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Abstract. We obtain new upper bounds on the minimal density
Θn,K of lattice coverings of Rn by dilates of a convex body K. We
also obtain bounds on the probability (with respect to the natu-
ral Haar-Siegel measure on the space of lattices) that a randomly
chosen lattice L satisfies L + K = Rn. As a step in the proof, we
utilize and strengthen results on the discrete Kakeya problem.

1. Introduction

The classical lattice covering problem asks for the most economical
way to cover space by overlapping Euclidean balls centered at points
of a lattice. To make this precise, given a lattice L ⊂ Rn, normalized
so that it has covolume one, define its covering density, denoted Θ(L),
to be the minimal volume of a closed Euclidean ball Br, for which
Rn = L+Br. Define

Θn
def
= inf{Θ(L) : L is a lattice of covolume one in Rn}.

Similarly, let K ∈ Convn, where Convn denotes the set of compact
convex subsets of Rn with nonempty interior. We define the K-covering
density of L, denoted ΘK(L), to be the minimal volume of a dilate r ·K
such that Rn = L+ r · K, and define

Θn,K
def
= inf{ΘK(L) : L is a lattice of covolume one in Rn}.

The quantities Θn and Θn,K have been intensively investigated, both for
individual n and K, and asymptotically for large n, and many questions
remain open. Standard references are [CS88, GL87, Rog64].

The collection Ln of lattices of covolume one in Rn can be identified
with the quotient SLn(R)/ SLn(Z), via the map

g SLn(Z) ↦→ gZn (g ∈ SLn(R)). (1.1)

This identification endows Ln with a natural probability measure; namely,
there is a unique SLn(R)-invariant Borel probability measure on Ln.
We will refer to this measure as the Haar-Siegel measure and denote it
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by µn. In this paper we give new bounds on Θn,K and on the µn-typical
value of ΘK(L).

Theorem 1.1. There is c > 0 so that for any n ∈ N and any K ∈
Convn,

Θn,K ≤ cn2. (1.2)

This improves on the best previous bound of nlog2 logn+c, which was
proved by Rogers [Rog59]. We note that for the case that K is the
Euclidean ball, Rogers obtained Θn ≤ n (log n)c [Rog59], and this was
extended to certain symmetric convex bodies by Gritzmann [Gri85].
This bound is better than what we obtain here.

We will actually prove the following measure estimate, from which
Theorem 1.1 follows immediately.

Theorem 1.2. There are positive constants c1, c2, c3, c4 such that for
any n ∈ N, any K ∈ Convn, and any

M ∈
[︁
c3n

2, c4n
3
]︁
, (1.3)

we have
µn ({L ∈ Ln : ΘK(L) > M}) < c1 e

− c2M

n2 . (1.4)

We remark that the constants appearing in the statement of Theo-
rem 1.2 can be explicitly estimated.

Remark 1.3. As we will show in Appendix B, the left-hand side of
(1.4) is at least C/M , for some constant C depending on n and K. It
follows that some upper bound on M is required if (1.4) is to hold. It
also follows that the expectation of ΘK with respect to the measure µn

is infinite.

Setting M = c4n
3 in (1.4), we see that

Corollary 1.4. There is a constant c > 0 such that for any sequence
Kn ∈ Convn, the Haar-Siegel probability that Θn,Kn(L) ≤ cn3 tends to
1 exponentially fast, as n → ∞.

This resolves a question of Strömbergsson, who showed in [Str12]
that the conclusion holds with Θn,Kn(L) ≤ (1 + δ)n and δ > δ0, for an
explicit number δ0 = 0.756....

We introduce two quantities which describe the growth rate of the
Haar-Siegel typical covering density. Let

τ◦
def
= inf {s > 0 : µn {L ∈ Ln : Θ(L) < ns} −→n→∞ 1}

and

τ
def
= inf

{︃
s > 0 : inf

K∈Convn
µn {L ∈ Ln : ΘK(L) < ns} −→n→∞ 1

}︃
.
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Clearly τ◦ ≤ τ , and a result of Coxeter, Few and Rogers [CFR59]
implies that τ◦ ≥ 1. Plugging M = n2+ε into (1.4) we deduce the
following.

Corollary 1.5. We have τ ≤ 2.

Prior to our results it was not known whether τ and τ◦ are finite,
i.e., whether the typical behavior of the covering density is polynomial.
It would be interesting to know whether our upper bound on τ and τ◦
can be improved.

1.1. Simultaneous covering and packing. We describe another ap-
plication of Theorem 1.2, improving a result of Butler [But72]. To state
it, define the K-packing density of L, denoted δK(L), to be the maximal
volume of a dilate r · K such that the translates {ℓ+ r · K : ℓ ∈ L} are
disjoint. Then we have:

Corollary 1.6. There is c > 0 such that for all n ∈ N and all K ∈
Convn, there is L ∈ Ln such that

ΘK(L)

δK(L)
≤ c

Vol(K −K)

Vol(K)
n2 . (1.5)

This improves a previous upper bound of (Vol(K−K)/Vol(K))nlog2 logn+c

proved by Butler [But72]. The proof follows by observing that (a) a
dilate of volume ≪ Vol(K)/Vol(K−K) is with high probability packing
for a Haar-Siegel random L (by Siegel’s theorem [Sie45]), and that (b)
a dilate of volume ≫ n2 is with high probability covering for a Haar-
Siegel random L (by Theorem 1.2). The union bound then shows that
with high probability both events hold simultaneously, completing the
proof. We leave the details to the reader.

The fact that (1.5) holds with high probability for a µn-random lat-
tice can be used to derive the following strengthening. Since µn is
preserved by the mapping which sends L to its dual L∗ (see (B.2)), we
obtain the existence of a lattice L such that both L and L∗ satisfy (1.5).

1.2. Ingredients of the proof. Our proof of Theorem 1.2 utilizes
some lower bounds on the cardinality of discrete Kakeya sets (see §2.4).
Specifically, relying on a result of Kopparty, Lev, Saraf, and Sudan
[KLSS11], we obtain a new lower bound on the size of a discrete ε-
Kakeya set of rank 2, see Corollary 2.9. What is important for us is
that the dependence of this bound on the parameter ε is linear.

We also use a variant of the Hecke correspondence to analyze the
properties of a µn-typical lattice. Namely, we show in §2.1 that for
parameters p, r, if one draws a Haar-Siegel random lattice L, and then
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replaces it by a lattice L′ uniformly drawn from those containing L as a
sub-lattice of index pr, and with a prescribed quotient group L′/L, then
L′ (properly rescaled) is also Haar-Siegel random. Our construction
is inspired by a similar construction which was investigated by Erez,
Litsyn and Zamir [ELZ05] in the information theory literature.

1.3. Acknowledgements. We are grateful to Uri Erez, Swastik Kop-
party, and Alex Samorodnitsky for useful discussions. The authors
gratefully acknowledge the support of grants ISF 2919/19, ISF 1791/17,
BSF 2016256, the Simons Collaboration on Algorithms and Geometry,
a Simons Investigator Award, and by the National Science Foundation
(NSF) under Grant No. CCF-1814524.

2. Preliminaries

2.1. Space of lattices and Haar-Siegel measure. Recall from the
introduction that Ln

∼= SLn(R)/ SLn(Z). This space is endowed with
the quotient topology and hence with the Borel σ-algebra arising from
this topology. The group SLn(R) acts naturally on lattices via the
linear action of matrices on Rn, or equivalently, by left translations
on the quotient SLn(R)/ SLn(Z). The measure µn is the unique Borel
probability measure on Ln which is invariant under this action. From
generalities on coset spaces of Lie groups, such a measure exists and is
unique, see e.g., [Rag72]. We will also consider a slightly more general
space, namely for each c > 0 we write Ln,c for the collection of lattices
of covolume c in Rn. The obvious rescaling isomorphism Ln

∼= Ln,c

commutes with the SLn(R)-action, and thus there is a unique SLn(R)-
invariant measure on Ln,c, and we will denote it by µn,c. We will refer
to any of the measures µn, µn,c as the Haar-Siegel measure.

For a prime p and an integer r ∈ {1, . . . , n}, associate to each lattice
L the finite collection Λp,r(L) of lattices L

′ in Rn which contain L as a
sub-lattice, and for which the quotient L′/L is isomorphic to

∏︁r
1 Z/pZ.

Note that these lattices are of covolume p−r. The assignment L →
Λp,r(L) is a particular case of the so-called Hecke correspondence (see
e.g., [COU01]). The following useful observation is well-known, we
include a proof for completeness.

Proposition 2.1. For each n, p, r as above, let N = |Λp,r(Zn)|. Then
for each f ∈ Cc(Ln,p−r), i.e., each continuous compactly supported real
valued function on Ln,p−r ,∫︂

f dµn,p−r =

∫︂
Ln

1

N

∑︂
L′∈Λp,r(L)

f(L′) dµn(L). (2.1)
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In other words, choosing L′ randomly according to Haar-Siegel measure
on Ln,p−r is the same as choosing L randomly according to Haar-Siegel
measure on Ln, and then choosing L′ uniformly in Λp,r(L).

Proof. The right-hand side of (2.1) describes a positive continuous
linear functional on Cc(Ln,p−r), and hence, by the Riesz representa-
tion theorem, is equal to

∫︁
f dν for some Radon measure ν on Ln,p−r .

Taking a monotone increasing sequence of compactly supported func-
tions tending everywhere to 1, we see that (2.1) holds for the func-
tion f ≡ 1, and from this it follows that ν is a probability mea-
sure. By the uniqueness property of Haar-Siegel measure, in order
to show that ν = µn,p−r it suffices to show that ν is invariant under
left-multiplication by any g ∈ SLn(R). From the definition of Λp,r(L)
we see that Λp,r(gL) = gΛp,r(L), and so the invariance of ν follows from
the following computation:∫︂

f ◦ g dν =

∫︂
Ln

1

N

∑︂
L′∈Λp,r(L)

f(gL′) dµn(L)

=

∫︂
Ln

1

N

∑︂
L′′∈Λp,r(gL)

f(L′′) dµn(L)

=

∫︂
Ln

1

N

∑︂
L′′∈Λp,r(gL)

f(L′′) dµn(gL) =

∫︂
f dν.

□

We now interpret this in terms of the discrete Grassmannian, as
follows. For a prime p let Fp denote the field with p elements. For
r ∈ {1, . . . , n}, let Grn,r(Fp) denote the collection of subspaces of di-
mension r in Fn

p , or equivalently, the rank-r additive subgroups of Fn
p .

We can identify Fp with the residues {0, . . . , p−1}, and thus identify Fn
p

with the quotient Zn/pZn. We have a natural reduction mod p homo-
morphism πp : Zn → Fn

p , which sends each coordinate of x ∈ Zn to its
class modulo p. Any element S ∈ Grn,r(Fp) gives rise to a sub-lattice
π−1
p (S) ⊂ Zn, which contains pZn as a subgroup of index pr, and with

π−1
p (S)/pZn isomorphic as an abelian group to S ∼=

∏︁r
1 Z/pZ. Simi-

larly, for any L′ ∈ Λp,r(Zn) we have S = πp(pL
′) ∼= L′/Zn. This shows

that for any lattice L = gZn we have

Λp,r(L) = {p−1gπ−1
p (S) : S ∈ Grn,r(Fp)}.

We have shown:
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Proposition 2.2. Choosing L′ according to µn,p−r is the same as choos-
ing L = gZn according to µn, then choosing S ∈ Grn,r(Fp) uniformly
and setting L′ = p−1gπ−1

p (S).

We can state Proposition 2.2 in more concrete terms as follows.
Choose a random lattice L distributed according to µn, choose gen-
erators v1, . . . , vn of L, so that the parallelepiped

PL =
{︂∑︂

aivi : ∀i, 0 ≤ ai < 1
}︂

(2.2)

is a fundamental domain for Rn/L. Define the discrete ‘net’

P(disc)
L

def
=

{︃∑︂
aivi ∈ PL : ai ∈

{︃
0,

1

p
, . . . , 1− 1

p

}︃}︃
. (2.3)

These are coset representatives for the inclusion L ⊂ 1
p
· L. Choose

elements w1, . . . , wr ∈ P(disc)
L from the uniform distribution over lin-

early independent (as elements of Fn
p ) r-tuples. Then the lattice L′ =

spanZ (v1, . . . , vn, w1, . . . , wr) is a random lattice distributed according
to µn,p−r .

2.2. Some bounds of Rogers and Schmidt. We now recall some
fundamental results of Rogers and Schmidt. For a lattice L ∈ Ln

let TL
def
= Rn/L be the quotient torus, let mL be the Haar probability

measure on TL, and let πL : Rn → TL be the quotient map. Let Vol(·)
denote the Lebesgue measure on Rn. For a Borel measurable subset
J ⊂ Rn, and a lattice L ⊂ Rn, let

ε(J, L)
def
= 1−mL (πL(J)) ;

equivalently, ε(J, L) is the density of points in Rn not covered by L+J .
Also let

η = ηn
def
=

n

4
log

(︃
27

16

)︃
− 3 log n. (2.4)

With these notations, the following was shown in [Rog58] (see also
[Sch58]):

Theorem 2.3. There is a positive constant cRog such that for all n ∈ N,
for every Borel measurable J ⊂ Rn with

V
def
= Vol(J) ≤ η

we have ⃓⃓⃓⃓∫︂
Ln

ε(J, L)dµn(L)− e−V

⃓⃓⃓⃓
< cRog · e−η.

Using the Markov inequality, this immediately implies the following:
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Corollary 2.4. With the same notation and assumptions, for any κ >
0,

µn ({L ∈ Ln : ε(J, L) > κ}) < 1

κ

(︁
e−V + cRog e

−η
)︁
. (2.5)

2.3. From half covering to full covering. Here we show the stan-
dard fact (cf. [Rog59, Lemma 4] or [HLR09]) that if a convex body
covers half the space, then dilating it by a factor 2 covers all of space.
Notice that this translates to a factor 2n in volume, as a result of which
we will only use this lemma for very small bodies.

Lemma 2.5. Let K ∈ Convn and let L be a lattice in Rn. Suppose that

mL(πL(K)) >
1

2
.

Then we have

L+ 2K = Rn.

Proof. Since

mL (πL (K)) = mL (πL (−K)) >
1

2
,

we have that for any x ∈ TL,

mL ((πL (K)− x) ∩ (πL (−K))) > 0 .

Therefore, there are z1, z2 ∈ πL(K) so that z1−x = −z2, or equivalently,
there are y1, y2 ∈ K so that

x = πL (y1) + πL (y2) = πL (y1 + y2) .

The claim now follows from y1 + y2 ∈ 2K. □

2.4. Lower bound on the size of a discrete ε-Kakeya set. Now
let q be a power of a prime, let Fq denote the field with q elements
and for a line ℓ ∈ Grn,1(Fq), let x + ℓ denote the affine line through
x parallel to ℓ. A subset K ⊂ Fn

q is called a Kakeya set if for every
ℓ ∈ Grn,1(Fq) there is x ∈ Fn

q such that x+ ℓ ⊂ K; that is, K contains
a line in every direction. For ε ∈ (0, 1], K is called an ε-Kakeya set if

|{ℓ ∈ Grn,1(Fq) : ∃x s.t. x+ ℓ ⊂ K}| ≥ ε |Grn,1(Fq)|;
that is K contains a line in at least an ε-proportion of directions.
Extending this notion to higher dimensions, let ε ∈ (0, 1] and r ∈
{1, . . . , n − 1}. Then a set K ⊂ Fn

q is called a Kakeya set of rank r if
for any S ∈ Grn,r(Fq) there is x ∈ Fn

q such that x + S ⊂ K, and an
ε-Kakeya set of rank r if

|{S ∈ Grn,r(Fq) : ∃x s.t. x+ S ⊂ K}| ≥ ε |Grn,r(Fq)|.
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In this subsection we will derive lower bounds on the size of an ε-
Kakeya set of rank r. Our main observation is that the possible sizes
of an ε-Kakeya set and a δ-Kakeya set are related as follows.

Lemma 2.6. Let 0 < ε < δ < 1. Assume K ⊂ Fn
q is an ε-Kakeya

set of rank r, then there exists a δ-Kakeya set A ⊂ Fn
q of rank r with

cardinality

|A| ≤
⌈︃
log(1− δ)

log(1− ε)

⌉︃
|K|.

Proof. Fix n ∈ N and r ∈ {1, . . . , n− 1}. For K ⊂ Fn
q , denote

BK
def
= {S ∈ Grn,r(Fq) : K contains a translate of S}.

Let g be an element of GLn(Fq), that is an invertible n×n matrix with
entries in Fq. For S ∈ Grn,r(Fq), we clearly have S ∈ BK if and only if
gS ∈ BgK . Let N be a finite subset of GLn(Fq) and consider

A = A(N , K)
def
=

⋃︂
g∈N

gK.

Clearly

|A| ≤ |N | · |K| and
⋃︂
g∈N

gBK ⊂ BA.

Recall that by definition of an ε-Kakeya set of rank r, we have that
|BK | ≥ ε|Grn,r(Fq)|. Consequently, our claim will follow once we show
that if

B ⊂ Grn,r(Fq) satisfies |B| ≥ ε |Grn,r(Fq)| (2.6)

then

∃N ⊂ GLn(Fq) s.t. |N | ≤
⌈︃
log(1− δ)

log(1− ε)

⌉︃
and

⃓⃓⃓ ⋃︂
g∈N

gB
⃓⃓⃓
≥ δ|Grn,r(Fq)|.

(2.7)
We will prove this using a standard probabilistic argument. Define

a probability space by drawing N =
⌈︂
log(1−δ)
log(1−ε)

⌉︂
elements g1, . . . , gN of

GLn(Fq), uniformly and independently. Fix B as in (2.6) and for each
S ∈ Grn,r(Fq), denote by Ei

S the event that S /∈ giB. The events
{Ei

S : i = 1, . . . , N} are i.i.d., since the gi are. Therefore

ES
def
=

N⋂︂
i=1

Ei
S,

satisfies

Pr (ES) =
(︁
Pr(Ei

S)
)︁N

.
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Since GLn(Fq) acts transitively on Grn,r(Fq),

Pr
(︁
Ei

S

)︁
= Pr

(︁
g−1
i S /∈ B

)︁
= 1− |B|

|Grn,r(Fq)|
≤ 1− ε,

which implies
Pr (ES) ≤ (1− ε)N ≤ 1− δ. (2.8)

It therefore follows that

E
⃓⃓⃓ N⋃︂
i=1

giB
⃓⃓⃓
=

∑︂
S∈Grn,r(Fq)

(1− Pr (ES)) ≥ δ|Grn,r(Fq)|.

This implies that there exists a subset N def
= {g1, . . . , gN} that satisfies

(2.7). □

In [Dvi09, DKSS13, KLSS11], a fundamental lower bound on the
minimal cardinality of Kakeya sets was established. We will need the
following variant, whose special case δ = 1 was proved in [KLSS11]:

Lemma 2.7. Let δ ∈ (0, 1]. If K ⊂ Fn
q is a δ-Kakeya set of rank r

then

|K| ≥
(︃
1 +

(q − 1)q−r

δ

)︃−n

qn.

The proof follows with minor adaptations from the arguments of
[KLSS11]. We give the details in Appendix A.

The bound in Lemma 2.7 is quite tight for large δ, but is loose for
δ ≪ 1. We now leverage Lemma 2.6 to obtain a much sharper bound for
small δ. It replaces the exponential (in n, with q, r fixed) dependence
on δ with a linear dependence. We remark that the bound (2.10) will
not be used in this paper, and is included for future reference.

Theorem 2.8. Let ε ∈ (0, 1). If K ⊂ Fn
q is an ε-Kakeya set of rank r,

then
|K| > ε

(︁
1 + 2(q − 1)q−r

)︁−n
qn, (2.9)

and for r = 1 we also have that

|K| > ε
e−1

log(2en)
2−nqn. (2.10)

Proof. We first claim that if K ⊂ Fn
q is an ε-Kakeya set of rank r, then

for any ε < δ < 1

|K| ≥
(︃⌈︃

log(1− δ)

log(1− ε)

⌉︃)︃−1

·
(︃
1 +

1

δ
(q − 1)q−r

)︃−n

qn. (2.11)

To see this, let ε < δ < 1, and assume for contradiction that K ⊂ Fn
q is

an ε-Kakeya set of rank r with cardinality smaller than the right-hand
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side of (2.11). By Lemma 2.6, this implies that there must exist a

δ-Kakeya set A ∈ Fn
q of rank r with cardinality |A| ≤

⌈︂
log(1−δ)
log(1−ε)

⌉︂
|K| <(︁

1 + 1
δ
(q − 1)q−r

)︁−n
qn, which contradicts Lemma 2.7.

Next, we use (2.11) to show that if |K| is an ε-Kakeya set of rank
r, it must satisfy (2.9). For ε ∈ [1/2, 1), this follows immediately from
Lemma 2.7. We may therefore assume without loss of generality that
ε ∈ (0, 1/2). Let δ = 1/2 and note that for all ε in this range⌈︃

log(1− δ)

log(1− ε)

⌉︃
=

⌈︃
log (2)

− log(1− ε)

⌉︃
<

log (2)

− log(1− ε)
+ 1 <

1

ε
.

Thus, applying (2.11) with 0 < ε < δ = 1/2 establishes (2.9).
Finally, we assume r = 1 and establish (2.10). Let δ = 1

1+2/n
and

note that (︃
1 +

1

δ
(q − 1)q−r

)︃−n

qn ≥ e−12−nqn .

Hence, for ε ∈ [δ, 1], (2.10) follows immediately from Lemma 2.7. We
may therefore assume without loss of generality that ε ∈ (0, δ). For all
ε in this range⌈︃

log(1− δ)

log(1− ε)

⌉︃
=

⌈︄
log

(︁
1 + n

2

)︁
− log(1− ε)

⌉︄
<

log (2n)

ε
+ 1 <

log(2en)

ε
.

Thus, applying (2.11) with 0 < ε < δ = 1
1+2/n

establishes (2.10). □

We will need the following consequence:

Corollary 2.9. (i) If K ⊂ Fn
q is an ε-Kakeya set of rank 2 then

|K|
qn

> εe−2n/q.

(ii) If K ′ ⊂ Fn
q satisfies |K′|

qn
≥ 1− εe−2n/q then the set

S def
= {S ∈ Grn,2(Fq) : ∀x ∈ Fn

q , (x+ S) ∩K ′ ̸= ∅}

satisfies

|S| > (1− ε)|Grn,2(Fq)|.

Proof. For r = 2 we have that

1

(1 + 2(q − 1)q−r)−n =

(︃
1 +

2

q
− 2

q2

)︃n

≤

[︄(︃
1 +

2

q

)︃q/2
]︄2n/q

≤ e2n/q.

Thus (i) is an immediate consequence of (2.9). Assertion (ii) follows
from (i) by setting K = Fn

q ∖K ′. □
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3. Proof of Theorem 1.2

Let p be a prime number satisfying

n ≤ p ≤ 2n. (3.1)

We define a probability space as follows. Let L = gZn be a random
lattice chosen according to µn, and S be randomly chosen from the uni-
form distribution on Grn,2(Fp), independently of L. Define the lattice
L′ = p−1gπ−1

p (S) and note that L ⊂ L′ ⊂ 1
p
L. By Proposition 2.2, we

have that L′ is distributed according to µn,p−2 . Therefore, the left-hand
side of (1.4), which we are trying to bound from above, is equal to

Pr
(︂
ΘK(L) > M

)︂
= Pr

(︂
ΘK(L

′) >
M

p2

)︂
.

Let J be the dilate of K of volume

V
def
= p−2

(︃
1 +

2

p

)︃−n

M. (3.2)

Applying Corollary 2.4 with κ = e−
V
2 we have

Pr
(︂
ε(J, L) > e−

V
2

)︂
< c0 e

−V
2 ,

where c0
def
= 1 + cRog. Here we used that V ≤ η (where η is as defined

in (2.4)) which holds assuming the constant c4 is chosen small enough.
From now on, we fix an L for which

ε(J, L) ≤ e−
V
2 , (3.3)

and we show that when choosing S, with probability at least 1− ε, for
ε to be chosen below, we have ΘK(L

′) ≤ M/p2.
Define

BL
def
= TL ∖ πL(J), (3.4)

so that mL(BL) ≤ e−V/2. Let P(disc)
L be as in (2.3), and let

P(disc)

L
def
= πL

(︂
P(disc)

L

)︂
= πL

(︃
1

p
· L

)︃
⊂ TL. (3.5)

The Haar measure mL on the torus TL satisfies that

mL(A) =
1

pn

∑︂
x∈P(disc)

L

mL(A− x),

and applying this with A taken to be BL we find that there is u ∈ TL

such that
1

pn

⃓⃓⃓(︂
u+ P(disc)

L

)︂
∩BL

⃓⃓⃓
≤ mL(BL) ≤ e−

V
2 .
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Recall that we have an identification of Fn
p with

(︁
0, 1

p
, . . . , 1 − 1

p

)︁n
by

reducing mod p and then dividing by p, and a further identification of(︁
0, 1

p
, . . . , 1 − 1

p

)︁n
with P(disc)

L . With these identifications in mind we

view Fn
p as a subset of TL, and define

K ′ def=
{︁
x ∈ Fn

p : u+ x ∈ πL(J)
}︁
,

so that
|K ′|
pn

≥ 1− e−
V
2 .

This implies via Corollary 2.9(ii), applied with

ε
def
= e−

V
2 e2n/p, (3.6)

that with probability at least 1−ε over the choice of S, it holds that for
all x ∈ Fn

p , u+ x+S intersects πL(J). Recalling that L′ = 1
p
· gπ−1

p (S),

this equivalently says that

u+
1

p
· L ⊂ L′ + J . (3.7)

But by Lemma 2.5 and (3.3), and using that V > 2 log 2 (which we can
assume by taking c3 large enough), we have

L+ 2J = Rn.

Together with (3.7), this implies that

L′ +
(︂
1 +

2

p

)︂
J ⊃ u+

1

p
· L+

2

p
J = Rn .

To summarize, Proposition 2.2 shows that with all but probability

c0 e
−V/2+ε (due to the choice of L and S), we have L′+

(︂
1+ 2

p

)︂
J = Rn

and hence ΘK(L
′) ≤ M

p2
. Using our choices (3.1), (3.2) and (3.6) we see

that for appropriate choices of constants c1, c2, we have (1.4).

Appendix A. Proof of Lemma 2.7

The case δ = 1 is precisely [KLSS11, Theorem 1]. The general case
δ ∈ (0, 1] (as in Lemma 2.7) follows from minor modifications to their
proof. For the reader’s convenience, we include the full proof here,
much of it taken verbatim from [KLSS11].

We start with some necessary background. Let N0 denote the set of
non-negative integers. For an n-tuple i = (i1, . . . , in) ∈ Nn

0 , we define

∥i∥ def
= i1+ · · ·+ in and if X = (X1, . . . , Xn) then X i def= X i1

1 · · ·X in
n . Any
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polynomial P in n variables over some field F can be expanded in the
form

P (X + Y ) =
∑︂
i∈Nn

0

P (i)(Y )X i ,

for some polynomials P (i) over F in n variables. We refer to P (i) as the
Hasse derivative of P of order i. It is easy to see that P (0) = P and that
for ∥i∥ > degP , P (i) = 0. Moreover, if PH denotes the homogeneous
part of P , then

(PH)
(i) =

{︃
(P (i))H if degP (i) = degP − ∥i∥,
0 if degP (i) < degP − ∥i∥.

For a nonzero polynomial P in n variables over a field F, we define
its multiplicity of zero at some point a ∈ Fn, denoted µ(P, a), as the
largest m ≥ 0 such that P (i)(a) = 0 for all i ∈ Nn

0 with ∥i∥ < m.
Alternatively, it is the largest m for which we can write

P (X + a) =
∑︂

i∈Nn
0 : ∥i∥≥m

c(i, a)X i

for some c(i, a) ∈ F. We sometimes also say that P vanishes at a with
multiplicity m.

We will use the following relatively straightforward lemmas.

Lemma A.1 ([DKSS13, Lemma 5]). Let n ≥ 1 be an integer. For any
nonzero polynomial P in n variables over a field F, a ∈ Fn, and i ∈ Nn

0 ,
it holds that

µ(P (i), a) ≥ µ(P, a)− ∥i∥ .

Lemma A.2 ([DKSS13, Proposition 10]). Let n,m ≥ 1 and k ≥ 0 be
integers, and F a field. If a finite set S ⊂ Fn satisfies

(︁
m+n−1

n

)︁
|S| <(︁

n+k
n

)︁
, then there exists a nonzero polynomial over F in n variables of

degree at most k, vanishing at every point of S with multiplicity at least
m.

Lemma A.3 ([KLSS11, Lemma 14]). Let n, r ≥ 1 be integers, and
P a nonzero polynomial in n variables over a field F. Suppose that
b, d1, . . . , dr ∈ Fn. Then for any t1, . . . , tr ∈ F,

µ(P (b+ T1d1 + · · ·+ Trdr), (t1, . . . , tr)) ≥ µ(P, b+ t1d1 + · · ·+ trdr) ,

where we view P (b + T1d1 + · · · + Trdr) as a polynomial in the formal
variables T1, . . . , Tr.

Finally, we will need a multiplicity version of the standard Schwartz-
Zippel lemma [DKSS13].
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Lemma A.4 ([DKSS13, Lemma 2.7]). Let n ≥ 1 be an integer, P a
nonzero polynomial in n variables over a field F, and S ⊂ F a finite
set. Then

|S|−(n−1)
∑︂
z∈Sn

µ(P, z) ≤ degP .

Proof of Lemma 2.7. Let m, k be positive integers satisfying

k < δqr
⌈︃
qm− k

q − 1

⌉︃
. (A.1)

Our goal for the rest of the proof is to show that under the condi-
tion (A.1),

|K| ≥
(︃
n+ k

n

)︃/︂(︃
m+ n− 1

n

)︃
. (A.2)

The lemma then follows by taking k = Nqr+1−1 andm = ⌈(qr+ q−1
δ
)N⌉

where N is a positive integer. With this choice, (A.1) holds, and the
lemma follows by noting that the right-hand side of A.2 converges to
(1 + (q − 1)q−r/δ)

−n
qn as N goes to infinity.

Assume towards contradiction that (A.2) does not hold. Thus, by
Lemma A.2, there exists a nonzero polynomial P in n variables over Fq

of degree at most k that vanishes at every point of K with multiplicity

at least m. Let ℓ
def
= ⌈ qm−k

q−1
⌉ and fix i = (i1, . . . , in) ∈ Nn

0 satisfying

w
def
= ∥i∥ < ℓ. Let Q

def
= P (i) be the ith Hasse derivative of P .

Let D ⊂ (Fn
q )

r be the set of all r-tuples of vectors (d1, . . . , dr) with
the property that there exists b ∈ Fn

q such that b+ t1d1+ · · ·+ trdr ∈ K
for all t1, . . . , tr ∈ Fq. Since K is a δ-Kakeya set of rank r, we have
|D| ≥ δ · qnr. (Notice that the span of d1, . . . , dr might be of rank less
than r; the statement is true because a δ-Kakeya set of rank r is also
a δ-Kakeya set of rank r′ for all r′ ≤ r.)Therefore, by our choice of
P , for any (d1, . . . , dr) ∈ D, there exists a b ∈ Fn

q such that for all
t1, . . . , tk ∈ Fq,

µ(P, b+ t1d1 + · · ·+ trdr) ≥ m ,

and so by Lemma A.3 and Lemma A.1,

µ(Q(b+ T1d1 + · · ·+ Trdr), (t1, . . . , tr)) ≥ µ(Q, b+ t1d1 + · · ·+ trdr)

≥ m− w ,

where in the left-hand side we consider Q(b + T1d1 + · · · + Trdr) as a
polynomial in the variables T1, . . . , Tr. But since

degQ(b+ T1d1 + · · ·+ Trdr) ≤ degQ ≤ k − w < q(m− w)
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(which follows from w < ℓ), Lemma A.4 with S = Fq implies that
Q(b+ T1d1 + · · ·+ Trdr) is in fact the zero polynomial.

Let PH and QH denote the homogeneous parts of P and Q, re-
spectively (i.e., PH is the unique homogeneous polynomial for which
deg(P−PH) < degP ). It is easy to see that Q(b+T1d1+· · ·+Trdr) = 0
implies QH(T1d1+ · · ·+Trdr) = 0 (note that there is no b in the latter).
It follows that (PH)

(i)(T1d1 + · · · + Trdr) = 0 for all (d1, . . . , dr) ∈ D.
Equivalently, (PH)

(i), considered as a polynomial in n variables over
the field of rational functions Fq(T1, . . . , Tr), vanishes at every point of
the set

D′ def=
{︁
T1d1 + · · ·+ Trdr : (d1, . . . , dr) ∈ D

}︁
⊂ Sn ,

where
S

def
=

{︁
α1T1 + · · ·+ αrTr : α1, . . . , αr ∈ Fq

}︁
.

Since i is an arbitrary tuple satisfying ∥i∥ < ℓ, this shows that PH

vanishes with multiplicity at least ℓ at every point of D′. On the other
hand, by (A.1),

degPH = degP ≤ k < δqrℓ = δ|S|ℓ ,
which implies by Lemma A.4 that PH is the zero polynomial. This is
a contradiction since the homogeneous part of a nonzero polynomial is
nonzero. □

Appendix B. The expectation of the covering density is
infinite

Proposition B.1. There is c > 0 such that for all n large enough and
all M ≥ 1 we have

µn ({L ∈ Ln : Θ(L) > M}) ≥ c V 2
n

2n
1

M
, (B.1)

where Vn denotes the volume of the Euclidean ball of radius one in Rn.
In particular, for any n and any K ∈ Convn there is C > 0 such that

µn ({L ∈ Ln : ΘK(L) > M}) > C

M
.

Proof. Let λ1(L) denote the length of the shortest nonzero vector of

L. Given M , let r
def
= (M/Vn)

1/n be the radius of a Euclidean ball of
volume M . Let L∗ denote the dual lattice of L, that is

L∗ def
= {u ∈ Rn : ∀v ∈ L, u · v ∈ Z}. (B.2)

By considering the distance between affine hyperplanes perpendicular
to the shortest nonzero vector of L∗, we see that λ1(L

∗) < 1
2r

implies
that Θ(L) > M . In particular, taking into account that the measure
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µn is invariant under the mapping Ln → Ln, L ↦→ L∗, we see that the
left-hand side of (B.1) is bounded below by

µn

(︃{︃
L ∈ Ln : λ1(L) <

1

2r

}︃)︃
. (B.3)

Using Siegel’s summation formula, Kleinbock and Margulis [KM99, §7]
obtained the estimate

µn ({L ∈ Ln : λ1(L) < t}) ≥ 1

2ζ(n)
Vnt

n − 1

4ζ(n− 1)ζ(n)
V 2
n t

2n,

where ζ(n) =
∑︁

m∈N m
−n is the Riemann zeta function. Applying

this estimate with t = 1
2r

and using M = Vnr
n and the fact that

ζ(n) →n→∞ 1, we get that the left-hand side of (B.1) is bounded from
below by

V 2
n

2n+2M
− V 4

n

22n+2M2
.

By standard estimates for Vn, the first summand in this expression is
the dominant one for M ≥ 1.

This proves (B.1). Since any K ∈ Convn is contained in a dilate of
a Euclidean ball, the second assertion of the proposition follows. □
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