NEW BOUNDS ON THE DENSITY OF LATTICE
COVERINGS

OR ORDENTLICH, ODED REGEV, AND BARAK WEISS

ABSTRACT. We obtain new upper bounds on the minimal density
O,k of lattice coverings of R" by dilates of a convex body K. We
also obtain bounds on the probability (with respect to the natu-
ral Haar-Siegel measure on the space of lattices) that a randomly
chosen lattice L satisfies L + K = R™. As a step in the proof, we
utilize and strengthen results on the discrete Kakeya problem.

1. INTRODUCTION

The classical lattice covering problem asks for the most economical
way to cover space by overlapping Fuclidean balls centered at points
of a lattice. To make this precise, given a lattice L C R", normalized
so that it has covolume one, define its covering density, denoted ©(L),
to be the minimal volume of a closed Euclidean ball B,, for which
R"™ = L + B,. Define

0, < inf{O(L) : L is a lattice of covolume one in R"}.

Similarly, let £ € Conv,, where Conv,, denotes the set of compact
convex subsets of R™ with nonempty interior. We define the KC-covering
density of L, denoted Ox (L), to be the minimal volume of a dilate r- K
such that R" = L + r - IC, and define

Onx o inf{Ox (L) : L is a lattice of covolume one in R"}.

The quantities ©,, and ©,, x have been intensively investigated, both for
individual n and K, and asymptotically for large n, and many questions
remain open. Standard references are [CS88|, I(GL8T, Rog64].

The collection £,, of lattices of covolume one in R™ can be identified
with the quotient SL, (R)/SL,(Z), via the map

gSL,(Z) — gZ™ (g € SL,(R)). (1.1)

This identification endows £,, with a natural probability measure; namely,
there is a unique SL,(R)-invariant Borel probability measure on L,,.
We will refer to this measure as the Haar-Siegel measure and denote it
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by p,. In this paper we give new bounds on 6,, x and on the p,-typical
value of Ox(L).

Theorem 1.1. There is ¢ > 0 so that for any n € N and any K €
Conv,,
Onx < cn’. (1.2)

This improves on the best previous bound of n'°&21°¢"+¢ which was

proved by Rogers [Rogh9]. We note that for the case that I is the
Euclidean ball, Rogers obtained ©,, < n (logn)® [Rog59], and this was
extended to certain symmetric convex bodies by Gritzmann [Gri85].
This bound is better than what we obtain here.

We will actually prove the following measure estimate, from which
Theorem [I.1] follows immediately.

Theorem 1.2. There are positive constants cy, ca, c3,cq Such that for
any n € N, any K € Conv,,, and any

M € [esn®, ean®] (1.3)

we have

pn (1L € L0 Oc(L) > MY) < e 37 (1.4)

We remark that the constants appearing in the statement of Theo-
rem [1.2] can be explicitly estimated.

Remark 1.3. As we will show in Appendiz [B, the left-hand side of
is at least C'/M, for some constant C' depending on n and IC. It
follows that some upper bound on M is required if 1s to hold. It
also follows that the expectation of Ok with respect to the measure i,
is infinite.

Setting M = ¢4n® in (L.4), we see that

Corollary 1.4. There is a constant ¢ > 0 such that for any sequence
K, € Conv,, the Haar-Siegel probability that ©, x, (L) < cn?® tends to
1 exponentially fast, as n — oo.

This resolves a question of Strombergsson, who showed in [Stri2]
that the conclusion holds with ©,, , (L) < (1 +0)™ and 0 > o, for an
explicit number dy = 0.756....

We introduce two quantities which describe the growth rate of the
Haar-Siegel typical covering density. Let

To dZEf inf {3 >0: Hn {L € *Cn : G(L) < ns} —7n—oo 1}
and

rdéfinf{s>0: inf un{Leﬁn:@n(L)<ns}—>nem1}-

KeConvy,
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Clearly 7, < 7, and a result of Coxeter, Few and Rogers [CEFR59]
implies that 7, > 1. Plugging M = n?"® into (1.4) we deduce the
following.

Corollary 1.5. We have 7 < 2.

Prior to our results it was not known whether 7 and 7, are finite,
i.e., whether the typical behavior of the covering density is polynomial.
It would be interesting to know whether our upper bound on 7 and 7,
can be improved.

1.1. Simultaneous covering and packing. We describe another ap-
plication of Theorem 1.2} improving a result of Butler [But72]. To state
it, define the KC-packing density of L, denoted dx(L), to be the maximal
volume of a dilate 7 - IC such that the translates {¢{ +r-K : ¢ € L} are
disjoint. Then we have:

Corollary 1.6. There is ¢ > 0 such that for alln € N and all K €
Conv,, there is L € L,, such that

Oc(L) _ Vol(K—K) ,
Se(L) = Vol(K)

This improves a previous upper bound of (Vol(KX—K)/Vol(K))nlosz lesn+e
proved by Butler [But72]. The proof follows by observing that (a) a
dilate of volume < Vol(K)/Vol(K —K) is with high probability packing
for a Haar-Siegel random L (by Siegel’s theorem [Sie45]), and that (b)
a dilate of volume > n? is with high probability covering for a Haar-
Siegel random L (by Theorem [1.2). The union bound then shows that
with high probability both events hold simultaneously, completing the
proof. We leave the details to the reader.

The fact that holds with high probability for a u,-random lat-
tice can be used to derive the following strengthening. Since pu,, is
preserved by the mapping which sends L to its dual L* (see (B.2)), we
obtain the existence of a lattice L such that both L and L* satisfy .

(1.5)

1.2. Ingredients of the proof. Our proof of Theorem utilizes
some lower bounds on the cardinality of discrete Kakeya sets (see .
Specifically, relying on a result of Kopparty, Lev, Saraf, and Sudan
[KLSS11], we obtain a new lower bound on the size of a discrete e-
Kakeya set of rank 2, see Corollary 2.9, What is important for us is
that the dependence of this bound on the parameter ¢ is linear.

We also use a variant of the Hecke correspondence to analyze the
properties of a u,-typical lattice. Namely, we show in that for
parameters p, r, if one draws a Haar-Siegel random lattice L, and then
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replaces it by a lattice L’ uniformly drawn from those containing L as a
sub-lattice of index p”, and with a prescribed quotient group L’/ L, then
L’ (properly rescaled) is also Haar-Siegel random. Our construction
is inspired by a similar construction which was investigated by Erez,
Litsyn and Zamir [ELZ05] in the information theory literature.

1.3. Acknowledgements. We are grateful to Uri Erez, Swastik Kop-
party, and Alex Samorodnitsky for useful discussions. The authors
gratefully acknowledge the support of grants ISF 2919/19, ISF 1791/17,
BSF 2016256, the Simons Collaboration on Algorithms and Geometry,
a Simons Investigator Award, and by the National Science Foundation
(NSF) under Grant No. CCF-1814524.

2. PRELIMINARIES

2.1. Space of lattices and Haar-Siegel measure. Recall from the
introduction that £, = SL,(R)/SL,(Z). This space is endowed with
the quotient topology and hence with the Borel o-algebra arising from
this topology. The group SL,(R) acts naturally on lattices via the
linear action of matrices on R", or equivalently, by left translations
on the quotient SL,(R)/SL,(Z). The measure y, is the unique Borel
probability measure on £,, which is invariant under this action. From
generalities on coset spaces of Lie groups, such a measure exists and is
unique, see e.g., [Rag72]. We will also consider a slightly more general
space, namely for each ¢ > 0 we write L,, . for the collection of lattices
of covolume ¢ in R". The obvious rescaling isomorphism £, = L, .
commutes with the SL, (R)-action, and thus there is a unique SL,,(R)-
invariant measure on £, ., and we will denote it by f,, .. We will refer
to any of the measures (i, i, as the Haar-Siegel measure.

For a prime p and an integer r € {1,...,n}, associate to each lattice
L the finite collection A,, (L) of lattices L’ in R™ which contain L as a
sub-lattice, and for which the quotient L'/L is isomorphic to [[] Z/pZ.
Note that these lattices are of covolume p~". The assignment L —
A, (L) is a particular case of the so-called Hecke correspondence (see
e.g., [COUOIL]). The following useful observation is well-known, we
include a proof for completeness.

Proposition 2.1. For each n,p,r as above, let N = |\, .(Z")|. Then
for each f € Co(L,,,-+), i.e., each continuous compactly supported real
valued function on L, -,

[ i~ [ % ST FL) dpu(L). 2.1)

L'eAp (L)
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In other words, choosing L' randomly according to Haar-Siegel measure
on L, ,— 1s the same as choosing L randomly according to Haar-Siegel
measure on L,, and then choosing L' uniformly in A,,(L).

Proof. The right-hand side of describes a positive continuous
linear functional on C.(L, ,-), and hence, by the Riesz representa-
tion theorem, is equal to [ f dv for some Radon measure v on L, .
Taking a monotone increasing sequence of compactly supported func-
tions tending everywhere to 1, we see that holds for the func-
tion f = 1, and from this it follows that v is a probability mea-
sure. By the uniqueness property of Haar-Siegel measure, in order
to show that v = p, - it suffices to show that v is invariant under
left-multiplication by any g € SL,(R). From the definition of A, (L)
we see that A, (¢L) = gA, (L), and so the invariance of v follows from
the following computation:

/fogdv—/ S FoL) dua(L)

L’eA (L)
/ S A dpa(L)
n L”EAprgL)
- Z FE) dn(ol) = [ v
n L”eA gL)

O

We now interpret this in terms of the discrete Grassmannian, as
follows. For a prime p let F, denote the field with p elements. For
r € {1,...,n}, let Gr,,(FF,) denote the collection of subspaces of di-
mension 7 in F}, or equivalently, the rank-r additive subgroups of [ .
We can identify F, with the residues {0, ...,p—1}, and thus identify )
with the quotient Z"/pZ"™. We have a natural reduction mod p homo-
morphism 7, : Z" — [, which sends each coordinate of x € Z" to its
class modulo p. Any element S € Gr,,.(F,) gives rise to a sub-lattice
™, 1(S) c Z™, which contains pZ™ as a subgroup of index p”, and with
7, '(S)/pZ" isomorphic as an abelian group to S = [} Z/pZ. Simi-
larly, for any L' € A,,(Z™) we have S = m,(pL’) = L'/Z"™. This shows
that for any lattice L = gZ" we have

Apr(L) = {p_lgﬂp_l(s) 1S € Grmr(Fp)}~

We have shown:



6 OR ORDENTLICH, ODED REGEV, AND BARAK WEISS

Proposition 2.2. Choosing L' according to j,, ,-» is the same as choos-
ing L = gZ"™ according to p,,, then choosing S € Gr,.(F,) uniformly
and setting L' = p~*gm(9).

We can state Proposition in more concrete terms as follows.
Choose a random lattice L distributed according to pu,, choose gen-
erators vy, ..., v, of L, so that the parallelepiped

¢Q:{z)mwvaogw<1} (2.2)

is a fundamental domain for R"/L. Define the discrete ‘net’

isc) de 1 !
’]Déd )d:f {ZCMU@'EPLICZZ'G{0557"'71__}}' (23)

p

These are coset representatives for the inclusion L C é - L. Choose

elements wy,...,w, € Pédisc) from the uniform distribution over lin-
early independent (as elements of IF}) r-tuples. Then the lattice L' =
spany (v1,...,Up, w1, ..., w,) is a random lattice distributed according
to /,Ln7p—'r.

2.2. Some bounds of Rogers and Schmidt. We now recall some

fundamental results of Rogers and Schmidt. For a lattice L € L,

let Ty, Lfpn /L be the quotient torus, let m; be the Haar probability

measure on Ty, and let 7 : R” — Ty be the quotient map. Let Vol(-)
denote the Lebesgue measure on R™. For a Borel measurable subset
J C R"™, and a lattice L C R", let
def
e(S;L)=1—myg (mp(J));

equivalently, e(J, L) is the density of points in R" not covered by L+ J.
Also let

4 16

With these notations, the following was shown in [Rogh8] (see also
[Sch58]):

e 27
n=1n def log (—) — 3logn. (2.4)

Theorem 2.3. There is a positive constant crog such that for alln € N,
for every Borel measurable J C R™ with

vV Vol(J) <

we have

/ e(J, L)dpn(L) — eV | < crog - €.

n

Using the Markov inequality, this immediately implies the following;:
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Corollary 2.4. With the same notation and assumptions, for any k >
0,

1
pn ({L € L, :e(J, L) > Kk}) < - (e + croge™) . (2.5)
2.3. From half covering to full covering. Here we show the stan-
dard fact (cf. [Rogh9, Lemma 4] or [HLRO9]) that if a convex body
covers half the space, then dilating it by a factor 2 covers all of space.

Notice that this translates to a factor 2" in volume, as a result of which
we will only use this lemma for very small bodies.

Lemma 2.5. Let K € Conv,, and let L be a lattice in R™. Suppose that

mL(ﬂ'L(IC» >

N | —

Then we have
L+2K =R"™
Proof. Since

my, (rz (K)) = myg (72 (=K)) >

9

DN | —

we have that for any x € Ty,
my, (g (K) —2) 0 (m (=K))) > 0.

Therefore, there are z1, 2o € 71,(K) so that z;—z = — 29, or equivalently,
there are y;,y, € K so that

z=mp (1) + 7L (y2) = 7 (1 + 42) -
The claim now follows from y; + y, € 2K. O

2.4. Lower bound on the size of a discrete c-Kakeya set. Now
let ¢ be a power of a prime, let F, denote the field with ¢ elements
and for a line ¢ € Gr,;(F,), let 4+ £ denote the affine line through
x parallel to £. A subset K C [y is called a Kakeya set if for every
¢ € Gry, 1 (F,) there is x € F} such that x + ¢ C K; that is, K contains
a line in every direction. For € € (0, 1], K is called an e-Kakeya set if

{l € Grp1(Fy) : 3z st. a +4 C K}| > e|Grp,1(F,)l;

that is K contains a line in at least an e-proportion of directions.
Extending this notion to higher dimensions, let ¢ € (0,1] and r €
{1,...,n —1}. Then a set K C IF} is called a Kakeya set of rank r if
for any S € Gry,,(F,) there is x € F such that z +5 C K, and an
e-Kakeya set of rank r if

S € Gr,,(F,) : x s.t. v +5 C K}| > ¢|Gry,(F,)|.
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In this subsection we will derive lower bounds on the size of an e-
Kakeya set of rank . Our main observation is that the possible sizes
of an e-Kakeya set and a J-Kakeya set are related as follows.

Lemma 2.6. Let 0 < e <0 < 1. Assume K C F} is an e-Kakeya
set of rank r, then there exists a §-Kakeya set A C ) of rank r with

cardinality
log(1 — ¢)
< | =< |K]|.
A =< [log(l —J Il

Proof. Fixn € Nand r € {1,...,n —1}. For K C F}, denote

By {S € Gr,,(F,) : K contains a translate of S}.

Let g be an element of GL,,(F,), that is an invertible n x n matrix with
entries in F,. For S € Gr,,,(FF,), we clearly have S € B if and only if
gS € Byk. Let N be a finite subset of GL,(F,) and consider

A= AN K)= | gK.
geN

Clearly
A< IV [K] and | 9Bk © Ba
geN
Recall that by definition of an e-Kakeya set of rank r, we have that

|Bk| > ¢|Gr,,,(F,)|. Consequently, our claim will follow once we show
that if

B C Gr,,(F,) satisfies |B| > ¢ |Gr,, .(F,)]| (2.6)
then

log(1—14¢
IN € GLL(F,) st W] < [2BLZD ] g \ U gB‘ > §|Gry . (F,).
log(1 —¢) ’
geN
(2.7)
We will prove this using a standard probabilistic argument. Define

a probability space by drawing N = ﬁgégtgﬂ elements ¢1,...,gy of

GL,,(F,), uniformly and independently. Fix B as in (2.6) and for each
S € Gr,,(F,), denote by EY the event that S ¢ ¢;5. The events
{EL:i=1,...,N} are i.i.d., since the g; are. Therefore

N
def i
Es= (B
i=1

satisfies N
Pr(Es) = (Pr(Ey)) " .
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Since GL,(F,) acts transitively on Gr,, ,.(F,),

i -1 |B]
Pr(E%) =Pr(g;'S¢B) =1 G (F)] <1-c¢,
which implies
Pr(Es) < (1—¢)V <1-4. (2.8)
It therefore follows that
N
IE‘ UgiB‘ = S (1-Pr(Es)) 2 6/Cr,,(F,).
i=1 SEGrn r(Fy)

This implies that there exists a subset N/ dof {g1,...,gn} that satisfies
D). O

In [Dvi09, [DKSS13, [KLSS11], a fundamental lower bound on the
minimal cardinality of Kakeya sets was established. We will need the
following variant, whose special case § = 1 was proved in [KLSST1]:

Lemma 2.7. Let § € (0,1]. If K C F} is a 0-Kakeya set of rank r

then
— Do\ "
K| > (1 + %) q".

The proof follows with minor adaptations from the arguments of
[KLSST1]. We give the details in Appendix [Al

The bound in Lemma is quite tight for large 9, but is loose for
§ < 1. We now leverage Lemmal[2.6]to obtain a much sharper bound for
small §. It replaces the exponential (in n, with ¢, r fixed) dependence
on 0 with a linear dependence. We remark that the bound will
not be used in this paper, and is included for future reference.

Theorem 2.8. Lete € (0,1). If K C F} is an e-Kakeya set of rank r,

then -
K| >e(1+2(¢g—1g") "¢, (2.9)
and for r =1 we also have that
-1
e
K| >e——27"¢". 2.10
K] “Togen) > (2.10)

Proof. We first claim that if K C Fy is an e-Kakeya set of rank r, then
for any e < 9 < 1

K| > ([%D (14 5a-1a7) e en

To see this, let ¢ < § < 1, and assume for contradiction that K C Fy is
an e-Kakeya set of rank r with cardinality smaller than the right-hand
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side of (2.11). By Lemma [2.6] this implies that there must exist a

6-Kakeya set A € Fy of rank r with cardinality |A] < ﬁzgq M K| <

(14 2(g—1)g™") " ¢", which contradicts Lemma .

Next, we use (2.11]) to show that if |K| is an e-Kakeya set of rank
7, it must satisfy (2.9). For € € [1/2,1), this follows immediately from

Lemma [2.7. We may therefore assume without loss of generality that
e € (0,1/2). Let § = 1/2 and note that for all £ in this range

200)- ] i<t

Thus, applying (2.11)) with 0 < e < § = 1/2 establishes ([2.9).
Finally, we assume r = 1 and establish (2.10). Let § = ﬁ

note that

and

1 —n
<1 + g(q - 1)q7"> " >e 27"

Hence, for € € [4, 1], (2.10) follows immediately from Lemma We
may therefore assume without loss of generality that e € (0, ). For all
¢ in this range

[log(l — 5)—‘ _ |710g (1+2) “ _ log (2n) 1< log(26n)'

log(1 —¢) —log(1 —¢) £ €
Thus, applying (2.11)) with 0 <e < = ﬁ establishes ([2.10]). O

We will need the following consequence:

Corollary 2.9. (i) If K C Fy is an e-Kakeya set of rank 2 then

|q£| > ge /4,

(ii) If K' C Fy satisfies IK' > 1 —ece 2"/ then the set
SE{S € Gr,s(F,) : Vo € F?, (x4 S) N K' # o}
satisfies

|5 > (1 —€)|Grp ()|
Proof. For r = 2 we have that

et (33 )

Thus (i) is an immediate consequence of ([2.9)). Assertion (ii) follows
from (i) by setting K = Fy ~ K'. O

2n/q
< e/,
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3. PROOF OF THEOREM [1.2]

Let p be a prime number satisfying
n<p<2n. (3.1)

We define a probability space as follows. Let L = ¢gZ™ be a random
lattice chosen according to p,, and S be randomly chosen from the uni-
form distribution on Gry, 2(F,), independently of L. Define the lattice
L' = p‘lgﬁp_l(S) and note that L C L' C %L. By Proposition , we
have that L’ is distributed according to p,, ,—2. Therefore, the left-hand
side of , which we are trying to bound from above, is equal to

M
. /
Pr <@;¢(L) > M) = Pr (@K(L) > _p2> )
Let J be the dilate of IC of volume

e 2\ "
L2 (1 + —) M. (3.2)
p

v
2

Applying Corollary [2.4] with kK = e~ = we have

v
2

Pr <5(J, L) > 6_%) <cpe Z,

where ¢y ety + Crog- Here we used that V' < n (where 7 is as defined
in (2.4))) which holds assuming the constant ¢4 is chosen small enough.
From now on, we fix an L for which

e(J,L)<e 7, (3.3)
and we show that when choosing S, with probability at least 1 — ¢, for
£ to be chosen below, we have Ox(L') < M /p*.

Define
BLdéfTL\ﬂ'L(J), (34)
so that m(Br) < e V2. Let Pédisc) be as in (2.3)), and let
—(disc) de isc 1
P oy (P) =7 (]3 : L) C Ty (3.5)
The Haar measure m; on the torus T satisfies that
1
mp(A) = — > my(A-z),
p —(disc)
z€P},

and applying this with A taken to be By we find that there is u € Tp,
such that
disc)

<u+f(L

N

|
_‘ )mBL‘gmL(BL)Se* .
pn
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Recall that we have an identification of F; with (0, zla’ R %)n by

reducing mod p and then dividing by p, and a further identification of
(0, ]%, T %)n with f(Ldlsc). With these identifications in mind we

view ) as a subset of T, and define

K {xEIFZ:u—i—:BGWL(J)},

so that
K o
—>1—e 2.
pn

This implies via Corollary 2.9(ii), applied with

e e zenip, (3.6)

that with probability at least 1 —¢ over the choice of S, it holds that for
all v € F}, u+ 2+ S intersects 71 (J). Recalling that L' = % -g7rp_1(5),
this equivalently says that

1
u+}—9-LCL’+J. (3.7)

But by Lemma 2.5/ and (3.3)), and using that V' > 2log 2 (which we can
assume by taking c3 large enough), we have

L+2J=R".
Together with (3.7)), this implies that

2 1 2
L’+(1+—)J3u+—~L—|——J:R”.
D D P

To summarize, Proposition shows that with all but probability
coe”"/? + ¢ (due to the choice of L and S), we have L'+ (1—|— %)J =R"

and hence O (L") < 1%‘ Using our choices (3.1)), (3.2) and (3.6 we see

that for appropriate choices of constants ¢y, co, we have (1.4)).

APPENDIX A. PROOF OF LEMMA

The case § = 1 is precisely [KLSS11, Theorem 1]. The general case
d € (0,1] (as in Lemma follows from minor modifications to their
proof. For the reader’s convenience, we include the full proof here,
much of it taken verbatim from [KLSSTI].

We start with some necessary background. Let Ny denote the set of

non-negative integers. For an n-tuple i = (i1,...,i,) € Ny, we define

i défil—i—---—i—in andif X = (Xq,..., X, then X* % X1 ... Xin, Any
1 n
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polynomial P in n variables over some field F can be expanded in the
form
P(X+Y)=>Y PYY)X",
ieND

for some polynomials P over F in n variables. We refer to P(®) as the
Hasse derivative of P of orderi. It is easy to see that P(®) = P and that
for ||i|| > deg P, P® = 0. Moreover, if Py denotes the homogeneous
part of P, then

(i) (PD)g if deg P = deg P — ||i],
(PH> = . (i) .
0 if deg P < deg P — ||i]].
For a nonzero polynomial P in n variables over a field F, we define
its multiplicity of zero at some point a € F", denoted u(P,a), as the

largest m > 0 such that P®(a) = 0 for all i € N} with ||i|| < m.
Alternatively, it is the largest m for which we can write

PX+a)= >  c(i,a)X’
iE€Ng : [lil|=zm
for some c(i,a) € F. We sometimes also say that P vanishes at a with
multiplicity m.
We will use the following relatively straightforward lemmas.

Lemma A.1 ([DKSS13, Lemma 5]). Let n > 1 be an integer. For any
nonzero polynomial P in n variables over a field F, a € F", and v € Nj,
it holds that

p(PY,a) > p(P,a) — ||i| .
Lemma A.2 ([DKSS13| Proposition 10]). Let n,m > 1 and k > 0 be
integers, and F a field. If a finite set S C F™ satisfies (m+:_1)\5| <
(":k), then there exists a nonzero polynomial over F in n variables of

degree at most k, vanishing at every point of S with multiplicity at least
m.

Lemma A.3 ([KLSS1I, Lemma 14]). Let n,r > 1 be integers, and
P a nonzero polynomaial in n wvariables over a field F. Suppose that
b,dy,...,d. € F*. Then for any ty,...,t, € F,

uw(P(b+Tidy +---+T.d,.), (t1,....t,) > w(P,b+tydy + -+ - + t,d,)

where we view P(b+ Tidy + -+ + T,d,) as a polynomial in the formal
variables Ty, ...,T,.

Finally, we will need a multiplicity version of the standard Schwartz-
Zippel lemma [DKSS13].
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Lemma A.4 ([DKSSI13| Lemma 2.7]). Let n > 1 be an integer, P a
nonzero polynomaial in n variables over a field F, and S C F a finite
set. Then

S| ST (P 2) < deg P

zeSn

Proof of Lemmal[2.7. Let m, k be positive integers satisfying

;mﬂmw
qg—1

Our goal for the rest of the proof is to show that under the condi-

tion (A.1),
K| > ("Z@/(m +:_ 1) . (A.2)

The lemma then follows by taking k = Ng"*'—1 and m = [(¢"+%2 )N
where N is a positive integer. With this choice, holds, and the
lemma follows by noting that the right-hand side of converges to
(1+(qg—1)g"/8) " ¢" as N goes to infinity.

Assume towards contradiction that does not hold. Thus, by
Lemma , there exists a nonzero polynomial P in n variables over F,

of degree at most k that vanishes at every point of K with multiplicity

at least m. Let (% [

=
w|i| < €. Let Q% PO be the ith Hasse derivative of P.

Let D C (IF})" be the set of all r-tuples of vectors (di, ..., d,) with
the property that there exists b € Fy such that b+t;dy +---+t,d, € K
for all ¢4,...,t, € F,. Since K is a /-Kakeya set of rank r, we have
|D| > §-¢". (Notice that the span of di, ..., d, might be of rank less
than r; the statement is true because a d-Kakeya set of rank r is also
a 0-Kakeya set of rank " for all v < r.)Therefore, by our choice of
P, for any (di,...,d,) € D, there exists a b € F} such that for all
ty, ...ty €F,

(A.1)

1 and fix i = (i1,...,4,) € Np satisfying

w(P b+ tidy + -+ -+ t.d.) >m,
and so by Lemma and Lemma [A.T]
WO+ Tdy + -+ Tod,), (b1, ... ) > uw(Q,b+ tidy + - -+ + t,d,)
Z m-—-w,

where in the left-hand side we consider Q(b + Tidy + --- + T,d,) as a
polynomial in the variables T1,...,7T,. But since

degQ(b+Tydy + -+ T,d,) < degQ < k —w < g(m — w)
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(which follows from w < ¢), Lemma with § = F, implies that
Qb+ Tidy + -+ T,d,) is in fact the zero polynomial.

Let Py and Qg denote the homogeneous parts of P and @, re-
spectively (i.e., Py is the unique homogeneous polynomial for which
deg(P— Py) < deg P). Tt is easy to see that Q(b+T1d1+---+T,d,) =0
implies Qg (T1d1+---+T,.d,) = 0 (note that there is no b in the latter).
It follows that (Py)®(Tydy + -+ + T,d,) = 0 for all (dy,...,d,) € D.
Equivalently, (Pg)®, considered as a polynomial in n variables over
the field of rational functions F (T, ..., T, ), vanishes at every point of
the set

D'd:ef{Tller-..qLTrd,. : (dy,...,d,) €D} C 5",
where
Sdéf{Oqu—i"'""OérTr : al,...,arqu}-

Since ¢ is an arbitrary tuple satisfying ||i|| < ¢, this shows that Py
vanishes with multiplicity at least ¢ at every point of D’. On the other

hand, by (A1),
deg Py =deg P < k < dq"¢ =6|S|C,
which implies by Lemma that Pj is the zero polynomial. This is

a contradiction since the homogeneous part of a nonzero polynomial is
Nonzero. U

APPENDIX B. THE EXPECTATION OF THE COVERING DENSITY IS
INFINITE

Proposition B.1. There is ¢ > 0 such that for all n large enough and
all M > 1 we have

cVZ 1

o M
where V,, denotes the volume of the Euclidean ball of radius one in R™.
In particular, for any n and any IC € Conv,, there is C' > 0 such that

i ({1 € £, O(L) > M})

(B.1)

pn {L €L, :Ox(L)>M})> %

Proof. Let \{(L) denote the length of the shortest nonzero vector of

L. Given M, let rdéf(]\/[/Vn)l/” be the radius of a Euclidean ball of

volume M. Let L* denote the dual lattice of L, that is
'Y ueR:Voel u-vel} (B.2)

By considering the distance between affine hyperplanes perpendicular
to the shortest nonzero vector of L*, we see that A\ (L*) < % implies
that ©(L) > M. In particular, taking into account that the measure
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b, 18 invariant under the mapping £, — £,,, L — L*, we see that the
left-hand side of (B.1)) is bounded below by

w({recnm< L), ®3

Using Siegel’s summation formula, Kleinbock and Margulis [KM99, §7]
obtained the estimate

1

i ({1 € Lo ML) <1}) 2 goosVal” = e s

1
> Vn2t2n,
2¢(n)

where ((n) = > ym™" is the Riemann zeta function. Applying
this estimate with t = 2_17~ and using M = V,r" and the fact that
((n) =nseo 1, we get that the left-hand side of is bounded from
below by
Vi Vi
ont2 [ 92n+2 )2’

By standard estimates for V,,, the first summand in this expression is
the dominant one for M > 1.

This proves . Since any K € Conv,, is contained in a dilate of
a Euclidean ball, the second assertion of the proposition follows. [
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