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Abstract: Buildings are subject to significant stresses due to climate change and design strategies
for climate resilient buildings are rife with uncertainties which could make interpreting energy
use distributions difficult and questionable. This study intends to enhance a robust and credible
estimate of the uncertainties and interpretations of building energy performance under climate
change. A four-step climate uncertainty propagation approach which propagates downscaled future
weather file uncertainties into building energy use is examined. The four-step approach integrates
dynamic building simulation, fitting a distribution to average annual weather variables, regression
model (between average annual weather variables and energy use) and random sampling. The
impact of fitting different distributions to the weather variable (such as Normal, Beta, Weibull, etc.)
and regression models (Multiple Linear and Principal Component Regression) of the uncertainty
propagation method on cooling and heating energy use distribution for a sample reference office
building is evaluated. Results show selecting a full principal component regression model following a
best-fit distribution for each principal component of the weather variables can reduce the variation of
the output energy distribution compared to simulated data. The results offer a way of understanding
compound building energy use distributions and parsing the uncertain nature of climate projections.

Keywords: climate change; building energy use; propagating uncertainties; input distributions;
regression model

1. Introduction
In the United States, commercial and residential buildings are major energy use

consumers and contribute to carbon emissions. Studies have shown that efficient buildings
are interlinked with sustainable built environment [1]. Building energy use is mainly
dependent on exterior climate conditions, occupant behavior, envelope characteristics, and
equipment efficiency which are also the main sources of uncertainty in quantifying building
performance [2]. With the current trends of climate change, there is a need of evaluating
buildings that ensure a resilient and sustainable design [3]. Building simulation tools are
widely used to assess building energy performance and occupant comfort [4]. However,
many require weather files with high spatial and temporal resolution and in the format of
a Typical Meteorological Year (TMY). Additionally, due to climate change, existing TMY
files (using historical data) should not be used to assess building energy performance
for the future [5,6]. On the other hand, Global Climate Models (GCMs) and Regional
Climate Models (RCMs) are coarse in resolution. Therefore, they cannot be used directly in
building simulation tools, and need to be downscaled to hourly temporal resolutions. This
is done using statistical downscaling techniques (e.g., stochastic weather generators) [7]
or the morphing process [8]. Downscaling methods are useful to develop weather files
that can be directly incorporated in building energy simulations in order to assess building
performance under climate change scenarios [9]. However, weather files that are developed
from downscaled climate models havemany levels of uncertainty [10,11] andmost building
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simulation tools lack the ability to propagate various sources of uncertainties [12]. For
example, the climate is changing and climate models which generate various projections
based on emissions scenarios are uncertain in nature and their uncertainties need to be
accounted for in building models. In recent years, developments in building standards
and regulations have promoted improved building efficiency (e.g., ASHRAE 90.1-2016).
Occupant behaviors and dynamic schedules have also been incorporated in building energy
tools [13,14]. However, with global temperatures projected to increase by 4.8 �C by the
end century (IPCC 2014 [15]), buildings will operate differently from their original design
loads [16]. Given these various sources of uncertainty, there is a need to assess building
energy performance using probabilistic approaches [17]. One method is the Monte Carlo
technique which is commonly used to propagate input variations (e.g., climate, building
operation, etc.) through the model to determine uncertainties to the output (e.g., energy
consumption) [18,19]. A probabilistic approach to propagate climate uncertainties into
building energy use has driven modeling efforts [20,21].

In this regard, fitting distributions to input variables and conducting an uncertainty
analysis following random sampling in building simulations is a common practice [22,23].
Sun et al. (2014) looked into the uncertainties of microclimate variables in building energy
models and presented a framework for uncertainty quantification which uses a detailed
specification of urban form model to quantify microclimate conditions. They compared
their results which included quantifying different sources of uncertainties using statistical
methods [24]. Gang et al. (2015) examined the uncertainties of nine factors of building
parameters, weather and indoor conditions and developed a probability distribution of
the cooling energy use and capital cost [25]. In their study they followed three typical
distributions of normal, uniform and triangular. De Wilde and Tian (2010) evaluated the
impact of the selection of performance metrics and assumptions made in modeling building
emissions, overheating and office work performance under climate change using the
UKCIP02 climate scenarios following a uniform distribution in Monte Carlo sampling [26].
Wang et al. (2012) investigated uncertainties in energy consumption from different building
operational practices and weather data. For the analysis of weather sources uncertainties,
they compared the energy results from historical weather data to TMY3 weather files [27].
González et al. (2019) provided an extensive review on critical uncertainty indices [28].
Brohus et al. (2012) conducted a comprehensive uncertainty analysis of input distribution
following different distributions [29]. They used a Kolmogorov-Smirnov goodness of fit
test was followed as a determination of stochastic sampling.

Regression models are also used to predict building energy use [30] and are useful
methods to generate correlations between thermophysical, weather and occupant factors
to building output energy use. For example, Braun et al. (2014) used a multiple regression
model with regressors of humidity ratio and relative humidity to predict gas and electricity
use consumption for future climate periods in northern England [31]. Another study by
Catalina et al. (2013) authors develop a regression model between multiple input variables
and building energy demand [32]. They found a regression fit to predict heating energy
demand to be simple and largely applicable to building simulation.

The process of conducting a Monte Carlo analysis can be complex and would require
intense computational needs and recent studies are attempting to reduce the intensity
of the uncertainty analysis. Yassaghi, Gurian and Hoque (2020) presented a four-step
climate uncertainty propagation method which could reduce computational efforts and
is applicable to regions where limited hourly weather data can be developed to evaluate
climate change impacts on buildings energy performance [33]. However, probabilities are
not always easy to assess. In many cases it is difficult to fit a distribution to the input (the
distributionmay not be known) or to develop an appropriate correlation between themodel
input and output, which could then add to the total uncertainties. In addition, the output
distributions of energy use from uncertainty analysis can be confound and present a broad
scale and therefore, could be difficult to interpret. Studies have attempted to investigate
the impact of selecting various input variable distributions on propagating uncertainties to
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building energy use following Monte Carlo [25,29]. This paper evaluates the simultaneous
impact of selecting appropriate average annual weather variable distribution and regression
models between the weather variables and energy use when propagating climate change
uncertainties. This is an approach that has not been fully investigated and is not completely
understood. The output results of the impact assessment aim to enhance a robust and
credible estimate of the uncertainties and interpretations of building energy performance
under climate change. The goal is to offer a way of understanding compound building
energy use distributions and parsing the uncertain nature of climate projections.

The present work looks into the impact of selecting various distributions for the
mean annual weather variables and following different regression models in a four-step
uncertainty propagation method. A sample office reference building was selected as the
case study for the climate conditions of Philadelphia, PA, USA. Downscaling methods were
used to generate hourly weather files based on the Intergovernmental Panel on Climate
Change (IPCC) emissions scenarios and develop a data base of current and future TMY files
that were incorporated into EnergyPlus. The outcome of this study offers more nuanced
estimate of the uncertainties and interpretations of building energy performance under
climate change. Section 2 (Methodology) presents the steps taken to conduct the input
weather distribution and regression model impact assessment.

2. Methodology
2.1. Study Approach

This study assesses the impact of various average annual weather variables distribu-
tions and selecting different regression model in building energy use distributions when
conducting an uncertainty propagation analysis. We follow the four-step uncertainty
propagation technique presented by Yassaghi, Gurian and Hoque (2020) [33] to conduct
our impact assessment analysis. The four-step climate uncertainty propagation method
consists of a development of regression model, fitting distribution to weather variables and
random sampling (Figure 1).

Figure 1. The Four-Step Uncertainty Propagation method followed in the impact assessment (adapted from method
proposed by [33]).
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In Figure 1, the method shows four major steps. First, multiple building simulations
are conducted for all available weather files (current and future). From the simulation
results (e.g., for energy use) a multiple linear regression model is fit between the annual
energy use results and the annual average weather variables of the TMY files used in the
simulation. The process would develop a model between energy outputs and weather
variables. Next, a distribution is fit to the average annual weather variables following
a Kolmogorov-Smirnov (KS) goodness of fit test and a random sampling is conducted.
The best-fit distribution is the distribution with the highest p-value in the Kolmogorov-
Smirnov goodness of fit test. Finally, by having a regression model (between the average
annual weather variables and energy use) and input average annual weather variables
distribution, the uncertainties can be propagated to the energy use distribution. In the
uncertainty propagation method presented by [33] the use of different regression models
or input average annual weather variable distributions could alter the output energy use
distribution results.

To conduct themodel and distribution impact assessment (presented in red in Figure 1),
we first compare the use of full multiple linear regression (LR) model with a stepwise
multiple linear regression (LRS) model in the four-step uncertainty propagation method
for heating and cooling energy use distributions. The regression models are conducted
between energy use (dependent) and their associated average annual weather variables
(regressors) of the weather files used in a dynamic building simulation. Then, we fit various
distributions to the average annual weather variables of 46 current and future weather files.
The input weather variable distributions are used in the regression model to propagate
uncertainties to energy use. Next, we conduct a Principal Component Analysis (PCA) and
develop principal components for the average annual weather variables. Then we develop
full Principal Component Regression (PCR), stepwise principal component regression
(PCRS), and 2-factor principal component regression (PCR2) models between the principal
components and heating and cooling energy use. Then various distributions are fit to the
principal components which are then used in the principal component regression models
to propagate the uncertainties. Results are then compared to assess the impact of the
regression model selection and distribution fit on the output energy use of the uncertainty
propagation method. Below is a summary of the steps taken:

1. Current and future weather files are created. Current weather files are obtained from
existing resource presenting different historical periods. Future weather files are
developed using weather generators (Step a in Figure 1).

2. Multiple dynamic building simulations for each weather file is conducted and annual
heating and cooling energy use are determined (Step b in Figure 1).

3. The average annual values (arithmetic mean values) for each weather variable of
the weather files are calculated and the corresponding principal components of the
weather variables are developed.

4. Regression models between the average annual weather variables (and principal
components) as regressors and annual heating and cooling energy use (as dependent
variables) are developed (Step c in Figure 1).

5. Sample distributions are fit to the average annual weather variables of the weather
files data sets and their corresponding principal components (Step d in Figure 1). The
sample distribution is repeated for all weather variables and PCs except for the best fit
scenario. For example, when the Erlang distribution is selected, all weather variables
are assumed to follow an Erlang distribution.

6. Parameters of the distributions are obtained and a random sampling of a sample size
of 100 is conducted for all weather variables and principal components.

7. The uncertainties of the input variables (weather variables and their associated princi-
pal components) are then propagated to the heating and cooling energy use using the
regression model developed (Step e in Figure 1).
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Details of the weather files developed and building case study is presented in Sec-
tion 2.2. Sections 2.3 and 2.4 provide details of the regression models development and
distribution fitting process respectively. Results are then presented in Section 3.

2.2. Case Study and Weather Files

Stochastic weather generators such as the AdvancedWEatherGENerator [34–36], the
CCWorldWeatherGen [37] which adapts the morphing technique [8], and Meteonorm were
used to downscale future weather files based on emissions scenarios. The downscaling
methods were used to develop future TMY files that were incorporated into EnergyPlus.
Appendix A shows a summary of the weather files, their sources and period of generation
used here. In total, 46 weather files were developed (Appendix A), of which 10 are obtained
from existing TMY sources and 36 are downscaled future weather files from weather
generators and for different emissions scenarios into three future time slices. The weather
variables that are used in the development of the assessment model in this study are Dry
Bulb Temperature (DB), Dew Point Temperature (DP), Global Horizontal Irradiation (GHI),
Direct Normal Irradiation (DNI), Diffuse Horizontal Irradiation (DHI), Wind Direction
(WD) and Wind Speed (WS).

The DOE large office reference building in the 4A Philadelphia climate category was
analyzed. The office building has 12 floors plus a basement with a total area of 46321.45 m2

and window to wall ratio of 40%. The heating and cooling systems used in the building are
a boiler and chiller which use gas and electricity respectively as their energy fuel. The walls,
roof and windows U-value, lighting load density, window to wall ratio and equipment
type following ASHRAE standards 90.1-2004 are presented in Appendix B.

2.3. Selection of Regression Model

A model showing the association between input weather files and output energy
use along with input distributions are required to propagate the climate uncertainties.
However, developing a suitable regression model can be difficult, or due to lack of data,
there could be doubt about the appropriate distribution of the input parameters. In the
first part of this study, the model is developed using a full multiple linear regression (LR)
between the input weather variables and heating and cooling energy use. We also conduct a
stepwise multiple linear regression (LRS) model to understand the most influential weather
variables that impact the building energy use.

Energy Use = b0 + b1 ⇥ DB+ b2 ⇥ DP+ b3 ⇥ GHI

+b4 ⇥ DNI + b5 ⇥ DHI + b6 ⇥WD+ b7 ⇥WS
(1)

The regression models are developed for both heating and cooling energy use and
7
1b0

i
are the regression coefficients. In addition, a full, stepwise, and 2-factor principal

component regression is also developed for further investigation on the impact of the
model selection on the output of the weather uncertainty propagation method (Figure 1).

Principal Component Analysis (PCA) is a statistical analysis that transforms original
variables with possible collinearity into new uncorrelated variables called principal compo-
nents [38]. A Principal Component Regression (PCR) model is a linear regression using the
Principal Components (PCs) of the data set as the independent variable. The PCR model has
the capability to remove possible collinearity among the independent variable reflected in a
linear regression [39]. Three different distributions are considered to analyze how the selection
of the input weather distribution impacts the output results of the uncertainty propagation.

Energy Use = b0
0 + b0

1 ⇥ F1+ b0
2 ⇥ F2+ b0

3 ⇥ F3
+b0

4 ⇥ F4+ b0
5 ⇥ F5+ b0

6 ⇥ F6+ b0
7 ⇥ F7 (2)

where F1, F2, F3, F4, F5, F6 and F7 are principal components corresponding to DB, DP, GHI,
DNI, DHI, WS and WD respectively and 7

1b0
i
are the regression coefficients.
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The literature shows a strong linear correlation between building energy use and
exterior climate conditions, even though the main weather variables acting as the driving
force for energy use can differ depending on the location and case study building. In this
study we consider all seven weather variables to be essential to the case study. This is
the key reason why we focused on developing linear regression models. If a different
regression model were to be used (e.g., non-linear), the results could change but would also
be in contradiction to our current physics-based understanding of building performance
and exterior climate conditions. On the other hand, we have limited knowledge about the
climate and the statistical distribution of weather variables. This is due to lack of sufficient
climate data. To address this limitation, the regression models are not developed for a
specific time period and all future weather files are used in the process of developing the
regression model. Indeed, as our knowledge of our climate and climate change increases,
the uncertainties due to the selection of weather variables distribution will likely be reduced.
Details of the weather variable distribution selection is given hereafter.

2.4. Selection of Average Annual Weather Variables Distributions

The average annual weather variables and their associated principal components
distributions were selected following a Kolmogorov-Smirnov (KS) goodness of fit test [40].

Dn =
p
nsupx|Fn(x)� F(x)| (3)

In Equation (3), Dn is the test statistic, F is the theoretical cumulative distribution, and
Fn is the empirical distribution for n number of observations. The KS test examines the
theoretical Cumulative Distribution Function (CDF) difference to the Empirical Cumulative
Distribution Function (ECDF) of the sample data and shows whether the sample data
follow a certain distribution. The KS test was selected since it does not require normality
assumptions and can be usedwhen small sample sizes are available. The test ranks multiple
distributions which can have a potential fit to the data (based on their p-value). When the
distributions are fit, a random sampling was conducted to the data for a sample size of 100
and results are then incorporated into the regression models to propagate the uncertainties
of the weather files to the building energy use.

Results of the output energy use distributions developed for each regression model
case and following each sample input distributions are analyzed. We rely on scatter plots,
box and whisker plots and mean absolute error values to assess the results.

3. Results
3.1. Summary of Current and Future Weather Data & Energy Use

Climate models are inherently uncertain. We can, however, generate snapshots of
what it might look like. In addition, the process of propagating the climate uncertainties
is not absolute and comes with uncertainties with regard to the selection of appropriate
parameters and models. Figure 2 reflects the dry bulb temperature (DB) for each weather
file to reflect the impact of climate change on the current and future weather files and
shows the results of heating (HeatingGas) and cooling (CoolingElec) energy use of the
sample office building when EnergyPlus simulation is conducted for each weather file.
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Figure 2. Results of dry bulb temperature and direct normal irradiation for each of the current and future TMY files and
their associated heating and cooling energy use from EnergyPlus modeling of the case study.

The horizontal axis shows the weather files (current and future) used in this study
and are sorted by temperature in an ascending order. Details of the weather files are
presented in Appendices A and C. Air temperature in many building cases is predictably
the most influential driving force for heating and cooling energy use. Although this could
differ depending on the location of study and building. As temperature increases, heating
energy consumption decreases and cooling energy use increases (Figure 2). Using the
morphed TMY3 weather file, adapted with IPCC A2 scenario (which is the second most
extreme scenario), there is an increase of 1454.9 GJ in cooling energy use by the end of
the century compared to the current available TMY3 file for Philadelphia. Other variables
that also impact energy performance and are considered in this study are direct normal
irradiation, diffuse horizontal irradiation, global horizontal irradiation, dew point and
wind speed/direction. The main weather variables influencing a building’s energy use can
vary from building to building and depending on the building’s physical characteristics,
ventilation type, location and purpose of use may change.
3.2. Developed Regression Models

Multiple regression models are developed after conducting dynamic simulations on
the case study and for all weather file data base. The regression coefficient values of the
average annual weather variables of the weather files and their corresponding principal
components are presented in Table 1. The regressionmodels are between the annual heating
and cooling energy use and the average annual weather variables (and their associated
principal components for PCR). One set of the regression models are full and stepwise
multiple linear regression between annual heating and cooling energy use and the average
annual weather variables of the weather files used in the simulations. Another set of the
regression models are full, stepwise and 2-factor principal component regression models
between annual heating and cooling energy use and the principal components associated
to the average annual weather variables.
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Table 1. Details of the regression coefficient values for heating and cooling energy use and following
different regression models.

Cooling Heating

Variable Coeff. LR LRS LR LRS

Intercept b0 �294.329 �1260.9 9727.159 11147.75

DB b1 202.714 211.805 �396.019 �344.807

DP b2 145.703 121.489 58.934 0

GHI b3 �11.689 0 16.153 0

DNI b4 4.994 2.136 �11.924 �9.17

DHI b5 12.34 0 �48.3 �24.446

WD b6 �1.784 0 3.671 0

WS b7 �88.557 �75.335 114.733 0

Variable Coeff. PCR PCRS PCR2 PCR PCRS PCR2

Intercept b00 2782.435 2782.435 2782.435 2796.132 2796.132 2796.132

F1 b01 �78.034 �78.034 �78.034 101.503 101.503 101.503

F2 b02 344.047 344.047 344.047 �430.372 �430.372 �430.372

F3 b03 �50.977 �50.977 0 �114.421 �114.421 0

F4 b04 95.46 95.46 0 �206.575 �206.575 0

F5 b05 31.77 0 0 �41.26 0 0

F6 b06 �185.519 �185.519 0 635.965 635.965 0

F7 b07 120.31 120.31 0 �157.836 0 0

Appendix E shows a more detailed summary of the regression models coefficient
factors errors and p-values.

3.3. Input Variables Distributions

Results of the KS statistic test for development of the input weather variable and
their corresponding principal components distribution are summarized in Appendix F. For
the multiple linear regression models the distributions of Normal, Lognormal, Logistic,
Gamma, Weibull, Fisher-Tippett, Erlang and BestFit were selected for the average annual
weather variables. The BestFit is the selection of best distribution fit for each weather
variables separately based on the highest p-value in the Kolmogorov-Smirnov goodness of
fit test which then would be used in the regression model to propagate the uncertainties to
the energy use. Appendix G provides details of the best fit characteristics. For the PCRs we
fit distributions of Beta, Fisher-Tippett, GEV, Logistic, Normal and BestFit to the principal
components associated to the average annual weather variables. Figure 3 shows summary
of the input distributions selected for the impact assessment analysis. The distribution
selection of the weather variables for the multiple linear regression model and the principal
component regression model are slightly different. This is due to the parameter fitting test
that produced distributions (with relatively reasonable p-values) that differed between the
weather variables and their corresponding principal components.
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Figure 3. Summary of the average annual weather variables distributions selected for use in LR and LRS regression models
(a) and their associated principal components distributions selected for use in PCR, PCRS and PCR2 regression models (b)
of the impact assessment analysis.

3.4. Impact of Regression Model Selection on Energy Use

The heating and cooling energy use prediction developed from the regression models
of interest (LR, LRS, PCR, PCRS and PCR2) are presented in Figure 4. The standardized
coefficient factors of the regression models are summarized in Appendix D which also
shows which variables were determined to be statistically less influential on the heating
and cooling energy use in the stepwise regression models and therefore were left out of the
regression model. Details of the regression factors values are presented in Appendix E. A
scatter plot of the predicted energy use and actual energy use is given in Figure 4.

As it can be seen from Figure 4, the predicted cooling energy use of the regressionmodels
shows a relatively closer fit to the actual cooling energy use compared to predicted heating
energy use vs actual heating energy use. In general, most regression models for heating and
cooling energy use show a relatively close prediction to the actual data except for the 2-factor
principal component regression model. The regression models developed in this step are used
to propagate the uncertainties of the input parameters to the building energy use.
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Figure 4. Results of the regression models of prediction for heating and cooling energy use over the
simulated data.

3.5. Impact Assessment of Regression Model and Input Average Annual Variables Distributions on

Energy Use Distributions

The sample distributions for the weather variables and their corresponding principal
components are developed and random samples (100 samples per each variable) are gener-
ated and used in the regression models to propagate their uncertainties to the energy use. A
summary of the parameters of each distribution is presented in Appendix F. We rely on box
plots and mean absolute errors to assess the propagated energy use following selection of
various regression models and input distributions of the uncertainty propagation method.
Outliers were excluded from the box plots. Figure 5 is a consolidation of the graphs and is
presented as a guideline to interpret the box plots. Note that the name of the distributions
at the bottom of the graph represents the input variables distribution series selected to
obtain the energy use probability density function in the uncertainty propagation method.

In the assessments hereafter we define the output energy distributions which were
obtained following different input weather variable distributions in the uncertainty propa-
gation method as “series”. For example, Normal distribution series for heating energy use
refers to the distribution of heating energy use obtained from the uncertainty propagation
method when normal distribution was fit to the average annual weather variables.
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Figure 5. Legend of the figures to interpret output of the impact assessment.

3.5.1. Impact Assessment on Heating Energy Use Distribution
Figures 6 and 7 show the results of heating distributions following full multiple linear

regression and stepwise multiple linear regression respectively and compare the selection
of different input distributions in the uncertainty propagation method.

Figure 6. Heating energy use probability density functions when following a full multiple linear regression model and comparing
selection of various input average annual weather variables distributions used in the uncertainty propagation method.

The values of 4197.2, 2796.1 and 1509.9 and their representative line in Figures 6 and 7
show the maximum, mean and minimum values of the EnergyPlus simulation output,
respectively. From Figure 6, following a full multiple linear regression, the selection of
different input distributions can result in high differences in the lower and upper bound of
the output heating energy use distribution. In some cases (Normal, Weibull and Fisher-
Tippet), the lower bound showed more than 100% difference compared to the minimum
of the data obtained from EnergyPlus simulation. However, the average for all input
distribution selections show to be close to the average of the simulated data. The heating
distribution result following the BestFit distribution of the input values (BestFit series)
showed smaller variations from the higher and lower bound of the simulated heating
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energy use. In addition, among the distribution series, BestFit shows a smaller difference
between the maximum and minimum value of the heating energy use distribution.

Figure 7. Heating energy use probability density functions when following a stepwise multiple linear regression model and
comparing selection of various input average annual weather variables distributions used in the uncertainty propagation method.

Figure 7 shows the results of heating energy use when the stepwise multiple linear
regression was selected in the uncertainty propagation method and compares the heat-
ing energy distributions obtained following various input distributions for the weather
variables.

As it can be seen from Figure 7, the average values for each input distribution selection
are similar to the average of the simulated data. However, the lower and upper bound for
some distributions show relatively high difference to the simulated data. Yet the difference
in the higher and lower bound of the heating energy use data and the simulated data are
generally smaller when following a stepwise linear regression (Figure 7) compared to a full
linear regression (Figure 6). In Figure 7, the heating energy distribution following the BestFit
input distribution has relatively closer fit to the higher and lower bounds of the simulated
data (compared to Erlang, FisherTippett, Weibull and Normal series) and shows a lower
percentage change between the max and min of the distribution. However, Logistic, Gamma
and Lognormal series showed closer values to the higher and lower bounds and smaller
percentage difference between max and min of distribution compared to the BestFit. When
the difference between higher and lower bound of a distribution are lower it could enhance
the credibility of the output distribution when interpreting the data. This can also be seen in
Table 2, which shows the mean absolute error for each series and following LR and LRS.

Table 2. Results of the mean absolute errors of heating energy use probability density functions stemming from each input
average annual weather variable distribution series for LR and LRS regression models.

Heating Erlang FisherTippett2 Weibull2 Gamma2 Logistic Lognormal Normal BestFit Sum Avg.

LR 720.2 818.4 687.8 612.9 648.8 665.2 823.0 672.8 5649.0 706.1
LRS 567.3 610.3 581.8 477.3 516.7 515.1 650.8 557.9 4477.3 559.7

As it can be seen from Table 2, the sum and average value of the mean absolute
error of all the distribution series following a stepwise multiple linear regression showed
lower values compared to the full multiple linear regression. This could reflect that
following a stepwise regression model in the uncertainty propagation method could reduce
the uncertainties in the selection of weather variable input distribution and reduce the
variation of the output results between the lower and higher bound. This can be explained
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by the fact that stepwise regression model has fewer weather variables compared to a
full regression model and as a result fewer uncertainty associated to the variables are
propagated to the output energy use. It should be noted that both the stepwise and full
regression model had shown to be a good fit to the data.

Figures 8–10 show the heating energy use distribution when following a PCR, a
stepwise PCR and a 2 factor PCR when selecting various input distributions of principal
component variables in the uncertainty propagation method respectively.

Figure 8. Heating energy use probability density functions when following a Full Principal Component Regression model and
comparing selection of various input principal component distribution series used in the uncertainty propagation method.

Figure 9. Heating energy use probability density functions when following a Stepwise Principal Component Regression model
and comparing selection of various input principal component distribution series used in the uncertainty propagation method.
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Figure 10. Heating energy use probability density functions when following a 2 Factor Principal Component Regression
model and comparing selection of First and Second input principal component distribution series.

In Figures 8–10 for all distribution series the average values show a relatively good
fit to the mean simulated data. As it can be seen from Figure 8, the series show relatively
smaller variations between maximum and minimum of the heating energy use distribution
compared to Figure 6 which followed a full multiple linear regression model on the weather
variables. Although the same distribution to input weather variables were not fitted to the
principal components but by comparing the similar ones (FisherTippett, Normal, Logistic
and BestFit) from Figures 6 and 7 it is clear that not only the difference between the higher
and lower bound to the simulated data are smaller in Figures 8–10 but the percentage
change of the max and min of the output distribution is also small. This is also evident in
the sum and average of the mean absolute errors of the principal component regression
models approach to multiple linear regression models approach in Table 3.

Table 3. Results of the mean absolute errors of heating energy use probability density functions stemming from each input
principal component variable distribution series for PCR, PCRS and PCR2 regression models.

Heating Beta4 FisherTippett2 GEV Logistic Normal BestFit Sum Average

PCR 538.4 579.8 452.2 532.3 513.0 536.2 3152.0 525.3
PCRS 541.2 584.1 456.2 530.7 511.7 529.8 3153.6 525.6
PCR2 504.3 540.8 444.8 503.0 494.8 517.1 3004.9 500.8

From Table 3, it can also be seen that following a two-factor principal component
regression model in the uncertainty propagation showed lower average and sum of mean
absolute errors of all series and compared to all other Figures. In Figure 8, the BestFit series
showed smallest percentage change between max and min of the distributions compare to
all other series and relatively smaller difference to most other series in Figures 9 and 10
which was also seen in Figure 6 and for most series of Figure 7.

3.5.2. Impact Assessment on Cooling Energy Use Distribution
Figures 11 and 12 shows the results of cooling energy use when propagating uncer-

tainties following the regression models on various input weather file distribution.
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Figure 11. Cooling energy use probability density functionswhen following a full multiple linear regressionmodel and comparing
selection of various input average annual weather variables distributions used in the uncertainty propagation method.

Figure 12. Cooling energy use probability density functions when following a stepwise multiple linear regression model and
comparing selection of various input average annual weather variables distributions used in the uncertainty propagation method.

From Figures 11 and 12 the average cooling energy use distributions show a close fit
to the mean simulated data. In addition, the percentage changes between the max and
min of the cooling energy distributions are relatively smaller than what was shown for
heating energy consumption (Figures 6 and 7). This is also apparent in the average and
sum of all mean absolute errors of the series for both regression models shown in Table 4.
Figures 11 and 12 smaller variations can be seen in the lower and upper bound of the
cooling energy use distribution from actual simulated data compared to heating energy
use results presented in Figures 6 and 7. The BestFit distribution, compared to most series
of both regression models show relatively smaller percentage change of max and min of
the distribution and smaller variations between the lower and higher bound compared to
the simulated data.
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Table 4. Results of the mean absolute errors of cooling energy use probability density functions stemming from each input
weather variable distribution series for LR and LRS regression models.

Cooling Erlang FisherTippett2 Weibull2 Gamma2 Logistic Lognormal Normal BestFit Sum Avg.

LR 390.3 405.3 355.4 306.8 365.0 321.2 402.1 355.4 2901.5 362.7
LRS 340.0 339.0 348.4 275.0 338.2 277.6 365.3 352.0 2635.5 329.4

Figures 13–15 show the results of cooling energy use when propagating uncertainties
following the principal component regression models on various input principal compo-
nents distributions.

Figure 13. Cooling energy use probability density functions when following a Full Principal Component Regression model and
comparing selection of various input principal component distribution series used in the uncertainty propagation method.

Figure 14. Cooling energy use probability density functions when following a Stepwise Principal Component Regression model
and comparing selection of various input principal component distribution series used in the uncertainty propagation method.
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Figure 15. Cooling energy use probability density functions when following a 2 Factor Principal Component Regression
model and comparing selection of First and Second input principal component distribution series used in the uncertainty
propagation method.

Similar to previous Assessments (Figures 6–12), the results of the cooling energy use
distributions for all principal component regression model cases and all distribution series
show a close fit to the average and relatively low variations in lower and higher bound
of distributions compared to simulated data (Figures 13–15). The BestFit series for all
regression cases show lowest percentage change between min and max of the distribution
compared to other series of distributions. The sum of the mean absolute error of the series
for the principal component regression cases (Figures 13–15) show lower values compared
to the linear regression models (Figures 11 and 12) but the average of the mean absolute
errors of the series were higher (Table 5).

Table 5. Results of the mean absolute errors of cooling energy use probability density functions stemming from each input
principal component variable distribution series for PCR, PCRS and PCR2 regression models.

Cooling Beta4 FisherTippett2 GEV Logistic Normal BestFit Sum Average

PCR 417.0 420.3 364.8 408.1 415.9 426.2 2452.4 408.7
PCRS 418.4 420.5 363.5 410.0 413.7 425.7 2451.8 408.6
PCR2 402.1 429.5 354.4 401.1 394.2 412.2 2393.6 398.9

4. Discussion
In general, the variations in the cooling energy use distributions were relatively lower

compared to heating energy use distributions for all regression cases and all distribution
series. One reason for the small variations among the distributions for cooling energy
use and following the full and stepwise multiple linear regression can be explain by the
regression fit in the scatter plots of Figure 4 which shows the regression models had a
relatively better fit to the cooling energy use compared to heating energy use. In addition,
when propagating input uncertainties into building energy use following a regression
model and a parameter fitting process, the selection of regression model can significantly
impact the uncertainties of the higher and lower bound of the output energy use when
following different input distributions and could change the variations in percentage
change of the maximum and minimum of the energy use distribution.

The use of principal component regressionmodel also showed small variation between
lower and higher bounds of the results especially for heating energy use. The drawback
of the principal component regression model is that principal components cannot be
attributed to any specific weather variable. In other words, we cannot determine which
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weather variables have the highest impact on the energy results. In addition, unlike a
multiple linear regression model where the developed correlation can be used for other
cases; here, the principal component regression model is only valid for the case under
examination.

5. Conclusions
Given the current trends of climate change, a probabilistic approach to assessing build-

ing energy performance is necessary. Propagating the climate uncertainties into building
energy performance would result in a building energy use distribution into the future.
This offers the opportunity to assess the risk of variations in building cooling and heating
energy use during the design phase. However, understanding the new uncertainties in-
troduced during the uncertainty propagation method is of high importance. For example,
the process of conducting an uncertainty propagation could introduce new uncertainties
and without their consideration could yield unreliable energy results. We may not have
a complete understanding of weather variables distributions, and in many cases fitting a
proper regression model to the weather variables and energy use is a challenge. In this
study the simultaneous impact of selecting appropriate average annual weather variable
distribution and regression model between the weather variables and energy use when
propagating climate change uncertainties has been investigated.

To propagate climate uncertainties into building energy use we followed a four-step
propagation method which consists of a regression model development, input distribution
fitting and random generation. We then assessed the impact of the selection of input
average annual weather variable distributions and regression models on the heating and
cooling energy distribution. The impact assessment addresses the uncertainties stemming
from the selection of input parameters and the development of regression models.

Results show regardless of regression model selection or the input variables distri-
butions, the average energy use showed small variations across the series and relatively
small difference to the actual simulated data. This would mean we could have higher
confidence in interpreting the mean values when considering climate change uncertainties
in building energy use. However, in many cases, extreme conditions are of interest (higher
and lower bounds) and finding the appropriate distribution to fit the input variables is not
trivial. Our findings show the selection of the BestFit distributions for weather variables
and principal components, for most cases could significantly reduce the higher and lower
bound variations of the heating and cooling energy use distributions compared the sim-
ulated data. In addition, the BestFit distribution showed a relatively smaller percentage
change in maximum and minimum of the heating and cooling energy use compared to
most distribution series. Although in some cases for heating energy use distribution, the
logistic distribution series showed to be a better fit. Our findings suggest that when the
modeler is uncertain about input distributions, selecting the appropriate regression model
can reduce the variations between high and low bound of output energy. For heating
energy use distributions, results showed that a two-factor principal component regression
model would result in less average and sum of mean absolute error for the distribution
series of weather variables and their corresponding principal components respectively.
For cooling energy use distribution however, results show following a stepwise multiple
linear regression yields a lower average mean absolute error for all input distribution series
but following a two-factor principal component in the uncertainty propagation method
results in a lower sum of mean absolute errors of the output cooling energy use distribu-
tion series. The purpose of presenting the results are to show the impact the selection of
different regression models and input distribution fit on the output energy distribution.
The selection of the most appropriate combination can be very complex and would require
a large amount of input data. Furthermore, it would necessitate developing simulations
with high certainty, which is difficult. The results presented in this study offer a way of
understanding how to parse the uncertain nature of climate projections and the limited
number of future hourly weather generator methods available.
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Appendix A

Table A1. Summary of current weather file sources and future weather files method of generation.

Current Weather Files Future Weather Files

File Source Period Method Scenario(s)

TMY National Solar
Radiation Data Base 1952–1975 Advanced Weather

Generator (AWE-GEN) -

TMY2 National Solar
Radiation Data Base 1961–1990 Morphed TMY A2

TMY3 National Solar
Radiation Data Base 1991–2005 Morphed TMY2 A2

TMYx Climate.OneBuilding.Org 2003–2017 Morphed TMY3 A2

TMYxx Climate.OneBuilding.Org 2004–2018 Meteonorm A1B, B1, A2

ER1
European Commission
of Energy Efficiency

Research
2004–2014 Morphed Met1 A2

ER2
European Commission
of Energy Efficiency

Research
2005–2015 Morphed Met4 A2

Met1 Meteonorm Base 1961–1990 Morphed TMYx A2

Met4 Meteonorm Base 2000–2009 Morphed ER1 A2

SAM System Advisor Model 2010 Morphed ER2 A2
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Appendix B

Table A2. Summary of the sample office reference building.

Parameter Unit Large Office

Wall U-factor W/m2-K 0.857

Roof
Type - IEAD 1

U-factor W/m2-K 0.365

Floor
Type - Slab

U-factor W/m2-K 2.193

Window

U-value W/m2-K 3.241

WWR2 % 40.00

SHGC3 - 0.385

Infiltration - m3/s-m2 0.302 ⇥ 10�4

Outdoor Air Requirement m3/s-person 0.0125

Occupancy Density m2/person 18.58

PLD 2—LPD 3 Interior W/m2 10.76

Fan
- Control Type VAV 4

Efficiency % 60

Heating
Type - Boiler

Efficiency % 78

Cooling
Type - Chiller

Efficiency COP 5.5
1 Insulation Entirely Above Deck 2 Light Power Density 3 Plug Load Density 4 Variable Air Volume with reheat.

Appendix C

Table A3. Details of the current and future weather files and their associated principal components.

Weather Variables Principal Components Energy Use

Scenario DB DP GHI DNI DHI WD WS F1 F2 F3 F4 F5 F6 F7 Heat. Cool.

A1B-20 13.5 6.8 171.9 164.1 78.0 214.4 4.8 0.96 �0.47 1.22 �0.32 0.11 0.21 �0.02 3161.5 2436.4

A1B-50 14.8 8.1 172.3 166.1 77.9 215.7 4.8 0.79 0.76 0.93 �0.34 0.12 0.36 0.14 2653.8 2810.8

A1B-80 15.8 9.0 172.7 166.9 77.5 214.4 4.8 0.60 1.70 0.66 �0.39 0.19 0.47 0.25 2397.3 3169.5

A2-20 13.5 6.8 171.2 162.1 78.8 214.4 4.8 1.11 �0.54 1.16 �0.32 0.06 0.14 0.04 3212.6 2407.8

A2-50 14.7 7.9 171.9 163.4 79.1 215.7 4.8 0.98 0.63 0.93 �0.38 0.01 0.25 0.17 2714.9 2794.3

A2-80 16.1 9.3 171.4 167.8 75.5 214.4 4.8 0.48 1.85 0.45 �0.21 0.49 0.61 0.26 2324.0 3266.7

AWE20 12.9 7.7 166.4 91.6 74.8 147.2 4.1 0.59 �1.22 �2.25 �1.70 0.08 0.10 �0.06 4121.6 2197.0

AWE50 13.0 7.7 167.7 92.9 74.8 147.2 4.0 0.41 �1.16 �2.21 �1.70 �0.07 0.06 �0.16 3815.0 2199.3

AWE80 12.9 7.7 168.5 94.5 74.0 147.2 4.1 0.33 �1.18 �2.07 �1.78 0.07 0.19 �0.21 4197.2 2283.9

B1-20 13.6 6.9 171.2 165.3 76.9 214.4 4.8 0.88 �0.46 1.14 �0.21 0.27 0.29 �0.01 3116.8 2428.6

B1-50 14.2 7.5 173.3 162.3 81.1 215.7 4.8 1.11 0.26 1.21 �0.57 �0.30 0.09 0.11 2855.1 2622.4

B1-80 14.7 7.9 173.2 166.5 78.4 214.4 4.8 0.76 0.63 1.05 �0.44 0.02 0.30 0.11 2747.6 2784.8
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Table A3. Conts.

Weather Variables Principal Components Energy Use

Scenario DB DP GHI DNI DHI WD WS F1 F2 F3 F4 F5 F6 F7 Heat. Cool.

ER1 12.5 5.2 179.2 195.7 69.1 147.1 3.7 �2.57 �2.46 0.88 �0.32 �0.15 �0.47 �0.12 3496.6 2249.6

ER1-20 14.3 6.7 181.7 211.3 66.1 147.6 3.6 �3.44 �0.80 0.75 �0.14 0.04 �0.17 �0.03 2381.4 2685.3

ER1-50 15.7 7.7 182.9 213.5 65.4 147.6 3.6 �3.78 0.28 0.50 �0.11 0.06 �0.15 �0.05 2051.0 3124.8

ER1-80 17.8 9.2 184.5 216.4 64.3 147.6 3.5 �4.26 1.98 0.12 �0.09 0.16 �0.13 �0.09 1509.9 3807.8

ER2 13.5 6.2 173.4 188.6 65.8 145.8 3.9 �2.33 �1.68 0.04 �0.05 0.74 �0.20 0.16 3003.6 2362.7

ER2-20 14.3 6.7 176.9 202.4 64.7 140.3 3.8 �3.06 �0.99 0.27 �0.13 0.73 �0.20 0.19 2645.9 2714.2

ER2-50 15.7 7.6 178.0 204.3 64.0 140.3 3.7 �3.39 0.09 0.01 �0.10 0.75 �0.18 0.16 2278.9 3158.8

ER2-80 17.8 9.1 179.6 207.4 62.8 140.3 3.7 �3.88 1.79 �0.37 �0.07 0.85 �0.16 0.12 1705.3 3834.4

Met1 12.4 5.7 169.0 157.5 79.9 215.7 4.8 1.54 �1.57 1.27 �0.20 0.02 �0.07 0.01 3601.9 2117.9

Met1-20 13.7 6.8 171.0 154.2 81.0 215.7 4.7 1.42 �0.45 1.05 �0.44 �0.20 �0.09 �0.02 2933.4 2428.5

Met1-50 15.0 7.8 172.1 156.6 80.1 215.7 4.7 1.05 0.65 0.77 �0.39 �0.19 �0.05 �0.04 2526.1 2845.7

Met1-80 17.2 9.3 173.7 160.2 78.7 215.7 4.6 0.52 2.37 0.37 �0.34 �0.08 0.02 �0.07 1923.8 3510.9

Met4 13.4 6.2 167.6 156.4 79.9 215.7 4.2 1.07 �1.12 0.44 0.42 �0.60 �0.35 �0.03 2974.3 2273.3

Met4-20 14.6 7.2 169.6 152.7 81.4 215.7 4.1 0.99 0.00 0.23 0.16 �0.85 �0.40 �0.05 2365.1 2606.3

Met4-50 16.0 8.2 170.8 154.9 80.6 215.7 4.1 0.64 1.09 �0.04 0.20 �0.84 �0.38 �0.07 2033.0 3053.2

Met4-80 18.1 9.7 172.4 158.0 79.5 215.7 4.0 0.15 2.81 �0.43 0.23 �0.75 �0.34 �0.10 1542.9 3739.7

SAM 11.7 7.7 177.6 202.5 63.6 147.2 1.9 �4.60 �1.91 �1.50 1.22 �2.07 0.91 0.32 3690.7 2487.9

TMY 12.4 5.8 154.2 133.6 72.6 212.8 4.3 1.86 �2.24 �0.99 1.17 1.02 0.14 0.17 3804.9 2104.6

TMY2 12.0 5.5 166.1 154.0 76.7 209.6 4.3 1.07 �2.17 0.48 0.36 �0.04 �0.03 �0.06 3968.1 2092.3

TMY-20 13.6 6.7 156.2 128.4 79.3 212.8 4.3 2.29 �1.07 �1.00 0.67 0.26 �0.34 0.41 3106.9 2431.7

TMY2-20 13.3 6.6 168.1 146.9 80.9 209.6 4.3 1.27 �0.93 0.26 �0.07 �0.61 �0.22 0.07 3248.3 2418.8

TMY2-50 14.6 7.6 169.2 149.0 80.1 209.6 4.2 0.92 0.17 �0.02 �0.04 �0.60 �0.18 0.05 2810.3 2855.9

TMY2-80 16.8 9.2 170.8 152.1 78.8 209.6 4.1 0.42 1.91 �0.42 �0.01 �0.50 �0.13 0.02 2146.8 3538.3

TMY3 12.7 5.9 167.7 161.0 74.3 206.6 4.2 0.44 �1.68 0.37 0.49 0.04 0.03 �0.15 3506.2 2291.0

TMY3-20 14.0 6.9 169.7 154.6 77.8 206.6 4.1 0.57 �0.52 0.17 0.12 �0.43 �0.15 �0.10 2963.0 2618.9

TMY3-50 15.4 7.9 170.8 156.7 76.9 206.6 4.1 0.21 0.57 �0.11 0.16 �0.41 �0.12 �0.13 2552.0 3064.6

TMY3-80 17.5 9.4 172.4 159.5 75.7 206.6 4.0 �0.28 2.29 �0.50 0.18 �0.31 �0.07 �0.16 1897.9 3745.8

TMY-50 15.0 7.7 157.3 130.4 78.5 212.8 4.3 1.97 0.03 �1.24 0.68 0.32 �0.30 0.39 2688.4 2860.8

TMY-80 17.1 9.2 158.9 133.4 77.2 212.8 4.2 1.48 1.75 �1.63 0.70 0.44 �0.24 0.36 2094.4 3538.1

TMYx 13.3 6.3 162.2 142.2 74.4 221.4 4.3 1.40 �1.27 �0.24 0.79 0.43 0.15 �0.25 3746.5 2208.2

TMYx-20 14.6 7.2 163.9 143.2 74.4 221.4 4.3 1.14 �0.25 �0.40 0.70 0.39 0.14 �0.29 2785.3 2596.7

TMYx-50 15.9 8.2 165.1 145.1 73.7 221.4 4.2 0.80 0.84 �0.67 0.73 0.39 0.16 �0.32 2423.9 3047.4

TMYx-80 18.1 9.7 166.6 147.0 72.7 221.4 4.2 0.35 2.55 �1.08 0.74 0.46 0.17 �0.36 1807.1 3759.1

TMYxx 14.2 6.4 171.0 182.4 67.0 210.1 3.9 �0.99 �0.86 0.43 1.16 0.51 0.35 �0.60 3091.0 2417.6
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Appendix D

Table A4. Details of the regression models standardized coefficients.

Heating Cooling

LR

LRS

PCRF

PCRS

PCR2
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Appendix E

Table A5. Details of the regression models coefficients and standard errors.

Cooling Heating

Variable Coeff. Value Std. error Pr > |t| Value Std. error Pr > |t|

LR

Intercept b0 �294.329 564.078 0.605 9727.159 1020.073 <0.0001
DB b1 202.714 16.830 <0.0001 �396.019 30.435 <0.0001
DP b2 145.703 25.119 <0.0001 58.934 45.424 0.202
GHI b3 �11.689 4.437 0.012 16.153 8.024 0.051
DNI b4 4.994 1.092 <0.0001 �11.924 1.975 <0.0001
DHI b5 12.340 5.042 0.019 �48.300 9.117 <0.0001
WD b6 �1.784 0.945 0.067 3.671 1.710 0.038
WS b7 �88.557 34.102 0.013 114.733 61.671 0.071

LRS

Intercept b0 �1260.904 170.992 <0.0001 11147.753 497.251 <0.0001
DB b1 211.805 16.863 <0.0001 �344.807 13.134 <0.0001
DP b2 121.489 23.818 <0.0001 0.000 0.000 -
GHI b3 0.000 0.000 - 0.000 0.000 -
DNI b4 2.136 0.534 0.00 �9.170 0.998 <0.0001
DHI b5 0.00 0.000 - �24.446 4.990 <0.0001
WD b6 0.00 0.000 - 0.000 0.000 -
WS b7 �75.335 26.990 0.008 0.000 0.000 -

PCR

Intercept b00 2782.435 10.854 <0.0001 2796.132 19.629 <0.0001
F1 b01 �78.034 5.944 <0.0001 101.503 10.748 <0.0001
F2 b02 344.047 7.763 <0.0001 �430.372 14.039 <0.0001
F3 b03 �50.977 11.580 <0.0001 �114.421 20.941 <0.0001
F4 b04 95.460 16.694 <0.0001 �206.575 30.189 <0.0001
F5 b05 31.770 20.103 0.122 �41.260 36.354 0.263
F6 b06 �185.519 39.064 <0.0001 635.965 70.642 <0.0001
F7 b07 120.310 54.266 0.033 �157.836 98.134 0.116

PCRS

Intercept b00 2782.435 11.061 <0.0001 2796.132 20.084 <0.0001
F1 b01 �78.034 6.057 <0.0001 101.503 10.997 <0.0001
F2 b02 344.047 7.911 <0.0001 �430.372 14.364 <0.0001
F3 b03 �50.977 11.800 0.000 �114.421 21.426 <0.0001
F4 b04 95.460 17.012 <0.0001 �206.575 30.889 <0.0001
F5 b05 0.000 0.000 - 0.000 0.000 -
F6 b06 �185.519 39.806 <0.0001 635.965 72.279 <0.0001
F7 b07 120.310 55.298 0.036 0.000 0.000 -

Intercept b00 2782.435 18.136 <0.0001 2796.132 42.290 <0.0001
PCR2 F1 b01 �78.034 9.931 <0.0001 101.503 23.157 <0.0001

F2 b02 344.047 12.971 <0.0001 �430.372 30.246 <0.0001
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Appendix F

Table A6. Details of the average annual weather variables distributions and their associated principal component distribu-
tions used in this study.

Distribution Var. Parameter(s) [Standard Error] Var. Parameter(s) [Standard Error]

Normal (µ, �)
µ: Location
�: Scale

DB (14.65 [0.18], 1.1716 [0.188]) F1 (0.00 [0.265], 1.826 [0.188])

DP (7.53 [0.171], 1.17 [0.125]) F2 (0.00 [0.210], 1.397 [0.146])

GHI (170.48 [-], 6.34 [-]) F3 (0.00 [0.138], 0.937 [0.097])

DNI (160.33 [0.265], 28.606 [0.42]) F4 (0.00 [0.096], 0.65 [0.068])

DHI (74.88 [0.42], 5.59 [0.34]) F5 (0.00 [0.08], 0.54 [0.056])

WD (196.001 [0.198], 30.27 [0.59]) F6 (0.00 [0.041], 0.278 [0.029])

WS (4.197 [0.074], 0.501 [0.05]) F7 (0.00 [0.029], 0.199 [0.021])

Lognormal (µ, �)
µ: Location
�: Scale

DB (2.68 [0.016], 0.115 [0.012])

DP (2.006 [0.023], 0.158 [0.016])

GHI (5.138 [0.006], 0.038 [0.004])

DNI (5.06 [0.028], 0.19 [0.02])

DHI (4.313 [0.01], 0.078 [0.008])

WD (5.26 [0.025], 0.17 [0.018])

WS (1.125 [0.021], 0.145 [0.015])

Logistic (µ, s)
µ: Location
s: Scale

DB (14.53 [0.26], 1.002 [0.13]) F1 (0.362 [0.205], 0.946 [0.126])

DP (7.49 [0.18], 0.69 [0.08]) F2 (�0.062 [0.253], 0.831 [0.103])

GHI (170.65 [-], 3.40 [1.18]) F3 (0.091 [0.142], 0.531 [0.066])

DNI (159.88 [0.61], 15.39 [0.61]) F4 Fitted Normal

DHI (75.69 [0.42], 3.16 [0.27]) F5 Fitted Normal

WD (202.12 [0.26], 16.94 [0.22]) F6 (�0.019 [0.04], 0.155 [0.019])

WS Fitted Normal F7 (0.000 [0.028], 0.111 [0.014])

Gamma (k, �)
k: Shape
�: Rate

DB (74.59 [15.55], 0.19 [0.04])

DP (40.49 [8.44], 0.18 [0.04])

GHI (705.91 [147.19], 0.24 [0.05])

DNI (29.09 [6.068], 5.51 [1.16])

DHI (170.58 [35.64], 0.44 [0.09])

WD (36.9 [7.68], 5.31 [1.11])

WS (55.26 [11.51], 0.07 [0.016])

Weibull (�, k)
�: Scale
k: Shape

DB (8.79 [0.00], 15.43 [1.162])

DP (7.016 [0.61], 8.04 [0.17])

GHI (28.72 [0.34], 173.47 [0.11])

DNI (6.19 [-], 172.14 [0.19])

DHI (18.97 [0.59], 77.26 [0.13])

WD (9.88 [0.59], 207.9 [0.59])

WS 11.86 [0.94], 4.39 [0.05])
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Table A6. Conts.

Distribution Var. Parameter(s) [Standard Error] Var. Parameter(s) [Standard Error]

Fisher-Tippett (�, µ)
µ: Location
�: Shape

DB (1.42 [0.22], 13.83 [0.16]) F1 (2.156 [0.34], �1.013 [0.223])

DP (1.07 [0.17], 6.95 [0.12]) F2 (1.212 [0.189], �0.677 [0.139])

GHI (6.85 [1.07], 162.2 [0.70]) F3 (1.039 [0.163], �0.501 [0.108])

DNI (30.26 [7.74], 145.76 [3.09]) F4 (0.762 [0.12], �0.346 [0.075])

DHI (6.12 [0.96], 71.87 [0.65]) F5 (0.426 [0.071, �0.246 [0.017])

WD (32.93 [5.17], 179.52 [3.58]) F6 (0.226 [0.035, �0.129 [0.026])

WS (0.76 [0.12], 3.90 [0.67]) F7 (0.218 [0.034], �0.102 [0.022])

Erlang (k, �)
k: Shape
�: Rate

DB (71.0 [0.14], 4.863 [0.08]) - -

DP (39.0 [0.14], 5.312 [0.12]) - -

GHI (705.0 [0.15], 4.141 [0.02]) - -

DNI (30.0 [0.14], 0.192 [0.005]) - -

DHI (175.0 [0.15], 2.344 [0.02]) - -

WD (40.0 [0.14], 0.209 [0.005]) - -

WS (68.0 [0.14], 16.373 [0.29]) - -

Chi-square (DF)
DF: Degree of

Freedom

DB (15.538 [0.245]) - -

DP (8.414 [0.305]) - -

GHI (171.346 [0.211]) - -

DNI (158.583 [0.211]) - -

DHI (75.66 [0.214]) - -

WD (194.35 [0.211]) - -

WS (5.12 [0.944]) - -

GEV (k, �, µ)
k: Scale
�: Shape

µ: Location

F1 (�0.74 [0.001], 1.88 [0.004], �0.22 [0.005])

F2 (�0.197 [0.15], 1.293 [0.18], �0.54 [0.22])

F3 (�0.77 [0.003], 1.07 [0.003], �0.1 [0.004])

F4 (�0.43 [0.04], 0.7 [0.036], �0.18 [0.05])

F5 (�0.47 [0.02], 0.58 [0.017], �0.14 [0.24])

F6 (�0.04 [0.102], 0.23 [0.026], �0.12 [0.036])

F7 (�0.35 [0.12], 0.208 [0.03], �0.06 [0.046])

Beta (↵, �, a, b)
↵, �: Shape
a, b: Location

F1 (337.92 [35.76], 1.845 [0.026], �438.636 [3.51], 2.37 [-])

F2 (1.205 [0.026], 1.329 [0.028], �2.51 [-], 2.862 [-])

F3 (4.006 [0.35], 1.21 [0.02], �4.11 [0.26], 1.306 [-])

F4 (44.65 [1.67], 9.41 [0.068], �10.51 [0.214], 2.214 [0.136])

F5 (220.62 [7.66], 7.43 [0.058], �44.27 [0.43], 1.49 [0.095])

F6 (2.88 [0.044], 12.13 [0.122], �0.54 [0.023], 2.282 [0.21])

F7 (26.37 [0.46], 15.89 [0.075], �1.7 [0.04], 1.024 [0.035])
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Appendix G

Table A7. Summary of the BestFit distribution used in this study.

Var. Best Fit Selection p-value Next Three Fits

F1 Beta4 0.036 Gumbel, Logistic, GEV
F2 Fisher-Tippett 2 0.851 GEV, Logistic, Normal
F3 Logistic 0.736 Fisher-Tippett2, Gumbel, Normal
F4 Beta4 0.233 Fisher-Tippet2, GEV, Normal
F5 Beta4 0.860 GEV, Normal
F6 Beta4 0.982 Fisher-Tippett2, Logistic, GEV
F7 Normal 0.914 Beta4, Fisher-Tippett2, Logistic
DB Fisher-Tippett 2 0.984 Erlang, Lognormal, Logistic
DP Lognormal 0.592 Logistic, Normal, Gamma2
GHI Logistic 0.55 Erlang, Lognormal, Normal
DNI Chisquare 0.299 Lognormal, Logistic, Fisher-Tippett2
DHI Weibull2 0.376 Logistic, Lognormal, Normal
WD Normal 0.00027 -
WS Normal 0.396 Erlang, Lognormal, Gamma2
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