampled from μ. Then, X1, . . . ,Xn are m-wise α-positively correlated for some
α ∈ [0, 1] if, for each T ⊆ [n] such that |T| � m, we have

P Xi � 1 ∀i ∈ T[ ] � P T ⊆ 6̃
[ ]

≥ αm
∏
i∈T

xi.

With a slight abuse of notation, we call the distribution μ to be m-wise α-positively correlated with respect to x
if the condition is satisfied. Observe that, if α � 1, then the definition implies that the random variables
X1, . . . ,Xn are m-wise positively correlated.

The following lemma shows the crucial role played by m-wise approximate positively correlated distri-
butions in the design of algorithms for D-optimal design.

Lemma 1. Suppose that (̂x, ŵ) is an optimal solution to the convex relaxation (3). Then, for any α ∈ (0, 1], if there exists an
efficiently computable distribution that is m-wise α-positively correlated with respect to x̂, then the D-optimal design problem
has a randomized α-approximation algorithm: that is,

E det
∑
i∈6̃

aia�i

( )[ ]{ }1
m

≥ αw∗,

where random set 6̃ with size k is the output of the approximation algorithm.

Proof of Lemma 1 relies on the polynomial formulation of matrix determinant and convex relaxation of the
D-optimal design problem. We show that a m-wise α-positively correlated distribution leads to a randomized
algorithm for the D-optimal design problem that approximates each of the coefficients in the polynomial
formulation. Note that the approximation ratio α in Lemma 1 only holds in the sense of expectation. Therefore,
one might need to derandomize the algorithm to achieve the approximation ratio.

Before proving Lemma 1, we would like to introduce some useful results. The following lemmas follow
from the Cauchy–Binet equation (Broida and Williamson [12]) and use the fact that a matrix’s determinant is
polynomial in entries of the matrix. Interested readers can find the proofs in Appendix A.

Lemma 2. Suppose that ai ∈ Rm for i ∈ T with |T| ≥ m; then the following identity holds:

det
∑
i∈T

aia�i

( )
� ∑

S∈ T
m( )
det

∑
i∈S

aia�i

( )
. (5)

Proof. See Appendix A.1. □

Lemma 3. For any x ∈ [0, 1]n, then the following identity holds:

det
∑
i∈[n]

xiaia�i

( )
� ∑

S∈ [n]
m( )

∏
i∈S

xi det
∑
i∈S

aia�i

( )
. (6)

Proof. See Appendix A.2. □

Now, we are ready to prove Lemma 1.

Proof of Lemma 1. Note that (̂x, ŵ) is an optimal solution to (3) and the distribution μ given by Lemma 1 for this x̂,
which satisfies the conditions of Definition 1. We now consider the randomized algorithm that samples a random
set 6̃ from this distribution μ. We show that this randomized algorithm satisfies the guarantee claimed in the
lemma. All expectations and probabilities of events are under the probability measure μ, and for simplicity, we
drop it from the notation.

Because [det(∑i∈[n] x̂iaia�i )]1m is at least as large as the optimal value to D-optimal design problem (3) with
B � [0, 1], we only need to show that

E det
∑
i∈6̃

aia�i

( )[ ]{ }1
m

≥ α det
∑
i∈[n]

x̂iaia�i

( )[ ]1
m

,
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or equivalently,

E det
∑
i∈6̃

aia�i

( )[ ]
≥ αm det

∑
i∈[n]

x̂iaia�i

( )
. (7)

This indeed holds, because

E det
∑
i∈6̃

aia�i

( )[ ]
� ∑

S∈ [n]
k

( )P 6̃ � S
[ ]

det
∑
i∈S

aia�i

( )
� ∑

S∈ [n]
k

( )P 6̃ � S
[ ] ∑

T∈ S
m( )
det

∑
i∈T

aia�i

( )

� ∑
T∈ [n]

m

( )P T ⊆ 6̃
[ ]

det
∑
i∈T

aia�i

( )
≥ αm

∑
T∈ [n]

m

( )∏
i∈T

x̂i det
∑
i∈T

aia�i

( )
� αm det

∑
i∈[n]

x̂iaia�i

( )
,

where the first equality is because of the definition of probability measure μ, the second equality is due to
Lemma 3, the third equality is due to the interchange of summation, the first inequality is due to Definition 1,
and the fourth equality is because of Lemma 3. □

3.3. Analysis of Sampling Scheme
In this subsection, we will analyze the proposed sampling procedure (i.e., deriving the approximation ratio α
of sampling procedure (4) in Lemma 1). The key idea is to derive lower bound for the ratio

P T ⊆ 6̃
[ ]
∏

i∈T x̂i

for any T ∈ ([n]m ), where (̂x, ŵ) is an optimal solution to (3) with B � [0, 1].
By the definition of random set 6̃ in (4), the probability P[T ⊆ 6̃] is equal to

P T ⊆ 6̃
[ ]

�
∑

S∈ [n]
k( ):T⊆S

∏
j∈S x̂j∑

S̄∈ [n]
k( )
∏

i∈S̄ x̂i
. (8)

Observe that the denominator in (8) is a degree k polynomial that is invariant under any permutation of [n].
Moreover, the numerator is also invariant under any permutation of T as well as any permutation of [n] \ T.
These observations allow us to use inequalities on symmetric polynomials and reduce the worst-case ratio of
P[T ⊆ 6̃] with

∏
i∈T x̂i to a single-variable optimization problem as shown in the following proposition. We

then analyze the single-variable optimization problem to prove the desired bound.

Proposition 1. Let 6̃ be the random set defined in (4). Then, for any T ⊆ [n] such that |T| � m, we have

P T ⊆ 6̃
[ ]

≥ 1
g(m,n, k)

∏
i∈T

x̂i :� αm
∏
i∈T

x̂i,

where

g(m,n, k) � max
y

∑m
τ�0

n −m
k − τ

( )
(n −m)m−τ n −m

k −m

( ) m
τ

( )
mτ

k − y
( )m−τ y

( )τ: mk
n

≤ y ≤ m
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭. (9)

Proof. See Appendix A.3. □

Next, we derive the upper bound of g(m,n, k) in (9), which is a single-variable optimization problem. To
derive the desired results, we first observe that, for any given (m, k) with m ≤ k, g(m, n, k) is mono-
tone nondecreasing in n. This motivates us to find an upper bound on limn→∞ g(m, n, k), which leads to
Proposition 2.

Proposition 2. For any n ≥ k ≥ m, we have

α−1 � g(m,n, k)[ ]1
m ≤ lim

τ→∞ g(m, τ, k)[ ]1
m ≤ min e, 1 + k

k −m + 1

{ }
. (10)
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Proof. See Appendix A.4. □

Finally, we present our first approximation result below.

Theorem 1. For any positive integers m ≤ k ≤ n, Algorithm 1 yields 1/e approximation for the D-optimal design problem.

Proof. The result directly follows from Lemma 1 and Proposition 2 given that n ≥ k ≥ m. □

We also note that, when k is large enough, Algorithm 1 is a near-0.5 approximation.

Corollary 1. Given ε ∈ (0, 1) and positive integers m ≤ k ≤ n, if k ≥ (m − 1)/(2ε), then Algorithm 1 yields (0.5 − ε) ap-
proximation for the D-optimal design problem.

Proof. For any ε∈ (0,1), from Proposition 2, let the lower-bound approximation ratio α≥ [min{e,1+ k/(k−m+1)}]−1 ≥
0.5−ε, or equivalently, let

1 + k
k −m + 1

≤ 1
0.5 − ε

.

Then, the conclusion follows. □

3.4. Deterministic Implementation
The approximation ratios presented in the previous subsection only hold in the sense of expectation. In this
subsection, we will overcome this issue and present a deterministic Algorithm 2 with the same approximation
guarantees. The key idea is to derandomize Algorithm 2 using the method of conditional expectation (compare
with Spencer and Spencer [36]), and the main challenge is how to compute the conditional expectation ef-
ficiently. We next will show that it can be done by evaluating a determinant of a n × n matrix in which entries
are linear polynomials in three indeterminates.

In this deterministic Algorithm 2, suppose that we are given a subset S ⊆ [n] such that |S| � s ≤ k. Then, the
expectation of mth power of objective function given S is

H(S) :� E det
∑
i∈6̃

aia�i

( )⃒⃒⃒⃒
⃒S ⊆ 6̃

[ ]

� ∑
U∈ [n]\S

k−s( )

∏
j∈U x̂j∑

Ū∈ [n]\S
k−s( )

∏
i∈Ū x̂i

det
∑
i∈U

aia�i +∑
i∈S

aia�i

( )

� ∑
Ū∈ [n]\S

k−s( )
∏
i∈Ū

x̂i

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
−1 ∑

U∈ [n]\S
k−s( )

∏
j∈U

x̂j
∑

R∈ U∪S
m( )

det
∑
i∈R

aia�i

( )

�
∑

R∈ [n]
m( ),r:�|R\S|≤k−s

∏
j∈R\S x̂j det

∑
i∈R aia�i

( )∑
W∈ [n]\(S∪R)

k−s−r( )
∏

j∈W x̂j∑
Ū∈ [n]\S

k−s( )
∏

i∈Ū x̂i
,

(11)

where the second equality is a direct computing of the conditional probability, the third equality is due to
Lemma 2, and the last one is because of interchange of summation.

Algorithm 2 Derandomization of Algorithm 1
1. Suppose that (̂x, ŵ) is an optimal solution to the convex relaxation (3) with B � [0, 1], where x̂ ∈ [0, 1]n with∑

i∈[n] x̂i � k and ŵ � f (̂x)
2. Initialize chosen set S � ∅
3. do
4. Let j∗ ∈ argmaxj∈[n]\6̃ H(S ∪ j), where H(S ∪ j) defines (11), and its denominator and numerator can be

computed by Observation 1 and Proposition 3, respectively
5. Add j∗ to set 6̃
6. while |S| < k
7. Output S

Note that the denominator in (11) can be computed efficiently according to Observation 1. Next, we show
that the numerator in (11) can be also computed efficiently.
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Proposition 3. Let matrix A � [a1, . . . ,an]. Consider the following function:

F t1, t2, t3( ) � det In + t1 diag(y)12A�Adiag(y)12 + diag(y)
( )

, (12)

where t1, t2, t3 ∈ R,y ∈ Rn are indeterminate and

yi � t3, if i ∈ S

x̂it2, otherwise.

{
Then, the coefficient of tm1 t

k−s
2 ts3 in F(t1, t2, t3) equals to∑

R∈ [n]
m( ),r:�|R\S|≤k−s

∏
j∈R\S

x̂j det
∑
i∈R

aia�i

( ) ∑
W∈ [n]\(S∪R)

k−s−r
( )∏

j∈W
x̂j. (13)

Proof. First of all, we can rewrite F(t1, t2, t3) as
F(t1, t2, t3) � det In + diag(y)( )

det In + t1 diag(e + y)−1
2 diag(y)12A�Adiag(y)12 diag(e + y)−1

2

( )
� ∏

i∈S
1 + t3( ) ∏

i∈[n]\S
1 + x̂it2
( )

det In + t1W�W
( )

,

where the ith column of matrix W is

W i �

̅̅̅̅̅̅̅̅
t3

1 + t3

√
ai, if i ∈ S̅̅̅̅̅̅̅̅̅̅

x̂it2
1 + x̂it2

√
ai, otherwise.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
Note that the coefficient of tm1 in det(In + t1W�W) is equal to the one of

∏
i∈[n](1 + t1Λi), where {Λi}i∈[n] are the

eigenvalues of W�W . Thus, the coefficient of tm1 is∑
R∈ [n]

m( )
∏
i∈R

Λi �
∑

R∈ [n]
m( )

det (W�W)R,R
( ) � ∑

R∈ [n]
m( )

det
∑
i∈R

W iW�
i

( )
� ∑

R∈ [n]
m( )

det
∑
i∈R

W iW�
i

( )
,

where PR1,R2 denotes a submatrix of P with rows and columns from sets R1,R2, the first equality is due to the
property of the eigenvalues (Horn and Johnson [20, theorem 1.2.12]), the second inequality is because the
length of each column of W is m, and the third equality is because the determinant of singular matrix is zero.

Therefore, the coefficient of tm1 t
k−s
2 ts3 in F(t1, t2, t3) is equivalent to the one of∏

i∈S
1 + t3( ) ∏

i∈[n]\S
1 + x̂it2( ) ∑

R∈ [n]
m( )

det
∑
i∈R

W iW�
i

( )
.

By Lemma 3 with n � m and the definition of matrix W , the coefficient of tm1 t
k−s
2 ts3 in F(t1, t2, t3) is further

equivalent to the one of∏
i∈S

1 + t3( ) ∏
i∈[n]\S

1 + x̂it2
( ) ∑

R∈ [n]
m

( ) tm1 ∏
j∈R\S

x̂j
1 + t2x̂j

∏
j∈R∩S

t3
1 + t3

det
∑
i∈R

aia�i

( )

� tm1
∑

R∈ [n]
m( )

t|R\S|2 t|R∩S|3 1 + t3( )|S\R| ∏
i∈[n]\(S∪R)

1 + x̂it2
( ) ∏

j∈R\S
x̂j det

∑
i∈R

aia�i

( )
,

which is equal to (13) by collecting coefficients of tm1 t
k−s
2 ts3. □

Note that the characteristic function of a matrix can be computed efficiently by using the Faddeev–LeVerrier
algorithm (Hou [21]). Thus, the polynomial F(t1, t2, t3) is efficiently computable with time complexity of O(n4).

Algorithm 2 proceeds as follows. We start with an empty subset S of chosen elements, and for each j /∈ S, we
compute the expected mth power of objective function that j will be chosen H(S ∪ j). We add j∗ to S, where
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j∗ ∈ argmaxj∈[n]\S H(S ∪ j). Then, go to next iteration. This procedure will terminate if |S| � k. Note that
Algorithm 2 requires O(nk) evaluations of function H(S ∪ j); thus, the time complexity is O(n5k). Hence, in
practice, we recommend Algorithm 1 because of its shorter running time.

The approximation results for Algorithm 2 are identical to Theorem 1 and Corollary 1, which are sum-
marized as follows.

Theorem 2. For any positive integers m ≤ k ≤ n,
i. deterministic Algorithm 2 is efficiently computable and yields 1/e approximation for the D-optimal design problem;

and
ii. given ε ∈ (0, 1), if k ≥ (m − 1)/(2ε), then deterministic Algorithm 2 yields (0.5 − ε) approximation for the

D-optimal design problem.

4. Improving Approximation Bound in Asymptotic Regime
In this section, we propose another sampling Algorithm 3, which achieves asymptotic optimality (i.e., the
output of Algorithm 3 is close to optimal when k/m → ∞). We also show the derandomization of Algorithm 3.
Similar to the previous section, in this section, we consider the D-optimal design problem without repetitions
(i.e., in (2) and (3), we let B � [0, 1]).

In Algorithm 3, suppose that (̂x, ŵ) is an optimal solution to the convex relaxation (3) with B � [0, 1], ε ∈ (0, 1)
is a positive threshold, and 1 is a random permutation of [n]. Then, for each j ∈ 1, we select j with probability
xj/(1 + ε), and let 6̃ be the set of selected elements. If |6̃| < k, then we can add k − |6̃| more elements from
[n] \ 6̃. However, if |6̃| > k, then we repeat the sampling procedure. Algorithm 3 has time complexity O(n). In
addition, note that the difference between Algorithms 1 and 3 is that, in Algorithm 3, we inflate the probability
of choosing jth experiment by 1/(1 + ε). This condition guarantees that, when k � m, according to concen-
tration inequality, the probability of size m subset T to be chosen will be nearly equal to

∏
j∈T[xj/(1 + ε)].

Algorithm 3 Asymptotic Sampling Algorithm
1. Suppose that (̂x, ŵ) is an optimal solution to the convex relaxation (3) with B � [0, 1], where x̂ ∈ [0, 1]n with∑

i∈[n] x̂i � k and ŵ � f (̂x)
2. Initialize 6̃ � ∅ and a positive number ε > 0
3. do
4. Let set 1 be a random permutation set of {1, . . . , n}
5. for j ∈ 1 do
6. Sample a (0, 1) uniform random variable U
7. if U ≤ x̂/(1 + ε) then
8. Add j to set 6̃
9. end if

10. end for
11. while |6̃| > k
12. if |6̃| < k then 8 Greedy step to enforce |6̃| � k
13. Let j∗ ∈ argmaxj∈[n]\6̃[det(∑i∈6̃ aia�i + aja�j )]1m
14. Add j∗ to set 6̃
15. end if
16. Output 6̃

4.1. Analysis of Sampling Algorithm 3
To analyze sampling Algorithm 3, we first show the following probability bound. The key idea is to prove the
lower bound 1/

∏
i∈T x̂iP{T ⊆ 6̃||6̃| ≤ k} by using the Chernoff bound [15].

Lemma 4. Let ε > 0 and 6̃ ⊆ [n] be a random set output from Algorithm 3. Given T ⊆ [n] with |T| � m ≤ n, then we have

αm :� 1∏
i∈T x̂i

P T ⊆ 6̃
⃒⃒⃒
6̃
⃒⃒⃒ ⃒⃒⃒

≤ k
{ }

≥ (1 + ε)−m 1 − e−
εk−(1+ε)m( )2
k(2+ε)(1+ε)

( )
, (14)

where α is in Definition 1. In addition, when k ≥ 4m/ε + 12/ε
2
log(1/ε), then,

αm ≥ 1 − ε( )m. (15)
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Proof. We note that 6̃ ⊆ [n] is a random set, where each i ∈ [n] is independently sampled according to Bernoulli
random variable Xi with the probability of success x̂i/(1 + ε). According to Definition 1 and by ignoring the greedy
procedure Algorithm 3, it is sufficient to derive the lower bound of 1/

∏
i∈T x̂iP{T ⊆ 6̃||6̃| ≤ k}: that is,

P T ⊆ 6̃
⃒⃒⃒
6̃
⃒⃒⃒ ⃒⃒⃒

≤ k
{ }

∏
i∈T x̂i

�
P T ⊆ 6̃, 6̃

⃒⃒⃒ ⃒⃒⃒
≤ k

{ }
∏

i∈T x̂iP 6̃
⃒⃒⃒ ⃒⃒⃒

≤ k
{ } ≥ (1 + ε)−mP ∑

i∈[n]\T
Xi ≤ k −m

{ }
,

where the first inequality is due to P{|6̃| ≤ k} ≤ 1.
Therefore, it is sufficient to bound the following probability

P
∑

i∈[n]\T
Xi ≤ k −m

{ }
.

Because Xi ∈ {0, 1} for each i ∈ [n], E[∑i∈[n]\T Xi] � 1/(1 + ε)∑i∈[n]\T x̂i. According to the Chernoff bound [15],
we have

P
∑

i∈[n]\T
Xi > (1 + ε̄)E ∑

i∈[n]\T
Xi

[ ]{ }
≤ e−

ε̄2
2+ε̄E

∑
i∈[n]\T Xi

[ ]
.

Here, ε̄ is a positive constant. Therefore, by choosing ε̄ � (1 + ε)(k −m)/(∑i∈[n]\T x̂i) − 1, we have

(1 + ε)−mP ∑
i∈[n]\T

Xi ≤ k −m

{ }
≥ (1 + ε)−m 1 − e−

ε̄2
∑

i∈[n]\T x̂i
(2+ε̄)(1+ε)

( )
. (16)

Note that k −m ≤ ∑
i∈[n]\T Xi ≤ k, ε − (1 + ε)m/k ≤ ε̄ ≤ ε, and εk − (1 + ε)m ≤ ε̄

∑
i∈[n]\T x̂i ≤ ε(k −m). Suppose

that k ≥ (1/ε + 1)m; then, the left-hand side of (16) can be further lower bounded as

(1 + ε)−m 1 − e−
ε̄2
∑

i∈[n]\T x̂i
(2+ε̄)(1+ε)

( )
≥ (1 + ε)−m 1 − e−

εk−(1+ε)m( )2
k(2+ε)(1+ε)

( )
.

To prove (15), it remains to show

1 − e−
εk−(1+ε)m( )2
k(2+ε)(1+ε) ≥ (1 − ε)(1 + ε)( )m,

or equivalently,

log 1 − 1 − ε2
( )m[ ]

≥ − εk − (1 + ε)m( )2
k(2 + ε)(1 + ε) , (17)

which holds if

k ≥ 1 + 1
ε

( )
2m − 1 + 2

ε

( )
log 1 − 1 − ε2

( )m[ ]( )
.

We note that − log[1 − (1 − ε2)m] is nonincreasing over m ≥ 1; therefore, it is upper bounded by 2 log(1/ε).
Hence, (17) holds if k ≥ 4m/ε + 12/ε2 log(1/ε). □

Finally, we state our main approximation result.

Theorem 3. For any integers m ≤ k ≤ n and ε ∈ (0, 1), if k ≥ 4m/ε + 12/ε2 log(1/ε), then Algorithm 3 is a (1 − ε) ap-
proximation for the D-optimal design problem.

Proof. The result directly follows from Lemmas 1 and 4. □

4.2. Deterministic Implementation
Similar to Section 3.4, the approximation ratios presented in the previous subsection only hold in the sense of
expectation. In this subsection, we will overcome this issue and present a deterministic Algorithm 3 with the
same approximation guarantees.
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In this deterministic Algorithm 4, S denotes a subset such that |S| � s ≤ k. Then, the expectation of mth power
of objective function given S is

H(S) :� E det
∑
i∈6̃

aia�i

( )⃒⃒⃒⃒
⃒S ⊆ 6̃, 6̃

⃒⃒⃒ ⃒⃒⃒ ≤ k

[ ]

�
∑k

κ�s
∑

U∈ [n]\S
κ−s( )

∏
j∈U x̂i

1+ε
∏

j∈[n]\(S∪U) 1 − x̂i
1+ε

( )
det

∑
i∈U aia�i +∑

i∈S aia�i
( )

∑k
κ�1

∑
Ū∈ [n]\S

κ−s( )
∏

i∈Ū
x̂i
1+ε

∏
j∈[n]\(S∪Ū) 1 − x̂i

1+ε
( )

� ∑k
κ�s

∑
Ū∈ [n]\S

κ−s( )
∏
i∈Ū

x̂i
1 + ε − x̂i

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠−1∑k

κ�s

∑
U∈ [n]\S

κ−s( )
∏
j∈U

x̂i
1 + ε − x̂i

∑
R∈ U∪S

m( )
det

∑
i∈R

aia�i

( )

�
∑k

κ�s
∑

R∈ [n]
m( ),r:�|R\S|≤κ−s

∏
j∈R\S

x̂j
1+ε−x̂j det

∑
i∈R aia�i

( )∑
W∈ [n]\(S∪R)

κ−s−r( )
∏

j∈W
x̂j

1+ε−x̂j∑k
κ�s

∑
Ū∈ [n]\S

κ−s( )
∏

i∈Ū
x̂i

1+ε−x̂i
,

(18)

where the second equality is a direct computing of the conditional probability, the third equality is due to
Lemma 2 (dividing both denominator and numerator by

∏
j∈[n]\S(1 − x̂i/(1 + ε)) and the convention, set (Sτ) � ∅

if τ > |S| or τ < 0), and the fourth one is because of interchange of summation.
Note that the κth entry with κ ∈ {s, . . . , k} of the denominator in (18) can be computed efficiently according

to Observation 1 by letting xi :� x̂i/(1 + ε − x̂i). Meanwhile, κth entry with κ ∈ {s, . . . , k} of the numerator in (11)
can be also computed efficiently by Proposition 3 by letting x̂i :� x̂i/(1 + ε − x̂i). Therefore, the conditional
expectation in (11) is efficiently computable.

In summary, Algorithm 4 proceeds as follows. We start with an empty subset S of chosen elements, and for
each j /∈ S, we compute the expected mth power of objective function that j will be chosen (i.e., H(S ∪ j)). We
update S :� S ∪ {j∗}, where j∗ ∈ argmaxj∈[n]\S H(S ∪ j). Then, go to the next iteration. This procedure will
terminate if |S| � k. Similar to Algorithm 2, the time complexity of Algorithm 4 is O(n5k2). Hence, in practice,
we recommend the more efficient Algorithm 3.

The approximation result for Algorithm 4 is identical to Theorem 3, which is summarized as follows.

Theorem4. For any positive integers m ≤ k ≤ n and ε ∈ (0, 1), deterministic Algorithm 4 is efficiently computable and yields
1 − ε approximation for the D-optimal design problem if k ≥ 4m/ε + 12/ε2 log(1/ε).
Algorithm 4 Derandomization of Algorithm 3
1. Suppose that (̂x, ŵ) is an optimal solution to the convex relaxation (3) with B � [0, 1], where x̂ ∈ [0, 1]n with∑

i∈[n] x̂i � k and ŵ � f (̂x)
2. Initialize chosen set S � ∅
3. do
4. Let j∗ ∈ argmaxj∈[n]\6̃ H(S ∪ j), where H(S ∪ j) defines (18), and all of the entries of its denominator and

numerator can be computed by Observation 1 by letting xi :� x̂i/(1 + ε − x̂i) and by Proposition 3 by
letting x̂i :� x̂i/1 + ε − x̂i, respectively

5. Add j∗ to set S
6. while |S| < k
7. Output S

5. Approximation Algorithm for D-optimal Design Problem with Repetitions
In this section, we consider the D-optimal design problem with repetitions: that is, we let B � R+ in (2) and (3).
We will propose a new analysis of the algorithm proposed by Nikolov [28], derive its approximation ratio, and
show its deterministic implementation. Again, in this section, we also let (̂x, ŵ) be an optimal solution to the
convex relaxation (3), where x̂ ∈ Rn+ with

∑
i∈[n] x̂i � k and ŵ � f (̂x). Because the set of all nonnegative rational

vectors is dense in the set of all nonnegative real vectors, thus without loss of generality, we assume that x̂ is a
nonnegative rational vector (i.e., x̂ ∈ Qn+).

In Nikolov [28], the author suggested obtaining the k sample set 6̃ with replacement (i.e., 6̃ can be a
multiset). The sampling procedure can be separated into k steps. At each step, a sample s is selected with
probability P{s � i} � x̂i/k (note that x̂ ∈ Rn+ with

∑
i∈[n] x̂i � k). The detailed description is in Algorithm 5.
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This sampling procedure can be interpreted as follows: let {Xi}i∈[n] be independent Poisson random variables
where Xi has arrival rate x̂i. We note that, conditioning on total number of arrivals equal to k (i.e.,

∑
i∈[n] Xi � k),

the distribution of {Xi}i∈[n] is multinomial (compare with Albert and Denis [1]), where there are k trials and the
probability of ith entry to be chosen is x̂i/k. We terminate this sampling procedure if the total number of
arrivals equals to k. Note that the time complexity of Algorithm 5 is O(n).
Algorithm 5 Sampling Algorithm for D-optimal Design with Repetitions
1. Suppose that (̂x, ŵ) is an optimal solution to the convex relaxation (3) with B � R+, where x̂ ∈ Qn+ with∑

i∈[n] x̂i � k and ŵ � f (̂x)
2. Initialize chosen multiset 6̃ � ∅
3. for j � 1, . . . , k do
4. Sample s from [n] with probability P{s � i} � x̂i/k
5. Let 6̃ � 6̃ ∪ {s}
6. end for
7. Output 6̃

To analyze Algorithm 5, let us consider another Algorithm 6, which turns out to be arbitrarily close to
Algorithm 5. Because x̂ is a nonnegative rational vector (i.e., x̂ ∈ Qn+), we let q be a common multiple of the
denominators of rational numbers x̂1, . . . , x̂n (i.e., q̂x1, . . . , q̂xn ∈ Z+). Next, we create a multiset !q, which
contains q̂xi copies of index i for each i ∈ [n] (i.e., |!q| � qk). Finally, we sample a subset 6̃q of k items from set
!q uniformly (i.e., with probability (qkk

−1)). The detailed description is in Algorithm 6. In this case, the sampling
procedure has the following interpretation. Because sum of i.i.d. Bernoulli random variables is binomial, we let
{X′

i }i∈[n] be independent binomial random variables where X′
i has number of trials q̂xi and probability of

success 1/q for each i ∈ [n]. We terminate the sampling procedure if the total number of succeeded trials equals
to k.

The following lemma shows that the probability distributions of outputs of Algorithms 5 and 6 can be
arbitrarily close.

Lemma 5. Let 6̃ and 6̃q be outputs of Algorithms 5 and 6, respectively. Then, 6̃q →μ 6̃ (i.e., the probability distribution of 6̃q

converges to 6̃ as q → ∞).

Proof. Consider two classes of independent random variables {Xi}i∈[n], {X′
i }i∈[n], where Xi is Poisson random

variable with arrival rate x̂i for each i ∈ [n] and X′
i is binomial random variable with number of trials q̂xi and

probability of success 1/q for each i ∈ [n], respectively.
Given a size k multiset 5 with support Supp5 ⊆ [n] and M5(i) denoting the number of occurrences of i in 5,

according to the description of Algorithm 6, we have

P 6̃ � 5
{ }

� P Xi � M5(i),∀i ∈ [n] ∑
i∈[n]

Xi � k

⃒⃒⃒⃒
⃒

{ }
� P Xi � M5(i),∀i ∈ [n],∑i∈[n] Xi � k

{ }
P

∑
i∈[n] Xi � k

{ }
� I |5| � k( )

∏
i∈[n] P Xi � M5(i){ }
P

∑
i∈[n] Xi � k

{ } ,

where the first equality is from the description of Algorithm 5, the second equality is by the definition of
conditional probability, the third equality is because {Xi}i∈[n] are independent from each other, and I(·) denotes
indicator function. Similarly, we also have

P 6̃q � 5
{ }

� I |5| � k( )
∏

i∈[n] P X′
i � M5(i)

{ }
P

∑
i∈[n] X′

i � k
{ } .

Followed by the well-known Poisson limit theorem (compare with Papoulis and Unnikrishna Pillai [31]), Xi
and X′

i have the same distribution as q → ∞ for any i ∈ [n]. Therefore,
P 6̃q � 5
{ }

→ P 6̃ � 5
{ }

,

when q → ∞ (that is, the outputs of Algorithms 5 and 6 have the same distribution when q → ∞). □
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Algorithm 6 Approximation of Algorithm 5
1. Suppose that (̂x, ŵ) is an optimal solution to the convex relaxation (3) with B � R+, where x̂ ∈ Qn+ with∑

i∈[n] x̂i � k and ŵ � f (̂x)
2. Let q be a common multiple of the denominators of rational numbers x̂1, . . . , x̂n (i.e., q̂x1, . . . , q̂xn ∈ Z+)
3. Duplicate q̂xi copies of index i for each i ∈ [n] as set !q (i.e., |!q| � qk)
4. Sample a subset 6̃q of k items from set !q with probability (qkk )−1
5. Output 6̃q

Now, we are ready to present our approximation results for Algorithm 5. The proof idea is based on
Lemma 5 (that is, we first analyze Algorithm 6 and apply its result to Algorithm 5 by letting q → ∞).

Proposition 4. Let 6̃ and 6̃q be outputs of Algorithms 5 and 6, respectively. Then, we have

E f 6̃q

( )( )m[ ]( )1
m ≥ E f 6̃

( )( )m[ ]( )1
m ≥ g(m, k)−1w*,

where

g(m, k) � (k −m)!km
k!

[ ]1
m≤ min e,

k
k −m + 1

{ }
. (19)

Proof. We will first show the approximation ratio of Algorithm 6 and then, apply it to Algorithm 5 by Lemma 5
when q → ∞.

i. Let (x̄′q, w̄′
q) be output of Algorithm 6. Similar to Proof of Theorem 1, we have

E w̄′
q

( )m[ ]
� ∑

S∈ !q
k

( ) 1
qk
k

( )det ∑
i∈S

aia�i

( )
� qm

qk
k

( ) ∑
S∈ !q

k

( ) 1
qm

det
∑
i∈S

aia�i

( )

� qm

qk
k

( ) ∑
S∈ !q

k

( ) 1
qm

∑
T∈ S

m( )
det

∑
i∈T

aia�i

( )
�
qm qk−m

k−m
( )
qk
k

( ) ∑
T∈ !q

m( )
1
qm

det
∑
i∈T

aia�i

( )

�
qm qk−m

k−m
( )
qk
k

( ) det
∑
i∈[n]

x̂iaia�i

( )
≥ k!
(k −m)!km f (̂x)[ ]m ≥ k!

(k −m)!km w*
( )m,

where the first and second equalities are due to Algorithm 6, the third equality is because of Lemma 2 and k ≥ m, the
fourth equality is due to interchange of summation, the fifth equality is because of the identity

∑
i∈[n] x̂iaia�i � ∑

i∈!q
1
q aia

�
i ,

the first inequality holds because (qk)m(qk −m)!/(qk)! ≥ 1, and the last inequality is because x̂ is an optimal solution of the
continuous relaxation.

ii. From Lemma 5, we know that the output of Algorithm 6 has the same probability distribution as the
output of Algorithm 5 when q → ∞. Thus, we have

E w̄( )m[ ] � lim
q→∞E w̄′

q

( )m[ ]
� lim

q→∞
qm qk−m

k−m
( )
qk
k

( ) det
∑
i∈[n]

x̂iaia�i

( )

� k!
(k −m)!km det

∑
i∈[n]

x̂iaia�i

( )
� k!
(k −m)!km f (̂x)[ ]m.

iii. Next, let

g(m, k) � (k −m)!km
k!

[ ]1
m

,

and we would like to investigate its bound.
First note that the function

log
g(m, k + 1)
g(m, k)

( )
� m log 1 + 1

k

( )
+ log 1 − m

k + 1

( )
,
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which is nondecreasing over k ∈ [m,∞). Thus, we have

log
g(m, k + 1)
g(m, k)

( )
≤ lim

k′→∞
log

g(m, k′ + 1)
g(m, k′)

( )
� 0,

that is, g(m, k) ≤ g(m,m) � [mm/m!]1m ≤ e.
However, because (k −m)!/k! ≤ 1/(k −m + 1)m, thus, we have

g(m, k) ≤ km

(k −m + 1)m
[ ]1

m� k
k −m + 1

.

Hence, g(m, k) ≤ min{e, k/(k −m + 1)}. □

From Proposition 4, we note that, when k is large enough, the output of Algorithm 5 is almost optimal.
Finally, we present our approximation results blow.

Theorem 5. For any positive integers m ≤ k ≤ n,
i. both Algorithms 5 and 6 yield 1/e approximation for the D-optimal design problem with repetitions and
ii. given any ε ∈ (0, 1), if k ≥ (m − 1)/ε, then both Algorithms 5 and 6 yield (1 − ε) approximation for the D-optimal

design problem with repetitions.

Proof. The first result directly follows from Proposition 4. For the second one, given ε ∈ (0, 1), by Proposition 4, let

k −m + 1
k

≥ 1 − ε.

Then, the conclusion follows by letting k ≥ (m − 1)/ε. □

To conclude this part, we remark that, although the results from previous sections hold for D-optimal design
with repetitions as well, Algorithm 5 has tighter approximation ratios. Therefore, investigating the convex
relaxation solution and approximation algorithms of D-optimal design with repetitions alone does help us
improve the approximation bounds.

5.1. Deterministic Implementation
Similar to Section 3.4, the approximation ratios presented in the previous subsection hold in the sense of
expectation. Recall that (̂x, ŵ) is an optimal solution of (3) with x̂ ∈ Qn+, q is a common multiple of the de-
nominators x̂1, . . . , x̂n, and multiset !q of size qk contains q̂xi copies of index i for each i ∈ [n]. In this subsection,
we will show that the deterministic Algorithm 7 applies to Algorithm 5, which achieves the same approx-
imation ratios.

In this deterministic Algorithm 7, let S be a subset such that |S| � s ≤ k. Let 6̃q, 6̃ be outputs of Algorithms 5
and 6, respectively. We know that, from Lemma 5, 6̃q →μ 6̃ when q → ∞. Thus, the expectation of mth power of
objective function given S is

H(S) :� E det
∑
i∈6̃

aia�i

( )⃒⃒⃒⃒
S ⊆ 6̃

[
] � lim

q→∞E det
∑
i∈6̃q

aia�i

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⃒⃒⃒⃒
⃒⃒S ⊆ 6̃q

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� lim
q→∞

∑
U∈ !q\S

k−s
( )

1
qk∑

Ū∈ !q\S
k−s

( ) 1
qk
det

∑
i∈U

aia�i +∑
i∈S

aia�i

( )

� lim
q→∞

qk − s
k − s

( )−1 ∑
U∈ !q\S

k−s
( ) ∑

R∈ U∪S
m( )

det
∑
i∈R

aia�i

( )

� lim
q→∞

∑min{k−s,m}

r�1

qr qk−s−r
k−s−r

( )
qk−s
k−s

( ) ∑
R∈ !q

m( ),|R\S|�r
q−r det

∑
i∈R

aia�i

( )
(20)
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� ∑min{k−s,m}

r�1
lim
q→∞

qr qk−s−r
k−s−r

( )
qk−s
k−s

( ) lim
q→∞

∑
R∈ !q

m( ),|R\S|�r
q−r det

∑
i∈R

aia�i

( )
,

� ∑min{k−s,m}

r�1

(k − s)!
kr(k − s − r)! limq→∞

∑
R∈ !q

m( ),|R\S|�r
q−r det

∑
i∈R

aia�i

( )
,

where the second equality is due to 6̃q →μ 6̃ when q → ∞, the third equality is a direct computing of the
conditional probability, the fourth equality is due to Lemma 2, and the fifth and last equalities are because
both limq→∞

qr(qk−s−rk−s−r )
(qk−sk−s )

and limq→∞
∑

R∈(!q
m ),|R\S|�r q

−r det(∑i∈Raia�i ) exist and are finite for each r ∈ {1, . . . ,min{k− s,m}}.
Algorithm 7 Derandomization of Algorithm 6
1. Suppose that (̂x, ŵ) is an optimal solution to the convex relaxation (3) with B � [0, 1], where x̂ ∈ [0, 1]n with∑

i∈[n] x̂i � k and ŵ � f (̂x)
2. Initialize chosen set S � ∅
3. do
4. Let j* ∈ argmaxj∈[n]\6̃ H(S ∪ j), where H(S ∪ j) defines (20), and the limit can be computed by Lemma 6
5. Add j* to set S
6. while |S| < k
7. Output S

We note that, from Lemma 3, for each r � 1, . . . ,min{k − s,m}, the limit in (20) can be computed efficiently
according to the following lemma.

Lemma 6. For each r � 1, . . . ,min{k − s,m},
i. the term

∑
R∈(!q

m ),|R\S|�r q
−r det(∑i∈R aia�i ) is equal to the coefficient tr of the following determinant function

det
t
q

∑
i∈!q\S

aia�i +∑
i∈S

aia�i

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠; and

ii. the term limq→∞
∑

R∈(!q
m ),|R\S|�r q

−r det(∑i∈R aia�i ) is equal to the coefficient tr of the following determinant function

det t
∑
i∈[n]

x̂iaia�i +∑
i∈S

aia�i

( )
.

Proof.
i. The results follow directly by Lemma 3.
ii. By part (i), the term limq→∞

∑
R∈(!q

m ),|R\S|�r q
−r det(∑i∈R aia�i ) is equal to the coefficient tr of the following

determinant function:

lim
q→∞det

t
q

∑
i∈!q\S

aia�i +∑
i∈S

aia�i

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠.

Because limq→∞ 1/q
∑

i∈!q\S aia�i � ∑
i∈[n] x̂iaia�i and det(·) is a continuous function, thus we arrive at the

conclusion. □

Algorithm 7 proceeds as follows. We start with an empty subset S of chosen elements, and for each j /∈ S, we
compute the expected mth power of objective function that j will be chosen H(S ∪ j). We update S :� S ∪ {j*},
where j* ∈ argmaxj∈[n]\S H(S ∪ j). Then, go to next iteration. This procedure will terminate if |S| � k. Similar to
Algorithms 2 and 4, the time complexity of Algorithm 7 is O(m4nk2). Thus, in practice, we recommend
Algorithm 5 for D-optimal design problem with repetitions.

The approximation results for Algorithm 7 are identical to those in Theorem 5.
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Theorem 6. For any positive integers m ≤ k ≤ n and ε ∈ (0, 1),
i. deterministic Algorithm 7 is efficiently computable and yields 1/e approximation for the D-optimal design problem

with repetitions; and
ii. given ε ∈ (0, 1), if k ≥ (m − 1)/ε, then deterministic Algorithm 7 yields (1 − ε) approximation for the D-optimal

design problem with repetitions.

6. Closing Remarks and Conclusion
In this section, we make our final remarks about the proposed algorithms and present a conclusion of
this paper.

6.1. Closing Remarks
We first remark that the proposed methods also work for A-optimality design, which was studied in Nikolov
et al. [30]. In their paper, the authors also showed that the proposed methods might not work for other criteria.
For D-optimal design problem without repetitions, if k ≈ m, then we recommend sampling Algorithm 1
because of its efficiency and accuracy; if k � m, then we recommend sampling Algorithm 3 because of its
efficiency and asymptotic optimality. For D-optimal design problem with repetitions, we recommend sam-
pling Algorithm 5, because it is much more efficient than its deterministic counterpart.

6.2. Conclusion
In this paper, we show that D-optimal design problem admits 1

e-approximation guarantee. That is, we propose
a sampling algorithm and its deterministic implementation, the solution of which is at most 1/e of the true
optimal objective value, giving the first constant approximation ratio for this problem. We also analyze a
different sampling algorithm, which achieves the asymptotic optimality: that is, the output of the algorithm is
(1 − ε) approximation if k ≥ 4m/ε + 12/ε2 log(1/ε) for any ε ∈ (0, 1). For D-optimal design problem with
repetitions (i.e., each experiment can be picked multiple times), our sampling algorithm and its deran-
domization improve asymptotic approximation ratio (i.e., the output of the algorithm is (1 − ε) approximation
if k ≥ (m − 1)/ε for any ε ∈ (0, 1)). For future research, we would like to investigate if more sophisticated
relaxation schemes can be used to improve the approximation analyses. Another direction is to prove the
tightness of the approximation bounds. In particular, we conjecture that, for D-optimal design problem with or
without repetitions, to achieve (1 − ε) approximation, one must have k � Ω(m/ε).
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Appendix A. Proofs
A.1. Proof of Lemma 2

Lemma 2. Suppose that ai ∈ Rm for i ∈ T with |T| ≥ m; then, we have the following identity

det
∑
i∈T

aia�i

( )
� ∑

S∈ T
m( )
det

∑
i∈S

aia�i

( )
. (5)

Proof. Suppose that T � {i1, . . . , i|T|}. Let matrix A � [ai1 , . . . , ai|T| ]; then, we have

det
∑
i∈T

aia�i

( )
� det AA�( )

. (A.1)

Next, the right-hand side of (A.1) is equivalent to

det AA�( ) � ∑
S∈ T

m( )
det AS( )2� ∑

S∈ T
m( )
det ASA�

S

( ) � ∑
S∈ T

m( )
det

∑
i∈S

aia�i

( )
,

where AS is the submatrix of A with columns from subset S, the first equality is due to the Cauchy–Binet formula
(Broida and Williamson [12]), the second equality is because AS is a square matrix, and the last inequality is the definition
of ASA�

S . □
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A.2. Proof of Lemma 3

Lemma 3. For any x ∈ [0, 1]n, then the following identify holds

det
∑
i∈[n]

xiaia�i

( )
� ∑

S∈ [n]
m( )

∏
i∈S

xi det
∑
i∈S

aia�i

( )
. (6)

Proof. Let P � diag(x) ∈ Rn×n be the diagonal matrix with diagonal vector equal to x and matrix A � [a1, . . . , an]. By Lemma 2,
we have

det
∑
i∈[n]

xiaia�i

( )
� det

∑
i∈[n]

̅̅̅
xi

√
ai

( ) ̅̅̅
xi

√
ai

( )�( )
� ∑

S∈ [n]
m( )

det
∑
i∈S

xiaia�i

( )
. (A.2a)

Note that
∑

i∈S xiaia�i � ASPSA�
S , where AS is the submatrix of A with columns from subset 6̃, and PS is the square

submatrix of P with rows and columns from S. Thus, (A.2a) further yields

det
∑
i∈[n]

xiaia�i

( )
� ∑

S∈ [n]
m( )

det
∑
i∈S

xiaia�i

( )
� ∑

S∈ [n]
m( )

det ASPSA�
S

( ) � ∑
S∈ [n]

m( )
det AS( )2det PS( )

� ∑
S∈ [n]

m( )
∏
i∈S

xi det
∑
i∈S

aia�i

( )
,

(A.2b)

where the third and fourth equalities are because the determinant of products of square matrices is equal to the products of
individual determinants. □

A.3. Proof of Proposition 1
Before proving Proposition 1, we first introduce two well-known results for sum of homogeneous and symmetric
polynomials.

Lemma A.1. (Maclaurin’s Inequality (Lin and Trudinger [26])). Given a set S, an integer s ∈ {0, 1, · · · , |S|}, and nonnegative vector
x ∈ R

|6̃|
+ , we must have

1
|S|

∑
i∈S

xi

( )
≥ s

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
|S|
s

( ) ∑
Q∈ S

s( )
∏
i∈Q

xi

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

√√√√√
.

Lemma A.2. (Generalized Newton’s Inequality (Xu [41])). Given a set S, two nonnegative positive integers s, τ ∈ Z+ such that
s, τ ≤ |S|, and nonnegative vector x ∈ R

|S|
+ , then we have∑

R∈ S
s( )
∏

j∈R xj
( )

|S|
s

( ) ∑
R∈ S

τ( )
∏

i∈R xi
( )

|S|
τ

( ) ≥
∑

Q∈ S
s+τ( )

∏
i∈Q xi

6̃| |
s+τ
( ) .

Now, we are ready to prove the main proposition.

Proposition 1. Let 6̃ be the random set defined in (4). Then, for any T ⊆ [n] such that |T| � m, we have

P T ⊆ 6̃
[ ]

≥ 1
g(m, n, k)

∏
i∈T

x̂i :� αm
∏
i∈T

x̂i,

where

g(m, n, k) � max
y

∑m
τ�0

n −m
k − τ

( )
(n −m)m−τ n −m

k −m

( ) m
τ

( )
mτ

k − y
( )m−τ y

( )τ: mk
n

≤ y ≤ m
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭. (9)

Proof. According to Lemma 1 and sampling procedure in (4), we have

P T ⊆ 6̃
[ ]

� ∏
j∈T

x̂j

∑
R∈ [n]\T

k−m( )
∏

j∈R x̂j∑
S̄∈ [n]

k( )
∏

i∈S̄ x̂i
� ∏

j∈T
x̂j

∑
R∈ [n]\T

k−m( )
∏

j∈R x̂j∑m
τ�0

∑
W∈ T

τ( )
∏

i∈W x̂i
∑

Q∈ [n]\T
k−τ( )

∏
i∈Q x̂i

( ) ,
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where the second equality uses the following identity

[n]
k

( )
� ⋃m

τ�0
W ∪Q : W ∈ T

τ

( )
,Q ∈ [n] \ T

k − τ

( ){ }
.

We now let

AT(x) �
∑m

τ�0
∑

W∈ T
τ( )
∏

i∈W x̂i
∑

Q∈ [n]\T
k−τ( )

∏
i∈Q x̂i

( )
∑

R∈ [n]\T
k−m( )

∏
j∈R x̂j

. (A.3a)

According to Definition 1, it is sufficient to find a lower bound to 1∏
i∈T x̂i

P[T ⊆ 6̃]: that is,

1
g(m, n, k) ≤ min

x

1∏
i∈T x̂i

P T ⊆ 6̃
[ ]

� 1
AT(x) :

∑
i∈[n]

x̂i � k, x ∈ [0, 1]n
{ }

.

Equivalently, we would like to find an upper bound of AT(x) for any x that satisfies
∑

i∈[n] x̂i � k, x ∈ [0, 1]n: that is, show
that

g(m, n, k) ≥ max
x

AT(x) :
∑
i∈[n]

x̂i � k, x ∈ [0, 1]n
{ }

. (A.3b)

In the following steps, we first observe that, in (A.3a), the components of {xi}i∈T and {xi}i∈[n]\T are both symmetric in the
expression of AT(x). We will show that, for the worst case, {xi}i∈T are all equal and that {xi}i∈[n]\T are also equal. We also
show that x̂j ≤ x̂i for each i ∈ T and j ∈ [n] \ T. This allows us to reduce the optimization problem in right-hand side (R.H.S.)
of (A.3b) to a single-variable optimization problem (i.e., (9)). The proof is now separated into the following three claims.

First, we will prove the following claim.

Claim A.1. The optimal solution to (A.3b) must satisfy the following condition: for each i ∈ T and j ∈ [n] \ T, x̂j ≤ x̂i.

Proof. Weprove it by contradiction. Suppose that there exists i′ ∈ T and j′ ∈ [n] \ T, where x̂i′ < x̂j′ . By collecting the coefficients
of 1, x̂i′ , x̂j′ , x̂i′ x̂j′ , we have

AT(x) � b1 + b2x̂i′ + b2x̂j′ + b3x̂i′ x̂j′
c1 + c2x̂j′

,

where b1, b2, b3, c1, c2 are all nonnegative numbers with

b1 �
∑

S̄∈ [n]\{i′ ,j′}
k( )

∏
i∈S̄

x̂i, b2 �
∑

S̄∈ [n]\{i′ ,j′}
k−1( )

∏
i∈S̄

x̂i, b3 �
∑

S̄∈ [n]\{i′ ,j′}
k−2( )

∏
i∈S̄

x̂i

c1 �
∑

R∈ [n]\(T∪{j′})
k−m( )

∏
j∈R

x̂j, c2 �
∑

R∈ [n]\(T∪{j′})
k−m−1( )

∏
j∈R

x̂j.

According to the following inequality,

x̂i′ x̂j′ ≤ 1
4

x̂i′ + x̂j′
( )2,

therefore, AT(x) has a larger value if we replace x̂i′ , x̂j′ by their average (i.e., x̂i′ :� 1
2 (̂xi′ + x̂j′ ), x̂j′ :� 1

2 (̂xi′ + x̂j′ )). □

Second, we will prove the following claim.

Claim A.2. For any feasible x to (A.6b) and for each S ⊆ [n] and s ∈ {0, 1, . . . , |S|}, we must have

∑
Q∈ S

s( )
∏
i∈Q

x̂i ≤
|S|
s

( )
|S|s

∑
i∈S

x̂i

( )s
.

Proof. This directly follows from Lemma A.1. □

Also, we will prove the following claim.
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Claim A.3. For each T ⊆ [n] with |T| � k and τ ∈ {0, 1, · · · ,m}, we must have

∑
Q∈ [n]\T

k−τ( )
∏
i∈Q

x̂i ≤
n −m
k − τ

( )
(n −m)m−τ n −m

k −m
( ) ∑

R∈ [n]\T
k−m( )

∏
j∈R

x̂j

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ∑

i∈[n]\T
x̂i

( )m−τ
.

Proof. This can be shown by Claim A.2 and Lemma A.2, that is

n −m
k − τ

( )
(n −m)m−τ n −m

k −m
( ) ∑

R∈ [n]\T
k−m( )

∏
j∈R

x̂j

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ∑

i∈[n]\T
x̂i

( )m−τ

≥
n −m
k − τ

( )
n −m
m − τ
( ) n −m

k −m
( ) ∑

R∈ [n]\T
k−m( )

∏
j∈R

x̂j

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ∑

S∈ [n]\T
m−τ( )

∏
i∈S

x̂i

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ≥ ∑

Q∈ [n]\T
k−τ( )

∏
i∈Q

x̂i,

where the first inequality is due to Claim A.2 and the last inequality is because of Lemma A.2. □

Thus, by Claim A.3, for any feasible x to (A.3b), the function AT(x) in (A.3a) can be upper bounded by

AT(x) ≤
∑m
τ�0

n −m
k − τ

( )
(n −m)m−τ n −m

k −m
( ) ∑

i∈[n]\T
x̂i

( )m−τ ∑
W∈ T

τ( )
∏
i∈W

x̂i

≤ ∑m
τ�0

n −m
k − τ

( )
(n −m)m−τ n −m

k −m
( ) m

τ
( )
mτ

∑
i∈[n]\T

x̂i

( )m−τ ∑
i∈T

x̂i

( )τ

≤ max
y

∑m
τ�0

n −m
k − τ

( )
(n −m)m−τ n −m

k −m
( ) m

τ
( )
mτ

k − y
( )m−τ y

( )τ: mk
n

≤ y ≤ m
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ :� g(m, n, k),

(A.3c)

where the second inequality is because of Claim A.2, and the last inequality is because we let y � ∑
i∈T x̂i, which is no larger

than m, maximize over it and Claim A.1 yields that y/m ≥ (k − y)/(n −m) (i.e., mk/n ≤ y ≤ m). This completes the proof. □

A.4. Proof of Proposition 2

Proposition 2. For any n ≥ k ≥ m, we have

α−1 � g(m, n, k)[ ]1
m≤ lim

τ→∞ g(m, τ, k)[ ]1
m ≤ min e, 1 + k

k −m + 1

{ }
. (10)

Proof.
i. First of all, we prove the following claim.

Claim A.4. For any m ≤ k ≤ n, we have

g(m, n, k) ≤ g(m, n + 1, k).

Proof. Let y* be the maximizer to (9) for any given m ≤ k ≤ n: that is,

g(m, n, k) � ∑m
τ�0

n −m
k − τ

( )
(n −m)m−τ n −m

k −m
( ) m

τ
( )
mτ

k − y*
( )m−τ y*

( )τ.
Clearly, y* is feasible to (9) with pair (m, n + 1, k). We only need to show that

g(m, n, k) ≤ ∑m
τ�0

n + 1 −m
k − τ

( )
(n + 1 −m)m−τ n + 1 −m

k −m
( ) m

τ
( )
mτ

k − y*
( )m−τ y*

( )τ.

Singh and Xie: Approximation Algorithms for D-optimal Design
Mathematics of Operations Research, 2020, vol. 45, no. 4, pp. 1512–1534, © 2020 INFORMS 1531



In other words, it is sufficient to show, for any 0 ≤ τ ≤ m, we must have

n −m
k − τ

( )
(n −m)m−τ n −m

k −m
( )

≤
n + 1 −m
k − τ

( )
(n + 1 −m)m−τ

(
n + 1 −m
k −m

) ,

which is equivalent to prove

n − k
n −m

· n − k − 1
n −m

· · · n − k −m + τ + 1
n −m

≤ n + 1 − k
n + 1 −m

· n + 1 − k − 1
n + 1 −m

· · · n + 1 − k −m + τ + 1
n + 1 −m

.

The inequality holds, because for any positive integers p, q with p < q, we must have p
q ≤ p+1

q+1. □

ii. By Claim A.4, it is sufficient to investigate the bound limn′→∞ g(m, n′, k), which provides an upper bound to g(m, n, k)
for any integers n ≥ k ≥ m. Therefore, from now on, we only consider the case when n → ∞ for any fixed k ≥ m.

Note that, for any given y,
∑m

τ�0
(n−mk−τ )(n−m)m−τ(n−mk−m)

(mτ)
mτ (k − y)m−τyτ is the coefficient of tk in the following polynomial:

R1(t) :� (n −m)k−m
(k − y)k−m n −m

k −m
( ) 1 + k − y

n −m
t

( )n−m
1 + y

m
t

( )m
,

which is upper bounded by

R2(t) :� (n −m)k−m
(k − y)k−m n −m

k −m
( ) 1 + k − y

n −m
t + 1

2!
k − y
n −m

t
( )2

+ . . .

( )n−m
1 + y

m
t + 1

2!
y
m
t

( )2+ . . .

( )m

� (n −m)k−m
(k − y)k−m n −m

k −m
( ) e

k−y
n−mt

( )n−m
e
y
mt

( )m
because of the inequality er � 1 + r + 1

2 r
2 + . . . for any r and t ≥ 0. Therefore, we also have

lim
n→∞

1
k!
dkR1(t)
dtk

⃒⃒⃒⃒
t�0

� lim
n→∞

∑m
τ�0

n −m
k − τ

( )
(n −m)m−τ n −m

k −m
( ) m

τ
( )
mτ

(k − y)m−τyτ

≤ lim
n→∞

∑m
τ�0

n −m
k − τ

( )
(n −m)m−τ n −m

k −m
( ) m

τ
( )
mτ

(k − y)m−τyτ

+∑m
τ�0

∑
ij∈Z+ ,∀j∈[n]∑
j∈[n−m] ij�k−τ∑
j∈[n]\[n−m] ij�τ
maxj∈[n] ij≥2

1∏
j∈[n] ij!

1

(n −m)m−τ n −m
k −m

( ) 1
mτ

(k − y)m−τyτ :� lim
n→∞

1
k!
dkR2(t)
dtk

⃒⃒⃒⃒
⃒⃒⃒
t�0

� lim
n→∞

kk

k!
(n −m)k−m

(k − y)k−m n −m
k −m

( ) ≤ lim
n→∞

kk

k!
(n −m)k−m

(k −m)k−m n −m
k −m

( )
� kk

k!
(k −m)!

(k −m)k−m :� R3(m, k),

where the first inequality is because of the nonnegativity of the second term of . 1k!
dkR2(t)
dtk |t�0, the second and third equalities

are because of two equivalent definitions of R2(t), the last inequality is due to y ≤ m, and the fourth equality holds because
of n → ∞.

Note that R3(m, k) is nondecreasing over k ∈ [m,∞). Indeed, for any given m,

log
R3(m, k + 1)
R3(m, k) � k log 1 + 1

k

( )
− (k −m) log 1 + 1

(k −m)
( )

,
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the first derivative over k of which is equal to

log 1 + 1
k

( )
− 1
k + 1

− log 1 + 1
(k −m)

( )
+ 1
k −m + 1

≤ 0,

and that is, log R3(m,k+1)
R3(m,k) is nonincreasing over k. Therefore,

log
R3(m, k + 1)
R3(m, k) � k log 1 + 1

k

( )
− (k −m) log 1 + 1

(k −m)
( )

≥ lim
k→∞

log
R3(m, k + 1)
R3(m, k) � 0.

Thus, R3(m, k) is upper bounded when k → ∞: that is,

R3(m, k) ≤ lim
k′→∞

R3(m, k′) � lim
k′→∞

1 −m
k′

( )−k′
m

[ ]m (k′ −m)m
k′(k′ − 1) · · · (k′ −m + 1) � em,

where the last equality is because limk′→∞(1 − m
k′)−

k′
m � e and limk′→∞ (k′−m)m

k′(k′−1)···(k′−m+1) � 1. Therefore, the following inequal-
ities hold:

lim
n→∞[g(m, n, k)]1m � lim

n→∞ max
y

∑m
τ�0

n −m
k − τ

( )
(n −m)m−τ n −m

k −m
( ) m

τ
( )
mτ

(k − y)m−τyτ :
mk
n

≤ y ≤ m
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
1
m

≤ R3(m, k)[ ]1m ≤ e

.

iii. We now compute another bound 1 + k/(k −m + 1) for [g(m, n, k)]1m, which can be smaller than e when k is large. By
Claim A.4, we have

g(m, n, k) ≤ lim
n′→∞ g(m, n′, k) � max

y

∑m
τ�0

(k −m)!
(k − τ)!

m
τ
( )
mτ

(k − y)m−τyτ : 0 ≤ y ≤ m

{ }
.

Note that 0 ≤ y ≤ m; thus, k − y ≤ k. Therefore, we have

lim
n→∞ g(m, n, k) ≤ ∑m

τ�0

(k −m)! mτ
( )

(k − τ)! km−τ ≤ ∑m
τ�0

k
k −m + 1

( )m−τ
� 1 + k

k −m + 1

( )m
,

where the last inequality is because

k −m( )!
k − τ( )! �

1
k − τ( ) · · · k −m + 1( ) ≤

1
k −m + 1

( )m−τ
.

Therefore, we have

[g(m, n, k)]1m � max
y

∑m
τ�0

n −m
k − τ

( )
(n −m)m−τ n −m

k −m
( ) m

τ
( )
mτ

(k − y)m−τyτ :
mk
n

≤ y ≤ m
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
1
m

≤ 1 + k
k −m + 1

for any m ≤ k ≤ n. □
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