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ABSTRACT
Large, open, public events, such as marathons and festivals, have
always presented a unique safety challenge. These sprawling events,
which can take up entire city blocks or stretch for many miles, can
draw tens to hundreds of thousands of spectators and in some
cases have open admission. As it is impracticable to guarantee the
subjection of every event-goer to a security screening, we propose
a crowd-based explosive detection system that uses a multitude
of low-cost ChemFET sensors which are distributed to attendees.
As the sensors offer limited accuracy, we further propose a server-
based decision-making framework that utilizes a two-level feedback
loop between the sensors and the server and explores spatial and
temporal locality of the collected data to overcome the inherent low-
accuracy of individual sensors. We thoroughly explore two distinct
detection schemes, stressing their performance under a myriad of
conditions, thus showing that such a crowd-based detection system
comprised of low-cost and low-accuracy sensors can deliver high
detection accuracy with minimal false positives.

CCS CONCEPTS
•Computer systems organization→ Sensor networks; •Com-
puting methodologies → Simulation tools.
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1 INTRODUCTION
The combination of low-cost sensors in conjunction with expanding
computing power is starting to underpin the strategic plans of major
semiconductor manufacturers and design houses. Such computing
and sensor pairs can operate individually or in a crowd-sensing
manner to synthesize the readings and observations of individuals
into actionable information. Domains of timely interest where the
use of such crowdcasting technologies can be envisioned include
medical surveillance systems to tackle outbreaks of contagious
illnesses or bomb detection systems to preclude terrorist attacks,
among others.

The construction of such voluntary participatory sensor net-
works necessitates the resolution of multiple technical aspects. On
the sensor front, voluntary participation by numerous individuals
constrains these systems to low-cost components, which mani-
fest multiple idiosyncrasies, such as validity radius, duration, and
recalibration. The computing system, whose principal task is to syn-
thesize the sensor data into information, must prevent noisy data
from contaminating the decision making process by structuring
both the temporal and spatial windows in which it is examined.

To explore these questions and examine the feasibility of such a
system, we outline a case study in the specific context of improvised
explosive devices (IEDs) detection. IEDs, which can cost less than
$30 in raw materials, can wreak disproportionate damage, causing
loss of life and begetting terror in a population [1]. Detection of IEDs
has been the focus of many research projects with state-of-the-art
systems employing ion-mobility spectrometry and photoacoustic
spectroscopy equipment using high-power laser beams [15, 16, 20].
However, the large size and cost of these technologies precludes
their use in public events.

Recent technical revolutions in chemical and biological sensors
provide a promising avenue towards the design of an early-warning
detection system for homemade IEDs. Specifically, we envision a
cyber-physical system (CPS) wherein small and low-cost chemical
sensors are distributed to event-goers, which pair with their mobile
phones to pass data to a decision-making server. Figure 1 shows the
various components and their interactions in the envisioned CPS.
Each node, composed of a willing participant with a smartphone
and a distributed sensor, gathers readings of chemical compounds
frequently associated with home-made explosives. The sensor is
based on a low-cost CMOS-based sensing device that targets com-
monly found explosive derivatives [34, 37]. Raw sensor readings
are sent to the host (smartphone) via a common interface such as
Bluetooth BLE, processed, and forwarded to a server via the cellular
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Figure 1: The proposed crowd-based explosive detection system

or WiFi network. The server runs a specialized detection algorithm
to decide if there is a potential threat in the defined coverage area.

To realize this system, this paper addresses two technical chal-
lenges. First, state-of-the-art, low-cost chemical sensors are prone
to drifting, and our CPS must intelligently utilize spatial and tem-
poral correlation between sensors to make decisions. Second, we
must explore the rich design space of the detection system; yet
no systems are available to model complex crowd dynamics, raw
chemical concentrations, and thousands of mobile sensors. To this
end we implement a simulator framework that utilizes the outputs
of industry-standard tools, and explore the design space of two
detection systems. The contributions of this work are three-fold.
First, we develop a system-level simulator to combine simulated
pedestrian movement, the diffusion of explosive chemical vapor,
and the drifting characteristics of chemical sensors. Second, we
develop two crowd based detection algorithms to determine the
presence (or absence) of target molecules under sensor process vari-
ations, sensor drift, and environmental noise. Last but not least, we
evaluate the detection algorithms within the system-level simulator
to demonstrate the promise of this technique.

The rest of this paper is organized as follows. Section 2 provides
a brief description of our chosen sensor technology, ChemFETs. Sec-
tion 3 details the theoretical basis of the proposed detection system,
while Section 4 describes the simulator design. Section 5 presents
the experimental setup and results. Section 6 reviews related works,
and finally Section 7 concludes the paper.

2 SENSOR MODELING AND CALIBRATION
The envisioned CPS relies on low-cost and unobtrusive sensors to
achieve crowd-sourced sensing in a large public gathering. Sensors
must be highly sensitive as, in open areas, the diffusion of explosive
vapor from an IED may be limited to a quite small area and present
in rather low quantities. The most commonly used explosive com-
pound in IEDs is ammonium nitrate, and the gas vapor with the
highest concentration within this compound is ammonia. We use
ammonia as the target detection component for this work.

In determining the most appropriate sensors, we choose an archi-
tecture that can be easily implemented with standard commercial
CMOS processes, such as Chemically sensitive Field Effect Transistors
(ChemFETs) [5, 9, 10, 23]. The sensor model in this work is based
on ChemFETs, although the proposed system can work with other
sensor architectures that can provide similar sensitivities.
ChemFET SensorModeling:A chemical sensor converts the con-
centration of the target molecule to current, which is subsequently
converted into the digital domain by a current-to-voltage converter

and an analog-to-digital converter (ADC). The measured concentra-
tion (𝐶𝑠𝑒𝑛𝑠 ) can be expressed in terms of the actual concentration
(𝐶), a conversion ratio (𝑅(𝑡)), and sensor noise 𝑛(𝑡):

𝐶𝑠𝑒𝑛𝑠 (𝑡) = 𝑅(𝑡) ·𝐶 + 𝑛(𝑡) (1)

The conversion ratio 𝑅(𝑡) will deviate from its ideal value of 1
due to process variations and the drift experienced by the sensor
after deployment. 𝑛(𝑡) is the noise of the sensor response which
sets a lower bound on the sensitivity as any concentration varia-
tions smaller than the noise will be indistinguishable from it. In the
literature, CMOS-based chemical sensors for ammonia have been
shown to yield sensitivities of 0.1–100 parts per billion (ppb) de-
pending on manufacturing technology [3, 28, 32]. In this work, we
assume a sensitivity of 50ppb and set the ADC resolution to 1LSB =
50ppb. Thus, the added quantization noise standard deviation, 𝜎𝑛 ,
can be expressed in terms of the ppb as: (𝜎𝑛 = 𝐿𝑆𝐵/

√
12 = 14𝑝𝑝𝑏

[7]). Our sensor model also mimics process variations by assigning
a random deviation to the conversion ratio, 𝑅(𝑡), with a standard
deviation 𝜎𝑅 of 20%, thus setting it in the range of 0.4–1.6 under a
3𝜎 range for variation.
ChemFET Drift Modeling: Unfortunately, the sensitivity of low-
cost sensors drifts significantly over time, limiting their usefulness
to minutes unless the readings are calibrated to compensate for this
drift. Drifting within ChemFETs has been studied extensively in
the literature [10, 11]. The drift response is generally split between
a fast and a slow response, which can be modeled as an exponential
decay [6, 19, 22] in the current signal output. Based on hardware
experiments on manufactured ChemFETs (without surface coating)
[24], the following drift model applies to this work:

𝑅(𝑡) = (𝑅0 + 𝜖𝑅) + 𝑅𝑓 𝑒
−𝑡

𝜏𝑓 +𝜖𝑓 + 𝑅𝑠𝑒
−𝑡

𝜏𝑠+𝜖𝑠 (2)

where 𝑅(0) = 𝑅0 + 𝜖𝑅 + 𝑅𝑓 + 𝑅𝑠 is the sensor conversion factor
at the initial time after deployment/reset, 𝑅𝑓 , 𝑅𝑠 are fast and slow
drift coefficients, 𝜏𝑓 , 𝜏𝑠 are fast and slow drift time constants, and
𝜖𝑅 , 𝜖𝑓 , 𝜖𝑠 are the corresponding error terms for each of the model
variables. The fast and slow drift coefficients each have a nominal
value of 0.2 with a standard deviation of 10% to account for process
variations. The fast and slow drift time constants are set to 10s
and 500s, respectively. Each time constant is also assigned a 10%
standard deviation to account for process variations1. This process
variation profile enables us to generate a random population of
sensors with individual sensitivities and individual time constants
that can differ greatly. Thus, each sensor’s usable time will vary
depending on its own assigned parameters.

In practice, the model parameters can be estimated for each
manufactured sensor and stored within the sensor device to pass
to the host upon activation. Besides drift, each sensor parameter
is also assigned a random 10% error term that represents errors
during the characterization of the manufactured sensors. This error
term is unknown to the host device and will generate a mismatch
between the actual concentration and measured concentration.
Sensor Reset: The host can utilize the measured sensor parame-
ters, including the conversion ratio, drift coefficients, and drift time
constants, to calibrate the sensor in software, combining the raw
1While the drift coefficients and time constants are based on hardware measurements,
the process variation model is based on experience with CMOS parameteric variations
(e.g. threshold voltage for large feature-size devices).
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Figure 2: Validator-based Detection

Name Description Values
Validation
Threshold

# of unique nodes required
to confirm a high reading. 0–4

Detection
Window

Maximum age (sec) of old
readings kept for validation.

50, 100, 200
seconds

Validation
Radius

Maximum distance to search
for old readings to validate. 2-meter

Detection
Threshold

Lowest sensor reading that
is considered “high”. 5 ADC LSB

Table 1: Parameters of Validation System

Name Description Values
Grid Size Size of grid squares. 1m–8m

Moving Avg.
Period

Number of readings used
to calculate grid average. 5, 10, 20

Detection
Threshold

Lowest sensor reading that
is considered “high”. 5 ADC LSB

Table 2: Parameters of the Grid System
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Figure 3: Grid-based Detection

data from the sensor with the model parameters to compensate
for drifting. However, due to the unknown error term, the differ-
ence between the actual conversion ratio of the device and the
compensated conversion ratio will grow over time. Moreover, soft-
ware compensation cannot eliminate the reduction in sensitivity as
non-target molecules begin to bond to the sensor. Once sensitivity
falls below a threshold, the detection distance diminishes, and the
sensor is effectively useless. To reverse the effects of sensor drift,
we require a mechanism to release the trapped molecules at the
insulating dielectric surface above the channel. It has been shown
that the cycling of the vertical electric field by controlling the ref-
erence electrode voltage for a ChemFET [35] effectively resets the
device back to its pre-drift state.

3 PROPOSED DETECTION ALGORITHMS
A high-quality IED detection algorithm must overcome the inher-
ent inaccuracies of the ChemFET sensors described in Section 2. As
sensor readings are known to drift, relying on readings obtained
from a single sensor will lead to many false positives or negatives.
Instead, the proposed detection system treats the sensors as a pop-
ulation and exploits both spatial and temporal information. We
propose and examine two methods of detection: validator based
detection and grid average based detection. We also employ a two-
level feedback mechanism (server-level and host-level) to initiate
sensor reset requests for tackling the observed sensor drift.

3.1 Spatial and Temporal Detection Validation
The major challenge encountered in developing an accurate detec-
tion algorithm is the potential high rate of false positives, as it is
more likely for high readings to come from sensor drift rather than
real detection of an IDE. Previous works in sensor networks [4, 14,
26] rely on searching for smooth reading gradients over a large
area from stable sensors. However, this solution does not apply to
our crowd-based IED detection system as nodes move fast while
the detection range of ChemFET sensors is limited (around 2m). To
reduce false positive rates, we explore two approaches to record
sensor readings and quickly identify neighboring nodes to “confirm”
high readings from individual sensors.

3.1.1 Validator Based Detection. This approach exploits the idea
of corroboration, where each node searches for validation from its
peers. Figure 2 shows the flow of this algorithm. In this approach,
the server maintains a map of node readings, retaining high read-
ings (i.e. preliminary detections) and recording them with a vector
composed of four values: <ID, time, location, value>. When the
server receives a reading above the detection threshold, it places it
into this map and searches within a validation radius (set to the
IED detection range of 2m) around the (𝑥 ,𝑦) position (spatial local-
ity) of the current reading for older (temporal locality) readings
that confirm the value. The system requires that the quantity of
readings surpass a validation threshold, e.g., a high reading must be
validated by readings taken from 𝑁 unique neighboring nodes. If
the number of required validators is increased, the system becomes
more specific and more likely to suppress false positives, while also
being less sensitive to true positives.

Confirming high readings only partially solves the false-positive
rejection problem. If the system retains unconfirmed readings for
too long, it will validate old readings caused by drifting sensors.
To control the temporal correlation between data, the system also
maintains a detection window which defines the maximum age of
readings that can be used for validation. This shifting temporal
window keeps the data in the system fresh, removing old, uncon-
firmed, and likely drifting readings from consideration. A smaller
window retains less stale data, thus increasing detection specificity
but reducing sensitivity. Table 1 summarizes the parameters used
in this approach that will be explored in our experiments.

3.1.2 Grid Average Based Detection. This approach overlays a grid
structure onto the monitored region, breaking it into equally sized
regions which maintain a moving average of the readings within
the area. For example, overlaying a 2m×2m grid onto a 100m×100m
area would result in 50×50 = 2,500 grid squares.

Figure 3 presents the flow of this algorithm. When a node takes a
reading, the server determines which grid square the reading is from
based on its (𝑥 ,𝑦) location and appends the reading to the moving
average of that square. If the average of the square rises above the
detection threshold and if at least two readings have been taken, an
alarm will be raised. A smaller grid size creates a more sensitive
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and less specific system as each square encompasses fewer nodes,
allowing a single node with consecutive high readings to increase
the square average above the detection threshold. To accurately
detect true positives while still suppressing false positives, each
grid square utilizes an independent moving average. The size of the
moving average period also impacts the sensitivity and specificity
of the detection system. A larger moving average period is more
likely to encompass data from multiple nodes as they move through
the square, and the readings from a single drifting node are less
likely to influence the grid average. Thus, a larger period decreases
system sensitivity and increases its specificity. Parameters used in
the grid system are summarized in Table 2.

3.2 Two-level Feedback for Sensor Reset
As explained in Section 2, it is possible to revert a drifted sensor
back to its initial state by applying a reverse vertical field, thereby
releasing trapped molecules/ions from the sensor surface. However,
our systemmust judiciously use this reset capability as it has several
downsides. First, the reset process requires the sensor to be off line
for 2 seconds (empirically determined in experiments using ISFETs
[35]). Assuming an average human walking speed of 1 meter per
second, a node can easily pass through the detection range (2m)
of the explosive source during the reset process, missing a chance
to detect it. Second, to reset the sensor, the host device must apply
a strong reverse electrical field to the sensor, generating a power
consumption overhead.

We use a two-level feedback to determine when a sensor needs
to be reset and incorporate the ensuing downtime into our system-
level simulations. Sensor reset is initiated in two ways: (1) based
on the mathematical drift model and the elapsed time, the host
determines if the sensor conversion ratio, 𝑅(𝑡), has diminished
below 50% of its original value; and (2) based on the readings of
neighboring sensors, the server determines if a sensor is an outlier.

3.2.1 Host Initiated Sensor Reset. In the proposed CPS, each sensor
undergoes a short testing phase during manufacturing to determine
its drift parameters and stores them. Later when it is paired with a
host device, the host extracts these parameters and uses them to
estimate the sensor conversion ratio via Eqn. (2). As mentioned in
Section 2, the sensor eventually will experience sensitivity loss via
the binding of non-target molecules. The host device uses this drift
model to trigger a hard reset if 𝑅(𝑡) has diminished below 50% of
𝑅(0) resulting in the sensor becoming unavailable for 2 seconds.

3.2.2 Server Initiated Sensor Reset. While host initiated reset can
utilize the sensor parameters learned in production, there are multi-
ple factors that the drift model cannot correct for, such as imperfect
testing (reflected as the multiple error terms 𝜖 in Eqn. (2)), envi-
ronmental noise (non-target molecules binding to the sensor), and
temperature and humidity variations. As more time passes, the im-
pact of these error terms and noise grows, and the sensor readings
(even after software calibration) become increasingly unreliable.

To remedy this situation, we employ server-level feedback, wherein
the server exploits both spatial and temporal data correlation to
detect outliers and instruct outlier nodes to reset early. Specifically,
the server maintains a history of readings with references to both
time and location in a grid based system of the arena. If the server
determines that readings from a node are vastly different from the

Figure 4: Simulated city block to determine the concentration pro-
file of target molecule, ammonia

grid average (either too low or too high), it sends a message to the
host requesting a sensor reset.

4 SYSTEM LEVEL SIMULATOR DESIGN
This section describes our simulator, designed to faithfully model
the crowd-based explosive detection system, allowing the user to
evaluate sensor drifting and explore the impact of different system-
level parameters on detection sensitivity and specificity. It incor-
porates an accurate diffusion model for the explosive (generated
in COMSOL [2]) and individual movement agents to simulate the
movement of each crowd member (generated by Menge [12]). The
simulator also implements the sensor model described in Section 2,
as well as a server architecture to simulate the reception and pro-
cessing of data from each node following the detection and sensor
calibration algorithms described in Section 3.

4.1 Explosive Diffusion Modeling
To simulate the chemical diffusion of a homemade IED, we require
the ability to simulate a scenario with a set of variables such as the
effects of starting concentration, diffusion over time, and diffusion
around obstacles such as walls or buildings.

We model the diffusion characteristics of various explosive va-
pors in the COMSOL Multi-Physics simulator [2]. The molecular
diffusion model begins in a simple cylindrical source with a small
circular opening (e.g. in the shape of a pipe bomb). The transient
behavior of gas diffusion, based on Fick’s law (Eqn. (3)), is simulated
using the transport of diluted species interface tool of COMSOL
multiphysics, where 𝐷𝑖 is the diffusion coefficient and 𝐶𝑖 is the
concentration (𝑚𝑜𝑙/𝑚3). Since we target ammonia in this work, its
diffusion coefficient (𝐷𝑖 = 0.26𝑐𝑚2/𝑠) is used in COMSOL simula-
tions.

𝜕𝐶𝑖

𝜕𝑡
= 𝐷𝑖∇2𝐶𝑖 (3)

The chemical source is placed in a realistic environment includ-
ing obstructions, such as buildings, and random convection models.
Figure 4 shows one such realistic environment: an 800m×150m por-
tion of the Boston marathon track. The track bisects the area into
northern and southern regions. The black blocks represent build-
ings and roads that people cannot enter, and white space represents
areas where the crowd can stand or move freely. This structure
is designed in AutoCAD and input into COMSOL. COMSOL will
then, according to the diffusion model, generate an output which
specifies the expected concentrations of the chemical vapor at each
point in time for each location in the simulated area.

4.2 Pedestrian Motion Modeling
To simulate realistic pedestrian motion, it is necessary to design
complex scenarios that mimic the motions of event goers at large
outdoor events such as marathons and music festivals. At such
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Figure 5: A statemachine used for pedestrianmovement simulation

events, some attendees may head directly to their seats, while oth-
ers will prefer to visit concession or restroom areas before moving
to their assigned areas. To model such behavior, we use the Menge
pedestrian simulator [12] with a custom scenario generation tool.
Menge provides the ability to simulate pedestrian groups with
behaviors that follow a probabilistically defined state machine. Fig-
ure 5 presents an example. Nodes (i.e., pedestrians) enter this state
machine and follow it until the end of the simulation. Nodes follow
a shortest path algorithm to reach their “goals” (colored nodes in
Figure 5) while routing around dynamic obstacles such as other
pedestrians. The simulator is also able to model detailed behavior
customization such as node preferences for social distance mainte-
nance and differing routing strategy utilization. As simulations are
probabilistic, no two successive simulations within Menge will be
the same. We have modified the Menge simulator to output a record
of each node’s movements for use within the system simulator.

4.3 Our System-Level Simulator
To combine and utilize the data from the previous two simulators for
IED detection, we have designed and implemented a custom, mod-
ular, and event driven simulator. To ease design space exploration,
the simulator is designed to be highly reconfigurable, controlled by
a number of command line flags. As Figure 6 shows, the simulator
takes as inputs the crowd movement data generated by Menge,
the concentration data from COMSOL, and a list of configuration
commands that configure detection algorithm parameters. It then
runs the simulation and halts upon the detection of a true positive
or the end of the simulation time. Upon completion, the simulator
generates a series of log files to aid in statistical analysis of the run.
The simulator consists of two major pieces, nodes and the server,
each defined below.

4.3.1 Nodes. Each member of the crowd is simulated as a unique
entity. Upon receiving data from the crowd simulation, the simula-
tor assigns each member of the crowd a unique ID. Each node is
then initialized with its own sensor model parameters (as discussed
in Section 2), and embarks upon its pregenerated (Menge) move-
ment path, taking sensor readings of the areas it passes through

COMSOL
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Figure 6: Flowchart of the system simulator

(COMSOL) and reporting them to the server. Every sensor reading
incurs the following updates to the simulator state and calculations:

(1) The node position is updated. If the exact time of sampling is
between movement simulation time steps, the node position
is bilinearly interpolated.

(2) The explosive vapor concentration is retrieved from the
COMSOL simulation. The sensor model transforms the raw
concentration according to the unique drift model of the
node. The resulting value is then transformed to an ADC
value to simulate the response of the ADC within the sensor.
Both transformations model the errors and accuracy loss
incurred in the process.

After taking a reading, the node sends the reading value to the
server along with its ID, (𝑥 ,𝑦) location, and time of the reading. As
each node maintains its own sensor model values (randomly gener-
ated following normal distributions), it also maintains its own sense
of age, which is utilized within the sensor drifting model (variable
𝑡 in Eqn (2)). Drift begins when the sensor is first ‘unwrapped’ and
exposed to air. Each host is aware of its sensor parameters (but
not the error factors) and therefore can predict how degraded the
sensor is. When the sensor reaches what the host believes to be
50% degradation, it undergoes a self-triggered reset as described
in Section 3.2.1, which resets the internal degradation counter and
restores the node to its initial sensitivity.

4.3.2 Server. The server is simulated as an independent element
within the simulator that can only receive information sent by indi-
vidual nodes. This client-server architecture allows for the testing of
server-based detection algorithms. Information is sent to the server
in “packets” where each packet contains one or more readings.

Upon receiving a reading, the server runs one of the detection
algorithms (Section 3.1) to determine whether to flag the reading
as an explosive detection. The system uses a pessimistic detection
threshold of 5 ADC LSBs (equivalent to 250ppb), as listed in Tables 1
and 2. We choose this value to ensure that random noise does not
trigger detection due to software compensation when the sensitiv-
ity is degraded. After the server determines whether to raise the
alarm, it logs the results of its decision and the corresponding node
ID and timestamp. To ensure high accuracy and to prevent mistakes
caused by drifting sensors, the server maintains a history of read-
ings with references to both time and location. If the server rules a
sensor reading to be an outlier, it will send a reset request to the
node (Section 3.2.2). This feedback mechanism largely reduces false
positive rates and improves the overall specificity of the detection
system.
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Figure 7: False positive rate of Validator-Based System. Each line is
named as (node population, size of detection window).

5 EXPERIMENTAL SETUP AND RESULTS
To evaluate the effectiveness and design trade-offs of the proposed
detection algorithms, we employ the system-level simulator de-
scribed in Section 4 and create a scenario which mimics the last
800m of the Boston marathon (Figure 4). Pedestrians arrive into
either the northern or the southern region of the simulated area via
entry points at the border. Each pedestrian then follows the state
machine presented in Figure 5.

Our experiments explore both the validator-based and grid-based
detection algorithms, while also examining the effects of server-
based sensor reset. To evaluate the validator-based algorithm, we
simulate a total of 4680 runs, testing the combinations of 5 valida-
tion thresholds, 3 window sizes, 3 node populations, 2 pedestrian
movement patterns, 2 server calibration options, as well as 1 no-
bomb and 25 different bomb location cases. The total number of
runs is 7488 for the grid-based algorithm as it has 8 different grid
sizes (while the other parameters are kept the same).

This section presents the experimental results of both a system
stability test which examines the number of false positives over
time, and the specificity and sensitivity of each detection algorithm.

5.1 System Stability Test
Our first set of experiments examines the impact of sensor drift
on system stability. We run the system with no IED present and
examine the effects of each detection algorithm on false positive
rejection. We vary their associated parameters according to Tables 1
and 2. Each simulation process runs for 10,000 seconds to reasonably
simulate the length of a spectator event and to provide the detection
algorithm with ample opportunity to experience and handle sensor
drift. We also vary the node population to better understand the
effects of population density, and enable/disable server initiated
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Figure 8: False positive rate of Grid-Based System. Each line is
named as (node population, size of moving avg. period).

sensor reset to examine the effect of this feedback mechanism.
Figures 7 and 8 present the results of these experiments.

The upper graph in Figure 7 demonstrates the need for a strong
false positive rejection system. When the validation threshold is
0, the system immediately alerts on every high reading, with a
population of 10,000 nodes reporting over 20 false positives per
second. Upon increasing the number of validators, the false positive
rate plummets, confirming the hypothesis that requiring agreement
between independent, inaccurate sensors decreases false positives.
The lower graph of Figure 7 further demonstrates that allowing the
server to detect outliers and trigger sensor reset is critical, showing
a 30x–100x reduction in false positive rate. Large validation thresh-
olds and low node populations result in excellent performance; with
a node population of 500 and a validation threshold above 2, the
false positive rate decreases to zero.

Figure 8 demonstrates that the grid based scheme suppresses
far more false positives than the validator based scheme. With
server recalibration, the false positive rates are in the 10−4 per
second range, a 10000x decrease as compared to the high population
configurations of the validator scheme. As the grid squares grow
larger, the false positive rate decreases to a nearly constant level,
indicating that larger squares encompass more nodes and hence
reduce the influence of a single node on the average. Furthermore,
unlike the validator system, node population does not adversely
affect the grid system, as it examines data from all nodes in a square,
rapidly discarding stale data via a moving average. In comparison,
the validator system focuses only on high readings. For a validation
threshold of 𝑘 , it takes false readings from 𝑘 nodes within the
detection window to generate a false positive, a phenomenon that
grows more prevalent as more nodes are added to the simulation
or as the size of the detection window increases.
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Figure 9: Precision and Sensitivity of validator-based system. Each
line is named as (node population, size of detection window).

5.2 Explosive Detection
While the capability of suppressing false positives is essential to
high system stability, it is equally important to ensure a high IED
detection rate. To this end, we perform multiple simulation runs
each containing a single explosive in one of 25 possible locations.
Each run ends upon detecting the explosive (a true positive case)
or after 10,000 seconds (a false negative). We evaluate the impact
of different configurations and node population on the sensitivity
and specificity (evaluated with precision2) of the system following
the equations below:

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
(4)

𝑆𝑝𝑒𝑐𝑖 𝑓 𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
(5)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
(6)

An ideal system should have both precision and sensitivity close
to 1.0. As Figures 7 and 8 demonstrate that server-initiated sensor
reset is highly beneficial, we report only experiments with server
reset enabled. The precision and sensitivity statistics for each con-
figuration are shown in Figures 9 and 10.

Precision and Sensitivity: The precision statistics demonstrate
that the validator system is, again, less specific than the grid system.
Furthermore, although a high validation number decreases the
number of false positives greatly, thereby boosting precision, it
is too strict, generating a large number of false negatives, and
lowering the sensitivity. This reduced sensitivity is expected as

2Both specificity and precision quantify the impact of false positives. The reason for
utilizing precision instead of specificity is that true negatives are extremely common:
almost every node generates a true negative at every time step.
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Figure 10: Precision and Sensitivity of grid-based system. Each line
is named as (node population, size of moving avg. period).

more unique nodes must confirm high readings, requiring either
high node traffic in an area or higher node density.

With respect to the grid system, larger grid squares increase
precision to a point, reaching equilibrium around 6m×6m. While a
large grid size is likely to encompass the effective sensing radius of
a sensor (2m), it also encompasses the readings from more nodes,
reducing the chance that a grid square is dominated by a few drift-
ing nodes. The moving average period of the grid system greatly
effects the precision and sensitivity, with a larger period leading
to a higher precision value but a lower sensitivity. This conforms
to expectations, as a larger period reduces the ability of a single
node’s readings to effect the average of a grid square and raise an
alarm.

Population Density: In both systems, larger population densi-
ties increase sensitivity. This is expected, as a higher population
density increases the chance that multiple nodes will pass near the
IED, reducing the likelihood that a detection goes unconfirmed.

The precision values reported in Figures 9 and 10 are consis-
tent with the false positive rates reported in Figures 7 and 8: the
lower the false positive rate, the higher the precision. An in-depth
examination shows that precision values are largely affected by
the movement patterns (and resulting population densities) of the
outdoor marathon scenario. In the beginning of the scenario, nodes
enter the area from the edges with a goal of distributing themselves
along the edges of the track. Importantly, this ‘entry’ phase leads
to regions of both very high density as nodes jostle through con-
stricted areas to reach their destinations and low density as nodes
break out of these concentrated areas and are the first to reach their
destinations. In the validator system, the high density areas result
in a period of increased false positive activity, as there are more
nodes which might generate validations. The early false positives
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in the grid system can be attributed to the nodes that arrive first to
their destination. These nodes may be the only nodes to influence
the grid square until more nodes arrive. As shown in Figure 8, low
densities increase the false positive rate of the grid system. As the
majority of bomb detections occur within the first 1,800 seconds
(30 minutes) of simulation, when the nodes are filling the area, the
precision values reflect these higher, early, false positive rates for
both systems.

5.3 Detection Rate and Time
The detection rate and time-to-detection vary from system to sys-
tem. The grid system averages a 92% detection rate for 500 nodes
and a 100% detection rate for higher populations. Neither high nor
low population detection rates are effected by grid size or moving
average period. The validator system struggles at low populations
and high validation thresholds (50% detection rate with 500 nodes
and a validation threshold of 4) as there are not enough nodes to
confirm readings within the validation window.While the detection
rate increases with higher densities and larger detection windows,
only 10,000 nodes and a 200 second detection window are able to
achieve 100% detection from 0-4 validators. The time taken for the
grid scheme to detect the IED is always less than an hour, with high
population configurations detecting the IEDs in a few minutes and
low population configurations detecting them in 40 minutes. As
expected, the higher sensitivity of smaller moving average periods
decreases the time-to-detection relative to higher periods. The val-
idator system achieves time-to-detection similar to the grid system
for low validation thresholds, but more than 2x time-to-detection
as higher validation thresholds are required.

5.4 Recommended Configurations
When protecting an open space event, it is important to carefully
consider the different parameters of each detection algorithm. In
examining the performance of the proposed detection systems,
the grid scheme presents superior sensitivity and precision. In
almost all node populations, a grid size of 6m×6m and a moving
average period of 10 provides the best tradeoff between precision
and sensitivity. This configuration reduces the false positive rate
tremendously, while still maintaining a high detection rate and
short time-to-detection. If the population of an event is known
to be low and the event does not have the resources to check all
alarms, a larger moving average period can be used to maintain
high precision while slightly prolonging time-to-detection.

6 RELATED WORK
Multiple works examine the utilization of inaccurate sensors and
event region (high chemical concentration) detection. However,
these works either require large, smooth gradients to detect out-
liers [4] or the use of stationary sensors [8]. Other approaches [25,
36] attempt to rate sensors based on their correlation with other
nearby, immobile, sensors. These systems are not applicable to
our mobile sensor nodes which attempt to detect very small con-
centration gradients. Research in event region detection [14, 26]
mainly focuses on the utilization of stable nodes and requires the
processing of the readings of the entire sensor network at once
or detections from multiple nodes at a time to reach a consensus.
In contrast, our system targets small detection radius (2m) where

there is no guarantee that multiple sensors will be in range of the
target at once.

The protection of public events is not a new area, and state-of-the-
art systems fall into roughly three categories: pre-screening an area,
pre-deploying stationary sensors, or the utilization of high-cost, op-
erator required, mobile detection systems. In the pre-screening ap-
proach, there exist multiple commercial systems ranging from rapid
mobile swab testing to continuous airborne detection [13, 17, 30].
These systems require highly trained users and closed event arenas
where the area can be scanned ahead of time and people entering
can be monitored. In contrast, our system is designed for areas
where it is not possible to effectively create a secure perimeter and
guarantee safety ahead of time. Other systems, which utilize vary-
ing sensor locations, such as [31, 33], focus on continually scanning
the crowd with sensors and employing a team of professionals
to monitor them. These stationary systems are usually placed in
high traffic locations to monitor as many event goers as possible.
In contrast, the proposed ChemFET based system is provided to
anyone that enters the event, and can realize coverage wherever a
user wanders. Another mobile method for event protection is the
employment of explosive detection canines [27]. Full event cover-
age, however, is impractical as K9 teams would need to constantly
and disruptively examine areas of an event such as seating areas,
something that few event goers are likely to tolerate. Our proposed
detection system is far less intrusive, passively monitoring a user
wherever they go.

The proposed detection systems bear some similarities to sensor
networks that deploy spatially distributed sensor nodes for habitat
monitoring [29], military surveillance [21], and health care [18].
Similarly to [4, 14, 26], these approaches require the designer to de-
termine where to place sensors or design algorithms that work with
specific configurations etc. In our proposed scheme, the central-
ized server is able to exercise minimal control over the individual
sensors and is unable to influence their location.

7 CONCLUSIONS
In this paper we proposed the utilization of low-cost ChemFET sen-
sors for crowd-based explosive detection at large outdoor events.
We described the design challenges inherent to the development
of such a sensor network, motivated its necessity, and designed
a system-level simulator to combine crowd simulations, chemical
sensor models, and chemical diffusion data. We utilized the sim-
ulator to model and evaluate two detection algorithms, explored
the design space for these detection systems, and evaluated their
specificity and sensitivity in the face of inaccurate and drifting
data from low-cost ChemFET sensors. We demonstrated that a grid-
based detection system utilizing a two-level feedback mechanism
can achieve not only high detection rates, but also suppress > 99%
of the false positives generated by the sensors. Our future work will
examine further design methodologies and algorithms to detect
moving threats as well as the fusion of multiple different types of
sensors to further enhance system accuracy.
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