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Abstract—Although superconducting single flux quantum
(SFQ) technologies offer the potential for low-latency operation
with energy dissipation of the order of attojoules per gate, their
inherently pulse-driven nature and stateful cells have led to
designs in which every logic gate is clocked. This means that
clocked buffers must be added to equalize logic path lengths,
and every gate becomes a pipeline stage. We propose a different
approach, where gates are clock-free and synchronous designs
have a conventional look-and-feel. Despite being clock-free, how-
ever, the gates are state machines by nature. To properly manage
these state machines, the logical clock cycle is composed of two
synchronous alternating phases: the first of which implements
the desired function, and the second of which returns the state
machines to the ground state. Moreover, to address the challenges
associated with the asynchronous implementation of Boolean
NOT operations in pulse-based systems, values are represented
as unordered binary codes – in particular, dual-rail codes. With
unordered codes, AND and OR operations are functionally
complete.

We demonstrate that our new approach, xSFQ, with its
dual-rail construction and alternating clock phases, along with
“double-pumped” logical latches and a timing optimization
through latch decomposition, is capable of implementing ar-
bitrary digital designs without gate-level pipelining and the
overheads that come with it. We evaluate energy-delay trade-
offs enabled by this approach through a mix of detailed analog
circuit modeling, pulse-level discrete-event simulation, and high-
level pipeline efficiency analysis. The resulting systems are shown
to deliver energy-delay product (EDP) gains over conventional
SFQ even with pipeline hazard ratios (HR) below 1%. For hazard
ratios equal to 15% and 20% and a design resembling a RISC-V
RV32I core (excluding the cost of interlock logic), xSFQ achieves
22x and 31x EDP savings, respectively.

Index Terms—superconductor electronics, alternating logic,
unordered codes, pipelining, xSFQ

I. INTRODUCTION

Beginning in 1983 when Josephson junctions (JJs) were first
fabricated with currently used materials [11], a continuous and
extended effort has carried the superconducting field from the
development of Rapid Single Flux Quantum (RSFQ) logic in
1985 [25] to chips with nearly a million JJs [35]. With the
realization of self-shunted JJs in 2017 [43], chips with 10s
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of millions of JJs are now in sight. However, many technical
hurdles remain before large scale computations can enjoy the
benefits of superconducting materials.

Although some of the hurdles are inherent to the fabrication
process, others are due to a mismatch between traditional
architectural abstractions and fundamental characteristics of
superconductor circuits. In particular, JJs naturally commu-
nicate via impulses, each of which consists of a single flux
quantum (SFQ). Performing Boolean operations by arranging
for two or more nearly instantaneous pulses to always arrive
simultaneously at JJ logic gates is clearly not realistic, so
methods developed for transistor logic gates, where values are
represented as voltage levels, do not readily carry over.

An approach commonly used in SFQ logic systems1 is to
consider the presence of a pulse during a given time interval
as a logical 1 and the lack of a pulse as a logical 0. This
convention, however, requires two things of SFQ circuits: first,
all logic gates must agree on a prescribed time interval for
evaluation; second, they must be able to “remember” whether
or not a pulse has arrived during the interval. The second
requirement fits nicely with the inherently stateful nature of
superconducting cells composed of Superconducting Quantum
Interference Devices (SQUIDs, or loops formed by two JJs and
one inductor), which hold SFQ pulses. On the other hand, the
first requirement is more difficult to fulfill and is traditionally
met through extremely fine-grained clocking.

Because SFQ cells hold state (in the form of stored flux),
conventional SFQ logic gates are typically synchronous (in-
divisibly conjoined with a 1 bit register) and their value is
only known once the gate’s clock pulse arrives (see Figure 1).
For this reason, not only does the clock provide the time
interval necessary for defining logic values, but each clock
pulse also serves to reset, or “relax”, a gate’s state back
to ground, so it is ready to receive new inputs in the next
cycle. While this method has enabled a variety of working
designs [1], [39], it requires that a clock signal be delivered
to every logic gate, which makes circuits highly sensitive to

1In this paper, SFQ logic systems are used as an umbrella term to include
a superset of the various RSFQ-derived logic families.
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Fig. 1. Boolean (synchronous) SFQ cells. If a pulse appears in a clk interval
is understood as a logical 1; otherwise, it is a logical 0. The arrival of a clk
signal releases the content of the cell and resets it.

timing variability (skews) and requires that clocked buffers
be inserted as pads to equalize logic path lengths. This
increases overall complexity, reduces energy efficiency, and
fundamentally constrains architectural choices.

In this paper, we propose and evaluate an alternative solution
to the problem of constructing Boolean logic from stateful su-
perconducting elements communicating via impulses. Through
the careful co-design of logical value encoding, SFQ circuit
elements, and architecture, we are able to (a) maintain well
understood and composable Boolean logic abstractions, while
(b) avoiding clocks at every logic gate and the insertion
of delay pads. In doing so, we (c) ensure stateful elements
always return to the ground state, which (d) allows computer
architecture considerations, such as pipeline depths, to drive
design decisions rather than circuit-level requirements. Finally,
we (e) provide physically realizable, low-energy, and low-
delay implementations that are fully compatible with existing
SFQ design processes. We demonstrate that these properties
are achieved through four core contributions.

First, we show that AND and OR gates can be envisioned
as pulse-based LASTARRIVAL (LA) and FIRSTARRIVAL (FA)
operations. Although LA and FA cells are asynchronous (and
hence clock-free), they remain stateful. Correct operation de-
pends on guaranteeing that the asynchronous cells are always
returned to their initial state prior to the start of the next
round of computation. This can be achieved by dividing a
logical clock cycle into two alternating synchronous phases.
The excite phase operates on pulse-coded logic values and
the relax phase propagates the values needed to return the
asynchronous cell back to its ground state. This is essentially
an implementation of alternating logic [31], in which logic
state machines always return to the correct initial state at the
end of each two-phase logical cycle.

Second, although LA and FA cells implement AND and
OR gates, AND and OR alone are not functionally complete.
To establish functional completeness, a NOT function is
needed. Here, we build on the theory of unordered binary
codes [5], [36]. In an unordered binary code – one in which
no codeword covers another – any Boolean function can be
implemented using only AND and OR gates. The classic dual-
rail (DR) approach is a special case; in contrast to existing
DR-based SFQ approaches [7], [10], [23], [28], which rely on

synchronous logic gates and use complementary data signals
to generate the required clock or control signals, in xSFQ, DR
codes are used only for guaranteeing functional completeness.

Third, we develop new and practical circuit realizations of
LA and FA cells. Existing SFQ implementations do not sup-
port the two-phase alternating convention and rely on external
signals or thermal/power-cycling to reset [45], [46]. Resetting
via thermal/power-cycling is impractical due to high power
dissipation and long thermal time constants, and providing
an external reset signal to every logic gate introduces scaling
problems.

Fourth, we present alternation-aware registers along with a
new pipeline balancing technique capable of hiding much of
the performance overhead inherent in a two-phase approach.
In order to make sequential networks amenable to alternation,
each logical “flip flop” in the design is implemented with a
coupled pair of DESTRUCTIVE READ OUT (DRO) cells. The
DRO cells are then distributed along a combinational logic
pathway in a manner that is analogous to traditional circuit
retiming [24].

To evaluate the functionality and performance of our logic
system, dubbed xSFQ, we construct detailed SPICE-level mod-
els of the proposed cells, perform discrete-event simulations
of more complex superconducting alternating systems, extend
CMOS-oriented analytical power-performance models to fit
superconducting technology, and demonstrate the benefits of
xSFQ over conventional SFQ-based sytems through an energy-
delay product (EDP) analysis. We find that for a design
resembling a RISC-V RV32I core [2] (consisting of 10,000
two-input logic gates and a critical path of 150 gates) and a
10% pipeline hazard ratio (HR), xSFQ achieves 14× EDP
reduction excluding the overhead of interlock and flushing
circuitry. These gains increase super linearly with the length of
the critical path, the number of synchronous buffers required
to equalize uneven datapaths, and the ratio of pipeline hazards.
For example, for 15% and 20% HRs, 22× and 31× EDP
saving are observed, respectively, excluding the overhead of
interlock logic.

II. COMPUTING WITH SUPERCONDUCTORS

A. Fundamental concepts

Superconductor electronics are defined by three basic fea-
tures: (a) the absence of resistance in static circuits at su-
perconducting temperatures, (b) the Josephson effect – which
governs the fundamental switching element in superconductor
circuits, the JJ – and (c) the propagation of single flux quanta2

(pulses produced by JJs of the order of mV in amplitude
and a few ps in width) instead of static voltage levels as in
CMOS. As a two-terminal device, the JJ does not switch in
the same way as three-terminal CMOS transistors. Normally,
current flows through the JJ with no impediment, like a zero-
resistance wire; however, at a threshold called the “critical
current”, the resistively-shunted JJ blocks off current flow for

2One magnetic flux quantum is 2.07× 10−15 Wb or 2.07mV × ps in
units more familiar to computer architects.



a short time as it switches, thereby creating an SFQ pulse on
the JJ output. Each pulse is a short burst of magnetic energy
observed through a change in voltage.

B. Opportunities

One of the most compelling arguments for the use of
superconductor electronics is their potential to significantly
surpass end-of-roadmap CMOS circuits based on energy-delay
product, even when the overhead due to cooling is consid-
ered [16]. SFQ circuits can achieve 10 − 100 times higher
clock frequencies than CMOS, and the switching energy of
an individual JJ is ∼ 10−19J. Energy-efficient versions of the
SFQ technology, such as ERSFQ [21], also eliminate static
power dissipation without sacrificing speed or circuit-level
equivalence to the more traditional RSFQ, and a recently-
proposed AC/SFQ powering scheme reduces bias requirements
by locally storing small currents from rectified AC voltage
to power SFQ gates [34]. Furthermore, because SFQ pulses
travel along resistance-free wires with no RC charge process
involved, transmission requires little or no energy [37]. From
an architectural standpoint, these facts, along with the stateful
nature of superconducting elementary cells, give designers
the opportunity to explore a fundamentally different trade-off
space (e.g., negligible or no overhead of pipeline registers and
extremely energy-efficient interconnects), reevaluate existing
architectural solutions, and exploit the unique characteristics of
superconductor electronics for the development of innovative
computing machines.

Besides speeding up and reducing the power consumption
of CMOS circuits for classical applications, superconductor
electronics open pathways for scaling up quantum computers.
In particular, the ability of superconducting circuits to operate
at very high speed enables the fast processing of qubit output
data for error correction and generation of control signals –
expanding the simple quantum volume (number of compu-
tational qubits of a machine multiplied by the number of
gates expected to perform without error) of near-term quantum
machines by several orders of magnitude [15]. Moreover,
their low power overhead and cryogenic operating temperature
allow them to reside next to the quantum processor, thus elim-
inating the control cables that leave the cryogenic environment
and introduce thermal noise.

C. Challenges

Despite their advantages, superconductor electronics pose a
number of challenges. One of the most profound is the pulsed-
based nature of computation. Pulses cannot be sampled like
voltage levels because they do not coincide with picosecond
precision. Thus, methods developed for transistors, and other
latching circuits, do not carry over easily.

Moreover, an SFQ pulse is fundamentally discrete. Because
of this quantization, a fan-out that produces two pulses from a
single pulse requires an active component called a SPLITTER.
As a consequence, signals with significant fan-out inflate
circuit size considerably. To make matters worse, the relatively
high process variability in superconductor electronics [42]

can skew signals significantly across a fan-out tree, leading
to synchronization problems, additional logic overheads, and
reduced operating speeds.

Finally, the lack of a reliable and high-capacity random
access memory operating at 4.2 degrees Kelvin, the de-
fault temperature for superconductor electronics, imposes its
own distinctive limitations. Recent studies indicate that cold
memories built from CMOS DRAM operating at 77 degrees
Kelvin offer a promising solution in the near future [47],
while advances in fabrication technologies are encouraging
for competitive JJ memories in the longer term [33]. In both
cases, however, the expected gap between the access latency of
memory and the high operational speed of SFQ logic circuits
introduces challenging microarchitectural problems.

D. Current Status

Superconducting technologies have been studied for several
decades. ALU designs [39], [40] and microprocessors [1],
[3], [8], [48] have been presented in an effort to capitalize
on the promise of superconductors. The majority of these
implementations are based on simplified architectures, bit-
serial processing, and shift-register-based on-chip memories.
For example, the modern CORE e4 [1] is an 8 bit-serial RSFQ
microprocessor that contains 4 general-purpose registers, can
execute 20 different instruction types, and achieves up to 333
million instructions per second (MIPS) while dissipating an
estimated 2.03 mW of power. To the best of our knowledge,
this estimate does not include the cost of cooling, which
increases power requirements by approximately two orders
of magnitude according to Carnot’s thermodynamic efficiency
theorem.

More recently, there has been increasing interest in the ex-
ploration of superconducting accelerators for emerging appli-
cations. For example, Tannu et al. [41] developed a Reciprocal
Quantum Logic (RQL)-based design for SHA-256 (crypto-
graphic hashing) engines [26]. To maximize their gains, the au-
thors focused on the optimization of adder circuits, which are
the most critical components of the SHA engine, and proposed
a fault-tolerant architecture that allows JJ critical currents to
be lowered from 38 µA to 10 µA. The reported results indicate
46× energy efficiency gains and 20% performance gains
compared to CMOS. Ishida et al. [19] presented an ERSFQ-
based neural processing unit. Based on the reported results,
the performance per Watt of the proposed superconducting
design is 490× and 1.23× higher than a Tensor Processing
Unit (TPU)-like [20] CMOS implementation, without and with
the cost of cooling accounted for, respectively.

Other interesting approaches that target accelerators rely on
the exploitation of less traditional computing paradigms that
match well with the characteristics of superconductor elec-
tronics. For example, Cai et al. [6] presented a deep learning
framework based on stochastic computing that uses Adiabatic
Quantum-Flux-Parametron (AQFP) technology. According to
their simulation results, the proposed deep neural network
(DNN) design can achieve up to 6.9×104 times higher energy
efficiency than CMOS – to the best of our knowledge, this



again excludes the cost of cooling. Tzimpragos et al. [45], [46]
took a much different approach and proposed a computational
temporal logic, relying solely on asynchronous SFQ gates. In
particular, the authors claimed that the natural language for
expressing computations in a pulse-based system is one that
precisely describes the temporal relationships between these
pulses. To support their arguments, they provided SFQ-based
designs of DNA sequencing and decision tree accelerators,
achieving ∼ 40× lower latency compared to CMOS.

These ideas and related designs pave a promising path
forward. Nevertheless, their shortcomings and underlying as-
sumptions cannot be ignored. The computational limits and
efficiency of stochastic computing and temporal logic for
general-purpose tasks have yet to be explored, especially for
superconducting systems. The remaining accelerator archi-
tectures support only dataflow processing without complex
control flows, while the demonstrated microprocessors (and
other designs) are not scalable. For example, several existing
benchmark SFQ circuits require a significant number of DRO
cells for padding uneven datapaths. According to published
results for the ISCAS85 benchmark circuits [12], the number
of required DRO cells for padding exceeds the number of
logic gates by more than 2.5× on average (ranging from 1.5×
to 5×) [30]. Furthermore, the only realistic way to avoid ex-
tremely high Logical Cycles per Instruction (LCPIs), at least in
the case of microprocessors, is to apply fine grained temporal
multithreading [18] where, ideally, the number of threads is as
large as the number of gates on the critical path. Additionally,
the throughput commonly reported in superconducting papers
refers to a theoretical peak rate based solely on the frequency
of individually clocked gates (e.g., delays due to pipeline stalls
are excluded). Every gate is essentially a pipeline stage, and
extremely deep pipelines put more pressure on the already
challenging superconductor memory system.

III. XSFQ LOGIC DESIGN

At the physical level, conventional CMOS and supercon-
ducting technologies are radically different. Yet, it is obviously
desirable if the tools, techniques, and computer architecture
concepts developed for conventional computer systems can be
applied to superconducting designs. We strive to achieve this
at the logic level of abstraction. In other words, we aim to
first perform digital design using what appear to be ordinary
logic gates and then map them in a straightforward way to
superconducting cells.

The differences between designing with conventional and
superconducting technologies, however, introduce an entirely
different design space with respect to trade-offs and con-
straints. As discussed above, one of the most important of
these involves cell fan-outs. Superconducting cells by them-
selves are limited to driving one cell. Fan-outs of two or more
require SPLITTERs, which are limited to a fan-out of two.
Hence, large fan-outs must be constructed as binary trees of
SPLITTERs. This means that clock, global reset, and other high
fan-out signals are relatively expensive compared to CMOS.

Regarding fan-in, although it is possible to design super-
conducting cells with more than two data inputs, they are not
commonly used because they are significantly more complex
and mostly developed in an ad hoc way. Hence, for our
purposes, it is assumed that superconducting cells are limited
to two inputs. Of course, in the logic domain, the designer may
use multi-fan-in gates, with the awareness that these will be
expanded into expensive multi-cell superconducting circuits.

A. Clocking Discipline

In keeping with the above design philosophy, we propose
and develop a clocking discipline that is aligned with conven-
tional synchronous CMOS; e.g., ranks of clocked storage el-
ements separated by unclocked combinational networks. This
is in sharp contrast with existing superconducting methods
where, typically, every gate is clocked.

In the logic domain, these basic clocked storage elements
operate as D FLIP-FLOPS (DFFs) that translate to DRO cells in
the xSFQ domain. Figure 2 provides a Mealy machine-based
representation of a DRO cell. Recalling that a logical clock
cycle consists of two synchronous phases, at the logic network
level, a synchronizing phase pulse causes the stored signal
pulses to be released from the DRO cells. Then, signal pulses
propagate through a forward flow network of asynchronous
xSFQ cells with pulses eventually arriving at downstream
DRO cell inputs. The subsequent phase releases them from
that stage as the process continues. As with conventional
synchronous logic design, the phase period must be long
enough to allow for propagation along the longest signal path
through the xSFQ combinational network (and respect setup
time requirements).
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Fig. 2. Symbol and Mealy machine representation of a
DESTRUCTIVE READ OUT (DRO) cell.

As part of the logical signaling discipline, a given data
wire transmits at most one pulse during a given (synchronous)
phase. The time of the pulse within the phase period does not
affect its logical interpretation – only its presence or absence
matters. Hence, the designer should worry only about the
timing constraints set by the lengths of signal paths, which
must fit within a clock phase, and not timing relationships
across paths.

B. FA & LA Cells Specification

According to their semantics [45], [46], FA and LA cells
implement asynchronous (unclocked) state machines that op-
erate on pulsed inputs and produce pulsed outputs. As its name
indicates, an FA cell emits an output pulse in response to the
first input pulse that arrives at either of its inputs. Any later
input pulse does not affect the FA cell output. An LA cell



emits an output pulse only if both inputs receive pulses. The
output pulse occurs in response to the second input pulse.

Figure 3 illustrates the state transitions of these cells as they
occur during the time frame of a (clock) phase (although the
cells are not clocked themselves).
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Fig. 3. Symbol and Mealy machine representation of (i) FA and (ii) LA cells.

When used in this way, we observe that the FA cell
implements an OR function with respect to pulse signals
and the LA cell implements an AND function. For proper
operation of both cell types, the initial state must be Init and
each input line must be restricted to one pulse per phase. The
arrival of more than one pulse indicates a violation of the
signaling convention.

C. Two-phase Alternating Encoding

Based on the shown Mealy machines alone, there is no
guarantee that the initial state will be restored at the end of a
phase. For example, if the FA cell observes only a single input
pulse during a given phase, it will be in either the a arrived
or b arrived state at the end of the phase. To force FA cells to
transition back to the Init state, the obvious solution is to fan
out an explicit global reset signal to all FA cells. The same
holds true for LA cells. But, as noted above, this requires a
binary tree of active SPLITTERs and will be very expensive.

We propose a novel approach that accomplishes a state reset
by using only the functional input wires. There are no explicit
reset wires, and thus no need for a reset distribution network.
This approach does so by providing all mechanisms to reset the
gates within the logic encoding itself. This is the motivation
for dividing a logical cycle into a pair of physical cycles, or
synchronous phases, where an excite phase is followed by a
relax phase. In the excite phase, the pulsed inputs are given
their logically equivalent values. During the relax phase, the
pulsed inputs are given their complement values – Figure 4.
This guarantees that each FA and LA cell always receives
exactly one pulse at each input port throughout the two-phase
logical cycle and returns its initial state. We define this as an
alternating encoding.

Figure 5 presents all possible alternating input pulse se-
quences for FA and LA cells. Both the excite and relax phases
are shown for all legal input combinations. In every case, if
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the initial state is Init and if the input pulses alternate between
the excite and relax phases, then (a) the output during the relax
phase is opposite the output for the excite phase, and (b) the
final state is always Init. We define this as the alternating
signal property.

state inputs FAab LAab state inputs FAab LAab state

a b a b

Init 0 0 0 0 Init 1 1 1 1 Init

Init 0 1 1 0 b arrived 1 0 0 1 Init

Init 1 0 1 0 a arrived 0 1 0 1 Init

Init 1 1 1 1 Init 0 0 0 0 Init

excite relax

Fig. 5. Alternating input pulse sequences for FA and LA cells.

Importantly, the alternating signal property holds not only
for individual cells, as just shown exhaustively, but also for
any network composed of these cells.

Theorem 1: Any feed-forward network composed of FA and
LA cells will have the alternating signal property.

Proof sketch. An individual FA or LA cell is alternating,
and is a network of size depth 1. If two networks having the
alternating signal property connect to the inputs of an FA or
LA cell, then the FA or LA cell must observe alternating
inputs, so its output satisfies the alternating signal property
with respect to the network inputs. By induction, the overall
network is therefore alternating 3.

Hence, by using alternating signal inputs (which consume
two synchronous phases), a state reset is achieved without an
explicit reset signal. Clearly the two phase clocking system
requires additional time compared to a single phase system, but
note that an explicit reset signal would also consume additional
time; perhaps as much as a full clock phase. Also observe that
the total number of pulses over an excite-relax pair is always
constant, which may be useful for the detection of erroneous
operation [31].

3SPLITTERs are used for fan-out, and thus are not considered logic
elements.



D. Unordered Codes and Functional Completeness

As just described, an FA cell implements a logical OR
gate that operates on pulses, and an LA cell implements
a logical AND gate. Nevertheless, a NOT gate is missing.
Implementing a NOT gate is typically problematic with pulse
signaling because it implies knowledge that a pulse will not
occur during the leading excite phase, but a circuit cannot
wait until this phase is over to make this determination, and
it cannot look into the future. However, if input and output
signals are constrained to be members of an unordered code,
then functional completeness is achievable with AND and OR
gates alone.

Definition 3.1: A vector X = x1x2...xn is said to cover
another vector Y = y1y2, ...yn (denoted X ≥ Y ) if for all
i ∈ n, yi = 1 implies xi = 1. Vectors X and Y are unordered
if X � Y and Y � X .

For example, if X1 = [0011] and Y1 = [0111], Y1 covers
X1. On the other hand, the vectors X2 = [1001] and Y2 =
[1010] are unordered.

Definition 3.2: A binary code is unordered if no two
members of the code are ordered.

Well-known examples of unordered codes include one-hot
codes, dual-rail (DR) codes, Berger codes [4], bi-quinary codes
(the IBM 650 was a bi-quinary coded decimal computer [44]),
and various ad hoc codes [5], [36].

Theorem 2: Any Boolean function whose domain consists
of an unordered code can be implemented using only AND
and OR gates.

Proof sketch. By construction – the complement of any bit
can be formed as an AND/OR function of the other bits. This
is done by first selecting all codewords for which the subject
bit is a 0, and then forming a set of minterms corresponding to
the 1 bits in the selected codewords. Summing the minterms
yields the complement of the subject bit.

Example: Consider the 2-out-of-4 code (each tuple con-
sists of 4 bits and has exactly 2 logical 1s), [x1x2x3x4] =
{[1100], [1010], [1001], [0110], [0101], [0011]}. The value of
x1 = x2x3 + x2x4 + x3x4.

In practice, arbitrary unordered codes are difficult to work
with. Although the complement of any bit can be formed via
an AND/OR function of the other bits, the AND/OR network
can become quite large. Even for the relatively small 2-out-of-
4 code presented above, the complement of any bit requires 3
AND gates and 2 OR gates (fan-in = 2).

Generally speaking, the more efficient the code, the more
difficult it is to form complements. If efficiency is defined
as the total number of information bits per number of code
bits, the most efficient unordered code is k-out-of-2k. For
larger values of k, k-out-of-2k codes are cumbersome for
implementing arbitrary functions. However, the special case
k=1 yields the DR code. Although the DR code is relatively
inefficient, it is particularly simple and easy to work with.
Figure 6 illustrates a straightforward mapping from an arbi-
trary logic network consisting of AND, OR, and NOT gates
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Fig. 6. Dual-rail (DR) implementations of AND, OR, NOT functions. Each
AND and OR gate consists of one FA-LA pair, just with different wiring.
The NOT gate has no overhead.

to a DR implementation using only ANDs and ORs. The
complement of any bit is immediately available at zero circuit
cost.

Corollary 2.1: Any Boolean function having DR inputs can
be implemented using only AND and OR gates.

In this paper, DR logic forms the backbone of the design
methodology, with other unordered codes being used in cases
where they lead to fewer gates or are otherwise advantageous.
For example, 1-out-of-n codes are natural for holding decoded
values. So, one might simply maintain some values in decoded
form. Translating between a DR code and a 1-out-of-n code
can be done using n gates (AND gates for DR to 1-out-of-n;
OR gates for 1-out-of-n to DR).

Note that the rote mapping between AND/OR/NOT
Boolean functions and DR equivalents shown in Figure 6 is
not required. In some cases, a cheaper DR design may be
achieved by other means.

Example: If one begins with the “standard” full adder com-
posed of 9 NAND gates, the straightforward DR translation
consumes 18 FA/LA cells. However, a 14 cell implementation
is possible [14] if freed from using only AND and OR DR
pairs (see Figure 7). We note that inputs and outputs are still in
DR format and that each logical AND and OR gate shown can
be implemented with LA and FA cells, as already discussed.
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IV. REALIZING XSFQ IN HARDWARE

In Section III, we showed that LA and FA cells realize
AND and OR gates; thus, they are the primary building blocks
of combinational xSFQ circuits. Their superconducting imple-
mentation has previously been explored [45], [46]. However,



prior designs require either the use of external signals or
thermal/power adjustments to reset. On the one hand, the use
of external signals leads to significant overheads. On the other
hand, thermal/power-cycling is slow and forces a “complete”
system reset, in which useful information may be lost. In this
paper, we propose alternative circuit implementations that not
only comply with alternating logic but also are more compact
and outperform their counterparts.
Experimental setup. For the development and evaluation of
our analog models, we use Cadence’s Spectre simulator and
superconductor device model files for the SFQ5ee 10 kA/cm2

process [42].

A. FA & LA Cells Implementation

Our goal is to design circuits that satisfy functional cor-
rectness and: (a) evaluate without the need for a clock signal,
(b) return to the ground state at the end of a logical cycle
without the need for explicit wired reset signals, (c) provide
a practical way to reinitialize in case an error occurs due
to faulty hardware (or for any other reason), (d) achieve
relatively similar propagation delays on datapaths that are at
least as short as their SFQ AND/OR counterparts, and (e)
minimize the JJ count, which affects area and defines the
power dissipation of the circuit.

For the design of the LA circuit, shown in Figure 8 (i),
we use as a reference the clockless dynamic SFQ AND gate
originally developed by Rylov [32]. As already discussed,
superconducting cell states arise from the storage of flux
within SQUIDs (loops formed by two JJs, one on each side
of an inductor). Here, such loops are formed around the input
inductors L0 and L1, the output JJs from the prior stage, and
J4. The output JJs from the prior stage are not shown, but
are built into every gate with an output wire. In the top loop,
L0 holds input a until input b arrives; likewise, in the bottom
loop, L1 holds b until a arrives. Both inputs must arrive for the
circuit to emit an output pulse and properly reset. In xSFQ, one
pulse will arrive at each input port during a two-phase logical
cycle, and thus the LA cell will transition from the Init state to
either the a arrived or b arrived state and back to Init in one
full cycle. If, for some reason, the second input does not arrive
before the end of the logical cycle, the stored flux is removed
by the J0-J2-R0 or J1-J3-R1 loop using a technique referred
to here as bleed-out because it drains the flux quantum over
time. The bleed-out rate of the cell depends to some extent
on the amount of serial resistance. In the provided example,
the bleed-out window is set to 29 ps, for which we used an
R0 value of 0.67 Ω. However, when R0 is set to 0.70 Ω, the
bleed-out window increases to 42 ps. Note that in all shown
cases but the last, a and b input pulses arrive within a 29 ps
offset (which is the cell’s bleed-out window); thus, there is an
output pulse. In the last case, the offset is 58 ps and no output
pulse appears.

Figure 8 (ii) shows the schematic of the FA cell. It is
implemented with a modification of an inverted C-element,
originally presented by SUNY researchers [25]. Each input
has a SQUID that stores the opposite input’s flux until both
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Fig. 8. Panel (i): LA cell schematic and waveform. The simulations cover
both cases where input pulses arrive within and outside the bleed-out window
boundaries. The results shown provide evidence that the cell satisfies the
alternating logic requirements (used for normal operation) and supports
“bleed-out” (used to recover from a faulty operation). For this example, the
bleed-out rate, which is how quickly the SQUIDs can drain their respective
fluxes, is 29 ps. Panel (ii): FA cell schematic and waveform. In the first and
third cases, both input pulses arrive. The cell fires upon the arrival of the first
input pulse, transitions to the a arrived or b arrived state, and waits for the
second input to return to the Init state. In the second case, only one of the
input pulses arrives (faulty operation). The bleed-out feature allows the gate
to return back to the Init state.

signals have arrived – that is, when input b (a) arrives, it
is both propagated to J4, generating an output pulse, and to
SQUID J0-L0-L1-J1 (J2-L2-L3-J1), which stores the flux until
a (b) arrives and cancels it out. Similar to the LA cell that
bleeds out the flux, this cell also bleeds out through small
serial resistors R0 and R1. We add a current source to the
central node to mitigate bias current redistribution, and remove
several redundant JJs on the input and output wires to reduce
propagation delay.

Note that even in the rare case where two input pulses arrive
“simultaneously”, both LA and FA cells behave as expected
(there are no race conditions in the asynchronous machines).
Also, because clocking is not part of their semantics, the cells
are delay-insensitive. Additionally, their bleed-out feature is
used for resetting only in the case of faulty operation. Thus,
when designing an xSFQ system, the bleed-out window of
LA/FA cells should be configured to the length of a logical
cycle (two synchronous phases).

Implementation results are summarized in Table I. To es-
timate the energy consumption of the designs, we assume
that all JJs switch over a logical cycle. The switching energy
of a single JJ is 2 × 10−19J. Compared to prior LA and
FA implementations [45], [46], the presented LA cell uses
1 fewer JJ, supports bleed-out, and does not introduce any
latency overhead. The proposed FA cell uses 7 fewer JJs, does
not require an explicit wired reset signal, supports bleed-out,
and achieves 30% lower latency. The bias margins for both
elements, according to our experiments, are -30% to +30%.

Compared to more traditional SFQ implementations of
Boolean AND and OR gates (Table II), the xSFQ-based



TABLE I
AREA, LATENCY, AND ENERGY ESTIMATES OF LA AND FA CELLS

IMPLEMENTED IN THE SFQ5EE 10 KA/CM2 PROCESS.

Element Area (#JJs) Latency (ps) Energy (aJ)
LA 5 8.0 1.0
FA 3 9.0 0.6

implementations require at least 30% fewer JJs and 55% less
energy than their counterparts (even when LA and FA cells
are used in pairs). Regarding latency, although 50% longer
delays may be observed in single 2-input gates (due to the two-
phase nature of the proposed DR alternating logic scheme), for
composite functions, xSFQ designs still deliver performance
gains. These gains are expected to grow with the size of
the design, as the timing overhead incurred by fine-grained
clocking is no longer a consideration.

TABLE II
AREA, LATENCY, AND ENERGY ESTIMATES OF SYNCHRONOUS SFQ AND
AND OR CIRCUITS IMPLEMENTED IN THE SFQ5EE 10 KA/CM2 PROCESS.

Element Area (#JJs) Latency (ps) Energy (aJ)
sync. AND 11 9.2 2.2
sync. OR 12 8.0 2.4

To provide further evidence of xSFQ circuit efficiency,
we use an 8-bit ALU as a reference example. An SFQ
implementation [29] consists of 9 pipeline stages (fixed and
equal to the number of gates on the critical path), requires
4,908 JJs, and achieves 120 TOPS/W in Low-Voltage RSFQ
(1.4 POPS/W if only the switching power is considered,
∼ 22 µW). In xSFQ, pipeline depth is configurable. For a
purely combinational design, our estimates are: 2,800 JJs,
1.7 µW (switching power), and 1.8 POPS/W. Note that in
the above analysis, we assume that all pipeline stages in SFQ
will always be busy.

B. Storage Elements

The above-described FA and LA cells, along with the
alternating DR encoding introduced by xSFQ, are sufficient
for the implementation of any combinational logic block.
However, for the realization of real-world computing systems,
xSFQ-amenable storage elements are still needed. As already
discussed, in xSFQ, each logical cycle consists of a pair of
physical cycles (excite-relax phases). Thus, an xSFQ storage
element must be able to generate the time-offset complement
with respect to the primary excite phase.

A simple method of implementing an xSFQ latch is to use
a pair of synchronous DRO cells. Figure 9 illustrates such a
component for the case of DR codes. In particular, the shown
circuit latches the a or a when it arrives on the excite phase
and releases it at the start of the next excite phase. Likewise,
the data latched in the relax phase are written out on the next
relax phase. Implementation results for DRO and SPLITTER
cells are in Table III.

Note that although xSFQ requires data in a DR alternating
format, traditional binary storage is still possible with the
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Fig. 9. xSFQ DR latch built from DROs. To fan-out the clock signal, we use
three SPLITTERs (appearing as black dots).

TABLE III
AREA, LATENCY, AND ENERGY ESTIMATES OF DRO AND SPLITTER

CIRCUITS IMPLEMENTED IN THE SFQ5EE 10 KA/CM2 PROCESS.

Element Area (#JJs) Latency (ps) Energy (aJ)
DRO 6 5.1 1.2

Splitter 3 4.3 0.6

use of binary-to-alternating-DR (BAC) and alternating-DR-to-
binary (ABC) converters. Presenting optimized BAC and ABC
designs is, however, beyond the scope of this paper and will
be covered in future work.

V. REBALANCING EXCITE AND RELAX PHASES

With asynchronous combinational logic elements and syn-
chronous storage elements available, one can perform digital
design in xSFQ just as in CMOS without being constrained by
pipelining with gate-level granularity. Figure 10 (i) illustrates a
pipelined xSFQ circuit, where a block of combinational logic
is surrounded by clock-synchronous register blocks.

Each logical DFF is implemented in xSFQ as a “double-
pumped” latch (Figure 9) and the combinational logic consists
of interconnected LA and FA cells. Although this structure is
fully functional, if we strip each logical DFF down to the
very basic digital design equivalents, the resulting system is
unsatisfying from an architectural standpoint: it is a completely
unbalanced pipeline, because no computation is done between
two successive clock-synchronous DRO cells.

Observe that even though each pair of DRO cells is part
of the same logical DFF, the DRO cells can be split and
redistributed in a balanced way through retiming [24]. Fig-
ure 10 (ii) depicts a rebalanced version of the circuit shown in
Figure 10 (i). As the DRO cells are pushed through the fabric
of combinational logic, the excite and relax phases become
balanced. In the ideal case, where the DRO cell propagation
delay is zero and the combinational logic is perfectly balanced,
retiming can completely hide the overhead associated with the
relax phase – Figure 10 (iii).
Functional evaluation. In Section IV, we presented SPICE-
level models and simulation results for all xSFQ logic el-
ements. For the evaluation of more complex systems, we
develop a discrete-event simulation framework, released as
an open-source tool on GitHub4. To effectively express the
behavior of the primary elements, we opt for a lightweight,

4https://github.com/UCSBarchlab/PyLSE

https://github.com/UCSBarchlab/PyLSE
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object-oriented state machine-based implementation. The state
machine corresponding to each cell contains all legal state
transitions and allows for the easy diagnosis of fan-out viola-
tions or logical faults (e.g., fewer or more than the number
of expected pulses appearing on a line). Moreover, each
element object can store the number of JJs required for its
physical implementation and its propagation delay, which
facilitates area estimation, timing analysis, and a more realistic
simulation. Events are discrete variables, not continuous ones,
and simulation is based on the event-oriented paradigm, in
which all pending events are first stored as a set and then
inspected based on their scheduled event times.

To provide evidence for the functional correctness of the
proposed retiming methodology, we apply it to the full adder
design shown in Figure 7. Figure 11 provides simulation re-
sults for an unbalanced circuit – a DR full adder implemented
as a combinational circuit and followed by a rank of logical
DFFs. To make the design even more realistic, we assume that
the inputs and outputs of each cell are buffered by Josephson
Transmission Lines (JTLs), which are not computationally
necessary but commonly used to improve flux transmission
between SFQ logic cells. According to our SPICE simulations,
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Fig. 11. Simulation of the DR full adder design shown in Figure 7. Vertical
red lines (in the simulation graph) represent pulses. The minimum duration
(T ) of a physical cycle (phase) is defined by the delay of the longest signal
path through the xSFQ combinational network – colored blue. For easier
reading, we also illustrate the logical values of the circuit’s input and output
variables (we probe output signals after they exit the last rank of output DRO
cells).

the propagation delay of a JTL is 5.7 ps. The DRO cell setup
time requirement – 2.3 ps – is also taken into account. Under
these assumptions, the longest estimated propagation delay,
and thus the shortest duration of a physical cycle (phase), is
72 ps.

The rebalanced full adder design is in Figure 12. In this
case, the critical path consists of 2 xSFQ cells instead of 4.
The longest propagation delay is 44.4 ps (the duration T of
a physical cycle/phase is set to 45 ps in our simulation) and
the number of logical cycles required to complete computation
remains the same.

VI. ENERGY-DELAY PRODUCT ANALYSIS ON PIPELINED
SUPERCONDUCTOR MICROPROCESSORS.

Finding the optimal pipeline depth for a microprocessor is
probably one of the most well-studied problems in computer
microarchitecture [9], [13], [17], [22], [38]. To the first order,
pipelining can offer a speed up of N , when N pipeline
stages are used. However, this improvement comes at the
expense of dynamic power. Thus, performance and power act
in opposition.

Unlike CMOS design, architects have minimal control of
the pipeline structure in prior conventional SFQ-based su-
perconductor microprocessors [1], [18]. As already discussed,
conventional superconducting Boolean gates are synchronous
and act as independent pipeline stages – with the attendant
benefits and problems. Considering individually clocked gates
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in conventional SFQ and the complexity of modern microar-
chitectures, we expect the number of pipeline stages in a prior
conventional superconductor microprocessor to be in the order
of hundreds. For example, our synthesis results of a single-
cycle RV32I [2] indicate that the number of two-input gates
on its critical path is approximately 150. Another noteworthy
problem with the conventional approach is that the number of
stages is not known until the synthesis process completes.

In contrast, the proposed xSFQ does not impose such con-
straints. In this section, we first revisit the CMOS performance
models presented by Hartstein and Puzak [13], modify them
where needed, then describe the area and energy consumption
of xSFQ and conventional SFQ designs as functions of the
pipeline depth, and, finally, conduct an energy-delay product
(EDP) comparison. To the best of our knowledge, this is the
first study on optimal pipeline depth for a superconductor
microprocessor.

A. Performance Model

Following Hartstein and Puzak [13], the basic performance
metric is Time per Instruction (TPI), which is the inverse
of the (Million) Instructions per Second metric. TPI can be
thought of as the sum of the time that a microprocessor is

busy doing some useful work (TBZ) and the time that it is
stalled because of pipeline hazards (TNBZ) divided by the
total number of program instructions (NI ). To calculate the
number of Logical Cycles per Instruction (LCPI) 5, which is
another useful performance metric, we divide the sum of TBZ

and TNBZ by TBZ . Expressions for TBZ , TNBZ , TPI, and
LCPI (for a scalar machine) are in Table IV.

We follow the original Hartstein and Puzak notation where
possible. In particular, variable tp represents the total logic
delay of the microprocessor, ts the physical cycle time, p
the number of architectural pipeline stages, to the latch delay
overhead, γ the weighted average of the fraction of the pipeline
stalled by hazards (γ ∈ [0, 1]), and NH the number of pipeline
hazards.

In the case of xSFQ, p can take values ranging from 1
to Nlg cp/2, where Nlg cp is the number of gates on the
critical path. Exceeding this upper bound is not useful, as
rebalancing no longer applies. In the ts, TBZ , and TNBZ

expressions, we divide/multiply by a factor of 2 to account
for the effects of rebalancing. In conventional SFQ, ts is
equal to the longest propagation delay among the available
synchronous SFQ gates, given that p is no longer a free
variable. Note that the given equations do not capture timing
skews or the propagation delay of interconnect lines.

B. Area Model

Regarding area, we assume that the majority of hard-
ware resources is associated with logic gates (LA, FA, and
conventional SFQ Boolean cells), latches (DRO cells), and
SPLITTERs. We categorize these cells as follows: LA and
FA cells are considered asynchronous, and conventional SFQ
Boolean cells and DRO cells are considered synchronous. As
for SPLITTERs, we count only those that are part of the clock
distribution network, which dominates the total SPLITTER
count. Table IV provides a description of our analytical area
models (in terms of gate count).

As discussed in Section II, in conventional SFQ, DRO
cells are needed for padding unequal datapaths. We assume
that their number Ndro increases linearly with the number of
logic gates (Nlg); odp is the growth rate associated with the
padding overhead. The number of logic cells (Nlc) is equal
to the number of logic gates (in SFQ), and the number of
SPLITTERs on the clock line (Nsplt) matches the total number
of synchronous cells; Ndro +Nlg in this case.

To estimate Ndro in an xSFQ design, the methodology intro-
duced by Srinivasan et al. [38] is followed. NL is the number
of logical latches for a single-stage pipeline, η the latch growth
exponent, and a factor of 2 is used to compensate for the
additional cost of the xSFQ “double pumped” architectural
latches. Variable odr denotes the overhead introduced by DR
codes. More specifically, if LA and FA cells are used in pairs,
odr = 2; otherwise, odr = 1. This overhead is accounted for in
the logic cells estimation, as well (Nlc = Nlgodr). Moreover,

5We use LCPI instead of Cycles per Instruction (CPI) because each xSFQ
logical cycle consists of two physical cycles.



in xSFQ, the only synchronous components are DRO cells,
and thus Nsplt = Ndro.

TABLE IV
PERFORMANCE, AREA, AND ENERGY MODELS FOR XSFQ

AND CONVENTIONAL SFQ.

xSFQ conv. SFQ

p ∈ [1, Nlg cp/2] [Nlg cp]

δ ∈ [1] [0, 1]

Performance

ts = to + tp/(2p) to

TBZ = 2tsNI tsNI

TNBZ = γNH(to(2p) + tp) γNH top

TPI = (TBZ + TNBZ)/NI (TBZ + TNBZ)/NI

LCPI = 1 + TNBZ/TBZ 1 + TNBZ/TBZ

Area

Ndro = 2NLp
ηodr Nlgodp

Nlc = Nlgodr Nlg

Nsplt = Ndro Ndro +Nlg

Energy

Eac = (Nlcelcδ)LCPI 0

Esc = (Ndroedroδ)LCPI (Ndroedroδ +Nlcelcδ)LCPI

Eclk = (2Nspltesplt)LCPI (Nspltesplt)LCPI

EPI = Eac + Esc + Eclk Eac + Esc + Eclk

C. Energy Model

The energy metric used is Energy per Instruction (EPI),
which is the sum of dynamic energy consumed by asyn-
chronous cells (Eac), synchronous cells (Esc), and the clock-
ing distribution network (Eclk) for the execution of a single
instruction 6. Expressions for Eac, Esc, and Eclk are in
Table IV, and are functions of the following parameters: LCPI,
Nlc, Ndro, elc (average energy dissipation of a logic cell), edro
(energy dissipation of a DRO cell), esplt (energy dissipation
of a SPLITTER), and δ (switching activity factor).

In conventional SFQ, no LA and FA cells are used, Eac =
0. However, the cost of logic gates is accounted for, along
with the cost of DRO cells, in the Esc expression. In xSFQ,
the energy consumed by LA and FA cells is part of Eac. The
factor of 2 appearing in the Eclk expression compensates for
the additional delay caused by the relax phase.

6As already discussed, recent energy-efficient SFQ logics have zero static
power dissipation without sacrificing speed or compatibility with existing
fabrication processes.

D. EDP Comparison

To quantify the gains of xSFQ over conventional SFQ
technologies, we perform various simulations with NH/NI ,
γ, Nlg cp, and odp as free variables. The assumptions are:
(a) all gate inputs and outputs are buffered by JTLs, (b) the
clock distribution network has zero skew and can be wave-
pipelined (common practice in conventional SFQ designs), (c)
xSFQ FA and LA cells are always used in pairs (the most
conservative case), (d) excite and relax phases are balanced,
and (e) η = 1.3, similar to Hartstein and Puzak [13]. We note
that our models do not include the circuitry overhead required
for pipeline interlock and flushing. Moreover, Nlg = 10, 000,
Nlg cp = 150 (based on synthesis results of a RISC-V RV32I
core), and γ = 0.8, if not stated differently. The 2.8 ps and
2.3 ps setup time requirements of conventional SFQ Boolean
and DRO cells are also considered.

An EDP versus pipeline depth comparison between xSFQ
and conventional SFQ for various pipeline hazard rates is in
Figure 13. In the case where NH = 0, conventional SFQ
achieves better results than xSFQ. This is expected, as this
scenario favors very deep pipelines. LCPI is 1, each xSFQ
logical cycle consumes two physical cycles, the minimum
physical cycle time (ts) is shorter for SFQ than xSFQ, and a
gate-level pipelined xSFQ design requires more synchronous
cells than its SFQ equivalent. However, as the number of
hazards increases to more realistic values [27] and LCPI
becomes greater than 1, xSFQ gains surpass conventional SFQ.
Table V provides more detailed results.

conventional SFQxSFQ

20%
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𝑵𝑯/𝑵𝑰
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Fig. 13. EDP versus pipeline depth comparison. NH/NI ∈ [0, 0.2], γ = 0.8,
odp = 2.5, Nlg = 10, 000, Nlg cp = 150, η = 1.3. The y-axis is on a
logarithmic scale.

In all three cases – γ = 0.8, γ = 0.9, γ = 1.0 – xSFQ
performs better than conventional SFQ in terms of EDP and
EDDP (energy-delay2 product) for non-zero pipeline hazard
rates. More specifically, the gains increase super linearly with
NH/NI , while the optimal design point shifts to shorter
pipelines. For example, for γ = 0.8 and NH/NI = 5%, the
optimum number of pipeline stages p is 8 if optimized for



EDP, and 13 if optimized for EDDP. For NH/NI = 10%
and NH/NI = 20%, p becomes 5 and 4 for maximum
EDP gains, and 9 and 6 for maximum EDDP gains. In a
similar vein, increases in γ lead to higher EDP and EDDP
gains and shorter pipelines. Moreover, xSFQ achieves 4×
lower EPI than conventional SFQ even in the case of hazard-
free execution. An increase of one order of magnitude is
observed for NH/NI = 5% and two orders of magnitude for
NH/NI = 20%.

TABLE V
EDP, EDDP, AND EPI GAINS ACHIEVED BY XSFQ

OVER CONVENTIONAL SFQ.

γ = 0.8

NH/NI EDP EDDP EPI
0% 0.2x (p=19) 0.05x (p=61) 4x
5% 4.3x (p=8) 1.6x (p=13) 27x
10% 10.2x (p=5) 4.5x (p= 9) 48x
15% 16.8x (p=4) 8.1x (p=7) 67.6x
20% 23.7x (p=4) 12.2x (p=6) 86x

γ = 0.9

NH/NI EDP EDDP EPI
0% 0.2x (p=19) 0.05x (p=61) 4x
5% 5x (p=7) 1.9x (p=13) 29.6x
10% 11.8x (p=5) 5.3x (p=9) 53x
15% 19.4x (p=4) 9.6x (p=7) 74.6x
20% 27.1x (p=3) 14.3x (p=6) 94.5x

γ = 1.0

NH/NI EDP EDDP EPI
0% 0.2x (p=19) 0.05x (p=61) 4x
5% 5.7x (p=7) 2.2x (p=12) 32.2x
10% 13.5x (p=5) 6.2x (p=8) 58x
15% 22x (p=4) 11.1x (p=6) 81.4x
20% 30.8x (p=3) 16.5x (p=5) 103x

An EPI breakdown of EDP-optimized xSFQ and conven-
tional SFQ designs is provided in Table VI (γ = 0.8). As
pipeline hazards ratio increases, shorter pipelines are prefer-
able, which leads to less energy consumed by synchronous
elements and clock distribution network (in the case of xSFQ),
despite the increase in LCPI. In conventional SFQ, where
pipeline depth is not configurable, the energy consumed by
these components increases significantly.

TABLE VI
EPI BREAKDOWN OF EDP-OPTIMIZED XSFQ

AND CONVENTIONAL SFQ DESIGNS.

NH/NI
Eac (fJ) Esc (fJ) Eclk (fJ)

xSFQ SFQ xSFQ SFQ xSFQ SFQ
0% 24 0 15 50 27 49
5% 32 0 7 352 11 343

10% 34 0 4 653 7 637
15% 36 0 3 954 5 931
20% 39 0 3 1,256 6 1,225

Finally, Figure 14 plots EDP graphs for various Nlg cp and
odp values (γ = 0.8). The crossover point for all cases is
below a 2% hazard rate and shifts to the left as Nlg cp and

odp increase. More specifically, EDP is more sensitive to the
number of gates on the critical path than the overhead for the
padding of uneven paths. For example, the crossover point for
Nlg cp = 100 and odp = 2.5 is at NH/NI = 2%, for Nlg cp =
200 and odp = 2.5 at NH/NI = 1%, and for Nlg cp = 100
and odp = 5.0 at NH/NI = 1.5%. For a 10% hazard rate, the
EDP gains achieved by xSFQ over conventional SFQ for these
three cases are 6.1×, 14.6×, and 8.5×, respectively, excluding
the cost of interlock logic.
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Fig. 14. EDP conventional SFQ/xSFQ comparison for NH/NI ranging from
0% to 10%, Nlg cp from 100 to 200, and odp from 1.25 to 5.0.

VII. CONCLUSIONS

Superconducting technology is an increasingly promis-
ing candidate for energy-efficient computing, especially for
large-scale high-throughput or low-latency applications having
low memory requirements and involving communications-
intensive processing. A major design constraint is that the
pulse-driven nature of SFQ logic means that each logic ele-
ment must “remember” when a pulse has come through so that
it can be combined with future pulses. In order to implement
traditional logic functions, each state machine must be returned
to a ground state before new inputs can be applied. Rather than
rely on a clock being delivered to each and every gate in the
system as in conventional SFQ (which inflates circuit size,
increases dynamic power dissipation, and forces the use of
unnecessarily deep pipelines), we propose an alternating, un-
ordered encoding (typically DR) that is functionally complete
and allows for the design of completely clock-free combina-
tional logic elements. In this new logic scheme, dubbed xSFQ,
we rely on each pulsed data line to alternately “excite” and
“relax” each logic element. Clocking is then used only for the
synchronization of storage elements (e.g., latches), similar to
CMOS, and sequential network designs have a conventional
look-and-feel. To verify our hypothesis, we design analog
circuit models for all proposed logic elements and validate
their operation in a superconducting-aware version of SPICE.



We also build a discrete-event simulation framework to aid
in the evaluation of more complex systems and use it to
demonstrate the effectiveness of the presented optimizations,
as well as the versatility of xSFQ.

Like any new logic family there are relative advantages
and disadvantages compared to prior approaches. However,
we find through a detailed analysis of energy-delay product
for pipelined designs that xSFQ is superior to conventional
SFQ in nearly all use-cases. The exceptions require hundreds
of pipeline stages with 99% stall-free operation. If even a few
levels of logic are desirable between (architectural) pipeline
stages, xSFQ is superior in terms of EDP, EDDP, and EPI.
For example, for a design resembling a RISC-V RV32I core
and a 20% pipeline hazards, xSFQ achieves 31× EDP, 17×
EDDP, and 103× EPI gains compared to conventional SFQ.
We expect these gains to be even more significant if the
overhead of interlock logic is accounted for.

The provision of xSFQ’s dual-rail construction, along with
its alternating periods of excitation and relaxation, intro-
duces new opportunities for phase rebalancing optimizations.
Circuit- and gate-level enhancements that further exploit this
logical framework are likely possible. Moreover, the freedom
from excessively deep pipelines unlocks new architectural
opportunities and makes the design process more familiar
to those coming from more traditional digital design back-
grounds. Finally, the presented analytical power-performance
models allow for exploring the impact of pipeline depth on
the efficiency of superconductor microprocessors and other
non-streaming applications, as well as opening pathways for
identifying the technology’s key architectural challenges. The
designs and simulation infrastructure used in this work can be
found on our GitHub repository.
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