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Abstract

Let {Wt }∞t=1 be a finite state stationary Markov chain, and suppose that f is a real-valued function
on the state space. If f is bounded, then Gillman’s expander Chernoff bound (1993) provides concen-
tration estimates for the random variable f (W1)+·· ·+ f (Wn) that depend on the spectral gap of the
Markov chain and the assumed bound on f . Here we obtain analogous inequalities assuming only
that the q ’th moment of f is bounded for some q ⩾ 2. Our proof relies on reasoning that differs sub-
stantially from the proofs of Gillman’s theorem that are available in the literature, and it generalizes
to yield dimension-independent bounds for mappings f that take values in an Lp (µ) for some p ⩾ 2,
thus answering (even in the Hilbertian special case p = 2) a question of Kargin (2007).

Résumé: Soit {Wt }∞t=1 une chaîne de Markov stationnaire à états finis, et supposons que f soit une
fonction à valeur réelle dans l’espace d’états. Si f est borné, le inégalité de Chernoff pour graphes
expanseurs (1993) de Gillman fournit des estimations de concentration pour la variable aléatoire
f (W1)+·· ·+ f (Wn) qui dépendent de l’écart spectral de la chaîne de Markov et le borne sur f . Nous
obtenons ici des inégalités analogues en supposant seulement que le qème moment de f est borné
pour un certain q ⩾ 2. Notre démonstration repose sur un raisonnement qui diffère substantielle-
ment des démonstrations du théorème de Gillman disponibles dans la littérature, et elle généralise
pour générer des bornes indépendantes de la dimension pour les applications f qui prennent des
valeurs dans un Lp (µ) pour quelque p ⩾ 2, répondant ainsi (même dans le cas spécial hilbertien
p = 2) à une question de Kargin (2007).
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1 Introduction

For N ∈N, write [N ]
def= {1, . . . , N } and let △N−1 def= {︁

π= (π1, . . . ,πN ) ∈ [0,1]N :
∑︁N

i=1πi = 1
}︁

be the simplex
of probability measures on [N ]. Given π ∈△N−1, denote by Eπ ∈MN (R) the N -by-N matrix all of whose
rows equal π, i.e., Eπu = (

∑︁N
j=1π j u j , . . . ,

∑︁N
j=1π j u j ) ∈RN for every u = (u1, . . . ,uN ) ∈RN .

Given π ∈△N−1, a stochastic matrix A = (ai j ) ∈MN (R) is π-stationary if πA = π, i.e., πi = ∑︁N
j=1π j a j i

for all i ∈ [N ]. We then define λπ(A) to be the norm of A−Eπ as an operator from L2(π) to L2(π), i.e.,

λπ(A)
def= ∥A−Eπ∥L2(π)→L2(π) = sup

{︄(︃ N∑︂
i=1

πi

(︂ N∑︂
j=1

ai j u j −
N∑︂

k=1
πk uk

)︂2
)︃ 1

2

: u ∈RN and
N∑︂

k=1
πk u2

k = 1

}︄
.
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Note that if A is diagonalizable over the Hilbert space L2(π), then we have λπ(A) = max{λ2(A), |λN (A)|},
where 1 =λ1(A) ⩾ ·· · ⩾λN (A) ⩾−1 are the eigenvalues of A. This would occur if A were π-reversible, i.e.,
πi ai j = π j a j i for all i , j ∈ [N ], in which case A would be a self-adjoint operator on L2(π); the reversible
setting is the main case of interest in the ensuing discussion, but reversibility is not needed for our proofs.

Let W = {Wt }∞t=1 be a Markov chain with state space [N ] and transition matrix A ∈MN (R). One says
that W is stationary if A isπW-stationary forπW = (Pr[W1 = 1], . . . ,Pr[W1 = N ]) ∈△N−1. WriteλW =λπW (A).

Theorem 1.1. Suppose that W = {Wt }∞t=1 is a stationary Markov chain whose state space is [N ] and with
λW < 1. Then, every f : [N ] →R satisfies the following inequality for every n ∈N and every q ⩾ 2.(︄

E

[︃⃓⃓⃓ f (W1)+·· ·+ f (Wn)

n
−E[ f (W1)]

⃓⃓⃓q
]︃)︄ 1

q

≲
√︃

q

(1−λW)n
·
(︂
E
[︁| f (W1)|q]︁)︂ 1

q
. (1)

The (standard) asymptotic notation ≲ that appears in (1) (as well as throughout the ensuing discus-
sion) means the following. Given two quantities α,β ∈ [0,∞), the notation α≲β stands for the assertion
that there exists a universal constant C ∈ (0,∞) for which α⩽Cβ; this is also denoted by β≳α.

The conclusion (1) of Theorem 1.1 with the random variables f (W1), . . . , f (Wn) replaced by i.i.d. ran-
dom variables coincides with the classical Marcinkiewicz–Zygmund inequality [17]. Our contribution
here is therefore to generalize this statement to random variables that are (images of) stationary Markov
chains with a spectral gap; the i.i.d. setting is the special case A = Eπ of Theorem 1.1. The bound (1) is
optimal; see Remark 4 below. A variant of Theorem 1.1 when 1 ⩽ q ⩽ 2 appears in Remark 3 below.

The precursor (and inspiration) of Theorem 1.1 is the following theorem of Gillman [9, 10].

Theorem 1.2. Suppose that W = {Wt }∞t=1 is a stationary Markov chain whose state space is [N ] and with
λW < 1. Then, every f : [N ] →R satisfies the following inequality for every n ∈N and every q ⩾ 2.(︄

E

[︃⃓⃓⃓ f (W1)+·· ·+ f (Wn)

n
−E[ f (W1)]

⃓⃓⃓q
]︃)︄ 1

q

≲
√︃

q

(1−λW)n
·max

{︁| f (1)|, . . . , | f (N )|}︁ . (2)

Note that Theorem 1.2 is typically stated in the literature as the following concentration inequality,
which is commonly called the expander Chernoff bound.

∀a > 0, Pr

[︃⃓⃓⃓ f (W1)+·· ·+ f (Wn)

n
−E[ f (W1)]

⃓⃓⃓
⩾ a max

j∈[N ]
| f ( j )|

]︃
≲ e−c(1−λW)na2

, (3)

where c > 0 is a universal constant. The equivalence of (2) and (3) is standard; (2) =⇒ (3) is checked
by applying Markov’s inequality and optimizing over q , and (3) =⇒ (2) follows by straightforward inte-
gration (both implications appear in Proposition 2.5.2 of the textbook [24]). The same use of Markov’s
inequality shows mutatis mutandis that Theorem 1.1 implies the following concentration phenomenon.

Corollary 1.3. There is a universal constant c > 0 with the following property. Suppose that W = {Wt }∞t=1
is a stationary Markov chain whose state space is [N ] and with λW < 1. Then, every f : [N ] →R satisfies the
following inequality for every n ∈N, every q ⩾ 2 and every 0 < a ⩽√︁

q/((1−λW)n).

Pr

[︃⃓⃓⃓ f (W1)+·· ·+ f (Wn)

n
−E[ f (W1)]

⃓⃓⃓
⩾ a

(︂
E
[︁| f (W1)|q]︁)︂ 1

q

]︃
≲ e−c(1−λW)na2

.
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Remark 1. Kloeckner investigated in [14] the question of obtaining concentration bounds such as (3)
with the L∞ norm max j∈[N ] | f ( j )| replaced by other norms of f . As discussed in [14, Remark 2.2], the
results of [14] hold in a setting that imposes structural hypotheses on the aforementioned norm of the
“observable” f which notably excludes its Lq (πW) norm (which appears in the right-hand side of the
bound (1) that we prove here), but it is noted in [14, Remark 2.2] that “classically one only makes moment
assumptions on the observable.” Corollary 1.3 addresses this question, though note that [14] also covers
settings that are not treated here.

The new bound (1) that we obtain differs from Gillman’s estimate (2) only in the replacement of the
worst-case bound on f in the right-hand side of (2) by an average-case bound. Rather than being merely
a quantitative enhancement, this improvement has conceptual significance which we achieve through
a reasoning that differs substantially from the proof of (3) in [9, 10], as well as the several other proofs
of (3) and its variants that appeared in the literature [6, 11, 16, 15, 12, 25, 5, 19, 8, 7, 14] (our approach was
recently used in [21, 20]).

Assuming a bound on the q ’th moment of f is the appropriate setting for bounding the q’th moment
of f (W1)+·· ·+ f (Wn). This compatibility of the left-hand side of (1) and the right-hand side of (1) allows
the resulting inequality to tensorize so as to yield dimension-independent vector-valued statements.
Specifically, for any measure space (Ω,µ), if f : [N ] → Lq (µ), then by applying (1) to the real-valued map-
ping (i ∈ [N ]) ↦→ f (i )(ω) for each ω ∈Ω, and then integrating the (q ’th power of) the resulting point-wise
inequality, we see that (under the assumptions of Theorem 1.1),(︄

E

[︃⃦⃦⃦ f (W1)+·· ·+ f (Wn)

n
−E[ f (W1)]

⃦⃦⃦q

Lq (µ)

]︃)︄ 1
q

≲
√︃

q

(1−λW)n
·
(︂
E
[︁∥ f (W1)∥q

Lq (µ)

]︁)︂ 1
q

. (4)

The following Hilbertian statement is a consequence of (4) that deserves to be stated separately.

Corollary 1.4. Suppose that W = {Wt }∞t=1 is a stationary Markov chain whose state space is [N ] and with
λW < 1. Let (H ,∥ ·∥H ) be a Hilbert space. The following bound holds for all n ∈N, q ⩾ 2 and f : [N ] → H.(︄

E

[︃⃦⃦⃦ f (W1)+·· ·+ f (Wn)

n
−E[ f (W1)]

⃦⃦⃦q

H

]︃)︄ 1
q

≲
√︃

q

(1−λW)n
·
(︂
E
[︁∥ f (W1)∥q

H

]︁)︂ 1
q

. (5)

Corollary 1.4 is nothing more than (4) applied to an isometric copy of H in Lq (µ), which is known to
exist by [2, Chapter 12] (see also the exposition in, e.g., the textbook [1, Proposition 6.4.12]).

Since E[∥ f (W1)∥q
H ] ⩽ max j∈[N ] ∥ f ( j )∥q

H , the following corollary is a consequence Corollary 1.4 through
the usual application of Markov’s inequality and then an optimization over q .

Corollary 1.5 (Hilbert space-valued expander Chernoff bound). There is a universal constant c > 0 with
the following property. Suppose that W = {Wt }∞t=1 is a stationary Markov chain whose state space is [N ]
and with λW < 1. Let (H ,∥ ·∥H ) be a Hilbert space. If f : [N ] → H, then for all n ∈N and a > 0 we have

Pr

[︃⃦⃦⃦ 1

n

n∑︂
i=1

f (Wi )−E[ f (W1)]
⃦⃦⃦

H
⩾ a max

j∈[N ]
∥ f ( j )∥H

]︃
≲ e−c(1−λW)na2

. (6)

Remark 2. Kargin studied [12] the vector-valued setting of Gillman’s theorem for functions that take
values in the m-dimensional Euclidean space ℓm

2 . The statement that is obtained in [12] is the same as
that of Corollary 1.5, except that it is dimension-dependent; specifically, with the implicit constant in (6)
growing to ∞ exponentially with m. Thus, the main new feature of Corollary 1.5 is that it is dimension-
independent. Obtaining such a bound was a main question that [12] left open; see [12, Section 4].
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Observe that estimates such as (4) can be interpreted as bounds on the operator norm of a certain
linear operator between vector-valued Lq -spaces. Specifically, suppose that (X ,∥ ·∥X ) is a Banach space.
Let W = {Wt }∞t=1 be a stationary Markov chain whose state space is [N ] and with λW < 1. Denote (as
before) the stationary measure of W by πW and let the transition matrix of W be A = (ai j ) ∈MN (R). For
each n ∈N denote the associated probability measure on the trajectories of length n by τn

W : [N ]n → [0,1].
Thus, τn

W is the probability measure on [N ]n that is given by τ1
W =πW if n = 1, and for n ⩾ 2,

∀(i1, . . . , in) ∈ [N ]n , τn
W(i1, . . . , in)

def= Pr
[︁
(W1, . . . ,Wn) = (i1, . . . , in)

]︁=πW(i1)ai1i2 ai2i3 · · ·ain−1in .

Define a linear operator TX : Lq (πW; X ) → Lq (τn
W; X ) by setting for f : [N ] → X ,

∀(i1, . . . , in) ∈ [N ]n , TX f (i1, . . . , in)
def= 1

n

n∑︂
k=1

f (ik )−
N∑︂

j=1
πW( j ) f ( j ) ∈ X . (7)

Here, and in what follows, we are using standard notation for vector-valued Lebesgue–Bochner spaces,
though throughout we will need to consider only finitely supported measures, in which case measura-
bility issues do not need to be discussed. So, if (S,σ) is a probability space with |S| <∞, then the Banach
space Lq (σ; X ) is the vector space of all mapping ψ : S → X , equipped with the norm

∥ψ∥Lq (σ;X ) =
(︃ ∑︂

s∈S
σ(s)∥ψ(s)∥q

X

)︃ 1
q

.

The validity of (4) under the assumptions of Theorem 1.1 is the same as the operator norm bound

∥TLq (µ)∥Lq (πW;Lq (µ))→Lq (τn
W;Lq (µ)) ≲

√︃
q

(1−λW)n
. (8)

In the same vein, Corollary 1.4 is (under the same assumptions) the same as

∥TL2(µ)∥Lq (πW;L2(µ))→Lq (τn
W;L2(µ)) ≲

√︃
q

(1−λW)n
. (9)

By Calderón’s vector-valued extension [4] of the Riesz–Thorin [22, 23] interpolation theorem (see the
monograph [3] for background on complex interpolation; the specific statement that we are using here
is a combination of Theorem 4.1.2 and Theorem 5.1.2 in [3]), it follows from (8) and (9) that for every
p ∈ [2, q] we have

∥TLp (µ)∥Lq (πW;Lp (µ))→Lq (τn
W;Lp (µ)) ≲

√︃
q

(1−λW)n
.

We record this conclusion as the following generalization of Corollary 1.4 and Corollary 1.5.

Corollary 1.6. Suppose that p ⩾ 2 and that (Ω,µ) is a measure space. Let W = {Wt }∞t=1 be a stationary
Markov chain whose state space is [N ] and with λW < 1. If f : [N ] → Lp (µ), then for all n ∈N and q ⩾ p,(︄

E

[︃⃦⃦⃦ f (W1)+·· ·+ f (Wn)

n
−E[ f (W1)]

⃦⃦⃦q

Lp (µ)

]︃)︄ 1
q

≲
√︃

q

(1−λW)n
·
(︂
E
[︁∥ f (W1)∥q

Lp (µ)

]︁)︂ 1
q

. (10)

Consequently, by the usual combination of (10) with Markov’s inequality, followed by optimization over
q ⩾ p, there exists a universal constant c ∈ (0,∞) such that

∀a > 0, Pr

[︃⃦⃦⃦ f (W1)+·· ·+ f (Wn)

n
−E[ f (W1)]

⃦⃦⃦
Lp (µ)

⩾ a max
j∈[N ]

∥ f ( j )∥Lp (µ)

]︃
≲ ep−c(1−λW)na2

. (11)
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Remark 3. By convexity we have ∥TR∥L1(πW)→L1(τn
W) ⩽ 2, since it is evident from (7) that the operator in

question is the difference of two averaging operators. By interpolating this (trivial) estimate with the case
q = 2 of Theorem 1.1 using the (scalar-valued) Riesz–Thorin interpolation theorem as above, we arrive at
the following variant of Theorem 1.1 in the range 1 ⩽ q ⩽ 2, which holds under the same assumptions.(︄

E

[︃⃓⃓⃓ f (W1)+·· ·+ f (Wn)

n
−E[ f (W1)]

⃓⃓⃓q
]︃)︄ 1

q

≲
(︃

1

(1−λW)n

)︃1− 1
q ·

(︂
E
[︁| f (W1)|q]︁)︂ 1

q
. (12)

Observe that when the Markov chain W is reversible, the case q = 2 of (1) is a quadratic inequality
that could be directly verified in a straightforward manner by expanding both sides in an orhtonormal
eigenbasis of the transition matrix of W. The more substantial content of Theorem 1.1 is therefore the
case q > 2, which does not lend itself to such linear-algebraic reasoning.

Remark 4. Both (1) and (12) are sharp (up to the implicit universal constant factors) for large enough
n ∈ N. This is seen by examining the following family of Markov chains. For every ε,λ ∈ (0,1) consider
the two-state Markov chain W(λ,ε) whose transition matrix equals(︃

1− (1−λ)(1−ε) (1−λ)(1−ε)
(1−λ)ε 1− (1−λ)ε

)︃
=λI2 + (1−λ)Eπ(ε) ∈M2(R), (13)

where I2 is the 2-by-2 identity matrix and π(ε) = (ε,1−ε) ∈△1. Then πW(λ,ε) =π(ε) and λW(λ,ε) =λ.
The optimality of (1) is exhibited by taking ε= 1

2 and f : {1,2} →R that is given by f (1) = 1 =− f (2). In
this case, it is elementary to check that if n ⩾ q/(1−λ), then both sides of (1) are within universal constant
multiples of each other. Next, the optimality of (12) is exhibited by considering f : {1,2} →R that is given
by f (1) = 1 and f (2) = 0. In this case, it is elementary to check that if n ⩾ 1/(1−λ), then for small enough
ε> 0 both sides of (12) are within universal constant multiples of each other. The routine computations
that verify these assertions are omitted.

Remark 5. The above discussion raises the question of understanding what is required from a Banach
space (X ,∥ · ∥X ) so that the “Gillman phenomenon” for stationary Markov chains (or variants thereof)
would hold for X -valued mappings. The present work obtains the first examples (notably, Hilbert space)
of such theorems in infinite dimensions (equivalently, dimension-independent bounds). However, much
more remains to be understood here. This matter is pursued in the forthcoming work [18], where it is
explained how it relates to central themes in Banach space theory. Further infinite dimensional state-
ments are derived in [18], including a treatment of (10) in the range 2 ⩽ q < p which is not covered in
Corollary 1.6, through an approach that is entirely different from our reasoning here.

We end the Introduction by noting that the above results have an equivalent dual formulation that
is worthwhile to work out explicitly. Given a Banach space (X ,∥ · ∥X ), the operator TX that is given in (7)
has norm K > 0 from Lq (πW; X ) to Lq (τn

W; X ) if and only if its adjoint T ∗
X has norm K from Lq∗(τn

W; X ∗) to
Lq∗(πW; X ∗), where q∗ = q/(q −1). This leads to the following dual formulation of Corollary 1.6, whose
derivation is a mechanical unravelling of the definitions (the straightforward details are omitted).

Corollary 1.7 (adjoint of (10)). Let W = {Wt }∞t=1 be a stationary Markov chain whose state space is [N ] and
with λW < 1. Fix n ∈N and p, q ∈ (1,2] with q ⩽ p. For every measure space (Ω,µ) and F : [N ]n → Lp (µ),(︄

E

[︃⃦⃦⃦ 1

n

n∑︂
i=1
E
[︂

F (W1, . . . ,Wn)
⃓⃓⃓
Wi

]︂
−E[F (W1, . . . ,Wn)]

⃦⃦⃦q

Lp (µ)

]︃)︄ 1
q

≲
1√︁

(q −1)(1−λW)n
·
(︂
E
[︁∥F (W1, . . . ,Wn)∥q

Lp (µ)

]︁)︂ 1
q

.
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2 Proof of Theorem 1.1

Suppose from now on that we are in the setting of Theorem 1.1. We will write for simplicity λ = λW < 1
and π=πW ∈△N−1. We will also let A = (ai j ) ∈MN (R) be the transition matrix of W.

It suffices to prove (1) when f : [N ] → R satisfies E[ f (W1)] = 0. Indeed, this could be then applied to
the centered function f −E[ f (W1)] to yield the estimate(︄

E

[︃⃓⃓⃓ f (W1)+·· ·+ f (Wn)

n
−E[ f (W1)]

⃓⃓⃓q
]︃)︄ 1

q

≲
√︃

q

(1−λW)n
·
(︂
E
[︁| f (W1)−E[ f (W1)]|q]︁)︂ 1

q

⩽ 2

√︃
q

(1−λW)n
·
(︂
E
[︁| f (W1)|q]︁)︂ 1

q
,

(14)

where the last step is the triangle inequality in Lq (π). So, assume from now on that E[ f (W1)] = 0. It
will be convenient to define u ∈ RN by setting ui = f (i ) for all i ∈ [N ]. The assumption on f becomes∑︁N

i=1πi ui = 0. Below, we will denote the diagonal matrix whose diagonal is u by U ∈MN (R), i.e.,

U
def=

⎛⎜⎜⎜⎜⎜⎝
u1 0 . . . 0

0 u2
. . .

...
...

. . .
. . . 0

0 . . . 0 uN

⎞⎟⎟⎟⎟⎟⎠ def=

⎛⎜⎜⎜⎜⎜⎝
f (1) 0 . . . 0

0 f (2)
. . .

...
...

. . .
. . . 0

0 . . . 0 f (N )

⎞⎟⎟⎟⎟⎟⎠ .

Lemma 2.1. For every m ∈Nwe have

E
[︂(︁

f (W1)+·· ·+ f (Wn)
)︁2m

]︂
⩽ (2m)!

∑︂
v0,...,v2m−1∈N∪{0}
v0+···+v2m−1⩽n−1

⃦⃦
U Av1U Av2 · · ·U Av2m−1 u

⃦⃦
L1(π).

Proof. Let V2m be the set of all those vectors in w ∈ [n]2m that satisfy 1 ⩽ w1 ⩽ w2 ⩽ ·· · ⩽ w2m ⩽ n.
Observe that by the Markov property and stationarity, for every w ∈V2m we have the following identity.

E

[︄
2m∏︂
i=1

f (Wwi )

]︄
= ∑︂

j∈[N ]2m

π j1 Aw2−w1
j1 j2

Aw3−w2

j2 j3
· · · Aw2m−w2m−1

i2m−1i2m

2m∏︂
k=1

u jk

= ∑︂
j∈[N ]2m

π j1 (U Aw2−w1 ) j1 j2 (U Aw3−w2 ) j2 j3 · · · (U Aw2m−w2m−1 ) j2m−1 j2m u j2m

= ∑︂
i∈[N ]

πi (U Aw2−w1U Aw3−w2 · · ·U Aw2m−w2m−1 u)i .

So, by expanding the (2m)’th power of f (W1)+·· ·+ f (Wn) and arranging the indices in increasing order,

E
[︂(︁

f (W1)+·· ·+ f (Wn)
)︁2m

]︂
⩽ (2m)!

∑︂
w∈V2m

⃓⃓⃓⃓
⃓E

[︄
2m∏︂
i=1

f (Wwi )

]︄ ⃓⃓⃓⃓
⃓

⩽ (2m)!
∑︂

w∈V2m

∥U Aw2−w1U Aw3−w2 · · ·U Aw2m−w2m−1 u∥L1(π).

Remark 6. It is worthwhile to note in passing that while the proof of Lemma 2.1 relies on what may
seem to be innocuous identities, the crucial step that rearranged the factors so that their indices are
increasing is inherently commutative, and this is what obstructs the direct use of the ensuing proof for
matrix-valued functions, namely the setting of [26, 8]; alternative routes are taken in [8, 18] but it would
be interesting to investigate if a more careful reasoning along the lines of the present work could be used
to treat the setting of functions that take values in Schatten–von Neuman trace classes.
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Towards bounding from above each of the terms ∥U Av1U Av2 · · ·U Av2m−1 u∥L1(π) from Lemma 2.1, we
record the following iterative application of Hölder’s inequality and the definition of operator norms.

Lemma 2.2. Fix k ∈N and q ⩾ k +1. Then, for every T1, . . . ,Tk ∈MN (R) we have

∥U T1U T2 · · ·U Tk u∥L1(π) ⩽ ∥u∥k+1
Lq (π)

k∏︂
j=1

∥T j∥L 2q
q+k+1−2 j

(π)→L 2q
q+k+1−2 j

(π).

Proof. Suppose that α(1), . . . ,α(k +1) ⩾ 1 satisfy 1
α(1) +·· ·+ 1

α(k+1) ⩽ 1. We claim that

∥U T1U T2 · · ·U Tk u∥Lβ(0)(π) ⩽
(︃k+1∏︂

i=1
∥u∥Lα(i )(π)

)︃ k∏︂
j=1

∥T j∥Lβ( j )(π)→Lβ( j )(π), (15)

where β(0), . . . ,β(k) ⩾ 1 are defined by 1
β( j ) = 1

α( j+1) +·· ·+ 1
α(k+1) . The proof of (15) is by induction on k.

The case k = 0 is tautological. For the induction step, since 1
β(0) = 1

α(1) + 1
β(1) , by Hölder’s inequality,

∥U T1U T2 · · ·U Tk u∥Lβ(0)(π) ⩽ ∥u∥Lα(1)(π) ∥T1U T2 · · ·U Tk u∥Lβ(1)(π) . (16)

By the definition of the operator norm ∥T1∥Lβ(1)(π)→Lβ(1)(π) we have,

∥T1U T2 · · ·U Tk u∥Lβ(1)(π) ⩽ ∥T1∥Lβ(1)(π)→Lβ(1)(π) ∥U T2 · · ·U Tk u∥Lβ(1)(π) . (17)

Now (15) follows by combining (16) and (17) with the inductive hypothesis.
Choose α(1) =α(k +1) = 2q

q−k+1 and α(2) = ·· · =α(k) = q . So,

∀ j ∈ [k], β( j ) = 1
1

α( j+1) +·· ·+ 1
α(k+1)

= 1
k− j

q + q−k+1
2q

= 2q

q +k +1−2 j
,

and β(0) = 1. Hence, with this specific setting of the parameters the bound (15) becomes

∥U T1U T2 · · ·U Tk u∥L1(π) ⩽ ∥u∥2
L 2q

q−k+1
(π)∥u∥k−1

Lq (π)

k∏︂
j=1

∥T j∥L 2q
q+k+1−2 j

(π)→L 2q
q+k+1−2 j

(π).

It remains to note that since q ⩾ k +1 we have 2q
q−k+1 ⩽ q , and therefore ∥u∥L 2q

q−k+1
(π) ⩽ ∥u∥Lq (π).

Fix m ∈ N. Throughout what follows, it will be notationally convenient to consider each Boolean
vector s ∈ {0,1}2m−1 as an infinite vector in {0,1}Z whose entries vanish on Z∖ [2m −1], namely we use
the convention si = s j = 0 for i ⩽ 0 and j ⩾ 2m. Let S2m−1 ⊆ {0,1}2m−1 be all those Boolean vectors of
length 2m −1 with no two consecutive 0s, and with s2m−1 = 1, i.e.,

S2m−1
def=

2m−1⋂︂
j=1

{︂
s ∈ {0,1}2m−1 : (s j , s j+1) ̸= (0,0)

}︂
.

For each j ∈ [2m−1] and s ∈ S2m−1 that satisfy s j = 1, we define a quantity p(s, j ) ⩾ 1 in the following way.
Consider the consecutive run of 1s in s to which j belongs, and let i1(s, j ) and i2(s, j ) be the first and last
indices of this run, respectively. Formally,

i1(s, j )
def= max

{︁
i ∈ {..., j −2, j −1} : si = 0

}︁+1 and i2(s, j )
def= min

{︁
i ∈ { j +1, j +2, . . .} : si = 0

}︁−1. (18)

With this notation, write

p(s, j )
def= 4m

2m + i1(s, j )+ i2(s, j )−2 j
. (19)
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Lemma 2.3. For every T1, . . . ,T2m−1 ∈MN (R),⃦⃦
U (T1 +Eπ)U (T2 +Eπ) · · ·U (T2m−1 +Eπ)u

⃦⃦
L1(π) ⩽ ∥u∥2m

L2m (π)

∑︂
s∈S2m−1

∏︂
j∈[2m−1]

s j=1

⃦⃦
T j

⃦⃦
Lp(s, j )(π)→Lp(s, j )(π). (20)

Proof. For each j ∈ [2m −1], write T j ,0 = Eπ and T j ,1 = T j . Observe that

∀ s ∈ {0,1}2m−1 ∖S2m−1, U T1,s1U T2,s2 · · ·U T2m−1,s2m−1 u = 0. (21)

Indeed, if s ∈ {0,1}2m−1 ∖ S2m−1, then either s2m−1 = 0, in which case T2m−1,s2m−1 u = Eπu = 0 ∈ RN , or
s j = s j+1 = 0 for some j ∈ [2m − 2], in which case T j ,s j U T j+1,s j+1 = EπU Eπ = 0 ∈ MN (R), where both

identities are equivalent to the assumption
∑︁N

i=1πi ui = 0. Now,⃦⃦
U (T1 +Eπ)U (T2 +Eπ) · · ·U (T2m−1 +Eπ)u

⃦⃦
L1(π) =

⃦⃦⃦ ∑︂
s∈{0,1}2m−1

U T1,s1U T2,s2 · · ·U T2m−1,s2m−1 u
⃦⃦⃦

L1(π)

⩽ ∑︂
s∈{0,1}2m−1

⃦⃦
U T1,s1U T2,s2 · · ·U T2m−1,s2m−1 u

⃦⃦
L1(π)

(21)= ∑︂
s∈S2m−1

⃦⃦
U T1,s1U T2,s2 · · ·U T2m−1,s2m−1 u

⃦⃦
L1(π).

(22)

Fix s ∈ S2m−1 and let 1 ⩽ r1 < r2 < ·· · < rℓ < 2m −1 be all of the indices at which s vanishes. Define
R1, . . . ,Rℓ+1 ∈MN (R) by setting

R1
def= (U T1)(U T2) · · · (U Tr1−1), Rℓ+1

def= (U Trℓ+1)(U Trℓ+2) · · · (U T2m−1),

and
Rκ

def= (U Trκ−1+1)(U Trκ−1+2) · · · (U Trκ−1)

for κ ∈ {2, . . . ,ℓ}. Using the fact that U Eπv = (︁∑︁N
i=1πi vi

)︁
u for every v ∈RN , we have the following identity.

U T1,s1U T2,s2 · · ·U T2m−1,s2m−1 u = R1(U Eπ)R2(U Eπ)R3 · · · (U Eπ)Rℓ+1u =
(︄
ℓ+1∏︂
κ=2

N∑︂
i=1

πi (Rκu)i

)︄
R1u.

Consequently,

⃦⃦
U T1,s1U T2,s2 · · ·U T2m−1,s2m−1 u

⃦⃦
L1(π) = ∥R1u∥L1(π)

ℓ+1∏︂
κ=2

⃓⃓⃓ N∑︂
i=1

πi (Rκu)i

⃓⃓⃓
⩽
ℓ+1∏︂
κ=1

∥Rκu∥L1(π). (23)

Next, by Lemma 2.2 with q = 2m and k = r1 −1 we have

∥R1u∥L1(π) = ∥(U T1)(U T2) · · · (U Tr1−1)u∥L1(π)

⩽ ∥u∥r1
L2m (π)

r1−1∏︂
j=1

∥T j∥L 4m
2m+r1−2 j

(π)→L 4m
2m+r1−2 j

(π)

(19)= ∥u∥r1
L2m (π)

r1−1∏︂
j=1

∥T j∥Lp(s, j )(π)→Lp(s, j )(π).

In the same vein, for every k ∈ {2, . . . ,ℓ},

∥Rκu∥L1(π) ⩽ ∥u∥rκ−rκ−1
L2m (π)

rκ−1∏︂
j=rκ−1+1

∥T j∥Lp(s, j )(π)→Lp(s, j )(π),
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and also

∥Rℓ+1u∥L1(π) ⩽ ∥u∥2m−rℓ
L2m (π)

2m−1∏︂
j=rℓ+1

∥T j∥Lp(s, j )(π)→Lp(s, j )(π).

We therefore have
ℓ+1∏︂
κ=1

∥Rκu∥L1(π) ⩽ ∥u∥2m
L2m (π)

∏︂
j∈[2m−1]

s j=1

⃦⃦
T j

⃦⃦
Lp(s, j )(π)→Lp(s, j )(π). (24)

By substituting (24) into (23) and then substituting the resulting estimate into (22), we arrive at (20).

In light of Lemma 2.1, the following lemma is highly relevant to our goal of proving Theorem 1.1.

Lemma 2.4. Suppose that m ∈N satisfies em ⩽ n(1−λ). Then,(︃ ∑︂
v0,...,v2m−1∈N∪{0}
v0+···+v2m−1⩽n−1

⃦⃦
U Av1U Av2 · · ·U Av2m−1 u

⃦⃦
L1(π)

)︃ 1
2m

≲

⎷
n/m⎷
1−λ

∥u∥L2m (π). (25)

Proof. Fix v0, . . . , v2m−1 ∈N∪ {0} and denote T j = Av j −Eπ for every j ∈ {0, . . . ,2m −1}. Then,⃦⃦
U Av1U Av2 · · ·U Av2m−1 u

⃦⃦
L1(π) =

⃦⃦
U (T1 +Eπ)U (T2 +Eπ) · · ·U (T2m−1 +Eπ)u

⃦⃦
L1(π)

⩽ ∥u∥2m
L2m (π)

∑︂
s∈S2m−1

∏︂
j∈[2m−1]

s j=1

⃦⃦
T j

⃦⃦
Lp(s, j )(π)→Lp(s, j )(π), (26)

where the last step of (26) is an application of Lemma 2.3.
Fixing j ∈ {0, . . . ,2m−1}, note that AEπ = Eπ since A is stochastic and the columns of Eπ are constant,

and also EπA = Eπ since A is π-stationary. Consequently T j = Av j −Eπ = (A−Eπ)v j . So, for every p ⩾ 1,

∥T j∥Lp (π)→Lp (π) =
⃦⃦

(A−Eπ)v j
⃦⃦

Lp (π)→Lp (π) ⩽ ∥A−Eπ∥v j

Lp (π)→Lp (π). (27)

By definition, ∥A−Eπ∥L2(π)→L2(π) =λ. As A and Eπ are averaging operators, by convexity and the triangle
inequality ∥A − Eπ∥Lr (π)→Lr (π) ⩽ ∥A∥Lr (π)→Lr (π) +∥Eπ∥Lr (π)→Lr (π) = 2 for all r ⩾ 1. By the Riesz–Thorin
interpolation theorem [22, 23] (see e.g. Chapter IV in the textbook [13]), this implies that

∥A−Eπ∥Lp (π)→Lp (π) ⩽ 2λ
2min

{︂
1
p ,1− 1

p

}︂
. (28)

A substitution of (28) into (27), followed by a substitution of the resulting bound into (26) shows that
in order to prove the desired inequality (25) it suffices to establish the following estimate.(︃ ∑︂

s∈S2m−1

∑︂
v0,...,v2m−1∈N∪{0}
v0+···+v2m−1⩽n−1

∏︂
j∈[2m−1]

s j=1

λβ(s, j )v j

)︃ 1
m

≲
n

m(1−λ)
, (29)

where for every s ∈ S2m−1 and j ∈ [2m −1] such that s j = 1, we denote

β(s, j )
def= 2min

{︃
1

p(s, j )
,1− 1

p(s, j )

}︃
(19)= 1− |i1(s, j )+ i2(s, j )−2 j |

2m
. (30)
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Fix some s ∈ S2m−1. Denote Q0 = { j ∈ [2m−1] : s j = 0} and Q1 = [2m−1]∖Q0. Thus |Q0|+|Q1| = 2m−1
and by the definition of S2m−1 we have |Q1| ⩾ m. With this notation, we have the following bound.∑︂

v0,...,v2m−1∈N∪{0}
v0+···+v2m−1⩽n−1

∏︂
j∈[2m−1]

s j=1

λβ(s, j )v j

= ∑︂
(vi )i∈{0}∪Q0∈(N∪{0}){0}∪Q0∑︁

i∈{0}∪Q0
vi⩽n−1

∑︂
(v j ) j∈Q1∈(N∪{0})Q1∑︁

j∈Q1
v j⩽n−1−∑︁

i∈{0}∪Q0
vi

∏︂
j∈Q1

λβ(s, j )v j

⩽
⃓⃓⃓{︂

(vi )i∈{0}∪Q0 ∈ (N∪ {0}){0}∪Q0 :
∑︂

i∈{0}∪Q0

vi ⩽ n −1
}︂⃓⃓⃓
· ∑︂

(v j ) j∈Q1∈(N∪{0})Q1

∏︂
j∈Q1

λβ(s, j )v j

=
n−1∑︂
ℓ=0

(︄
|Q0|+ℓ
|Q0|

)︄ ∏︂
j∈Q1

∞∑︂
i=0

λβ(s, j )i

=
(︄
|Q0|+n

|Q0|+1

)︄ ∏︂
j∈Q1

1

1−λβ(s, j )
.

By the elementary inequality 1−λβ ⩾β(1−λ), which holds for every λ,β ∈ [0,1], it follows from this that∑︂
v0,...,v2m−1∈N∪{0}
v0+···+v2m−1⩽n−1

∏︂
j∈[2m−1]

s j=1

λβ(s, j )v j ⩽ 1

(1−λ)|Q1|

(︄
|Q0|+n

|Q0|+1

)︄ ∏︂
j∈Q1

1

β(s, j )

= (1−λ)|Q0|+1

(1−λ)2m

(︄
|Q0|+n

|Q0|+1

)︄ ∏︂
j∈Q1

1

β(s, j )

≲
eO(m)

(1−λ)2m

(︃
(1−λ)n

|Q0|+1

)︃|Q0|+1 ∏︂
j∈Q1

1

β(s, j )
,

(31)

where the last step follows from a straightforward application of Stirling’s formula. Consider the function
ψ : [0,∞) → [0,∞) that is given by ψ(z) = ((1−λ)n/z)z . Then (logψ(z))′ = log((1−λ)n/(ez)). Hence, ψ is
increasing on the interval [0, (1−λ)n/e]. But |Q0|+1 = 2m−|Q1| ⩽ m ⩽ (1−λ)n/e, by the assumption on
m in the statement of Lemma 2.4. Hence ψ(|Q0|+1) ⩽ψ(m), and therefore

1

(1−λ)2m

(︃
(1−λ)n

|Q0|+1

)︃|Q0|+1

= ψ(|Q0|+1)

(1−λ)2m ⩽ ψ(m)

(1−λ)2m = (n/m)m

(1−λ)m . (32)

We will show next that∏︂
j∈Q1

1

β(s, j )
(30)= ∏︂

j∈Q1

(︃
1− |i1(s, j )+ i2(s, j )−2 j |

2m

)︃−1

⩽ eO(m). (33)

In combination with (31) and (32), this would imply the desired inequality (29) because |S2m−1| ⩽ eO(m).
For each j ∈Q1 with i2(s, j )− i1(s, j ) ⩽ 3m

2 (i.e., the consecutive run of 1s in s to which j belongs is of
length at most 1+ 3m

2 ), we have |i1(s, j )+ i2(s, j )−2 j | ⩽ 3m
2 and therefore its contribution to the product

in (33) is at most 4. So, (33) holds if there are no runs of 1s in s of length greater than 3m
2 . Otherwise, there

is exactly one run of 1s in s of length d > 3m
2 , and its contribution to the product in (33) equals⌊︁

d−1
2

⌋︁∏︂
i=0

(︃
2m

2m −d +1+2i

)︃2

⩽
2
⌊︁

d−1
2

⌋︁∏︂
i=0

2m

2m −d +1+ i
⩽

2m∏︂
k=2

2m

k
= (2m)2m−1

(2m)!
⩽ eO(m),

where the last step follows from Stirling’s formula. This proves our goal (33).
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Completion of the proof of Theorem 1.1. By the triangle inequality in Lq (and stationarity) we have(︂
E
[︁| f (W1)+·· ·+ f (Wn)|q]︁)︂ 1

q ⩽
(︂
E
[︁| f (W1)|q]︁)︂ 1

q +·· ·+
(︂
E
[︁| f (Wn)|q]︁)︂ 1

q = n
(︂
E
[︁| f (W1)|q]︁)︂ 1

q
.

This bound implies the desired estimate (1) when q ≳ (1−λ)n, so we may assume from now on that
q ⩽ (1−λ)n/e. Let m ∈N be the largest integer such that 2m ⩽ q . Then, m,m +1 ⩽ q ⩽ (1−λ)n/e, so the
conclusion of Lemma 2.4 holds for both m and m +1. By Lemma 2.1 (and Stirling’s formula), this gives

(︃
E
[︂(︁

f (W1)+·· ·+ f (Wn)
)︁2m

]︂)︃ 1
2m

≲

√︃
nm

1−λ
(︂
E
[︁| f (W1)|2m]︁)︂ 1

2m ⩽
√︃

nq

1−λ
(︂
E
[︁| f (W1)|2m]︁)︂ 1

2m
,

and similarly (︃
E
[︂(︁

f (W1)+·· ·+ f (Wn)
)︁2(m+1)

]︂)︃ 1
2(m+1)

≲

√︃
nq

1−λ
(︂
E
[︁| f (W1)|2(m+1)]︁)︂ 1

2(m+1)
.

As in (14), it follows from these bounds (which we derived under the assumption E[ f (W1)] = 0) that the
norm of the operator TR that is given in (7) is bounded by a universal constant multiple of

√︁
q/((1−λ)n)

both from L2m(π) to L2m(π) and from L2(m+1)(π) to L2(m+1)(π). Since 2m ⩽ q ⩽ 2(m +1), another appli-
cation of the Riesz–Thorin theorem gives that the norm of TR from Lq (π) to Lq (π) is also bounded by a
universal constant multiple of

√︁
q/((1−λ)n). This is precisely the desired bound (1).
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