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E�cient computer implementations of the GW approximation must approximate a numerically challenging frequency
integral; the integral can be performed analytically, but doing so leads to an expensive implementation whose computa-
tional cost scales as O(N6) where N is the size of the system. Here we introduce a new formulation of the full-frequency
GW approximation by exactly recasting it as an eigenvalue problem in an expanded space. This new formulation (1)
avoids the use of time or frequency grids, (2) naturally precludes the common “diagonal” approximation, (3) enables
common iterative eigensolvers that reduce the canonical scaling to O(N5), and (4) enables a density-fitted implemen-
tation that reduces the scaling to O(N4). We numerically verify these scaling behaviors and test a variety of approx-
imations that are motivated by this new formulation. In this new formulation, the relation of the GW approximation
to configuration interaction, coupled-cluster theory, and the algebraic diagrammatic construction is made especially
apparent, providing a new direction for improvements to the GW approximation.

Green’s function approaches based on time-dependent
many-body perturbation theory provide an economical de-
scription of excitation energies and spectral intensities. For
the one-particle Green’s function, which describes electron
addition and removal processes, the GW approximation to
the self-energy1 performs well for weakly correlated insula-
tors and metals,2 which has partially motivated its application
to molecules3–6 (here and throughout we are considering the
common non-self-consistent G0W0 approximation, which we
call the GW approximation for simplicity). The size of sys-
tems that can be studied with the GW approximation is deter-
mined by the implementation, which can be characterized by
its asymptotic scaling with the system size N, ranging from
O(N3) to O(N6) with widely varying prefactors.7,8

GW implementations can be distinguished based on their
handling of a numerically challenging frequency integral,
which is relatively uncommon in quantum chemical meth-
ods. The earliest works used a generalized plasmon pole
model to approximate the dielectric function and thus inte-
grate analytically.2,9,10 More sophisticated approaches treat
the full frequency dependence using numerical integration
techniques such as analytic continuation11–16 and contour de-
formation.15–19 These latter methods introduce numerical er-
rors, but ones that in principle can be eliminated with increas-
ing cost (e.g. the frequency integration grid or the fitting of
the self-energy on the imaginary frequency axis). The final
class of methods are numerically exact within a given single-
particle basis set and require the explicit enumeration of all
neutral excitations energies,3–5,20,21 typically calculated within
the random-phase approximation (RPA). This explicit enu-
meration, i.e. a sum over states, dominates the cost of such a
GW calculation due to its O(N6) scaling. This exact handling
of the full frequency dependence is the type that we address
in the present work. We note that this class of methods still
constructs a frequency-dependent self-energy, which is used
to solve the quasiparticle equation for each excitation. In this
work, we present a new formulation of the GW approxima-
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tion by recasting it as an eigenvalue problem in an expanded
space, and a frequency variable never appears.

Within Green’s function theories, charged excitation ener-
gies En, i.e. ionization potentials (IPs) and electron a�nities
(EAs), are found as the poles of the one-particle Green’s func-
tion matrix G(!) via the eigenvalue problem
h
G
�1(! = En)

i
Rn = [f + ⌃c(! = En)]Rn = EnRn, (1)

where f = h + J + K is the Fock matrix, h is the kinetic and
external potential energy matrix, J is the Hartree matrix, K

is the exchange matrix, and ⌃c(!) is the correlation part of
the self-energy matrix. In practice, we typically work in a
basis of orbitals �p(x) that diagonalize a mean-field Green’s
function, which serves as the reference and defines the orbital
energies "p. As usual, the O occupied orbitals will be indexed
by i, j, k, l, the V unoccupied orbitals by a, b, c, d, and generic
orbitals by p, q, r, s. For simplicity, we will assume real or-
bitals. In this basis, we have f = " + K � Vxc where Vxc is
the exchange-correlation potential matrix. Note that for a HF
reference, K � Vxc = 0.

In the GW approximation, the self-energy is calculated to
lowest-order in the screened Coulomb interaction W, which
gives rise to the aforementioned frequency integral, ⌃c(!) =
(i/2⇡)

R
d!0ei⌘!0G(! + !0)Wp(!0) where Wp = W � v is the

polarized part of the screened Coulomb interaction. When the
polarizability that enters Wp is expressible by a spectral rep-
resentation, then the frequency integration can be performed
analytically to yield3–5,20,21
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where M⌫pq =
R

dx1dx2�p(x1)�q(x1)r�1
12 ⇢⌫(x2), ⌦⌫ are neu-

tral excitation energies, and ⇢⌫(x) are transition densities.
Although any theory of neutral excitations can be used to

calculate the polarizability,22 here we consider the Tamm-
Danco↵ approximation (TDA) to the (direct) RPA. Within

mailto:tim.berkelbach@gmail.com


2

the TDA, the neutral excitation energies and transition den-
sity moments are defined by AX

⌫ = ⌦⌫X
⌫, where

Aia, jb = ("a � "i)�ab�i j + hib|a ji, (3)

hpq|rsi =
R

dx1dx2�p(x1)�q(x2)r�1
12 �r(x1)�s(x2), ⇢⌫(x) =P

ia X⌫ia�i(x)�a(x), and M⌫pq =
P

ia X⌫iahpi|qai. Diagramati-
cally, such a self-energy has screening due to infinite-order,
forward time-ordered ring (or bubble) diagrams. The alge-
braic form Eq. (2) assumes that all eigenvalues and eigenvec-
tors of the A matrix have been calculated, which implies a
canonical O(N6) scaling, as discussed in the introduction.

In the GW community, RPA screening is much more
commonly implemented without the TDA. Although the
frequency-free implementation of the GW approximation that
we present here is far simpler to formulate within the TDA,
many of the same ideas can be applied for the case of RPA
screening, which we discuss in the supplementary material.
In particular, we show that a frequency-free formulation with
RPA screening exists; however, it is less conducive to cost re-
ductions. Moreover, in Fig. 1, we show that results obtained
with TDA screening are of similar accuracy to those obtained
with RPA screening, especially when based on a HF reference,
empirically justifying our focus on TDA screening.

In order to make progress on a frequency-free implemen-
tation that avoids the explicit sum over states in Eq. (2), we
define a vector space of excitations corresponding to one hole
(1h), one particle (1p), two holes and one particle (2h1p), and
two particles and one hole (2p1h). A vector in this space has
elements R = (ri, ra, ri[ jb], r[ jb]a). The notation of the 2h1p
and 2p1h amplitudes indicates that the j ! b excitation is
independent of the other particle or hole index, i.e. the ampli-
tudes do not obey any antisymmetry as they do in determinan-
tal approaches. We define a frequency-independent “super-
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FIG. 1. Mean absolute errors in the first IP and first EA calcu-
lated using GW with TDA and RPA screening for various mean-field
references. Using the O(N6) implementation in PySCF,23,24 we per-
formed calculations on the smallest 91 molecules in the GW100 test
set6 in the def2-TZVPP basis.25 Error is calculated with respect to to
�CCSD(T) for the IP26 and EOM-CCSD for the EA.27
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(V2h1p)† C
2h1p

0
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where C
2h1p = "1h � (�A) and C

2p1h = "1p � A with matrix
elements

V2h1p
p,k[lc] = hpc|kli (5a)

V2p1h
p,[kc]d = hpk|dci (5b)

C2h1p
i[ ja],k[lc] =

h
("i + " j � "a)� jl�ac � h jc|ali

i
�ik (5c)

C2p1h
[ia]b,[kc]d = [("a + "b � "i)�ik�ac + hak|ici] �bd. (5d)

This super-matrix can be downfolded into the 1h+1p space,
leading to a frequency-dependent eigenvalue problem of the
form Eq. (1), with

⌃(!) = V
2h1p
h
!1 � C

2h1p
i�1

[V2h1p]†

+ V
2p1h
h
!1 � C

2p1h
i�1

[V2p1h]†.
(6)

It is straightforward to check that this frequency-dependent
matrix, arising from the downfolding of the 2h1p and 2p1h
spaces, is precisely the correlation part of the GW self-energy.
The above presentation closely follows the algebraic diagram-
matic construction (ADC) literature.28,29 In particular, the
above theory, i.e. the GW approximation with TDA screen-
ing, is a strict but severe approximation to the ADC(3) and
2p1h-TDA methods.30 Diagramatically, the latter two theo-
ries include many vertex corrections beyond the GW approx-
imation, including ladder and exchange diagrams. An anal-
ogous approach was also used recently to formulate an ef-
ficient renormalized second-order Green’s function theory31

and similar conceptual ideas were discussed in the context of
double excitations in time-dependent density functional the-
ory.32

Importantly, the frequency-independent super-matrix form
of the GW approximation enables the use of iterative eigen-
solvers that lower the computational scaling. Matrix-vector
multiplication is given by HR = �, with

�i =
X

j

fi jr j +
X
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�[ia]b =
X

j

h ji|bair j +
X

c

hci|bairc

+ ("a + "b � "i)r[ia]b +
X

kc

hak|icir[kc]b,
(7d)

where all indices correspond to spin-orbitals. For a restricted,
closed-shell reference, spin-free equations are straightforward
to derive and are given in the supplementary material. Clearly,
the above equations have no worse than O(N5) scaling (specif-
ically O2V3 for moderately sized basis sets), which is a sig-
nificant improvement over the O(N6) scaling exhibited by the
sum-over-states implementation. Furthermore, because only
Coulomb-type electron repulsion integrals are used in the di-
rect TDA (or RPA), the scaling of the most expensive contrac-
tions can be easily reduced by density-fitting. For example, if
the ERIs are approximated as (pq|rs) ⇡ PQ BQ

pqBQ
rs then the

worst-scaling O(N5) term can be calculated by

�[ia]b =
X

Q

X

kc

BQ
aiB

Q
kcr[kc]b, (8)

which has two steps that scale as O(NauxOV2) or O(N4).
Although we will not show results here, we briefly de-

scribe how spectral quantities can also be obtained iteratively
with identical scalings. Using a spectral resolution of H, the
full Green’s function is given by Gpq(!) =

P
n(rn

prn
q)/(! �

En), i.e. the quasiparticle weight is given simply in terms of
the 1p+1h elements of the solution vector R; this formula-
tion naturally precludes the common diagonal approximation
⌃pq(!) ⇡ �pq⌃pp(!). The matrix H can also be used iter-
atively (without diagonalization) to calculate the frequency-
dependent self-energy ⌃(!) = V

2h1p
Z

2h1p(!) +V
2p1h

Z
2p1h(!)

where Z(!) is a matrix that solves the linear systems of equa-
tions, e.g.

h
!1

2h1p � C
2h1p
i

Z
2p1h(!) = [V2h1p]†, which can be

solved with iterative methods such as conjugate gradient or the
generalized minimum residual method. Similarly, the Green’s
function can be calculated as G(!) = PZ(!) where Z(!)
solves [!1 �H] Z(!) = P

† and P is a matrix that projects
onto the 1p+1h space.

We have implemented the GW techniques described above
in the PySCF software package.23,24 To compare their costs
and verify their asymptotic scaling, we have calculated the
first IP of a series of linear alkanes in the def2-SVP basis25

up to C37H76, which has 898 basis functions The execution
timings of the O(N6) sum-over-states, O(N5) frequency-free,
and O(N4) density-fitted frequency-free implementations are
shown in Fig. 2; all calculations were performed on a single
core of an Intel Xeon Gold 6126 2.6 GHz (Skylake) CPU and
density-fitted calculations used the def2-SVP-JKFIT auxiliary
basis set.33 As can be seen, all methods exhibit the expected
asymptotic scaling. Comparing the absolute execution times
of the sum-over-states and density-fitted frequency-free im-
plementations, we obtained a speed-up of four orders of mag-
nitude for the C10H22 calculation. For our largest system with
almost one thousand basis functions, the density-fitted imple-
mentation required only two hours on a single core, demon-
strating the immense savings available with the advances de-
scribed here. The use of density fitting was found to introduce
a negligible error of around 0.01 eV.
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FIG. 2. Timings of the sum-over-states (direct diag.), frequency-free
(matvec), and density-fitted frequency-free (matvec, DF) implemen-
tations of the GW approximation for a series of linear alkanes in
the def2-SVP basis, up to C37H76. For the sum-over-states imple-
mentation, we timed the full diagonalization of the TDA matrix; for
the frequency-free implementations, we timed the 6-8 matrix-vector
multiplications required for convergence of the Davidson algorithm.

One challenge with using iterative eigensolvers on H is that
the eigenvalues of typical interest (valence ionization poten-
tials and electron a�nities) are interior eigenvalues. There-
fore, they must be found using energy-targeting methods like
shift-and-invert or ones which maximize eigenvector overlap
with a given guess vector. We have found the latter to work
well, in conjunction with Davidson diagonalization,34,35 for
valence IPs and EAs. However, two simple alternatives exist
by introducing additional approximations.

In a first approach, one can make the diagonal approx-
imation to the Green’s function and the self-energy, seek-
ing the self-consistent solution En of the algebraic equation
fpp + ⌃pp(! = En) = En. This can be solved by iterative di-
agonalization of a modified matrix H

(p) which has deleted all
1p+1h rows and columns except that of orbital p. Although
the principal eigenvalue of interest is still an interior eigen-
value, this approach eliminates all other quasiparticle ener-
gies, which can facilitate energy- or overlap-targeting proce-
dures. In a second approach, one can perturbatively decouple
the IP and EA parts of H, which will make the valence IPs
and EAs into extremal eigenvalues. For example, for the cal-
culation of IPs, we perturbatively eliminate the 1p and 2p1h
subspaces based on their lowest-order influence on the 1h sub-
space, and likewise for EAs. This leads to modified Fock ma-
trix elements

Fii = fii +
X

b

| fib|2
fii � fbb

+
X

kcd

|hik|dci|2
"i + "k � "c � "d

(9a)

Faa = faa +
X

j

| fb j|2
faa � f j j

+
X

klc

|hac|kli|2
"a + "c � "k � "k

(9b)

which are used in place of fii and faa during the matrix-vector
product. This approach has the added benefit of reducing
the size of the vector spaces for the IP and EA problems,
RIP = (ri, ri[ jb]) and REA = (ra, r[ jb]a), and reducing the scal-
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FIG. 3. Impact of various approximations on the first IP of the
molecules in the GW100 test set,6 using a HF reference. Mean abso-
lute deviations are given in the lower triangle, and maximum absolute
deviations are given in the upper triangle (all in eV).

ing of the IP matrix-vector product to be O(O3V2). Finally,
we point out that the valence IPs can be made into the lowest
eigenvalues by negating the matrix, H

IP ! �H
IP. With all of

these changes, the calculation of IPs and EAs within the GW
approximation looks quite similar to that within the IP/EA-
EOM-CCSD approximation.36,37 The decoupling of the IP and
EA spaces is also common in the ADC literature, and referred
to as a non-Dyson approach.38 We will use the same language
and evaluate the performance of the Dyson (coupled IP and
EA) and non-Dyson (perturbatively decoupled IP and EA)
GW approximation.

To assess the e↵ect of the diagonal approximation and per-
turbative decoupling, we used our frequency-free O(N5) GW
implementation to calculate the first IP of all the molecules in
the GW100 test set.6 In Fig. 3, we compare the non-diagonal,
diagonal, and non-diagonal perturbatively decoupled (“non-
Dyson”) GW results among themselves and to �CCSD(T) re-
sults,26 using a HF reference. As shown in Fig. 1, the GW
results have a mean absolute error of 0.24 eV, with respect to
CCSD(T). On average, the diagonal approximation has negli-
gible e↵ect (less than 0.1 eV), although a maximum deviation
of 0.65 eV is observed, indicating the potential importance of
o↵-diagonal elements of the self-energy for some molecules.
Perturbative decoupling (the non-Dyson GW approximation)
changes the results by 0.41 eV on average (and by as much as
2.44 eV) and increases the mean absolute error from 0.24 eV
to 0.51 eV, suggesting that it is a relatively severe approxima-
tion. We have performed the same analysis (not shown) for the
EA, as well as for a PBE reference; all results are qualitatively
similar.

To summarize, we have shown that the typical Dyson equa-
tion formulation of the GW approximation can be exactly re-
formulated as a frequency-independent eigenvalue problem in
an expanded space. In addition to providing a new concep-
tual framework for the GW approximation and related Green’s
function theories, the new formulation was used to reduce the
computational scaling from O(N6) to O(N4). Based on our
preliminary results, we expect that this frequency-free formu-
lation of the GW approximation will be readily applicable to
systems with hundreds or thousands of atoms, likely limited

by the memory needed to store three-index quantities.
We anticipate that this eigenvalue formulation of the GW

approximation will lead to new methodological developments
inspired by quantum chemical methods with similar struc-
ture. For example, we are exploring the use of partition-
ing schemes to mitigate the cost of large basis sets,39–41 the
introduction of vertex corrections through the algebraic dia-
grammatic construction,28,29 the use of renormalization and
compression to perform self-consistent GW,31 and the exten-
sion towards strongly correlated systems with multi-reference
techniques.42,43 Finally, the ideas presented in this work and
these latter extensions can be applied to treat the frequency
dependence of the Bethe-Salpeter equation for neutral excita-
tions.44,45

SUPPLEMENTARY MATERIAL

See the supplementary material for spin-free matrix-vector
product equations and for derivation of the frequency-free
GW approximation with RPA screening.
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I. SPIN-FREE EQUATIONS

For a restricted, closed-shell reference system, the spin-free

matrix-vector equations for the GW approximation with TDA

screening are
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j
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II. RPA SCREENING

As discussed in the main text, the GW approximation

is more commonly implemented without the Tamm-Danco↵
approximation (TDA) to the random-phase approximation

(RPA). Here we present the frequency-free version of the

GW approximation with RPA screening. We show that a

frequency-free formulation exists by recasting the GW ap-

proximation as an eigenvalue problem in an expanded space;

however, the use of RPA screening precludes the cost reduc-

tions discussed in the main text.

The direct RPA leads to the generalized eigenvalue equation
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Aia, jb = ("a � "i)�ab�i j + hib|a ji, (S3c)

Bia, jb = hi j|abi (S3d)

and ⌦+ is a diagonal matrix of positive excitation energies.

The correlation part of the GW self-energy is
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where
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and we emphasize that only the positive-energy excitations are

included in the summation.

The GW approximation with RPA screening can be imple-

mented in a manner that is similar to that presented in the

main text, with a few changes. First, the trial vector ampli-

tudes must be expanded to include the deexcitation space of

the RPA matrix,

R = (ri, ra, ri[ jb], r̄i[ jb], r[ jb]a, r̄[ jb]a) (S8)

Second, because the GW self-energy expression (S4) only

includes positive excitation energies, we introduce a matrix

modification that eliminates the influence of the negative ex-

citation energies, M! M̃ with

M̃ =M + ⌘N⇥(�NM) (S9)

where ⌘ is a large number and ⇥ is the step function. This

gives a modified eigenvalue equation
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i.e. the negative excitation energies are shifted to large positive

values. Again we define a super-matrix,
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where C
2h1p = "1h�(�M̃) and C

2p1h = "1p�M̃, which requires

a super-metric
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0
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This leads to the generalized eigenvalue equation HR = NRE

or the non-Hermitian eigenvalue equation NHR = RE with

matrix-vector multiplicationNHR = � given by
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In the above equations, we have broken up the RPA NM̃ ma-

trix into its four blocks associated with the excitation (x) and

dexcitation (d) spaces. An exact evaluation of the above equa-

tions can be done by diagonalizing the RPA matrix in order to

calculate M̃; this diagonalization has O(N
6
) asymptotic scal-

ing. However, we have implemented the above in order to

verify that it yields eigenvalues equal to those of the GW ap-

proximation with RPA screening.

In an e↵ort to reduce the scaling, we have attempted an

iterative implementation of the product of ⇥(�NM) with

a trial vector. In particular, we approximate this matrix-

vector product using Arnoldi iteration, with requires only the

Krylov space generated by matrix-vector products of NM

that can each be carried out with O(N
5
) cost or with O(N

4
)

cost if density fitting is used. Although this approach was

found to work for small systems, we encountered numeri-

cal issues on larger systems. For example, the number of

Arnoldi iterations needed to approximate the matrix-vector

product was prohibitively large and the Davidson algorithm

exhibited convergence issues. We consider an iterative, low-

scaling, frequency-free implementation of the GW approxi-

mation with RPA screening to be an interesting area for future

work.
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