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Abstract—Deterministic execution for GPUs is a desirable
property as it helps with debuggability and reproducibility. It is
also important for safety regulations, as safety critical workloads
are starting to be deployed onto GPUs. Prior deterministic archi-
tectures, such as GPUDet, attempt to provide strong determinism
for all types of workloads, incurring significant performance
overheads due to the many restrictions that are required to satisfy
determinism. We observe that a class of reduction workloads, such
as graph applications and neural architecture search for machine
learning, do not require such severe restrictions to preserve
determinism. This motivates the design of our system, Deter-
ministic Atomic Buffering (DAB), which provides deterministic
execution with low area and performance overheads by focusing
solely on ordering atomic instructions instead of all memory
instructions. By scheduling atomic instructions deterministically
with atomic buffering, the results of atomic operations are
isolated initially and made visible in the future in a deterministic
order. This allows the GPU to execute deterministically in parallel
without having to serialize its threads for atomic operations as
opposed to GPUDet. Our simulation results show that, for atomic-
intensive applications, DAB performs 4× better than GPUDet
and incurs only a 23% slowdown on average compared to a
non-deterministic GPU architecture. We also characterize the
bottlenecks and provide insights for future optimizations.

Index Terms—GPU architecture, determinism, performance,
parallel programming

I. INTRODUCTION

GPUs are extensively used to accelerate parallel workloads,
such as machine learning [1], [2], [3] and graph workloads [4].
The utilization and adoption of machine learning and graph
applications are growing rapidly, reaching a wide variety of
areas such as autonomous agents [5], biomedical engineering,
physics, commerce, and finance.

However, the non-deterministic nature of multi-threaded
processors, such as GPUs, has become an issue in the field
of machine learning. The network models trained by non-
deterministic GPU architectures have non-trivial variance in
achieved accuracy, even if all other aspects are held constant.
Coupled with the long time periods required for training, GPU
non-determinism presents a major challenge. This is especially
important since the improvements in model accuracy often
range within 1-3% of the baseline, in part due to the effects
of non-deterministic GPUs. Reinforcement learning is also af-
fected by non-determinism, with GPU variance around 12% [6].
Safety critical applications that adopt machine learning models,

Fig. 1: Simplified non-deterministic reduction example: Base-
10, 3-digit precision, rounding up (details in Section III-B).

such as autonomous agents and medical diagnostics, require
reproducibility to ensure that systems meet specifications or
that experimental results can be replicated for verification [7],
[8]. The variance caused by GPU non-determinism also affects
graph applications, and can become problematic as graphs
are starting to be used in graph neural networks as well [3].
In addition to providing clean and reproducible experiments,
determinism can also improve debugging, e.g., if an algorithm
converges only sometimes on non-deterministic hardware,
determinism will allow us to accurately pinpoint the root cause
of the divergence.

Prior work attempted to provide deterministic execution
for multi-threaded CPU code [9], [10], [11], GPUs [12],
and more targeted solutions like reproducible floating-point
arithmetic [13]. CPU-focused solutions such as Kendo [9]
work well on a small number of threads but do not scale well
as they incur non-trivial thread serialization. GPU solutions
such as GPUDet [12] provide strong determinism for all types
of workloads by handling all memory instructions. However,
the generic deterministic architecture of GPUDet incurs high
performance overheads since it places many restrictions on
executions and threads are often required to stall or serialize.
Domain-specific solutions such as the work by Collange
et al. [13] focused on the reproducibility of floating point
atomics by proposing to enforce floating point ordering and to
use a wide accumulator to eliminate floating point rounding
errors [13]. However, these methods incur high performance
and area overheads, respectively.

In this work, we overcome these scalability and performance
challenges by focusing on GPU reduction workloads and
providing deterministic execution only for GPU atomic opera-
tions. Reduction workloads, although traditionally less common
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in general-purpose GPU (GPGPU) programs, have become
increasingly popular in recent years as machine learning
training and graph analytics workloads have targeted GPUs. For
example, libraries such as Nvidia’s cuDNN machine learning
library [14], and graph applications such as Betweenness
Centrality (BC) and PageRank, suffer from non-determinism
issues in practice [6], [15], [16], [17], [18], [19]. For these
workloads, there are several intertwined sources of non-
determinism. The unpredictable states of the memory hierarchy
and various heuristic-based GPU schedulers cause threads to
be scheduled in a non-deterministic manner, which affects
the order of operations. Coupled with non-associative floating
point operations, this can lead to different results from the
same program with the same inputs (Figure 1).

To overcome these issues we exploit the insight, much like
modern memory consistency models [20], [21], [22], [23], [24],
[25], [26], [27], [28], [29], that we can provide provide low
overhead, low performance penalty determinism for GPUs by
focusing solely on atomic instructions. We demonstrate that
determinism for atomics is sufficient to guarantee determinism
under an assumption of data-race freedom (elaborated in
Section IV-A), a property known as weak determinism [9].
Refining this notion of weak determinism further for GPUs,
DAB exploits the relaxed atomics used in graph analytics and
machine learning GPU workloads [29] to reduce the overheads
of deterministic execution. The crux of our approach is to
provide hardware buffers for atomic operations to keep them
isolated from other threads. We evaluate the costs and benefits
of providing this buffering at various levels of the GPU thread
hierarchy, including the warp- and scheduler-levels. Scheduling
of threads within the chosen level is done deterministically to
avoid the deleterious affects of floating-point rounding, as is
the process of flushing buffers periodically when they reach
capacity. Broadly, when more threads share a buffer it lowers
the hardware costs, but imposes more restrictions on GPU
scheduling and can have mixed effects on buffer flushing,
ultimately resulting in a complex set of trade-offs which we
explore.

Overall, this work makes the following contributions:
1) We show that weak determinism can improve perfor-

mance and provide correctness for reduction workloads
that use atomic arithmetic instructions.

2) We propose DAB, an architecture extension that provides
deterministic execution on GPUs with low overheads for
reduction workloads.

3) We introduce different atomic buffering schemes and
characterize them on atomic-intensive benchmarks.

4) We propose different determinism-aware schedulers to
enable buffering at a coarser granularity, greatly reducing
the area overhead required for atomic buffering.

II. BACKGROUND AND MOTIVATION

This section gives an overview of the neural network and
graph algorithms commonly deployed on GPUs, and their
sources of non-determinism. It also describes the consequences
of non-determinism for these workloads.

A. Neural Networks

Neural networks have emerged as a powerful tool to solve
problems in domains such as natural language processing [30],
[31], [32], image [1], [2], [33], [34], speech [35], [36],
[37], [38], [39], and pattern recognition [40]. They repeat
a computationally intensive training process numerous times
to tune hyperparameters and search for optimal network
architectures [41].

Due to its parallel nature training is performed on GPUs.
One of the most common APIs used for neural network training
is Nvidia’s cuDNN library [14], which offers algorithms
for training different types of networks. A subset of these
algorithms are used to train convolutional neural networks
(CNNs), where each evoked call trains either one layer
of activations or weights. While computationally efficient
algorithms such as Winograd [42] are often favored, they
have high memory overheads and have restrictive dimensional
constraints (3×3 or 5×5 filters). For layers where Winograd
is not suitable, a non-deterministic algorithm is often used
instead, since it has zero memory overhead, no dimensional
restrictions, and is sometimes faster than deterministic algo-
rithms. Increasingly 1×1 filters are employed to unlock deeper
and wider networks [43].

Our analysis finds that non-determinism is caused by floating
point atomics and the non-associativity of floating point val-
ues. 1 Fused multiply-add operations are executed on activation
and gradients, and atomics update the weight gradients. Though
the non-deterministic effects are small, they can propagate and
amplify throughout the network [44], resulting in unacceptable
variances in results. This is especially problematic during
hyperparameter tuning or network architecture search where
changes in accuracy may be due to changes to the model or
non-deterministic execution.

B. Graph Algorithms

Graph algorithms are used in analyzing social [45] and
biological networks [46], computer networking [47], [48],
artificial intelligence [49]. For example, Betweenness-Centrality
(BC) [50] is a well-known graph algorithm used to classify
popular nodes within a network. Efficient GPU implementations
of BC have been developed [4], [51]. Similar to cuDNN,
the source of non-determinism in GPU implementations of
BC is the non-associativity of floating point addition. BC
performs a graph traversal and iteratively updates node data
using atomic adds. BC is used in applications of machine
learning to physical [52] and biological sciences [53], [54],
[55], [56], and in reinforcement learning [57], where physical
phenomena are represented as graphs.

1According to [14], a non-deterministic algorithm is available for calculating
a particular loss function for recurrent neural networks (RNNs). However,
we were unable to find the source of non-determinism in RNNs, regardless
of the chosen algorithm. The disassembled PTX also suggests that the non-
deterministic algorithm is not a reduction algorithm, so we leave RNNs as
future work.
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Fig. 2: AtomicAdd running on DAB vs locking algorithms on
non-deterministic GPU, normalized to AtomicAdd, simulated

on GPGPU-Sim.

C. Software Based Determinism

While deterministic execution can be achieved through
software solutions for both neural network training and graph
algorithms, there are some drawbacks. Many software-based
determinism schemes may require non-trivial effort in order to
have comparable performance to the non-deterministic alterna-
tive. For example, while cuDNN’s deterministic convolution
algorithm has good performance, it is the result of hand-
tuned SASS code optimized for a given GPU architecture [14].
The required engineering work is a significant overhead for
enabling deterministic execution on a general set of workloads.
Without heavy optimization, software solutions that render
generic reduction workloads deterministic can incur significant
performance overheads [13].

To understand the performance impact of using deterministic
versus non-deterministic GPU algorithms, we designed a simple
microbenchmark that summed up elements of an array into a
single output variable. In the non-deterministic algorithm, each
thread atomically adds an array element to the output. Since the
ordering of atomic operations is non-deterministic, the output
is non-deterministic as well. To achieve deterministic results,
reduction trees or ticket lock-style GPU algorithms [58], [59]
could be used to sum up the elements. While reduction trees
are fast, they assume the summed values are available a priori,
whereas reduction workloads require calculating the summed
values on the fly. This means that applying reduction trees
to reduction workloads would require expensive barriers or
a separate kernel to ensure all dynamically generated values
are available. Although locks are sometimes not preferred for
GPUs due to poor performance and potential SIMT deadlock
issues [60], [61], we utilize the deterministic behavior provided
by them to compare to our non-deterministic approach. We
implemented three locking algorithms: a basic Test&Set-style
centralized ticket lock where each thread has the same ticket
number for every run (and thus the order threads perform
their atomics in is deterministic), a variant that reduces
overhead by performing exponential backoff in software when
the Test&Set’s lock acquisition fails, and a Test&Test&Set
algorithm that reduces Test&Set’s overhead by only attempting
to acquire the lock when it is likely to succeed. Figure 2

compares the execution time of atomicAdd running on DAB
to the three different locking algorithms on a non-deterministic
GPU in GPGPU-Sim, normalized to atomicAdd. Although
the optimized deterministic approaches reduce the overhead
over the base Test&Set algorithm, especially as array size
(and thus contention) increase, all three locking algorithms
take substantially longer than the non-deterministic atomicAdd
version.

Our microbenchmark demonstrates that non-deterministic
algorithms can significantly outperform deterministic ones.
However, for realistic workloads the performance gap between
deterministic and non-deterministic algorithms is more blurred.
Similar to our microbenchmark, cuDNN’s non-deterministic
algorithms often utilize atomics to improve performance.
However, as customers preferred deterministic algorithms,
NVIDIA focused their efforts on optimizing deterministic
algorithms, which closed the performance gap between de-
terministic and non-deterministic algorithms [62]. Thus, for
CNN training, we found that the gap between the deterministic
and non-deterministic convolution algorithms heavily depends
on the dimensions of the convolution, and neither algorithm
consistently performs better than the other across all dimensions.
Prior work has also demonstrated similar conclusions between
deterministic (pull-based) and non-deterministic (push-based)
graph algorithms, where the relative performance between the
push- and pull-based algorithms is dependent on the input
graph [16], [19].

D. Lack of Reproducibility
Reproducibility and verifiability are essential aspects in

software research and development. It allows us to verify the
correctness of experimental results and easily build off prior
work. However, both graph analytics and machine learning
research is faced with the problem of a lack of reproducibility.
Recent work surveyed recent publications in major machine
learning conferences and concluded that the high variance
between trials makes it difficult to isolate the impact of the
novel contributions introduced in each work [15]. This is
particularly an issue since the improvements in accuracy often
range within 1-3% compared to the baseline, making it difficult
to differentiate between the effects of random initialization,
seeding, non-deterministic results, and legitimate improvements.
Similarly, additional work investigated the sources of non-
determinism in vision-based reinforcement learning and iden-
tified several key sources: non-deterministic GPU operations,
network initialization, learning environment, batching, and
exploration [6]. Crucially, despite holding every other aspect
constant and only introducing non-determinism due to non-
deterministic GPU operations, the results had a variance of 12%.
This is especially crucial for safety critical applications such as
autonomous vehicles and medical diagnostics, where rigorous
safety regulations demand reproducibility and verifiability.

III. CHALLENGES OF DETERMINISM

This section outlines the challenges of achieving determinis-
tic execution for GPU reduction workloads and the limitations
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of prior work.

A. Reduction Workloads

As discussed in Section II, workloads that use atomics
for reductions are commonly deployed on GPUs for their
inherent parallel nature. The structure of reduction workloads
splits computation into two phases. The first phase partitions
computation among threads, where each thread stores their
partial computations in memory. Then, a reduction kernel is
invoked which reduces these partial computations into the final
result before rewriting back to memory. However, the expensive
read-modify-write cycles to accumulate the partial results and
the memory overhead incurred to store the partial results can
be eliminated by using atomic addition operations instead [63].

B. Non-Determinism in GPUs

When executing reduction workloads on GPUs, there are
many intertwined sources of non-determinism. First, unpre-
dictable states of the memory hierarchy and various heuristic-
based schedulers cause threads to be scheduled in a non-
deterministic manner, affecting order of operations. For exam-
ple, whether a warp is scheduled can be dependent on a cache
hit or miss, which cannot be statically determined since GPU
state is unknown from previously executed kernels.

The second reason is the non-associative nature of floating
point arithmetic. Floating point numbers represent real numbers
in hardware using fractions of base 2. Due to this limitation,
real numbers cannot be expressed exactly, which leads to
representation error. Additionally, the bit width of a floating
point ALU is limited, so it is unable to calculate the exact
result, leading to floating point rounding errors when calculated
in hardware, regardless of the rounding mode. This causes
different results to be produced when performing arithmetic
in a different order. To demonstrate rounding errors caused
by ordering of reduction operations between threads, Figure 1
illustrates a simplified example, adapted from Goldberg [64].
For ease of understanding, in the example we assume a base-
10 floating-point representation, three digits of precision and
that non-significant digits are rounded up after performing
addition. Assume Thread 1, 2 and 3 increment the reduction
variable with values a = 1.00, b = 0.555, and c = −0.555.
Under the ordering on the left, the reductions compute (a+
b)+c= 1.56+(−0.555) = 1.01. With the ordering on the right,
the reductions compute (b+ c)+a = 0+1.00 = 1.00, which
differs. Similar differences can occur with higher-precision
base-2 floating-point and other rounding modes. While the
differences introduced by each individual change in reduction
ordering may be small, during lengthy computations rounding
errors can compound and become significant [65]. Such non-
determinism can cause issues for debugging and validation,
including deadlocks [66].

C. Problems with Prior Deterministic GPUs

While there have been many prior works on deterministic
execution for massively parallel systems [67], [68], [69], [70],
[71], most of these solutions focus on software. GPUDet

Fig. 3: GPUDet Execution Mode Breakdown.

focuses on providing deterministic execution on GPUs through
its hardware architecture [12]. GPUDet provides strong deter-
minism by handling all global memory instructions. It appends
all global stores to a per-thread store buffer instead of directly
writing to global memory. Execution of programs is divided
into phases called quanta, where a thread executes up to a
fixed number of instructions in parallel mode and then waits
for all other threads to end their quanta as well. If a thread
encounters an atomic instruction, it will prematurely mark the
end of its quantum and end parallel mode. Once all threads
have reached the end of their quanta, the threads enter commit
mode and global stores in the store buffers are made visible
in a deterministic manner, accelerated by Z-buffer hardware
in the GPU. Atomics are handled in serial mode, by issuing
warps serially in a set order, essentially serializing the GPU.
The imposition of frequent quantum barriers and serialization
of atomics causes GPUDet to have slowdowns of up to 10×
in some applications.

Figure 3 breaks down the execution modes of GPUDet
and compares the execution time to a non-deterministic GPU
baseline for convolution and graph applications (workloads and
methodology described in Section V). The high execution times
previously reported for BFS on GPUDet [12] are observed
in Figure 3 for BC, which also has BFS kernels. The serial
mode execution times are relatively high since these are with
atomic intensive workloads as opposed to the benchmarks in
the original work. For these benchmarks, GPUDet spends the
majority of the execution time in serial mode dealing with
atomic operations, which is the root cause of performance
slowdown. Thus, new approaches are needed.

IV. DETERMINISTIC ATOMIC BUFFERING

In this section, we first describe DAB’s memory consistency
model, which states the assumptions DAB makes about
programs and what guarantees it provides in return. Then
we describe how DAB provides determinism for reduction
workloads via atomic buffering by locally reducing atomic
operations within a core before serializing between cores.
This hierarchical approach exploits GPU atomics that become
reduction operations [29] to significantly improve performance
over serializing all atomics directly (Section III-C).

A. Memory Consistency Model
DAB uses the sequentially consistent for heterogeneous-race-

free (SC-for-HRF, or HRF) memory consistency model [24],
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Fig. 4: Block diagram of DAB hardware. Intra-core determinism
is enforced by atomic buffers and determinism-aware schedulers
(Sections IV-B-IV-C), while inter-core determinism is enforced
by a deterministic buffer flushing order (Section IV-D).

[25], [27], [29], [72], [73], which is widely used in modern
GPUs. HRF adds scoped synchronization to the popular
sequentially consistent for data-race-free (SC-for-DRF, or DRF)
memory consistency model that is widely used in multicore
CPUs [20], [21], [22], [23], [28].

Like other work [74], [75], DAB assumes CUDA programs
are DRF. Moreover, we also assume that programs respect
strong atomicity – i.e., that within a given kernel, if an address
is ever accessed atomically, all accesses must be atomic [76].
Given a compatible program, DAB guarantees more than
just SC behavior, but additionally a deterministic outcome
by imposing deterministic semantics on atomic operations.
DAB is similar to and inspired by the Kendo [9] scheme
for deterministic CPU multithreading, which also makes a
DRF assumption. For compatible kernels, DAB provides the
SyncOrder determinism of Lu et al. [77], which states that
each load returns the same value on each execution. DAB-
incompatible kernels, e.g., those with data races, are not
guaranteed to execute deterministically.

While Kendo focuses on lock acquires and releases, DAB
leverages the fact that GPU reduction workloads can benefit
from relaxed memory orderings [29] to reduce the overheads
of determinism. For example, in CUDA, all atomic operations
in the programs we study are compiled into atomics with no
implicit ordering [27], and do not implicitly include a memory
fence, making them equivalent to relaxed atomics in the C,
C++, HSA, and OpenCL memory consistency models [23], [24],
[26] (separate CUDA fence instructions exist when memory
ordering is desired). This lack of memory ordering allows
these atomic operations to be aggressively buffered within
each streaming multiprocessor (SM), reducing the rate of inter-

core communication which is a key overhead in DAB.
Additionally, CUDA atomic operations can be compiled into

one of two PTX instructions: atom that returns a value in a
register or red (for “reduction”) with no output. red instructions
avoid dependencies that cross thread or warp boundaries. While
red instructions are not emitted by Nvidia’s nvcc compiler
for our workloads, we confirm through manual inspection that
the return values of atoms in our workloads are never used,
and we believe this no-return optimization is leveraged in the
SASS machine code. The lack of a return value again enables
aggressive buffering of atomics.

DAB supports all of PTX’s red instructions, including
non-associative ones like floating-point addition. DAB can
deterministically execute atom instructions, atomic loads/stores,
volatile accesses, and memory fences (none of which are found
in our workloads) by incurring a buffer flush (Section IV-D)
to provide global ordering. For simplicity, in the rest of this
paper, atomic operations refers to red instructions. DAB also
supports CUDA’s syncthreads local barrier (found in our
cuDNN convolution workload) which includes a CTA-level
memory fence, again via a buffer flush. Though complex,
the rich interface exposed by CUDA atomics allows DAB to
provide determinism at low cost in the common case.

B. Warp-Level Atomic Buffers
In DAB, atomic instructions operate on storage in dedicated

buffers, instead of writing directly to global memory. Each
atomic buffer contains multiple entries, where each entry holds
a memory address, an argument, an opcode and a valid bit,
e.g., an atomic operation incrementing address 0xB0BA by 1
would be represented as the tuple (0xB0BA, 1, add.f32, valid).
Atomic buffers support associative search by memory address.
Each buffer has full and non-empty bits to facilitate the buffer
flushing process, which makes the partial results stored in each
atomic buffer globally visible (Section IV-D).

We begin with a simple, though impractical, scheme where
each warp has its own atomic buffer with at least 32 entries
to support all 32 threads in the warp performing an atomic
operation (Figure 5a). An atomic is executed provided sufficient
space exists in the per-warp buffer. If there are insufficient
entries the warp is blocked from issuing and the full bit is set.
Warps are kept active while the buffer is non-empty and wait
for the flushing process before they can be reclaimed.

Figure 6 shows a simplified example of warp-level buffering
illustrating operation for a single warp. For simplicity, the
example warp has one thread. We assume a 2-entry atomic
buffer so at most two atomic instructions can be executed
before stalling. Initially the buffer is empty, then an atomic
add is performed which fills the first buffer entry ( 1 ). Later,
another atomic add is performed, filling the second buffer entry
( 2 ). Since there are no more available entries in the buffer,
the full bit is set. Further atomic instructions from this warp
are blocked from issuing until the buffer is flushed.

The contents of a warp-level atomic buffer are deterministic
since they are filled based on program order. If threads in the
same warp write to the same address, we fill atomic entries
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Fig. 5: Atomic Buffering Architectures
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(right).

by increasing thread ID. This ensures a warp-level buffer has
deterministic contents under any scheduling scheme.

While simple, warp-level buffers require substantial area
overheads – each buffer entry is 9 bytes (5B address, 4B
argument, 1B for opcode + valid bit). With 32 entries per
buffer, and a maximum of 64 warps per SM, the area overhead
is quite significant at about 20 KB per SM. This motivates our
next scheme which shares atomic buffers across warps.

C. Scheduler-Level Buffering
Modern GPUs such as Nvidia’s TITAN V have 4 warp

schedulers per SM, with each scheduler responsible for issuing
a subset of warps in the SM. Scheduler-level buffering
(Figure 5b) allocates one atomic buffer per warp scheduler,
reducing the area of atomic buffers by 16× compared to warp-
level buffering (as we move from 64 warps to 4 schedulers).

With warps sharing a single atomic buffer, program order
and thread ID no longer suffice to deterministically order
atomic operations, as two warps may “race”, e.g., based
on the non-deterministic latency of cache accesses, to fill a
particular buffer entry. This requires us to adopt determinism-
aware warp scheduling, described next. We start with a
simple round-robin scheme, then successively relax this to
improve performance while preserving determinism. We defer
discussion of deterministically assigning warps to schedulers
until Section IV-C5.

1) Strict Round Robin: The most straightforward
determinism-aware warp scheduler is a strict round robin
policy, where warps belonging to the same scheduler are issued
in a fixed order (skipping threads blocked on syncthreads).
This scheme has non-trivial overheads compared to our
non-deterministic baseline, however, as it does not allow
warps that could issue to start early.

Figure 7a shows how Strict Round Robin (SRR) orders the
execution of two warps A and B on a given scheduler, with
the height of each rectangle illustrating variable latency for
non-atomic (light gray) and atomic (dark gray) instructions.
SRR always issues from warp A first. Only when warp A is
issued, is warp B considered for issuing. If warp A is blocked
from issuing, either from hazards or unfetched instructions, no
instruction is issued, even if warp B is unblocked ( 1 ).

2) Greedy Then Round Robin: To improve the performance
of SRR, we observe that only atomics need to be ordered
to preserve determinism. Thus, we can use a more relaxed
scheduling policy that runs any conventional scheduling policy
up until atomic instructions are reached. Once all warps reach
their first atomic instruction (or have exhausted all instructions),
the scheduler switches to the SRR scheduling policy until the
kernel ends. Prior work has demonstrated that the Greedy-
Then-Oldest scheduling policy (GTO) performs well across
most workloads, and is often used as a starting point for
more elaborate scheduling policies [78]. So we use GTO
scheduling to run prior to any atomic instructions, and we call
this scheduling policy Greedy-Then-Round-Robin (or GTRR).

The operation of GTRR is shown in Figure 7b. The initial
use of GTO scheduling ( 2 ) avoids stalling for non-atomic
instructions. Once all warps either encounter an atomic reduc-
tion instruction ( 3 ), or have exited, scheduling switches to
SRR. This inflection point is deterministically reached because
our memory consistency model assumptions (Section IV-A)
ensure all communication between threads uses atomics or
appropriate fencing. With warp divergence, this still holds

���



true when divergence is handled by SIMT stacks, where both
sides of a branch do not execute concurrently and which side
executes first is deterministic [12]. As atomics only occur after
the switch to SRR, the ordering of atomic operations remains
deterministic. The switch to SRR until the kernel ends can
however lead to additional stalling ( 4 ).

3) Greedy Then Atomic Round Robin: We can further relax
GTRR scheduling by observing that the execution between
atomic instructions does not need to be deterministic. After the
warps issue their atomic instruction, conventional scheduling
can be employed again up until the next “round” of atomic
instructions is reached, so long as the relative issue order of
the atomics is deterministic. After the “round” of atomics is
complete, non-deterministic scheduling (like GTO) of non-
atomic instructions can resume once more. This treats each
atomic instruction as a scheduler-level barrier. For warps that
do not have any atomic instructions, this ”barrier” is reached
once it executes all its instructions (similar to the condition to
switch to SRR in GTRR).

While the scheduler is running atomics in round robin order,
a warp that has already executed its atomic instruction can
start executing its subsequent non-atomic instructions without
violating determinism. We call this scheduling policy Greedy
Then Atomic Round Robin (GTAR).

GTAR is demonstrated in Figure 7c. GTO scheduling is
used initially ( 5 ) until all warps reach an atomic instruction
( 6 ), at which point atomic instructions issue and execute in
round robin order. As soon as warp A is done with its atomic
instruction, it can proceed with a non-atomic instruction ( 7 )
without needing to wait for warp B’s atomic to complete. Once
all warps finish its atomic, scheduling reverts to GTO.

4) Greedy With Atomic Token: Our final determinism-aware
scheduling algorithm exploits the observation that atomic
instructions do not need to be executed strictly one after the
other, so long as deterministic ordering is preserved. Similar to
GPUDet’s serial mode [12], we pass a single “token” among
warps, and only the warp possessing the token can issue an
atomic instruction. At any kernel launch, the warp with the
smallest warp ID is initially granted the token. It passes the
token to the next warp if it either exhausts all of its instructions,
or if an atomic instruction is issued. If a warp wants to issue
an atomic instruction, but does not hold the token, it stalls
and other warps will have priority to be issued over it. This
creates a deterministic ordering of atomic instructions across
warps, while still permitting heuristic-based scheduling for non-
atomic instructions. We call this scheduling policy Greedy-With-
Atomic-Token (GWAT). Similar to GTAR, GWAT enforces the
implicit barriers inserted between warps executing in the same
hardware slot, and warps from different kernels.

Figure 7d shows GWAT in action. Initially, GTO scheduling
occurs while warp A holds the token. At 8 , warp A encounters
an atomic and is allowed to issue the atomic since it holds
the token. After warp A issues its atomic, the token is passed
to warp B, which issues an atomic at 9 and then passes the
token back to A. When warp A completes at 10 , the token is
passed back to warp B.

5) Deterministic CTA Distribution: Even with determinism-
aware warp scheduling, determinism additionally requires the
set of warps assigned to each scheduler is also deterministic,
which we refer to as deterministic CTA distribution. Otherwise,
order of atomics in each buffer will be affected by differing
CTA distributions. We statically partition CTAs among each
scheduler in each SM.

Warp and kernel exits must also be handled specially. Within
a given scheduler, CTAs are dispatched in batches. All atomics
from batch bi must complete before any atomics from bi+1.
Note that non-atomic instructions from bi+1 can run earlier
(except with SRR scheduling); only atomics are confined to run
within their batch. Batching CTAs ensures a fixed set of warps
share one atomic buffer, and determinism-aware scheduling
orders the atomics from those warps.

D. Buffer Flushing

Buffer flushing is the process in which all values stored
in all buffers are made globally visible by writing them to
memory in a deterministic order. To ensure determinism, DAB
flushes buffers only when either 1) all buffers are full, 2) the
kernel exits, or 3) a memory fence is reached.

Additionally, DAB addresses the non-deterministic ordering
from the interconnect network with a protocol to buffer and
reorder memory packets as shown in Figure 8. Once all the
buffers are ready to be flushed, we first send pre-flush messages
to each memory sub-partition, indicating how many buffer entry
flushes from each cluster to expect (Figure 8a). Each memory
sub-partition should expect pre-flush messages equal to the
number of GPU compute clusters. Next, each buffer pushes
its contents to the interconnect (Figure 8b). Each memory
sub-partition first waits until all pre-flush messages have been
received. Each sub-partition will then use the expected number
of messages from each SM to re-order the atomics in round
robin order. If the number of expected messages from each SM
is not equal, SMs with less messages are eventually skipped
once every message from that SM has arrived. As buffer
contents from different SMs arrive, they are sent to the ROP
to perform the actual atomic operation based on this ordering,
and any atomic arriving out of order is buffered in a write
queue called a flush buffer, waiting for its turn. If an incoming
atomic is buffered while the atomic next in order is waiting in
the flush buffer, that atomic is popped from the flush buffer
and is sent to the ROP. In order to keep the number of buffered
transactions manageable, buffer flushes may not overlap, and
buffer flushing can only occur once every transaction write-
back from the previous buffer flush has been received. One way
to enable this large buffer for reordering the potentially many
atomics sent to the memory partitions is to employ virtual write
queues, where the a portion of the L2 cache is repurposed as
buffering space [79]. This protocol prevents compute clusters
from serializing buffer flushes. The buffers are then cleared
and execution resumes across all cores.
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Fig. 7: An example schedule of two warps under each of DAB’s four determinism-aware schedulers. Light gray boxes indicate
non-atomic instructions and dark gray boxes atomic instructions; box height indicates latency.

Fig. 8: Mechanism of inter-core determinism. (a) Each cluster
sends a pre-flush message to each memory sub-partition,
indicating expected number of messages. (b) Each cluster
pushes its buffer flushes to interconnect. (c) Each memory
sub-partition waits and buffers arriving flushes that are out of
order. (d) Stalled buffer flushes are reordered and sent to ROP.

E. Atomic Fusion

To further optimize our design, we implement the fusing of
identical atomic operations to the same address within atomic
buffers, effectively performing a local reduction. We call this
atomic fusion. Atomic fusion saves buffer space and delays a
costly buffer flush. Atomics to the same location can be fused,
even if they are not from the same warp. Since the atomic
buffer is a fully-associative structure, atomic fusion has low
latency impact when searching for matching addresses.

Figure 6b illustrates the operation of a scheduler-level buffer
with atomic fusion enabled. In contrast with Figure 6a, which
does not employ atomic fusion, the two adds to address
0xB0BA can use the same buffer entry, summing the argument
from the first atomic ( 3 ) with that from the second atomic
( 4 ) to save space.

Both applications with irregular access patterns (graph
algorithms), and ordered atomic access patterns (convolutions)
benefit from atomic fusion. For example, cuDNN’s convolution
algorithm partitions the filter into n even regions, and m · n
CTAs are launched, with m CTAs atomically adding to each
region. The CTAs that atomically access the same region also
have the same memory access pattern, meaning additional
fusion opportunities if these CTAs are distributed to the same
scheduler where they share an atomic buffer.

F. Atomic Coalescing
The baseline GPU coalesces atomics into a single transaction

per cache sector. This can be done for the buffer entries as well
in DAB. While the entries remain separate within the buffer,
entries that write to the same cache sector can be marked,
and can be coalesced together into a single transaction while
flushing, effectively lowering memory traffic.

G. Limitations
Enabling/Disabling DAB A potential solution for disabling
DAB is to extend existing API calls to toggle DAB’s hardware
structures that enforce determinism. Also, API calls should
toggle schedulers to be determinism-aware (e.g. for GWAT, stall
a reduction instruction if the warp does not have the token). For
CUDA workloads without reductions, the schedulers require
no toggling since GTRR, GTAR and GWAT operate like GTO
in the absence of reductions.
Context Switching Prior work has proposed to use context
switching for preemptive multitasking on GPUs [80], [81], [82],
[83]. In addition to saving architectural and scheduler states,
DAB requires additional support for context switching. For
interrupt-driven context switches, DAB would have to either
statically partition the buffer between the switched kernels, or
save the buffer contents. For context switches triggered by some
deterministic virtual clock (like logical clocks in [9]), buffers
are flushed during each context switch to preserve determinism.
However, note that training DNNs typically involves running

���



Fig. 9: IPC Correlation of GPGPU-Sim with TITAN V. Dotted
line represents a perfect correlation between simulation and
hardware.

GPUs for long periods with time-sharing accomplished using
check-pointing between GPU kernel launches for individual
minibatch training iterations using frameworks such as PyTorch
and TensorFlow).
Independent Thread Scheduling Under Volta’s independent
thread scheduling, each sub-warp can be treated as a separate
warp until convergence. Once the sub-warps of a given warp
diverge, their execution can be interleaved in strict round robin
fashion (while determinism-aware scheduling is still employed
at the warp-level), in order to maintain a deterministic ordering
of atomics between subwarps.

V. METHODOLOGY

To evaluate DAB, we extended GPGPU-Sim 4.0.0 [84], [85],
[86] to model the atomic buffers, determinism-aware schedulers,
and the buffer flushing mechanism as described in Section IV
using the configuration in Table I. For buffer flushing, we
simulate an unbounded message buffer for reordering buffer
flushes in the memory partition after arriving from compute
clusters. Large buffers could be implemented with low area
overhead similar to virtual write queues [79], as noted in
Section IV-D. To demonstrate the feasibility of this scheme,
we repeated our simulations with each out-of-order atomic
triggering L2 cache evictions to mimic the virtual write queue.
On average, these extra evictions increased the total L2 cache
miss rate by less than 1% compared to our original simulations.

The non-deterministic baseline is an unmodified GPGPU-
Sim using GTO scheduler, where branch divergence is handled
by SIMT stacks. Figure 9 shows IPC correlation of 96.8% and
error rate of 32.5% on our evaluation benchmarks comparing
GPGPU-Sim and TITAN V GPU. We also compare against an
updated version of GPUDet [12] as the deterministic baseline.
Our GPUDet updates enabled it to run on newer GPUs, which
required adding support for sector caches, increasing the Z-
cache size in GPUDet to 260k sets, and disabling deterministic
CTA distribution to fully simulate some benchmarks. These
changes should only inflate GPUDet’s performance for a
better performing deterministic baseline. All benchmarks are
evaluated with CUDA 8.0, and the convolution benchmarks
are evaluated with cuDNN 7.1. We use this version of CUDA
because it is the latest version of cuDNN that embeds the PTX,
which our version of GPGPU-Sim requires [86].

To validate that DAB produces deterministic results, we
extended the baseline GPGPU-Sim and DAB to model non-

TABLE I: GPGPU-Sim Configuration
# Compute Clusters 40

# SM / Compute Cluster 2
# Streaming Multiprocessors (SM) 80

Max Warps / SM 64
Warp Size 32

Number of Threads / SM 2048
Baseline Scheduler GTO

Number of Warp Schedulers / SM 4
Number of Registers / SM 65536
Constant Cache Size / SM 64KB

Instruction Cache 128KB, 128B line, 24-way assoc.
L1 Data Cache + Shared Memory 128KB, 128B line, 64-way assoc. LRU

L2 Unified Cache 4.5MB, 128B line, 24-way assoc. LRU
Compute Core Clock 1200 MHz
Interconnect Clock 1200 MHz

L2 Clock 1200 MHz
Memory Clock 850 MHz

DRAM request queue capacity 32
Interconnect Flit Size 40

Interconnect Input Buffer Size 256
Cluster Ejection Buffer Size 32

TABLE II: Graph Configurations for BC and PageRank.
Benchmark Graph Nodes Edges Atomics PKI

BC 1k 1,024 131,072 6.92
BC 2k 2,048 1,048,576 12.4
BC FA 10,617 72,176 4.12
BC foldoc (fol) 13,356 120,238 4.14
BC amazon0302 (ama) 262,111 1,234,877 0.70
BC CNR 325,557 3,216,152 0.004

PageRank (PRK) coAuthor (coA) 299,067 1,955,352 47.2

determinism in GPUs as shown in [12]. In addition, we
created a benchmark whose output is sensitive to the order of
atomics, and validated that the injected non-determinism leads
to different bitwise results on the baseline simulator, while
DAB obtained the same results across different runs.

A. Atomic Workloads

The benchmarks focus on workloads that stress atomic arith-
metic operations. Since DAB only affects atomic operations,
benchmarks without atomic instructions see no change in
performance. Thus, we evaluate the performance impact of
DAB on a set of benchmarks from Pannotia [4], and convolution
layers using the cuDNN library [14].
BC and PageRank: Pannotia [4] provides push based algo-
rithms for graph applications that use atomic instructions such
as Betweenness Centrality (BC), introduced Section II, and
PageRank, which extensively uses atomics. The graphs used
for evaluation are shown in Table II.
cuDNN Convolutions: We tested backward filter convolutions
using cuDNN’s Algorithm 0. The evaluated layers are a subset
of the ResNet building blocks described in [2] on the ImageNet
dataset [87], with batch size 16. Each building block contains
three layers, and are repeatedly stacked in order to increase
the depth of the network. These layer configurations are shown
in Table III. Each layer will be referred to as {Block} {Lay}
(e.g cnv2 1 for layer 1 of block conv2).

VI. EVALUATION

Figure 10 presents the overall performance of DAB compared
to the non-deterministic baseline and GPUDet, with results
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Fig. 10: Performance of DAB (GWAT-64-AF-Coalescing) compared to prior deterministic work.

TABLE III: ResNet Layer Configurations for Convolution

Block Lay Input Size
(C×H×W )

Output Size
(C×H×W )

Filter Size
(K×C×H×W )

Atomics
PKI

cnv2 x
1 256×56×56 64×56×56 64×256×1×1 1.08
2 64×56×56 64×56×56 64×64×3×3 1.09
3 64×56×56 256×56×56 256×64×1×1 1.72

cnv3 x
1 512×28×28 128×28×28 128×512×1×1 1.70
2 128×28×28 128×28×28 128×128×3×3 1.70
3 128×28×28 512×28×28 512×128×1×1 1.96

cnv4 x
1 1024×14×14 256×14×14 256×1024×1×1 3.74
2 256×14×14 256×14×14 256×256×3×3 3.75
3 256×14×14 1024×14×14 1024×256×1×1 3.74

normalized to stock GPGPU-Sim with GTO scheduling. DAB
provides deterministic execution and incurs only a 23%
geomean performance slowdown with low area overhead, while
GPUDet is 2-4× slower. With 4 schedulers per SM, 64 entries
per buffer and 9B per entry, total area overhead of DAB after
using L2 cache as a virtual write queue is 2.3 KB per SM (and
negligible logic area). Below we analyze DAB’s performance
in greater depth.

A. Warp & Scheduler-Level Buffering

Scheduler-level buffering performs similarly to warp-level
buffering but could reduce area overhead up to 16× (In the
Figure 11 comparison, area overhead is halved). Thus, the
remainder of evaluation focuses on scheduler-level buffering.

1) Scheduling Policies: Figure 11 presents the performance
of different scheduling policies (SRR, GTRR, GTAR, GWAT)
on graph applications and convolution. We increase buffer
capacity to 256 to reduce bottlenecks due to frequent stalls
from reaching buffer capacity. In general, more restrictive
schedulers such as SRR with scheduler-level buffering incur
only a geometric mean of 4% slowdown over WarpGTO.
However, scheduler-level buffering matches or exceeds the
performance of WarpGTO by up to 7% with more relaxed
schedulers such as GTRR, GTAR, and GWAT.

Scheduling policies have a significant effect on the perfor-
mance of convolutions when using scheduler-level buffering.
The varying gap between SRR and the rest of the schedulers
can be explained by the number of active warps during runtime.
The large gap in cnv2 1, cnv2 2, and cnv3 2 can be attributed
to schedulers having 6 warps active, allowing heuristic-based
schedulers more options to select a better warp to schedule. For
other layers (except cnv3 1), only 4 warps are active, giving

(a) Graph Applications

(b) Convolutions

Fig. 11: Performance impact of scheduling.

heuristic-based schedulers fewer options to schedule a better
warp. The relative performance of GTRR can be explained
by the number of warps executed per hardware slot. GTRR
performs close to heuristic-based schedulers when SMs are
not saturated (cnv2 1, cnv3 3), allowing GTRR to run mostly
under GTO mode up until atomics, or when only 2 warps are
distributed to each hardware slot (cnv3 1, cnv4 1, cnv4 3).
For the latter case, only 2 hardware slots are active when
the 2nd set of warps are distributed, meaning even if SRR is
run, the performance should not deviate much from heuristic-
based schedulers. In contrast, for layer 2 of all blocks, GTRR
performs closer to SRR than GWAT and GTAR, since each
hardware slot now runs more total warps, and only the first
executed warp is under GTO mode, while the rest are under
SRR mode, causing GTRR’s performance to be closer to SRR.

For graph workloads, the relative performance of each
scheduler varies between the different types of graphs. For the
small, dense graphs (1k, 2k), all schedulers perform the same
since there is only one warp to schedule in each scheduler.
For the smaller, sparse graphs (FA, foldoc (fol)), the SMs
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cannot be fully saturated either, leaving each scheduler with
at most 2 warps to schedule, so SRR performs very similarly
to the other schedulers. For CNR and amazon0302 (ama),
SMs are fully saturated, so the gap between SRR and other
schedulers starts to grow. However, for BC, only a subset of
threads are active at each kernel call, since each kernel operates
on one layer of nodes in the breadth-first search tree (refer
to Section II-B), meaning many threads and warps may exit
without executing any atomics. In addition, even with SMs fully
saturated, each hardware slot executes at most 2 warps. These
two points allow GTRR to execute under GTO more often, thus
performing closer to the heuristic-based schedulers. However,
for PageRank (PRK), every thread performs atomic updates at
every iteration, and the number of atomics executed per thread
varies greatly. With atomics forming an implicit barrier, the
irregular atomic pattern causes all schedulers to have non-trivial
overheads. This is expected, with prior work showing that even
dedicated graph algorithm accelerators struggle to accelerate
PageRank [88].

DAB’s speedup over the non-deterministic baseline can be
attributed to exploiting relaxed atomics. Atomic arithmetic
operations are treated like regular arithmetic operations during
execute and are allowed to write an entry to the atomic buffers
without blocking execution of future atomics. Since GWAT,
the most relaxed scheduling scheme, performs the best across
the evaluated benchmarks, further evaluation will be shown
with only GWAT.

2) Buffer Capacity: Figure 12 shows the effect of buffer
capacity on graph applications and convolutions. The evaluated
configurations use GWAT scheduler with 32, 64, 128, and 256
buffer entries, labeled as GWAT-32, 64, 128, and 256. Increas-
ing buffer capacity generally improves IPC as it decreases stalls
on a full buffer and reduces time spent on flushing. For dense
graphs, performance increases with buffer capacity since there
are enough non-zero edges to be atomically added. Sparse
graphs see a huge gain when increasing buffer capacity from
32 to 64 but lower gains thereafter, since there are not enough
atomics to fill up the buffers, meaning the extra capacity is
not utilized.

Increasing buffer size for scheduler-level buffering on
convolution however, only results in small improvements and
even performance loss in some cases. This can be attributed
to how convolution workloads are structured. The algorithm
performs calculations first, before performing a long sequence
of atomic adds. Since the total number of atomic adds do not
change with buffer size, having a larger buffer capacity only
reduces the frequency of flushing. Additionally, large buffers
can cause more atomics to be densely bunched together and
pushed to the interconnect at the same time, causing an increase
in interconnect stalls. With smaller buffers, flushing is more
spread out. Convolution performance is addressed by atomic
fusion which is discussed in Section VI-B1.

B. Buffer Optimizations
This section explores the effects of applying optimizations

on DAB to further reduce performance overheads.

(a) Graph Applications

(b) Convolutions

Fig. 12: Performance impact of buffer size.

1) Atomic Fusion: Figure 13 shows the effect of enabling
atomic fusion on graph applications and convolutions. Atomic
fusion increases performance for graph applications for all
evaluated graphs, since it reduces the number of atomic
operations performed at the ROP. Atomic fusion also increases
the effective capacity of the atomic buffers as multiple atomic
operations to the same address now only occupy 1 entry instead
of multiple entries in the buffer. This results in fewer stalls
due to the atomic buffer being full. Additionally, the GPU will
have fewer interconnect stalls it flushes fewer buffer entries.
Atomic fusion has a lesser effect with larger buffer sizes since
most atomic operations are already able to fit within the large
buffer without atomic fusion. Thus the extra effective capacity
from atomic fusion does not result in better performance.

Atomic fusion also increases performance for most convolu-
tion layers similar to graph applications. Most layers do not
see any improvement for the 32-entry case, since 2 warps of a
CTA are mapped to a scheduler, meaning 64 unique addresses
are written to before reuse occurs. However, for Layer 2 of
each block, atomic fusion does not improve performance.This
is due to misalignment of CTAs that leads to no buffer entry
reuse. For these layers, the filter is evenly partitioned into 18
sections (according to Section IV-E), and CTAs whose ids are
congruent modulo 18 write to the same partition. However,
with 80 SMs, the CTAs that write to the same partition are
never assigned to the same scheduler under the static partition
scheme described in Section IV-C5. In order to force atomic
fusion, we evaluated these layers by assigning CTAs to 72
cores instead, and obtained a speedup over using 80 cores,
despite using 8 fewer cores, as demonstrated in Figure 14.

2) Offset Flushing: From Section VI-A1, we see DAB does
poorly on cnv2 3. This is because every CTA atomically writes
to the same memory addresses. While this is exploited at the
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(a) Graph Applications

(b) Convolutions

Fig. 13: Atomic Fusion on scheduler-level Buffering

Fig. 14: Effects of “gating” SMs on GWAT-64-AF

intra-core level by atomic fusion, at the inter-core level, if every
buffer flushes to the same set of memory addresses in the same
order (hence, the same memory partitions), the interconnect
becomes congested, which would lead to longer buffer flushes
and more issue stalls due to full buffers. We remedy this with
offset flushing, where each SM starts flushing at a different
index to spread out the writes to each memory partition at
a given time. Since both SM id and the buffer contents are
deterministic, having some SMs start flushing at a different
index preserves determinism. Figure 16 demonstrates speedup
of offset flushing. Every SM with an even SM id starts flushing
at the 32nd index. Applying offset flushing to cnv3 3, where
every 4 CTAs write to the same set of memory addresses yields
minimal performance gain, hinting a lack of congestion.

3) Flush Coalescing: Coalescing buffer flushes on convolu-
tions for GWAT-64-AF improves performance by a geomean
of 13%, shown in Figure 17. Since atomic instructions in
convolution access strided memory locations, buffer flushes
that access the same cache sector can be coalesced to a single
transaction, reducing memory traffic (Section IV-F). However,
graph workloads did not improve much due to irregular data
access patterns. Figure 15 breaks down the different overheads

Fig. 15: Performance Overhead of DAB

Fig. 16: Effect of offset flushing on GWAT-64-AF

of DAB for different benchmarks.
4) Limitation Study: In this section, we relax various

constraints of DAB and observe its impact on performance.
While these relaxed versions are no longer deterministic, they
help identify bottlenecks in DAB. In Figure 18, we first relax
the constraint of reordering atomics at the memory partition
and instead, send the atomics to the ROP unit in the order
they arrive at the memory partition (DAB-NR). Next, we relax
the constraint of not allowing flushes to overlap (described
in Section IV-D, DAB-NR-OF). Finally, we relax DAB by
lowering the granularity of buffer flushing from GPU to
clusters, meaning each individual cluster flushes their buffers
independently as they become full, relaxing the implicit barrier
imposed across SMs (DAB-NR-CIF). From Figure 18, we
observe that relaxing the last constraint usually provides the
most speedup, implying that the implicit barriers across SMs
hamper performance, especially for graph benchmarks that
have irregular atomic accesses. Note that naively implementing
the same reordering scheme for this relaxed version of buffer
flushing may lead to intractable and an unbounded number
of buffered transactions at the memory partition, and more
sophisticated ordering methods are required at the memory
partition in order to enforce determinism.

VII. RELATED WORK

Previous sections discussed the design and performance
of GPUDet [12], a proposal for deterministic GPU hardware
and the most relevant point of comparison. Here we survey
additional related work in determinism for CPU programs.
Software Determinism Schemes Kendo [9] introduced weak
determinism, which tackles non-determinism caused by races
on synchronization objects (like lock acquires) by relying on
deterministic logical clocks. While Kendo is feasible on CPUs,
it is unlikely to scale up to GPU thread counts, and does not
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Fig. 17: Coalescing Buffer Flushes on Convolutions

Fig. 18: DAB with different constraints relaxed

take into account the specific semantics of GPU atomics as
DAB does. The CoreDet [10] compiler and runtime system uses
the same algorithm as that in GPUDet [12], leading to similar
scalability bottlenecks. More recent software schemes [67],
[89], [90] have coupled the Kendo scheduling algorithm
with sophisticated OS virtual memory support to reduce
overhead of per-thread store buffers. There are a wide range of
deterministic parallel programming languages which leverage
type systems [91], [92], [93] or functional programming [94],
[95] to enable high-performance determinism within a restricted
programming model.
Hardware Determinism Schemes A number of systems [11],
[96], [97] have explored deterministic CPU hardware support.
These schemes adopt the same deterministic scheduling tech-
nique with global barriers as used in CoreDet and GPUDet,
which imposes a scalability bottleneck, especially in the
presence of frequent atomic operations. DAB takes inspiration
from schemes like Calvin [11] and RCDC [97] which used
relaxed memory consistency models to improve performance,
similar to how we exploit semantics of GPU atomics.
Deterministic Floating-Point Collange et al. [13], [98] pro-
posed software techniques to address floating point rounding
errors. They use a wide super-accumulator to cover the whole
range of 32 bit floating point numbers. However, it incurs up
to 10× performance overhead compared to unordered floating
point operations, while also imposing high area overhead. Thus,
DAB tackles the problem of reproducibility by ensuring a
deterministic order of floating point atomic operations.

VIII. CONCLUSION

In this paper, we presented DAB, a GPU architecture
that provides deterministic execution with low overheads
for reduction workloads like graph algorithms and machine

learning. DAB exploits the GPU’s relaxed atomic semantics
and an assumption of data-race freedom to enable the use
of isolated atomic buffers for atomic operations, allowing
atomics to be performed deterministically in parallel. Coupled
with determinism-aware warp scheduling inside each core,
these buffers can be area-efficient while eliminating the non-
determinism caused by floating point rounding. Simulation
results show DAB outperforms GPUDet [12], a state-of-the-art
deterministic GPU baseline, by a significant margin of 2-4×.
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