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Machine learning (ML) has emerged
as a critical tool in catalysis, at-
tributed to its capability of finding
complex patterns in high dimen-
sional and heterogeneous data. A
recently published article in Chem
Catalysis (Esterhuizen et al.) used
unsupervised ML for uncovering
electronic and geometric descrip-
tors of the surface reactivity of
metal alloys and oxides.
With recent advances in computing infra-
structures and quantum-chemical modeling
tools, a large amount of data on the
energetic properties of catalytic materials
are becoming available through open-
access repositories (e.g., Catalysis Hub [1],
ioChem-BD [2], Computational Materials
Repository [3], and Open Catalyst Project
[4]). These massive data resources, if fully
harnessed, can potentially bring viable
routes toward autonomous catalyst de-
sign strategies with artificial intelligence
(AI). To date, researchers have developed
a variety of machine learning (ML) models
for predicting the catalytic properties of
materials (e.g., adsorption energies as
reactivity descriptors in Sabatier volcano
plots [5]). However, as the algorithms be-
come increasingly complicated, humans
are challenged to explain how the black-
box models work and how they come to
a specific prediction. Recently, significant
works have been undertaken in catalysis
to address this challenge. Explainable
artificial intelligence (XAI) concepts, algo-
rithms, and tools were used to develop
interpretable ML models for the reactivity
properties prediction of solid surfaces,
with the goal of attaining new scientific
insights.

In a recent paper in Chem Catalysis,
Esterhuizen and colleagues [6] used a
combination of XAI tools to automate the
discovery of electronic and geometric
descriptors for predicting the surface
reactivity of metal alloys and oxides. They
exploited the merits of unsupervised ML
algorithms [e.g., principal component
analysis (PCA)] to derive dimensionality-
reduced feature representations of the
atom projected d-electronic density of
states (DOS) (Figure 1). These PCA-
derived principal components (PCs) lead
to accurate regression models of O, C,
N, and H adsorption energies on layered
metal alloys, outperforming the models
that directly use traditional d-band descrip-
tors (filling, center, width, upper edge, skew-
ness, and kurtosis) and on par with the
models using the complete DOS. More
importantly, partial dependence plots offer
physical explainability of PCs, with the ob-
servation that the chemisorption of those
four adsorbates becomes stronger as the
scores of the first PC increase, while their
bindings become weaker with the increase
of the second PC descriptor. Notably, how
the PCs capture the electronic structure
effect was also elaborated by explanations
from the reconstruction of DOSas a function
of each PC descriptor score via a signal
reconstruction technique (Figure 1). With
the decrease of the first PC, the recon-
structed DOS is shown to have a wider
d-band and lower d-band center due to
a higher degree of orbital overlap. The re-
construction of DOS based on the second
PC score, however, explains changes in
the higher-order d-band moment predom-
inantly. With higher second PC scores,
the number of d-electrons increases. The
PCA-derived feature representations can
also connect the composition and geometry
of surface alloys with adsorption energies.
Varying surface and subsurface ligand
metals, they revealed that the ligand metal’s
size is the main geometric factor that influ-
ences the first PC score. Increasing the
d-orbital radius of ligand metals is associ-
ated with a lower first PC and higher
degree of orbital overlap and thus results in
a broader and lower-energy d-band. This
ultimately causes a weaker adsorption. In
addition, the number of valence d-electrons
in the surface metals mainly determines the
second PC and its increase leads to a higher
second PC and lower upper band edge
relative to the Fermi level and weaker chem-
isorption. Exploring the strain effect on the
descriptors and the chemisorption strength
also made it clear that the strain has a sub-
stantial impact on the first PC, implying that
the first PC contains information about the
degree of orbital overlap between metal
atoms. However, the geometric strain has
little effect on the second PC, which con-
firms that the second PC mainly reflects
the valence d-electron number of the sur-
face metal atoms. Interestingly, this explain-
able ML framework is not limited to layered
alloys and can be extended to other cata-
lytic systems. It was shown that it could
derive feature representations of surface
oxygen reactivity of metals, rutile metal
oxides, and perovskite metal oxides,
which capture the relative occupations
of the O−M bonding and antibonding
orbitals. This work showcased that unsu-
pervised ML of informative features as an
XAI approach can simplify the relationship
to be learned from data and draw physical
insights for guiding catalyst design.

The importance of this PCA approach
particularly comes into the light as building
intrinsically interpretable models, models
that can talk for themselves. Regarding all
forms of linear regression as being under
the ML umbrella, there is a long history
in heterogeneous catalysis in developing
descriptor-based reactivity models, such
as the d-band theory of chemisorption
[7], scaling relations [8], and group additivity
[9]. Montemore and colleagues [16] used a
linear combination of deliberately selected
electronic structure descriptors of metal
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Figure 1. Automated identification of explainable electronic-structure descriptors using principal
component analysis (PCA). PCA reduces the high-dimension of density of states (DOS) features to low-
dimension principal component (PC) score descriptors. PC descriptors link electrical structure, geometry, and
composition and catalytic properties of materials. Abbreviations: ML, machine learning.
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surfaces to build a multivariate model and
predict adsorption energies of different
adsorbates for a wide range of chemistries.
Their model is descriptively accurate be-
cause of its transparency, while being too
restrictive to describe the nonlinearity of
chemical bonding processes and thus
has limited prediction accuracy, as shown
in Figure 2. In another effort, Esterhuizen
and colleagues [10] used a decision tree-
based generalized additive model (iGAM),
which is an extension of the linear regres-
sion model, for quantifying the relationship
between the geometric structure of an
adsorption site and site reactivity. It can
provide insights into the contribution of
each feature to the adsorption properties
by nonlinear mapping (shape functions)
included in the algorithm formulation.
Inheriting the mathematical transparency
of linear regression models, symbolic
regression with compressed sensing al-
gorithms (e.g., SISSO [11]) were used to
find sparse feature representations for
predicting the adsorption energies of
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descriptor species relevant to CO metha-
nation and oxygen evolution on transition
metals and their oxides. This type of sym-
bolic regression canmake them reasonably
accurate while also providing descriptive
accuracy. Going forward, the model ex-
plainability can be realized by training the
ML models to produce not just the pre-
dictions but also the explanation. Using
theory-based models is a straightforward
approach for training explanation. The
BayesChem [12] model, which is built
upon the d-band reactivity theory, could
offer quantitative explanations of the
underlying mechanism of chemical bond-
ing, which is difficult to get using purely
data-driven regression models. Nonethe-
less, this XAI approach of developing
transparent inherently typically restricts the
complexity of model algorithms and comes
with performance costs (i.e., as their ex-
plainability improves, the performance
deteriorates). Therefore, there appears a
tradeoff between model explainability and
performance, as illustrated in Figure 2. In
another work, where Fung and colleagues
[13] used convolutional neural networks
[14] to automatically extract high-level fea-
ture representations of the electronic DOS,
a perturbative XAI approach was exploited
to gain insights from themodel after training.
For that, they performed transformations
on the input DOS and monitored their
impact on their DOSnet ML prediction. For
instance, a band-shift transformation corre-
sponding to electron/hole doping showed
that a downshift of DOS leads to weaker
bindings, consistent with the d-band theory
of chemisorption. They also benefited from
the concept of feature importance to give
explanations on which parts of the DOS
are accountable for the chemisorption
energy prediction. Applying these types of
explanatory XAI approaches on black-box
models can explore the reactivity changes
from hypothetical perturbations like doping,
alloying, and strain. Developing hybrid ML
frameworks that build explainable models
on top of complex ones has been an
attempt to break this tradeoff, shown in
Figure 2. In a hybrid model, a complicated
network can be used to do what it is good
at (i.e., learning representations of data)
and a transparent model often rooted on
theories can be applied to infer insights
and explanation. Wang and colleagues [15]
have recently proposed the theory-infused
neural network (TinNet) approach that
integrates deep learning algorithms with
the d-band theory of chemisorption for
reactivity prediction of transition-metal
surfaces models. TinNet passes the out-
put activations from the graph-based
neural network in the regression module
into the theory module where the ex-
plainability is encoded. In addition to
highly accurate predictions, the trained
parameters of the TinNet can provide
utmost explanations within the theo-
retical framework. With TinNet-derived
feature representations in terms of interac-
tion parameters, a deconvolution of the
d-contributed adsorption energy into Pauli
repulsion and orbital hybridization becomes
readily available and can shed further light
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Figure 2. The tradeoff between interpretability and accuracy of interpretable machine learning
models. Abbreviations: ML, machine learning.
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on the nature of chemical bonding at metal
surfaces.

From our view, algorithm-derived feature
representations play a key role in develop-
ing interpretable ML models for revealing
novel scientific knowledge. Integration of
theories into ML algorithms shows prom-
ise to break the tradeoff of model predic-
tive accuracy and interpretation integrity
and presents new opportunities for ML
discovery of novel materials with desirable
catalytic properties.
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