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Abstract. In this paper, we present a rigorous study of the direct scattering problem that
arises from the complete integrability of the Benjamin—-Ono (BO) equation. In particular, we establish
existence, uniqueness, and asymptotic properties of the Jost solutions to the scattering operator in the
Fokas—Ablowitz inverse scattering transform (IST). Formulas relating different scattering coefficients
are proven, together with their asymptotic behavior with respect to the spectral parameter. This
work is an initial step toward the construction of general solutions to the BO equation by IST.
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1. Introduction. The Benjamin—Ono (BO) equation may be written as
(1.1) ug + 2uuy — Hug, = 0.

Here we consider u = u(z,t) a real-valued function of space and time, both one-
dimensional, and H is the Hilbert transform defined by

(1.2) Hf(x) = P.V.% /_00 f(_yl dy.

Formulated by Benjamin [2] and Ono [16], the BO equation (1.1) is used to model
long internal gravity waves in a two-layer fluid. Typical setup of the models requires
the wave amplitudes to be much smaller than the depth of the upper layer, which in
turn is small compared with the wavelengths, while the lower layer has infinite depth.
See Davis and Acrivos [6], Choi and Camassa [4] and Xu [22] for more details on the
derivation of (1.1). One can also observe (see [1]) that the BO equation (1.1) can
be formally obtained from the intermediate long wave (ILW) equation by passing to
the deep water limit, whereas the shallow water limit of the ILW equation gives the
Korteweg—de Vries equation.

The BO equation (1.1) is known to be well-posed for initial data in Sobolev space
H?(R). A large literature was devoted to this problem, and the following is a list of
only the major results. Local well-posedness in H*(R) of (1.1) was obtained by Saut
[18] for s > 3, Iério [8] for s > 2, Ponce [17] for s > 2, Koch and Tzvetkov [12] for
s > 5, Kenig and Koenig [11] for s > 2, and Tao [20] for s > 1. Global well-posedness
in H*(R) of (1.1) was obtained by Saut [18] for smooth solutions, Ponce [17] for s > 3,
and Tao [20] for s > 1.

The BO equation (1.1) was also found to be completely integrable. The Lax pair
of (1.1) was discovered by Nakamura [15] and Bock and Kruskal [3]. An equivalent
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but formally different Lax pair was presented in Wu [21]. Fokas and Ablowitz [7]
formulated the direct and inverse scattering problems for (1.1) and obtained soliton
solutions. See also Kaup, Lakoba, and Matsuno [9], Kaup and Matsuno [10], and Xu
[22]. As is the case for many other completely integrable equations, one expects to
be able to construct solutions to the Cauchy problem of the BO equation using the
Fokas—Ablowitz inverse scattering transform (IST). Even though the BO equation is
known to be well-posed in H*(R), a solution by IST makes full use of the integrability
structure of the equation and will provide key tools and insights for stability and
asymptotic analysis. This plan was carried out by Coifman and Wickerhauser [5]
for sufficiently small initial data. It turns out that the Fokas—Ablowitz IST does not
behave well enough to be solved by iteration (contraction mapping principle) even
under a small potential assumption, so Coifman and Wickerhauser actually used a
more complicated regularized IST and solved it by iteration. Miller and Wetzel [13]
studied the direct scattering problem of the Fokas—Ablowitz IST when the potential
u is a rational function with simple poles and obtained explicit formulas for the
scattering data. In [14], they further used these formulas to obtain small-dispersion
limits for the scattering data. However, up to the present time, a rigorous analysis of
the Fokas—Ablowitz or related IST for general, large potential w is still lacking, and
as a result, no rigorous IST solution to the large data Cauchy problem of the BO
equation has been proven.

As a first step toward this goal, the author [21] studied the L, operator in the
Lax pair of the BO equation and proved that its discrete spectrum is finite and
simple. These are some key spectral assumptions made by Fokas and Ablowitz in
their definition of the scattering data of the IST. A few other useful properties about
the eigenfunctions were also established.

In this paper, we will examine the full spectrum of the L, operator and provide
a complete study of the direct scattering problem in the Fokas—Ablowitz IST. We
will also investigate the asymptotic and regularity properties of the scattering data
thus constructed. Such investigations may provide directions to the correct setup and
future study of the inverse problem. The paper is organized as follows. We present the
essential ingredients of the Fokas—Ablowitz IST in section 2. It will be evident that the
central objects of study for the direct scattering problem are certain eigenfunctions
of the L, operator in the Lax pair. These are the so-called Jost solutions (or Jost
functions). In section 3, we prove the existence and uniqueness of these Jost solutions.
This will provide basis for the construction of the scattering data. As we will see in
section 3, what we need to solve are certain Fredholm integral equations, and the main
difficulty is to prove a vanishing lemma for the corresponding integral operator. In
section 4, we construct the scattering coefficients in the Fokas—Ablowitz IST from the
Jost solutions and prove certain important relations between them that are known only
on the formal level in the literature. In section 5, we prove asymptotic formulas for
the Jost solutions and scattering coeflicients as the spectral parameter k approaches 0.
These very useful asymptotic formulas obtained formally in [7] and [10] help clarify
the global behavior of the scattering coefficients and may provide insight into the
study of the inverse scattering problem. The key to proving these formulas is to
solve a regularized Fredholm integral equation at k£ = 0, and the crucial difficulty is
again to prove a vanishing lemma for a regularized integral operator. In section 6, we
prove asymptotic formulas as the spectral parameter k approaches infinity. Finally,
we discuss the time evolution of the scattering data in section 7. This point is worth
discussing particularly because the operator that is used to define the Jost solutions
is actually slightly different from the L, operator in the Lax pair.
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We now set up standard spaces and notation used throughout the paper. The
following convention is employed for the Fourier transform and inverse Fourier trans-
form:

(13) FN© = fie) = [ e 1(a) do
(14) PR = Fo) = 5 [ er©) ae

with their usual extension to tempered distributions. The Cauchy projections C are
defined in terms of the Hilbert transform as

(1.5) Cuf = %“Hf.

In other words, @ = YR+ f . We denote the LP Hardy space of the upper half plane
by HP-*t. More specifically, f(z) € H" for 1 < p < oo if it is the LP (and almost
everywhere) boundary value of an analytic function F'(z 4+ iy) for z =  + iy in the
upper half plane {y > 0}, such that sup,¢ [|F(- +iy)|l, < co. We denote H** also
by H*. Observe that C'y (L?(R)) = H*. We fix the notation for weighted LP spaces
and weighted Sobolev spaces as follows. Let w(x) = 1 + |z| be the weight function.
We define for 1 <p < oo and s € R

(1.6) LE(R) ={f | w'f € LP(R)}
and
(1.7) HR)={f | f€L? and f € L?}

with norms |2y = [l and | fllz = " fllo + [w* flo. We denote the
LP(R) norm by | - ||, When doing estimates, we use C' to mean a generic constant,
whose value may be enlarged from step to step.

2. The Fokas—Ablowitz inverse scattering transform. Throughout this
section, we assume u(z,t) is sufficiently smooth with sufficiently rapid decay in x
for each t and present the Fokas—Ablowitz IST formulated in [7]. Since the current
paper provides rigorous analysis of the direct scattering problem, we will freely quote
results in the later sections when describing the direct problem and take note that
the inverse problem calls for more analysis in future works. Since time is frozen when
performing the IST, we drop the ¢ dependence of u in the discussion.

We start by recalling the Lax pair of the BO equation (1.1) presented in [21].
There we see that when w is real, as is the case considered in this paper, we only need
to take the Lax pair to be operators defined on H™:

1
(2.1) Lup = —pu = C1(uCyyp),

(22) Bup = +pue +2(C4ua)(Crp) — O (uCy )]

Since Cy acts as the identity on H*, we simplify the Lax pair further by dropping
the Cy in Cyp and write

(2.3) L,y = %@m - C+ (’U'SD)7
(2.4) Buyp = %sam +2[(Chug ) — Co((up))]-
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Notice that (2.3) and (2.4) may still make sense even if ¢ is not in H*. For instance,
¢ could be a function in a weighted LP space. In fact, we will use (2.3) and (2.4) when
defining the Jost solutions. On the other hand, the equivalence of the BO equation
with the Lax equation does cling to the particular form (2.1) and (2.2). By dropping
C, from the equations, we run a potential risk of destroying the equivalence of the
BO equation with the Lax equation, when ¢ is not a function in H*. We will address
this issue in section 7, since its effect comes into play only when time evolution is
concerned.

According to [21], L,, given in (2.3), regarded as an operator on H* | is self-adjoint
with finitely many negative simple eigenvalues A\;, j = 1,..., N, and [0,00) as the
essential spectrum. We denote the resolvent set of L, by p(Ly,) = C\ {A1,..., An}\
[0,00). Now we use results established later in the current paper: by Lemma 3.1
and Theorem 3.5, for each k € p(L,), there exists a unique Jost solution my(z, k) in
L>(R) to the equation

(2.5) Luml = k:(ml — 1)

such that mq(z,k) — 1 — 0 as ¢ — +o00. mq(z,k) depends analytically on k. Fur-
thermore, as k approaches a positive real A from above or from below, mq(z, k) has
limits mq (z, A &£ 0i) € L*(R). We abbreviate mq(z, k) as mq(k) when convenient.
Again by Proposition 2.1 and Corollary 2.2 in [21], for each negative simple eigenvalue
A;, and normalized eigenfunction ¢;, there exists a number ~y; such that the Laurent
expansion of mq (k) around J; is

(2.6) ma(k) =~ + (4 37065 + (k= bk X)),

where h(k, ;) is analytic in k around X;. ~; is called the phase constant in the
literature.

The scattering data of the Fokas-Ablowitz IST consist of the eigenvalues {}; };Ll,
N

the phase constants {v;};_,, and the scattering coefficient

(2.7) BN\ = i/Ru(x)ml(a:,/\ + 0i)e™ " dx

for A > 0.

The discussion above provides a minimal description of the direct scattering prob-
lem. However, to understand the connection to the inverse problem, we need to ex-
press the jump of mq(k) on the positive real line. To accomplish that we introduce
another Jost function m.(x, A — 0i) € L>°(R) which for A > 0 solves uniquely

(28) Lyme = Am,

with asymptotic condition m.(x, A — 0i) — e** — 0 as  — co. The notation A — 0i
in me(xz, A — 0¢) is natural in the integral equation it satisfies. The existence of m, is
established in Theorem 3.5. By Lemmas 4.2 and 4.4,

(2.9) my(A+0i) —myi(\ — 0i) = B(A)me (N — 0i)
and
(2.10) e(N)ox(E(N)me(N—0i)) = %ml(/\ — 0i),
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where e(\) = e(z, \) = ¢*%. By Theorem 5.11,
(2.11) ;1{(% mi(A—0i) = ;1{‘% me(A — 0i).

Denoting the limit above by m4(0 — 0i) = m.(0 — 0¢), we obtain from (2.10)

(2.12) e(\)me(X — 0i) = my (0 — 0i) + /0A w

ma (p — 0i) dp.
Note that by the study performed in section 5, for a large class of potential u called
generic potentials, m1(0 — 0i) is actually equal to 0. Finally, by Theorem 6.5,

(2.13) Ciu = lim k(1 —mq(k)),
k—o0

where the limit holds in L*°(R) in x.

Summarizing the above discussion, it is natural to cast the inverse scattering
problem as follows. Given the negative eigenvalues {)\j}f[:l, the phase constants
{vj }évzl and suitable scattering coefficient S(A) for A > 0, find an analytic mapping
k — my (k) from the resolvent set C\ {A1,..., An}\[0,00) to a suitable function space
in z such that

(a) around every \;, the Laurent expansion of m1 (k) has the form (2.6) for some

function ¢; and mapping h(k, ;) analytic for k close to Aj;

(b) mq(k) has limits mq (A & 0¢) in suitable function spaces as k approaches the

positive real line from above and from below, such that

m1()\ + O’L) — m1()\ — OZ)

e\ — p)B)

(2.14) = B(N) (e@\)ml (0—00) + /0 2mip

ma(p — 0i) du) ;
(¢) mi(k) —» 1 as k — oco.
Once m1(z, k) is obtained by solving the inverse problem, u(x) may be recovered by

(2.15) u=2Re lim k(1 —mq(k)).
k—o0

This completes the formulation of the inverse scattering problem.

The inverse problem is often called a nonlocal Riemann—Hilbert problem. Equa-
tion (2.14) is known as the nonlocal jump condition, in comparison with the usual
jump condition appearing in a standard Riemann—Hilbert problem, where the integral
in (2.14) is replaced by straightforward multiplication.

3. Existence and uniqueness of Jost solutions. In this section, we solve
certain modified eigenvalue equations for the operator L, = %895 —C'yu, with specified
asymptotic conditions at +0o. These are the Jost solutions that play a central role
in the Fokas—Ablowitz IST. They encode properties of the spectrum of L,, which,
according to [21], has the form {\1,...,Ax} U {0} UR™T, where R* = (0, c0).

In the following, two Jost functions mq (z, k) and me(z, A+ 04) will be considered.
These are solutions to the following equations, with suitable asymptotic conditions at
infinity (stated in detail in Lemma 3.1):

(3.1) 1_8zm1 — Cy(umy) = k(my — 1),
i

1
(3.2) =0pyme — Cp(ume) = Ame.
i
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Here A\ 4+ 0i € RT £ 0i, and
(3.3) k€ p(L,)U(RT £0i) = (C\ {\,...A\n}\ [0,00)) U (RT & 04),

which is the resolvent set glued with two copies of the positive real line. Later on,
we will see that mj(x, k) has limits as k approaches the positive real line from above
and below. The notation of mi(x, k) and me(z, A & 07) is adapted to the asymptotic
conditions at infinity and may be abbreviated as my (k), me(A£07), me(AL), or simply
my and m.. In [7], a different notation is used. We provide the translation of notation
as follows:

M(z,\) = mi(z, A+ 0i), M(x,\) =me(z,\+ 0i),
N(x,\) = me(x, A —0i), N(x,\) =mq(x,\— 0i).

The Jost functions can equivalently be described as solutions to certain Fredholm
integral equations. To express these equations, we introduce the convolution kernels

oo iz
(3.6) Gul) = 5 [ £ e

for k € C\ [0, 00) and
1 0 gixg
o | E—k

(3.7) Gi(z) = dg

for k € C\ (—00,0]. With € > 0, we have

1 [ es ~
Grsie () = / SR N

o2r | E— (N tie)
(3.8) = +ieTeM ypt () — Gazic(z)
with
(3.9) Gazoi(r) = 21{‘1[1) Gitic(w) = Fie™ xps (z) — Ga(2)

for A > 0. The limit in (3.9) holds in the following sense: the first term in (3.8)
converges pointwise, and the second term in (3.8) converges in LP for every p’ €
[2,00). To see the latter, observe that G A+ie 1s the inverse Fourier transform of
é“%;\if;), Xp— (f) in every L? for p € (1, 2], assuming A > 0.

We are ready to describe the Fredholm integral equations satisfied by the Jost
solutions. The following lemma may be considered as the definition for m; and m..

which converges to

LEMMA 3.1. Letp>1and s> s >1— % be given, and let u € LP(R). Suppose
mi(z, k), me(z, \£0i) € L= | (R) for fized k € (C\[0,00)) U(RT £0i) and A € RF;
then the following are equivalent:

(a) mq(x, k), me(x, A+ 0i) solve

1
(3.10) =0,m1 — Cy(umq) = k(myp — 1),
i

1
(3.11) =0pme — Cy(ume) = Ame,
i
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together with the asymptotic conditions

as |x| — oo if ke C\ [0, 00),

3.12 k)—1—=0
(312)  ma(z, k) {asxﬁyxj if k=X+0i € Rt £ 04,

(3.13) me(z, A\ £0i) — e 50 as x — Foo.

The above asymptotic conditions should be read with either the upper sign or
the lower sign.
(b) mq(z, k), me(x, A\ £ 0i) solve the following integral equations:
(3.14) my(z, k) =1+ G * (umq (-, k))(z),
(3.15) me(z, A £ 0i) = e(x, A) + Gazoi * (ume(-, A £ 0i))(z),
where e(z,\) denotes €.
In addition, if either (a) or (b) holds, we have the stronger bounds

(3.16) my(z, k) —1 € L (R) NH»T
for fited k € C\ [0,00) and
(3.17) my(x, A+ 07),me(x, A £ 0i) € L°(R)

for fized A € RT.
Proof. First of all, we notice from the conditions on u, mi, and m,. that
umy,ume € L C L'nrr.

The terms C (umy), Cy(ume) in (3.10) and (3.11) are well-defined as C; is bounded
on LP. To see that the convolution in (3.14) and (3.15) are well-defined and belong
to L, we notice by (3.9) that Gy € L¥' if k € C\ [0,00), and Grro; € L™ + L
where % + i =1.

We now study m(z, k) for k € C\ [0, 00). In this case, we can actually show (3.10)
is equivalent to (3.14) without using the asymptotic condition (3.12). To see this, we
take the Fourier transform of (3.10) to get

(3.18) ¢my — xp+umy = kimy — k1
or
(3.19) =1+ g‘f*kﬁn\l.

Now take the inverse Fourier transform to get (3.14). The convolution formula for the
inverse Fourier transform can be justified by the facts that G € L? and um, € L*.
The above calculation can be reversed. Hence (3.14) also implies (3.10). To obtain
the limiting condition (3.12) when k € C\ [0, 00), we just observe that ?T;”ﬁn\l €Ll
Equation (3.19) also implies m; — 1 € HP>*. To see this, we apply the Marcinkiewicz

e
multiplier theorem to the multiplier u(§) = X“ﬁé# for every y > 0. In fact

j+1 j+1
2 2 1

1
, d —yE d
igg/y ' (&)l Séj_lellz)/zj (ye |§—k|+|€—kl2) ‘

oi+1

1
<O 1+ Sup/ ye YE —— d¢
* ( jet Jos €]+ [#

; 291 + |k
< Cp |1+ supye ¥ lo < >)
S Ok < jelzy g 2% + |k|
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< Cy (1 + sup ye*y2j 2j>
JEZ

(3.20) < Cj (1 + sup ye_y> < Cy,

y=>0

where C}, is a generic constant depending only on k. Estimate (3.20) implies that the
LP norm of

1 0 ei&(;c+iy) -
(3.21) F(x +1iy) = %/o ﬁuml(f) d¢
is uniformly bounded for y > 0. On the other hand F(x + iy) converges pointwise
to F(xz 4 i0) = mq(x, k) as y ¢ 0 by the dominated convergence theorem. Hence
my(z, k) —1 € HPT.

We now work on my (z, A£0¢) and me(z, A£0i). To simplify notation, we suppress
the = variable and 0: and only work on the case with the plus sign. The case with
the minus sign can be treated similarly.

We first prove the passage from (3.10) and (3.12) to (3.14). In fact, the Fourier
transform of (3.10) gives

(3.22) Emy (M) = Amy (M) — AT+ xae Fumy (M),

For every € > 0, we divide by & — (\ + 7€) to get

— _ Z'E m _ . )\ + 7;6 ~
1
(3.23) + mXRJrF(Uml(/\WL))-

Since 1 is a multiple of §, we have
(3.24)

Now inverse Fourier transform (3.23) to get

1€

(3.25) mi(A+)=F" (_§(A+z‘e)

F(mi(M ) — 1)) + 14 Gagie * (umi(A+)).

By the decomposition (3.9), and the dominated convergence theorem,

(3.26) li\r% Gatie ¥ (umi(A+)) = Gagoi * (umq(A+))

pointwise. Since

— i€ 7 i€)x

(3.27) F! <_§—()\+ze)> = exp+ (2)e!OF)T,
we have

1€

(3.28) F! (_5—(

g FmOH) = 1)) = exee (e« () ~ 1),
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Equation (3.28) can be justified as follows. First of all, it is true if mq(A+) — 1 is
replaced by a rapidly decaying function. By the conditions on mq(A+), it is obvious
that w=2=(=5) (my (A +) — 1) € L'. Approximate w2~=5) (my(A\+) — 1) in L' by
a sequence of Schwartz class functions f,, and take the limit as n — oo of

— i€ — 7 1€)T
(3.29) i 1(5—(>\+ie)gn> = exs (2)e" T s g (a),

where g, = w***7%1f,. The left-hand side of (3.29) converges as tempered distri-
butions to the left-hand side of (3.28). To study convergence of the right-hand side,
observe that

x
xR+ ()" 5 g, | = ‘/ e~ AT g, () dy
— 00

(3:30) < e (sup e ()l ga 1
ysx

It follows that the right-hand side of (3.29) converges locally uniformly to the right-
hand side of (3.28). Thus (3.28) holds. Now

exis (2)e AT x (my (M) — 1)

- / e OH (1 (A4) — 1) (z — ) dy
0

(3.31) = / /%6 (my (A+) — 1) (x - %) dy.
0
We take the limit as € N\, 0 of (3.31). By (3.12), (m1(A+) — 1) is bounded on (—oo, ]
and approaches 0 as © — —oo, hence (3.31) tends to 0 for every = by the dominated
convergence theorem. By (3.26), (3.28), and the above discussion about (3.31), the
right-hand side of (3.25) tends to the right-hand side of (3.14) as € \, 0.
We can work similarly on m.(A+). In this case, (3.25) is replaced by

(3.32) me(A\F) = F~1 <£_()\+i6)me()\+)> + Gagic * (ume(A+)).
Again,
(3.33) !1\1% Gatic * (ume(A)) = Gagio * (ume(A+))

o —

pointwise, and F‘l(—%me(/\—i—)) equals
exa+ (2)e AT s m, (A+)

= e/ AT (y, A ) dy

xT
= ei(AHe)ze/ eYe  Nm,(y, A\ ) dy

—0o0

€T
(3.34) = ei(”\+i€)x/ Ve M/ m(y /e, \+) dy.

— 00

By (3.13), me(x, A+) is bounded on (—o0, |z[], and e me(r, ) = 1as z — —o0;
therefore (3.34) tends to e*** for every x by the dominated convergence theorem.
Equation (3.15) then follows as above.
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We now prove that (3.14) implies (3.10) and (3.12). By the decomposition (3.9),
we can write (3.14) as

(3.35) my(A+) =1+ e’ /l e Mu(y)my (y, \+) dy — Gy * (umq(A+)).

Weakly differentiate (3.35) to get
1 . z )
gamml()\—l—) = i)\e”\w/ e~ Mu(y)my (y, \+) dy + umy (M)
—o0

(3.36) - %am@ ¥ (umi ().

To compute %&céA * (umq(A+)), we take its Fourier transform

P (30:G (ama(04) ) = 625 Flum(04)

= xr- F(umi(A+)) + A XR- F(umi(A\+))

£—\
(3.37) = FIC_(umi(A)) + AGx * (umy (A+))].

All of the above steps can be justified using the fact that umi(A+) € LP. It follows
that

(3.38) %aw@ k (wmi (M) = C (umi () + AGx * (wma (A4)).

Equation (3.36) thus gives

x

1 ) )
g(')wml()\—i-) = i)\e“\x/ e Maumy (y, M) dy + umq (M) — C_ (umy (A +))

— AG * (umy(A+))
= Cy(um1(A+)) + AGxtoi * (umi(A+))
(3.39) = Cy (umy(A+)) + A(mi(A+) = 1).

To get the last step, we have used (3.14) again. This proves (3.10). To get (3.12), we
take the limit of (3.35) as © — —oo. It suffices to show

(3.40) lim Gy (umi(A+))(z) = 0.

r——00

To see this, we write G  (ums(A+)) using the Fourier inversion formula as

(3.41) Gy * (umi(A+)) = F~YF(Gy * (umi(M+)))) = F~ <£X§:\F(um1()\+))> .

Recall that %%()\E)F(uml()\—i—)) e L', since F(umi(A+)) € LP by the Hausdorff-
Young inequality, and ?ﬁj\ € LP. Thus (3.40) follows by the Riemann-Lebesgue
lemma. That (3.15) implies (3.11) and (3.13) can be obtained in a similar way. |

To describe the Fredholm nature of the integral equations (3.14) and (3.15), define

(3.42) Trp = G (up)
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for k € (C\[0,00))U(RT+0¢). The integral equations (3.14) and (3.15) are of the form
(I — Tyx)p = g where g € L*™. The existence and uniqueness of Jost solutions follow
from the invertibility of I — T} on suitable spaces. In the following, we first prove
that T} are compact on certain weighted L> spaces. Thus the Fredholm alternative
theorem will reduce the question to a vanishing lemma.

LEMMA 3.2. Letp > 1 and s > s1 > 1 — % be given, and let uw € LE(R). Then
Tio: L% (R) = L= (R) is compact for every k € (C\ [0, 00)) U (RT £ 0¢).

Proof. We only provide an argument for T 4o;. The cases Th_o; and T} for k €
C\ [0, 00) can be obtained analogously. Let {¢,} be a bounded sequence in L>

s—s1)"
Recall from the proof of Lemma 3.1 that Ga49; € L™ + Lp/, and up,, € L' N LP with
suitable estimates. Hence there exists Cy = C1(u, A, p, s1) such that

(343) HT)\+01'4Pn||oo < ClH(pn”L‘x’

—(s—s1)"

Also, one can compute the weak derivative of Txo;, as in (3.39) to get

1 -y iz ¢ —1i - ~
(3.44) EﬁxTM_o?;gon =i\e™ / e Mup, (y) dy +up, — C_(upn) — AGx * (upy).

— 00

The four terms above are in L>°, LP, LP and L°°, respectively. As a consequence, for
every natural number N, there exists Co = Cy(u, A, p, s1, N) such that

(3.45) 10=Tx+0i0nllLe(—n,n) < C2ll@nll

—(s—s1)"

From (3.43) and (3.45) we conclude that there exists C' = C(u, A, p, s1, N) such that

(3.46) | Tx+0ionllwir—nny < CllgnllLe

—(s=s1)’

By the Sobolev embedding thoerem, the sequence {Th10ipn} is uniformly bounded
—1

in every C’O’pT[—N, N, which is compactly embedded in C°[—N, N]. By passing

to a subsequence and a Cantor diagonal argument, we can assume that {Thi0;¢n}

converges uniformly on any compact subset of R to a continuous function f. Obviously

—(s—s1)"

(3.47) [flloe < sup [[Txt0inlloo < Crsup [lnL

Hence f € L‘io(s_sl). For any € > 0, choose NN large enough so that

s €
w (@) Crsup flpnllr=, <3

—(s—s1)

for |x| > N. We then have
W (@) | f(2) = Totoipn ()] <€

for |x| > N. For |z| < N, Tajoin converges uniformly to f, and we obviously have
w7 (@) f(x) — Trtoipn ()| <€

for n sufficiently large. Therefore T ¢;p, converges to f in L‘f’( s—s1)" 0
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By the Fredholm alternative theorem, what is left to show is that (I — Tg)p =0
and ¢ € Lio(s_ s1) imply ¢ = 0. We accomplish this in two steps. First we prove that,

in suitable spaces, any such function ¢ must be in L?. After that an L? vanishing
lemma will close the argument. In fact, we can prove the following decay estimate for
functions in the kernel of I — Tj.

LEMMA 3.3. Suppose s > s1 > 3, u € L%(R), and k € (C\ [0,00)) U (Rt £0i). If
¢ € L>,_,y(R) and ¢ = Ty, then there exists C = C(u,k, s, s1) and r =r(s) > i
such that
(3.48) p(2)] < Clw(x)] ™"
In particular, ¢ € L*(R).

Proof. We first assume k € C\ [0, 00). In this case we have

(3.49) o(z) = /R Gilz — yup(y) dy,

where G, € L%. As before, the conditions on u and ¢ imply uep € L' N L?. Hence
¢ = Gy, * (up) € L>=. To prove the decay estimate for |z| large, we split the integral
in (3.49) into two pieces: one on {|ly — x| < %} and the other on {|y — x| > %‘} For
the former, we have

[ Gl ety dy

N

< ClIGH]zl¢llo ( [ e dy>

|z]

(3.50) < 6w () ulsz < Clol

To estimate the other piece, we use the pointwise bound |Gy (z)| < % for |z| > 1,
which is an easy consequence of (3.6) from integration by parts. Therefore

(3.51)

L2 Plloo-

/— >zl Gr(z = y)up(y) dy

1 C
< Crllugll < —llul
|| |z

This completes the proof when k € C\ [0,00). Next, we study the case when k €
R* + 0i. Again, for simplicity, we work on Ty o; only. Using (3.9), we have

(852)  o(2) = Tryorp(a) = i / e Mup(y) dy - / Gz — y)up(y) dy.

—0o0

x

By the same reason as above, up € L' N L2, so we get ¢ € L>®. The decay estimate
for the last term in (3.52) can be proved in a similar way as above, as G € L. We
now prove the decay estimate on the first integral in (3.52). To that end, we need
the crucial identity (3.54), which follows from an integration calculation detailed in
Lemma 4.3. Using that lemma, we have

(p,up) = (Trroitp; up)
= (Gxrroi * up, up) = il(up,e)|* + (up, Gryoi * ugp)
= il(up,e)* + (up, Trroi)
(3.53) = il(up, e)|* + (up, ¢).
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Therefore (up,e) =0, or

(3.54) /Re_i)‘“”wp(x) dx = 0.

Using (3.54) on (3.52), we have

x

(355) (@) = Thpoip(e) =i / AEDu(y) dy — G * (up)()

(3.56) =—i /00 NN up(y) dy — Gy * (up) ().

Denote

(3.57) I(z) = z/m eV yp(y) dy = —i /OO eV yup(y) dy.

We want to show that I(x) has ﬁ decay at infinity for some r > % Let us now

use the first expression in (3.57) to study the decay of I(z) as = tends to —oo. Since
p(x) = I(x) — Gy * (up)(x), we have

x x

(3.58) I(z) =i / AV p(y) dy = i / @V () () — G * (up) ()] dy.

— 00 — 00

Since G * (up) € L? and u € L2, we get uG * (up) € LE. Thus

(3.50) \ [ e um)an s o) dy\ < Cllw*ulis » (ug) 10~ (x) < Cuw~*(z)

— 00

for z < 0, as w(y) > w(z) for y < x < 0. Since s > 1, (3.59) already has the required
decay as x tends to —oo. We next use (3.58) to bootstrap decay estimates on I(x).
Recall that I(x) € L>. Suppose I(z) € L°(—00,0] for some 7 € [0, 3]. We have

| rwlase [T v @) dy

— 00

o [* wrte b D () dy

< Cw R () / w T () wiu(y)| dy
R
(3.60) < Cw= 262 (2) |~ 26+ D) ||y Ju| 12

for x < 0. By (3.58), (3.59), and (3.60), we get I(z) € Lﬁ%(sfé)(—oo,O], which
has a little more decay than what we started with. Finitely many iterations of this
argument will bring the decay exponent r above % A similar argument using the
second expression in (3.57) shows that I(z) has the required decay as x tends to co. O

The next result is the L? vanishing lemma alluded to in the previous discussion.
It provides the key step for the proof of invertibility of I — T}. It means, among other
implications, that there is no embedded eigenvalues in the essential spectrum of L,,.

LEMMA 3.4. Suppose s > s1 > 3, u € L2(R) and k € (C\ [0,00)) U (RT £ 0i). If
¢ € L=, (R) and p =Ty, then
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1. If k€ C\R, ¢ =0.
2. If k€ (R\ [0,00)) U (Rt % 0i),
2

/wp de| = 27Tk/ lo|? da.
R R

In particular, p = 0 if k € RT£0i, orif k is in the resolvent set of L, = %8J—C+u0+,
regarded as an operator on HT.

Identity (3.61) is reminiscent of Lemma 2.5 in [21]. However, the proof of (3.61)
is much more delicate when & = A £ 07, as A > 0 may introduce a singularity to ¢
and in particular make it nondifferentiable at .

(3.61)

Proof. Let us first assume k € C\R. By the same proof as in Lemma 3.1, ¢ = Ty
implies

1
(3.62) 7009 — O (up) = ke
and

(3.63) Xr+Up = (£ — k).

Using (3.63) with the fact that ¢ € L2, proved in Lemma 3.3, we have ¢ € H*. Thus
Cip = p. Multiply (3.62) by ¢ and take the imaginary part to get

(3.64) — Sl — T (4 (up)) = (Im K)o

Integrating (3.64) and using the decay estimate (3.48) on ¢, we get

(3.65) 0=—Im /u|g0|2 dxr = —Im / Ci(up)p dz = (Im k)/ lo|? da.
R R R

To get the middle equality, we used the self-adjointness of C'y and Cy¢ = ¢. Equa-
tion (3.65) implies ¢ =0, as k € C\ R.

Next, if k € R\ [0, o0), we obtain (3.62), (3.63), and ¢ € H* as before. In addition,
Lemma 3.3 gives ¢ € L2° for some r > % This together with the condition u € L? for
s > 1 implies zugp € L% Therefore up € H'(R). By the Sobolev embedding theorem,
w is continuous, and by (3.63) so is ¢ on [0,00). Weakly differentiate (3.63) to get

(3.66) up =@+ (E— k)@

when ¢ > 0. Multiply by ¢ and take the real part to get
(3.67) Re (up'¢) = [¢* + (€ — k)Re (¢'9)
or

(3.68) Re (75'3) = Io + S (16’

Now integrate between 0 and co to get

= R k, . 1 R
o) Re [ @G- [16P dergloPon) 5 [ 167 as
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To obtain (3.69), we took the freedom to rewrite the integration domain as R whenever
the integral involves ¢, a function supported on [0,c0), and have integrated the last
term by part. To compute the boundary term for that step, we used the fact that
lime 00 (€ — k)|@|?> = 0, which is a consequence of (3.63) and the fact that up € L.
Now observe that the integral on the left-hand side of (3.69) is purely imaginary, by
the Plancherel identity:

(3.70) /@’E d¢ = —277@'/ zulp|? dr.
R R

Hence (3.69) gives

(3.71) o /R of? d = /R 162 dé = —kIgP(04).

Using (3.63) to write —kp(0+) = up(0), (3.61) follows.

Finally, assume k& = \ & 0i, where A € Rt. Checking the signs of both sides of
(3.61), one easily sees that ¢ = 0 is the only way to avoid a contradiction. Therefore
the key is to prove (3.61). By the same proof as in Lemma 3.1, ¢ = Th10;¢ implies

1
(3.72) 7009 = Ci(up) = Xp.

The Fourier transform of (3.72) gives

(3.73) upxr+ = (§ = A)¢-

This implies that ¢ has its frequencies supported on RT, and thus belongs to HT. Let
2 be a smooth partition of unity on (0, 00):

(3.74) X(0.00) (&) = D _¥2(9).

Here the 1,,’s are compactly supported smooth functions on (0,00). An easy way to
construct them is to make dyadic dilations of a fixed function. Let P, = F~ 14, F be
the Littlewood—Paley type projection associated with 1,. Letting P, act on (3.72),
we have

1
- (Pn‘zp):v - Pn(”‘ﬂ) = APpp.

7

(3.75)

Multiply by 1z P, ¢ and take the real part to get

(3.76) Re 2(P,p) s Pry +Im zP, (up)P,p =0
or

1 -
(3.77) 37 (\Pngp\z)z +Im P, (up)P,p = 0.

We claim that 2P, (up) € L?. Indeed,
oPu(up)(a) = @ [ (o = ulw)ely) dy

= /(m — y)n(z — y)uly)e(y) dy + / Un(x — y)yuy)e(y) dy
R R
(3.78) = (#¢n) * (up) + Un * (zuep).
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Since z1), is in the Schwartz class, and the conditions on u and ¢ imply up € L?, we
conclude that the first term in (3.78) is in L2, The second term is also in L? because
zuy is, as shown above. Integrate (3.77) on R and use the Plancherel identity on the
last term to get

o0

1 1 1 o - -
379 falP@)?| - f/ Pagl? do + —Re / (i) tnB dE = 0.
2 e 2 Jr 2T 0

We claim that the first term in (3.79) vanishes. In fact,

|Prp()| =

/Riﬂn(w —9)e(y) dy’
< /|ymz ¥z = y)e(y)| dy + /ym|> (2 — ) (y)| dy

;
< sw el el [ Wawl dy
B <lyl< 25 lyl>

<Clz|" + Cla| ™

when || is large. The last inequality above follows from estimate (3.48) and the fact
that v, is in the Schwartz class. We can now rewrite (3.79) as

1 1 Il - N
(3.80) —5/]R|Pn<,0|2 dm+%Re/O <<¢2") ugaga—k@/}flucp'go) dé =0.

Take the sum over n to get
(3.81) —1/| |2d:c+iRe Z/OO vn /uA*d5+1Re/uA’*dg—o
‘ 2 )7 o oy 2 ) PR T e aTh

The frequency integration domain of the first and last terms in (3.81) was changed
from RT to R. This is allowed because ¢ has frequencies supported on R™. The last
integral in (3.81) is purely imaginary, as can be seen by the Plancherel identity, hence

2
the real part vanishes. Since En(%)’ = 0, where the sum is locally finite, we may
insert into the second integral in (3.81) a function x that is compactly supported on
(0,00) and identically equal to 1 in a neighborhood of A:

1 1 <R\
(3.82) ~5 /]R lo? da + ﬂRe zn:/o <2> uwpp(l — x) d€ = 0.

Since zup € L? as observed above, up € H!. Using (3.73) and the fact that y = 1
in a neighborhood of A\, we get ¢(1 — x) € H'(0,00). Therefore we can integrate the
second term in (3.82) by parts and get

1 1 R
(3.83) - 5/ lo|? da — 4—Re / (wpp(1 — X))/ dé =0
R 4 0
or
1 1 N
(3.84) - 7/ || dz + —Re ap(0)$(04) = 0.
2 Jr 4m
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The application of the fundamental theorem of calculus can be justified by the Sobolev
embedding theorem. The fact that #p¢ vanishes at infinity follows from up € L' and
(3.73). Equation (3.73) also implies up(0) = —A$(0+). Equation (3.61) then follows
from (3.84). 0

By [21], if u € L N L? for some s > 3, then L, = 18, — CyuC4 has finitely
many negative simple eigenvalues and the resolvent set has the form p(L,) = C\
{M,. .. An}\ [0,00). In fact, [21] required u € L N L%, but the same result is true
with the slightly weaker decay assumption, if one uses the same kind of bootstrap
argument in the proof of Lemma 3.3 to provide additional decay estimates on the
eigenfunctions.

We are now ready to establish existence and uniqueness of the Jost solutions.

THEOREM 3.5. Let s > s1 > 5 and u € L2(R). Let p(Ly) be the resolvent set of
L, = 18,—CuCy, regarded as an operator on HT. Then for every k € p(L,)U(R* +
0i), and every A > 0, there exists unique my(z, k) and me(z, A £0i) € L= (R)
solving (3.14) and (3.15), respectively, with improved bounds my(x, k), me(x, A£07) €
L>(R). Furthermore, k — m1(k) is analytic from p(L,,) to Lio(sfsl)(R), and my (k) €

Crod ((p(Lu) U (R £00)), L, (R)), while me(A+0i) € Cp;7((0,00), L, (R)).

ngﬁe v is some number between 0 and 1. e )

Proof. Lemma 3.2, Lemma 3.4, and the Fredholm alternative theorem imply ex-
istence and uniqueness of m4 (z, k) and m.(z, A£07). The improved L> bounds were
proved in Lemma 3.1. The analytic dependence of m; (k) on k follows from the analytic
dependence of T}, on k. That in turn follows from the fact that %(G;H_h—G &) converges
in L2 to —i fooo ﬁ d€, a result that is easy to see. What is left to show is the
Holder continuity of m (k) as k approaches the positive half line from above and below,
and of me(A40i). We write m1 (k) = (I —Tx) 11, and m.(A£0i) = (I —Thx0i) ‘e(N).
Using the identity

(3.85) (I =Tppn) ™' = (I =T0) " = (I = Tp) " (Thn — Tu)I — Thyn) ",

we reduce the problem to showing the following three points:
(2) e(\) € R ((0,00), L%, (R)).
(b) The L‘io(sfsl) operator norm of Tyyp — Ty is bounded by Clh|” for fixed
k € RT £ 0i and small h.
(¢) The LX,_,,) operator norm of (I — Tyyp)~ ! is uniformly bounded for fixed
k € RT £ 0i and small h.
In the above, if kK = A + 04, then Im A > 0, while if ¥ = A — 07, then Im A < 0. To
prove (a), we assume Im h = 0 and estimate

|wsl—s(x)(ei()\+h)w o ei)@)| — |wsl—s(x)(eihw _ 1)|
(3.86) < w*r % () min{|hz|, 2}.
If |z| < 1/v/h, (3.86) is bounded by |hz| < vh. If |z| > 1/v/h, (3.86) is bounded

by 2w —5(1/vh) < Ch™=". Hence |le(A + h) — e, . < Ch™ for pi =
—(s—sq

min(£5%, 1). This proves (a). Notice that (b) implies (c), as I — T}, is already shown

to be invertible. For simplicity, we only work on Thioi+n — Tht+o0; With Im A > 0. To

prove (b), we estimate

(Txt-0i+h — Trg0i)(x)

(3.87) =i / " AEDERED  u(i(y) dy — (Gapn — Cr) * (uh)(x).

— 00
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Since u € L?, and ¢ € L% )y, We can write u = w™*uy, with [Jusllz = ||ul|2, and
¥ = w5y, with |11 ]| = ||7J1||Lg°(s_sl). Hence
(3.88) u) = w tu = w_mw_%_p?ulwl,

where py = %(31 — %) > 0. Since w—37P2 ¢ L?, we get ug = w_%_mm e L'. Notice
that |e?(*=¥) — 1] < C|h(x — y)| when |h(z —y)| < 1, and [e?(*=¥) — 1] < 2, since
Im h >0 and z —y > 0. Therefore

|w** % () (Tatoi+n — Tagoi)Y ()]

< c<w518(x) / " min{[h( - y)|, 25w () us(y)] dy

Gain — 5A||2|U1||2> ol

—(s—s1)
so) <o [T mingnt - ol 2 ) o)l

for p3 = min(s — s1,p2). Here we have used the Plancherel identity to estimate

[Gasn — Gall2 and have used the elementary inequality w(z — y) < w(z)w(y). The
term (min{|h(z —y)|,2}w™P3(x —y)) can be estimated as follows. If |z —y| < 1/+/|h|,

min{|k(z — y)|, 2}w™" (z —y) < |h(z —y)| < VA,
On the other hand, if |z —y| > 1/+/]],

min{|h(z —y)|, 2hw P (@ — y) < 20 (1//]h]) < O F

for h small. Therefore

(3.90) [w* ™2 (@) (Txvoirn — Taoi) V(@) < CAPH[PllLes
for ps = min(2, ). This proves (b) with v = ps. |

4. Scattering coefficients between Jost solutions. Now that the Jost solu-
tions are obtained, we may proceed to study relations between them that give rise to
the scattering coefficients of the Fokas—Ablowitz IST. Such relations were obtained
formally by Fokas and Ablowitz in [7]. In addition, there are also relations between
different scattering coefficients, many of which are stated in [10]. However, the ar-
guments used in [10] are formal as well and depend on certain identities involving
the inverse scattering problem. Here we will prove these relations and construct the
scattering data directly using the setup in section 3.

First, we want to establish differentiability with respect to A of the function
e(A)me(A\ £ 07). The A derivative of €(A\)me(A & 07) will help produce an important
scattering coefficient. In fact, we will show that é(A)m. (A £ 0¢) is differentiable as a
map into the weighted L spaces used in section 3. It is curious that differentiability
of the particular combination em,. can be proven under the same decay assumptions
on u as in section 3, whereas any slightly different function, such as m. (A & 07) alone,
my (A £ 0i), or € A)mq (A £ 0¢), will require significantly stronger decay conditions on
u to be differentiable in the above sense. The basic reason is that the term 9y e*** =
ze'® comes out and produces an extra factor of x when we differentiate (3.14) and
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(3.15) with respect to A. We would need ze'*® to belong to L‘f’(s_sl), which forces
s —s1 > 1. Combined with the condition s > s7 > % in Theorem 3.5, this implies
s > % Certain other considerations seem to even require s > % The special favor
found only by &(A\)m.(X £ 0i) can be explained as follows. To simplify notation, we
suppress the A dependence when it is clear from the context. By (3.9) and (3.7), we
formally have

1 .
(4.1) OxGiaz0i(?) = — 5+ + iGazoi(@).

Rewrite (3.15) as
(4.2) emc(AL) =1+ eGxioi * (ueem.(At)),
and differentiate with respect to A formally:

Ox(eme(A1))

2T\
+eGr10i * (iyueeme(AL)) +eGxrioi * (uedx(eme(AL)))

e
_— u
2T A R

= —ixe (GA:I:Oi * (ueéme()d:))) +e (1 + iiI?G)d;m) * (ueéme()\:lz))

(4.3) = (y)me(y, AL) dy +eGx+o; * (uedy(@m.(AL))).

Multiply both sides of (4.3) by e to get

1

(4.4) eodr(eme(At)) = 3 ]Ru

(y)me(y, A\E) dy + Gazoi * (ued(€me(A1))).

Notice (4.4) no longer involves any extra factor of z. In fact, the cancellation hap-
pening in (4.3) removed all extra factors of z. The proof of differentiability is to
show that a similar, although no longer exact, cancellation happens on the level of

difference quotients.

LEMMA 4.1. Lets > s; > 1, andu € L%(R). Let mc(A+0i) be the Jost functions
constructed in Theorem 3.5. Then €(A)me(A £ 0i) € C}o’j((o, 00), L=, s, (R)) for
some 0 < v <1, and

(45)  OrEmeA£00) = — o ( /]R w(y)me (g, A+ 0) dy) ma (A £ 0),

Proof. We denote the shift operator by (7, f)(A) = f(A + h) and the difference
quotient operator by Dy, f = +(7,f — f). One has the product rule:

(4.6) Din(fg) = (Dnf)g + (taf)(Drg).

For simplicity, we only work on m.(A — 0i) and write it simply as m.. Dj acting on
(4.2) gives

Dy, (em.) = (Dye) (Ga—o; * (ueem.)) + (11,€)[(DrGr—0:) * (ueeme)]
+ (Thé) [(Tthfoi) * (u(Dhe)éme)]
(4.7) + (he) [(ThGr—0i) * (u(Tnhe)Dp(eme.))] .
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We add up the first three terms in (4.7) as follows:

efi()\+h)x _ e iAm
W /GA—Oi(l’ —y)ume(y) dy
R
) . Grin—oilx —y) — Ga_g;(x —
+e—z(A+h)m/R Ath—0i(T y)h A—oi(@ y)ume(y) dy

i(A+h)y _ iy

) e e

4 oIz / Ginenoile —9)
R

_ i)z / Grrn—oi(® —y) — Gr_gi(x —y)e*=v)
h
R

A e~ t(A+h)x 1 h ilz—y)g J ihy i
.8 =— [ - —_— e .
(48) o /Rh e ) Mumey) dy

The last equality above follows from (3.9) and (3.7). Denote (4.8) by Sp(um.). We
get from (4.7) that

eii)‘yume(y) dy

eMum,(y) dy

(4.9) eDy(em.) = eSp(ume) + e(mh€) [(ThGr—0i) * (u(Tre)eeDy(em.))] .
Let ¢ be the solution to

1

4.10 =——
(4.10) Y=g /.

ume(y) dy + Gr_o; * (up),

whose existence is guaranteed by Theorem 3.5. We want to show 9)(em.) = ep,
which, as we will see in the following, is equivalent to (4.5). To that end, take the
difference of (4.9) and (4.10) and rearrange terms to get

[eDn(&me) — o] — e(h€) [(ThGr—0i) * (u(Tne)eleDy(em.) — ¢])]

1
=eSy(um.) + m/Rume(y) dy

(4.11) + e(1h€) [(ThGa—0:) * (u(The)ep)] — Ga_o; * (up).

Denote T n9 = e(mh€) [(ThGr—0i) * (u(The)ey)], and recall the definition of Th_g; by
(3.42), (4.11) can be written as

(I —Txn)leDn(eme) — o]

1
(4.12) =eSy(ume) + — / ume(y) dy + (Tx,n — Ta—oi) -
27'(')\ R

In view of (4.12), it suffices to show the following three points:
(a) For A > 0 fixed, (I — T ;)" ! has uniformly bounded L>
for small h.
(b) [eSh(ume) + 525 [ ume(y) dy|l L= —0as h—0.

—(s—s1)

(©) [I(Txn = Troi)pllL=,_, , —0ash—0.

s—s1) operator norm
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In fact, we claim that the L>° |y operator norm of T —Tx—o; tends to 0 as h tends

—(s—s1)
to 0. This will imply both (a) and (c), as (I — Th—o;) is invertible by Theorem 3.5.
We write

(Tx.n — Tr—0i)¥
= e(1h€) [(ThGx—0i) * (u(The)e)] — Ga—o; * (urh)
= [e(m@) — 1] [(1Gr_o) * (u(me)ew)
+ (ThGr—0i — Ga—oi) * (u(The)ey)
+ Gx—oi * (u[(The)e — 1]1))
(4.13) = [(x)+ II(z)+ I1I(z).

We estimate the three terms separately. By (3.9) and (3.7), there exists C = C(\, u)
such that

= (@)1(2)] < Co™ = @)e™™ 1 (lutlloc + [Crsnlalfut]2)
(4.14) < O (@) min{|hal, 2} ¥ =

—(s—s1)"

If |z| < 1/vh, |hz| < V/h. On the other hand if |z| > 1/V/h,

s—sq

w3 (z) < w*(1/Vh) < Ch ™2
Therefore

(4.15) w2 (@) I (z)] < CRP Y|

—(s—s1)’
Khere p1 = min(*5*, %) Let po = %(sl - %) > 0. By the conditions on u and ), we
ave

lu@)¥ ) < w™ @u W)l __

= w2 (y)w 2 P ()|l o=,
(4.16) = w2 (y)uz(y)|[¥] L=

—(s—s1)’

where u; = w'u € L2, and up = w2 P2uy; € L. Letting ps = min(s — s1, p2), and
using the relation w(zx — y) < Cw(z)w(y), we have

|w* = (2) I ()]

< Cu™ () < [ 1 o)l dy + G - émnwnz)

—(s—s1)

< Cw = (2) ( [ minginte = )l 2hu s lua(o)] dy + h) el

(s—s1)”

in) <o [ mingnte -9l 2w o - el dy+n) s

By the same argument as above, we get min{|h(x — y)|,2}w™P3(x — y) < ChP4 for
ps = min(2, 1). Hence

(4.18) [w = (@) I ()| < ChP* Y| e

s1)”
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Similarly,

|wr ()11 ()| < |II1(z)|

1/2
<c </|u ||e1hy1|dy+|GH</|u ) |e"“f12> )

c( [ o st minflral, 2 dy

. (/R|w—51(y)ul(y)|2(min{|hy|,2})2 dy)1/2>||¢||L<s o

(419) < CRP|Ylle=_ -

By (4.13), (4.15), (4.18), and (4.19), we have

IN

(4.20) I(Txn = Troi)¥llz=, _, , < CPP*[Y]le=, -

This proved points (a) and (¢) mentioned above. To prove (b), we recall that Sy, (ume)
was defined by (4.8). So

(eSh(ume)) () + 5 [ wmely) dy
1 1 h gi(z—y)(E—h) 1
:%/R[h (/0 §—)\—hd£>+/\ ume(y) dy
1 1 b A[ef@=E=h) _ 1] 4 ¢ —h
(4.21) =5 /R & (/0 NE—h =) d£> ume(y) dy.

Hence
() (tesu(uma)) (@) + 55 [ amato) d)
< Cu = (x) / (min{|2h(z — 9)1,2} + h) [u(@)me ()] dy
< Cw” (o) | (min{|2h(z ~ ). 2} + B w P W) dy
R
<C [ (min{l2ba ~ )2} + byw P (z = plus(w)] dy
R

(4.22) < ChP*.

We have thus proved 9y (ém.) = €p. Since ¢ satisfies (4.10), Ox(€ém.) satisfies (4.4).
In other words,

5A(eme()\—0i>):e([—T,\Oi)_l( oy [ et =00 dy>

e

(4.23) =3 (/Ru(y)me(y, A —07) dy) mi (A — 0i).

Its Holder continuity follows from that of e(\), me(A—0:), and my (A —07), which was
established in the proof of Theorem 3.5. O
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We are now ready to describe the scattering coefficients for the Fokas—Ablowtiz
IST.

LEMMA 4.2. Let my(x, k) and me(x, A £ 07) be the Jost solutions constructed in
Theorem 3.5. Define

(4.24) I\ =1+ 2/ u(x)me(z, A+ 0i)e ™ da
R
1
(4.25) I Jp u(@)me(z, A — 0i)e=A dz’
(4.26) BN = i/ﬂ{u(x)ml(m, A+ 0i)e™ ™ da,
and
(4.27) f) = ! ()me(z, A — 0i) dx.

o Jp

Then the following relations between Jost solutions hold:

(4.28) me(A+ 0i) = T(A)me (X — 07),
(4.29) my (A + 0i) —mi(A = 0i) = B(A)me (X — 07),
and

(4.30) edy(eme(A —00)) = f(N)my (A — 0i).

Proof. By (3.9),
(4.31) Gat0i(z) — Ga—oi(z) = ie(z, A).
Therefore (3.15) implies
Me(A+0i) = e(A) + (Ga—oi + ie(N)) * (ume (A + 0i))
— e(\) + G_oi * (ume (A — 00)) + ie(\) / w(@)me (@, A + 0i)e= dp
R

@3) = (141 [ emale A+ 00 do) e(3) + Gaorx (wme(A - 00)

R
By (3.15) and uniqueness of Jost solutions, we get
(4.33) me(A+00) = <1 + z/ u(x)me (2, A + 0i)e =" dm) me(A — 01).

R

A similar calculation starting with the integral equation of m.(A — 0i) gives

(4.34) me(\— 0i) = (1 —i /R u(x)me (2, X — 0i)e ™" dx) me(A + 07).

This proves (4.28). Take the difference of the integral equations of m; (A £ 0i) given
in (3.14) to get

my (A + 0i) —my (A — 0i) = ie(A) /]R u(z)my (z, A + 0i)e™ dz

(4.35) + Gr_oi * [u(my (A + 07) — m(A\ — 07))].
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By (3.15) and uniqueness of Jost solutions, we get
(4.36)  mi(X+0i) —my (A —0i) = me(A — 07) z/ w(@)ma (z, A+ 0i)e” " dx.
R

This proves (4.29). Finally, (4.30) is just the minus sign case of (4.5). |

Our next goal is to establish relations between different scattering coefficients.
The following identity proves very useful in showing these relations.

LEMMA 4.3. Denote [, f(z)g(z) dz by (f,g). If f,g € L*(R) N L*R), A > 0,
then

(4.37) (Grzoi * f,9) = +i(f,e)(g,e) + (f, Grzoi * g)-

Proof. We only present the calculation for Gy1¢;. Using (3.9), we see that

(4.38) Ghrroi(—n) = =i xg- () — Ga(2)
or

(4.39) Gavoi(z) = Grpoi(—z) + ie™
Thus

(Gryoi* fr9) = /R/RGAHM(J? —y)f(y)g(x) dy dz
/ / Gatoily — ) + iei/\(gky)) F)g(x) dy dx

/f -“ydy/ emdx+//f o roily—2)9(@) do dy

(440) = ><g, > <f7 G)\JrUl * g>

All of the above calculations are justified if f,¢g € L' N L2. ]

LEMMA 4.4. Let s > s1 > % and u € L2(R). Define the Jost solutions as above,
and let T(X), B(N), and f(N) be defined as in Lemma 4.2. Then T € C17(0,00),
8, f € CO’A’(O o0) for some 0 < v < 1, and the following relations hold:

loc

(4.41) T =1,

(4.42) fN) = g

(4.43) IB(N)]2 =2 Im X u(z)my (z, A + 0i) dz,
and

(4.44) OT(N) = ‘g%zm).

Proof. The regularity of I', 8, and f follows easily from the corresponding reg-
ularity of the Jost solutions. What are left to show are the relations between them.
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We start by multiplying the integral equation of m.(A+) by ume(A+) and integrate
on R. Using Lemma 4.3, we have

(me(At), ume(A+))
= (e, ume(A+)) + (Gay * (ume(At)), ume (A+))

= (e, umc(A+)) + il (ume (A, €)) [ + (ume(A+), Gay * (ume(A+)))
(4.45) = (e, ume(A+)) + i|(ume (A, e)) |2 + (ume(A+), me (M) — €).

Since (me(A), ume(A+)) = (ume(A ), me(A+)), we get
(4.46) il(ume(A+),e)* — (ume(A+), €) + (ume(A+),e) = 0.
By the definition of T'(\) given in (4.24), T'(A) = 1 4 i(um.(A+),e). Hence (4.46)

(4.47) iIT(A) =12 +4(T(\) — 1) +4T(\) — 1 =0,

from which it follows that |[T'(\)| = 1.
Next we multiply the integral equation of my(A+) given in (3.14) by um.(A+)
and integrate on R. Use Lemma 4.3 again to get

(m1(A+), ume(A+)) = (14 Garoi * (umi(A+)), ume(A+))
/Rume()\—i—) dz + i{umi (M), e)(um.(A\+),e)
+ (uma (M), Gasoi * (ume(A))
/ ume(A+) dx + i(umi (M), e) (ume(A+), €)
(4.48) + (umy (M), me(A+) —e).
Since (mq(A+), ume(A+)) = (umq(A+), me(A+)), this implies
(4.49) /]R wn () de + (umy (A, ) (umn (3 ).e) — 1) = 0.
By the definition of T'(A), B(\), f()), and the relation (4.28), we get
(4.50) —27Af(MT(N) — %ﬂ(/\)m =0.
Divide both sides by T'(A) to obtain (4.42). This is allowed as [I'(\)| = 1.

Next we multiply the integral equation of m4(A+) by wmi(A+) and integrate on
R. Use Lemma 4.3 to get

(m1(A+), umi (A+)) = (1 + Gagoi * (uma(A+)), umi (A+))

_ /}R W ) da + il {umy (M), €)% + (wma (), Gasor + (umi (A+)))
(4.51) = /]Ruml()\—i-) dz + i|(umq (A +),e)|* + (umq (A+), mi(A+) — 1).
Since (m1(A+), umq(A+)) = (umq(A+), m1(A+)), we have

(4.52) —2i Im/ umy (M) da + i|(umi (M), e)|? = 0,
R
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from which (4.43) follows.
Finally, to get (4.44), we differentiate (4.24) using the plus sign case of (4.5) and
apply (4.28) to get

o) =i [ uwe ™ (< 5k [ utwmr dy) i (2, M) da

u
R

(4.53) = FBATA).

Equation (4.44) now follows from (4.42). O

5. Asymptotic behavior near k = 0. In this section, we discuss the asymp-
totic behavior of the Jost solutions and scattering coefficients as k approaches 0 within
the set p(L,) U (R* +0¢). It turns out that the convolution kernel Gy, has a logarith-
mic singularity at £ = 0, and so does the operator T;. We employ the well-known
method of subtracting a rank one operator from T} so that the modified operator
has a limit at £ = 0. The limiting modified operator also has the form of identity
plus a compact operator. We then obtain its invertibility through a vanishing lemma.
The asymptotic behavior of the Jost functions can be recovered from the modified
Jost functions. The asymptotics presented in this section was formally obtained in
[7] and [10].

Let x(§) be a smooth function on [0,00), which is identically equal to 1 for
0 < ¢ <1 and identically equal to 0 for £ > 2. Later on we will see that it is crucial to
allow the possibility of x(§) being complex for 1 < £ < 2. For k € p(L,) U (R* £ 04),
let

(5.1) (k)= % /OOO fX(—gi; dg,
and let
0o ging _

(52) 63a) = Gulo) 100 = - [~ 2
(5.3) T (p) = G} * (up) = Ti() — LK) (p, ).
We also define

0o giné _
(5.4) GY(x) = % /0 g‘(’f) ¢, Tg(p) = Go* (ugp).

We define the modified Jost functions m?(x, k) and m?(z, X £ 0i) to be solutions (if
exist) to the integral equations

(5.5) m{(k) = 14+ TP (mf (k) = 1+ G}, * (umf (k)),
(5.6) MmO+ 0i) =e(\) + T{ro; (MmN £00)) = e(N) + GSupp; * (uml (X + 0i)).

Using (5.3), we obtain the relation between the original and the modified Jost
functions:

O me
G k) = T g 8, )
me(At) = mO(AE) + LAE) (mO(AL), whms (A)
- _ m20) + IO ((mE ), 1) mOck) — (b O), wpmE(0))

L= IE) (mI(0E), )
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To prove existence of the modified Jost functions when k is near 0, we carry out the
plan introduced at the beginning of this section. The first step is to estimate the
modified convolution kernel GY.

LEMMA 5.1. There exists ko > 0 such that for every ¢ € (0,1), there is C > 0
such that for all k € (C\ [0,00)) U (R* £ 07) with |k| < ko,
(5.9) |GR(x) = Go(@)| < ClRI*(1+ |])”.

Proof. By the definition of x(&), we write

1 Lein€ _ 1 k 1 [™e™ —x (&) k
.10 G - Ghlo) = 5- [ ety [ P

We first estimate the second term in (5.10). Assuming |k| < ko < 3,
€ — k| > & — |k| > £¢ for £ > 1. Thus

T b <1
d k — d k.
| = <o [ g ae<cn

We are left to estimate the first term in (5.10). Let us first consider the case = > 0.
Make a change of variable to rewrite the integral as

T L€
(5.12) ka:/o c : 15_1]% de.

Notice that k& € (C\ [0,00)) U (RT + 0i) means kx can get arbitrarily close to the
interval (0,z). We deform the contour of integration when estimating (5.12). The
work is split into two cases: when |k|x < 1 or when |k|z > 1. If |k|z < 1, we split the
integral (5.12) as follows:

(5.13) /rf/;mﬁ/;'

Here I'; is a semicircle centered at |k|x with radius |k|z. Ty is in the lower half plane if
kz is in the upper half plane, and vice versa. With this choice, we have |£ — kx| > |k|z

62;1‘ < C when £ € I';. Hence

we obtain

(5.11)

and

(5.14) k|2

et —1 1
dg‘gcmgcwxf.
e e | < ke < Clklle

We used |k|z < 1 to get the last inequality. For 2|k|z < £ < 2, we have

and |€ — kx| > & — |k|z. Hence
2oet o1 1 2 1
€
d& SC’kx/ d¢
/2|k|m § §—kx ¥ olklz § — |K|z
— Clklzlog (= —1
RN

(5.15) < C|k|zl".

ef—1
o)<

||
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For £ between 2 and z (either could be the larger of the two), |ei2—1| < %, and

€ — kx| > & — |k|z. Thus -

Te 1 1
/2 ¢ g—kxdf'gc'k'x

||

z 1
L df\
- 2(1 — [K)
‘C‘l‘)g( 2~ [kl )
< Clog[(1 + [K)(1 + [k[)]
(5.16) < ClE[°(1 + [a]).

Now let’s suppose |k|z > 1; we split the integral (5.12) into the following pieces:

1 |klz—% x
(5.17) [+ [+
0 i Iy |k|z+1

Here T's is a semicircle centered at |k|z with radius % Again, I'y is in the lower half
€i£

plane if kx is in the upper half plane, and vice versa. For 0 < £ < %’ | 5—1 | < C, and
|€ — kx| > |k|z — £. Hence

Teif 1 1
/0 e e ®

31
SCk‘x/ d
M ) e —e

k|x
2

1

||

1
(5.18) < C|k|zlog (1 + |k|x> < Clk||x|°.
For § <& < |klz — %, [ < 2, and [¢ — ka| > [klz — & Hence
lkle—3 gi€ _ 1 1 |k|o— L 1
< - -
Flz / WA C"”/; EMHe—g ©
< Clog(2|klz — 1)
(5.19) < C|k|zl".
For£ ey, |51 < & < sy 1€~ kal > 5. Thus
et -1 1 Clk|z
5.20 klx dé| < ——— < C < C|k|¢|=|°.
s20) e[ St | < i <0 < Ol

e"f

=] < 2 and ¢ — ka| >

||

< cum/ b

Of course we used |k|z > 1. Finally, for |klz + 1 < ¢ <, |
kla+1 §(€ — |K[z)

& — |k|z. Thus
R |
/|M+; e e ©
< Clog[(1 — [k[)(2|k|z + 1)]

(5.21) < Clk|“(1 + |z])*.
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This finishes the proof of (5.9) when = > 0. The proof for z < 0 is completely

analogous. The case z = 0 is trivial. O
LEMMA 5.2.
1[N e — x(€) 1 1 |er ifz>0
5.22) Go(z) = lim —/ — > dfE=——loglx| + — ’
( ) 0(®) N—oo 2T Jg ¢ ¢ 2 glel 21 |eo  ifx <O,

and there is C > 0 such that

L[V et —x(©)
J

C
> ¢ < C+C|log|z|| + T X{lal<1)

(5.23) WE

dg

for all N > 2.
Proof. We write G as

1 1 eimﬁ -1 1 o0 emCE 1 2 X(f)
o\ 1 1 2 XS
(5.24) Go(z) = 27T/0 ¢ dg + 27r/1 € d§ 271—/1 ¢ dg.

When x > 0, make a change of variable and recombine the integrals to get

1 ig_l 1 15
/s“*/ ¢ d“%l T

9

1" x(©)
o 3 de
(5.25) = —% log x| + 28—;

When z < 0, a change of variable gives

SR T

1% x(6)
T, e ®

1 C2
5.26 =——1 —.
(5.26) 5 108 |z] + o

Next we assume x > 0, N > 2, and write the integral in (5.23) as

(5.27) Gh(x) - o /N “ e = Gho) - o /N < d

where [ 1(\7(; % d¢ is easily seen to be bounded by

1
C +Clog <N > X{Nz<1} S C+ — T X{Naz<1}

C
|Nz|2
C
(5.28) <O+ —3X{la|<1}
|z[=
for N > 2. The proof for x < 0 is similar. O

The pointwise estimates established in the above lemmas imply estimates on the
L%, operator norm of T}.
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LEMMA 5.3. Lets > s1 > %, andu € L2(R). Letk € (C\[0,00))U(R*£0i)U{0}.
Then all T are compact on L_(S_sl)(R), and there exist € € (0,1), kg > 0, and C > 0
such that for all |k| < ko,

(5.29) 170~ Tl sz, < CIkI.

Proof. When k # 0, T} is compact since it is a rank one perturbation of T}, which
was shown to be compact in Lemma 3.2. The compactness of T3 follows from (5.29),
which we now show. In fact, by Lemma 5.1

w7 ()| T () (2) — Tg () (2))

< wh /\GO z— ) — GOz — ) |lu(y)e(y)] dy

< Cun (@) [ (@ =g )l

(5.30) < Olkl“fluzlla bz, .

where py = %(31 — %) > 0 and uy = w5172 € L. To get the last step above, we
used w(z —y) < w(r)w(y), and € < min(s — s1, p2). |

The key to proving existence of modified Jost functions is to show invertibility of
I—TY, which by Lemma 5.3 reduces to showing triviality of its kernel. We accomplish
this in several steps. First we show an identity that is crucial for later developments.
It is for this identity that the complexity of x(&) is needed. Recall that x(&) is the
cutoff function in the definition of GJ and T9) in (5.4).

LEMMA 5.4. Suppose s > sy > 3, u € L2(R), ¢ € L‘f’(sfsl)(R), and ¢ = TYp. If

*x(©)
(5.31) Jm/1 : de #0,
then
(5.32) [ et dy=o.
Proof. By (5.4),
i 2
(5.33) GY(z) = GY(—x) — - Im/1 X(;) de.

Therefore by ¢ = TS = GY * (uyp

(o, up) = (G * (ugp / / G8( — y)u(y)p(y)u(z)p(@) dy de

_ _% <1m/12 Xf) dg) o, |2 // = Dul@)p(@) d dy
(1 | RS € ) gl + (g, G » ()
(

630 =2 (1 [ X ) ol + tup
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Since (@, up) = (up,p), (5.34) and (5.31) imply (p,u) = 0, which is (5.32). We
provide the estimates needed to apply Fubini’s theorem in the calculation above. In
fact, by (5.22),

/ / 1G3( — )o@ [u(@)p(@)| dy dx
RJR
(5.35) < Cllugl? + C / / | log [ — ylllu()e ) lu(z)p(z)| dy dr.

We split the integral [, |log |z — yl||u(y)¢(y)| dy at |z — y| = 1 and estimate

(5.36) / | [og | — yll|[u(y)p(W)| dy < lIx{|e|<1} log z|2]luel|2
r—y|<1
and

/ log [z — yllu(y)e(y)] dy < / (1+ 2 — o) uly)p(w)] dy
|[z—y|>1 |z—y|>1

<@+ le)e/R(l + [y W™ (W) |ua (y)er (y)| dy

(5.37) < Cllual2(1 + [a])*.

Here u; = w'u € L?, p1 = w’(5*51)<p € L°°, and € > 0 is chosen so that s; — e > %
The estimates above imply the finiteness of (5.35). ad

The key vanishing integral (5.32) implies the following decay estimate for functions
in the kernel of I — 7.

LEMMA 5.5. Suppose s > s1 > %, u € L%(R), and that (5.31) holds. If ¢ €

L= —s)(R), and o = T, then there exists C = C(u, s, s1) such that

—(s—s1

(5.38) (@) < Cw™ ().

In particular o € L*(R).
Proof. By (5.22),

Plo) = Te(o) = 5 [ G8ta = wyutu)otw) dy

= % [;(cl —log(z — y))u(y)e(y) dy
= " (2 — lou(y — ))u(v)ely) dy
(5.39) = —% h log(y — z)u(y)e(y) dy
- % _T log(z — y)u(y)p(y) dy + R(z).

By (5.32), R(x) can be written in two ways:

1

T o

| e eoutet dr=5 [ - eutie) d

2 J_

(5.40)  R(x)
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We now start a bootstrap argument, assuming ¢ € LS° for some r > —(s — s1).
We have u = w5uy for some u; € L? and @ = w "y for some p; € L. Hence
up = w= "ty ;. Since r > —(s—s1),r+s>85 > % Letting po = %(sl — %) >0,
we get

(5.41) up = w_(T""A")w_%_pzulapl = w_(T"*'AT')quol.
Here

(5.42) Ar =s— 381 +p2 > p2 >0,

(543) T+AT:T+8751+p22p2>0,

and us = w*%*mul e L'n L2
We assume = > 0. Use the first expression in (5.40) for R(x) to get

(5.44) |R(z)] < C/ w™ D () uz (y)ih1 (y)] dy < Cw™HA ().
Next we write the first integral in (5.39) as

(5.45) [ sty — 220 gt dy

and split the integral at = + 1:

z+1
[ sty =0 ) ) dy‘

(5.46) < Cw™ A (@) x g1y <1y Log y |, l[uair [o-

When y — x > 1, there exists C = C(e) for every € > 0 such that log(y — z) <
Cuw(x —y) < Cw(x)w(y). Take e = B2. We have r + Ar —e > pp — € > 0 and
Ar > py > 4e. Thus

/ O: log(y — )+ () ua(y)er (v) dy]

<ow) [ w TS @ W) d
x+1
(5.47) < Cw? A () ugipr [y < Cw=TH ) (2).

In summary, the first integral in (5.39) is bounded as follows:

(5.48)

[ 1080 = 2hutw)ety) dy| < CuH) (a),

We now focus on the second integral in (5.39). When 0 < < 1, we split the integral
at —1 and estimate

(5.49) ] [ st = putretw dy\ < [ og +luty)et)| dy < .

xT
(5.50) \ [ 1osta = putiety) dy‘<0||><{|y52}10ng2U<P||2-
-1
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When z > 1, we use (5.32) again to rewrite the second integral in (5.39) as

/ ) (log(z — y) — log 2)w™ "2 (y)us (y)¢1(y) dy

(5.51) ‘*bg?/w“f“ﬁ”quxwwmm(w.

The last term in (5.51) is easily seen to be bounded by

”

(5.52) (log 2)w™ "2 (2)lugipr |1 < Cw~THE) ().

T

We split the first integral in (5.51) at § and estimate as follows. When y < 7, we
have

(5.53) log (1 %)‘ <c (%‘p

where p = min(1,r + %) Thus

‘/—; log (1 - %) w A (y)us () 1 (y) dy

x

2
< Clxl_p/ ly[Pw ™ "TAD () [ua(y) 1 (y)| dy
(5.54) < Cw™P(x)||uzer]:-

To estimate the y > 5 piece of the first integral in (5.51), we use the first expression
for up in (5.41) and get

], 10w (1= ) A0 A () ) dy

2
log (1 - Q) ’2 dy | [luieprll2
X

(NI

xT

< Ow—(T.-&-Ay-)—(%-‘rpz)(x) (/

x
2

s 3
< Cw~ AN =(Hp2) () (/ [log | dz) .
0

(5.55) < Cw™ (AT (),

This completes the estimation of (5.39) when x > 0. The arguments for x < 0 are

completely analogous, as long as one uses the second expression in (5.40) for R(x).

In summary, we get from the above estimates that ¢ € L:j’r ar if 7+ % < 1 and
2

pe L ifr+ % > 1. The result thus follows from finitely many iterations of the
above estimates. O

Next we show that any function in the kernel of I — T satisfies the same type of
eigenvalue equation as do the Jost functions, regardless of the choice of x(&).
LEMMA 5.6. Let s > sy > %, and u € L%(R). If ¢ € L= s (R) satisfies
o =T3¢, then
1
(5.56) 70xp = Ci(up) =0

in the sense of tempered distributions.
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Proof. Let ¢(z) be any test function in C§°(R). Let M > 1 be such that [—M, M]
contains the support of ¥. There exists C' = C (M, 1) such that

/] \1+|1og|x—y||+| Xz [0 0 dy

1
gc// (1+|1og|x—y||+1) dz [uly)p(y)] dy
RJ-M |z |2

(5.57) < C/R(l +log(ly + M))|u(y)e(y)| dy < oc.

Therefore, by (5.23), (5.57), and the dominated convergence theorem,

| elewa dw—//Gox— () dy v'(2) do

(5.58) —m o [ / O =X g wly)py) (@) dy de

N—oo 27

We want to use the Fubini theorem to change the order of integration. To that end,
we observe that there is C' = C(M, 4, N) such that

(L
el (]

M
: C/R/_M<1+ [1og | — yl) u(y)e(y)] do dy

etl@—y)€ _
R = XO )l uly)olw) | de de dy

\ de +C ) lu)oto)] o dy

(5.59) <c / (1 -+ log(ly] + M)|u(y)p(w)| de dy < ox.

Hence (5.58) equals to

Jm o [ / / ( D (@)w’(x) dx dg u(y)p(y) dy
= —i lim_ /R = / / e"(“y’%(w) da d€ u(y)e(y) d

= —i Jim_ Rw( i 't / —ivy, y) dy d¢ dx
(5.60) _ / w(x)C+(ugo)(x) da.
R

The last step follows from the fact that - fON et [ e Weu(y)p(y) dy dE converges
to Cy (up)(x) in L2. The above calculation shows

(5.61) [ et @) da = =i [ w@)C.(up)a) da,

which gives (5.56). 0

We are now ready to prove the key vanishing lemma.
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LEMMA 5.7. Suppose s > s1 > %,
L= s (R) and ¢ = T, then ¢ = 0.
Proof. At this point, we can basically repeat the proof of Lemma 3.4 for the case

k < 0. Only in the present case, k = 0. All calculations can be justified now that we

know the decay estimate (5.38). One has from Lemma 5.6 that

(5.62) e T = €.

By (5.38) and the condition on u, we have (1 + |z|)up € L', Hence up € C'(R).
Recall that 4p(0) = 0 by Lemma 5.4. Hence

u € L3(R), and that (5.31) holds. If ¢ €

(5.63) p(0) = Jim 2 7 (0)

We repeat the argument in Lemma 3.4 to get (3.71), which now becomes

(5.64) 271'/ l|? dx = 0. 0
R

We can now prove existence of the modified Jost functions.

THEOREM 5.8. Let s > s1 > 3, u € L2(R), k € (C\ [0,00)) U (RT + 0i) U {0},
A >0, and x(§) satisfy (5.31). Then there is kg > 0 such that for all |k|,\ < ko,
there exist unique solutions m9(x, k), m%(x, A £ 0i) € L= _(R) to (5.5) and (5.6).
Furthermore, there are C > 0 and € € (0,1) such that

(5.65) Il (k) = mS Ol < CII,

(5.66) |m2(\ £ 0i) — m?(o)lleo(S,sl) <O

Proof. Lemma 5.3, Lemma 5.7, and the Fredholm alternative theorem imply the
invertibility of I — T, from which we obtain existence and uniqueness of m{ and
mY. The asymptotic bounds (5.65), (5.66) follow from Lemma 5.3 and the fact that
HGD\JE—IHLSO( < CNe. 0

s—s1)

We can obtain asymptotic formulas for the original Jost functions and scattering
coeflicients as k approaches 0, since the original Jost functions can be expressed in
terms of the modified Jost functions as in (5.7) and (5.8). At this point, it is useful
to make a division between two distinct cases.

DEFINITION 5.9. Let u € L2(R), and let m%(x,0) be constructed as in Theo-
rem 5.8. w is called a generic potential if [ u(x)m(x,0) dr # 0, or a nongeneric
potential if [, u(z)m?(x,0) dx = 0.

Notice that m{(x,0) actually depends on the choice of the cutoff function x(€)
when we regularize T} to T,g. However, the definition of genericity does not depend
on the choice of x(§), as is shown in the following lemma. To state the lemma, let
XM (€) and ) (€) be smooth functions on [0, 00), which are identically equal to 1 on
[0,1], and identically equal to 0 on [2,00). We use the notation Gg(l), Gg(z)’ etc., to
denote the corresponding objects constructed using x(M (&) and x*)(¢).

LeEMMA 5.10. Let x(V(€) and x? (&) be given as above, and let u be given as in

Theorem 5.8. Suppose x 1) (&) satisfy (5.31), and let m(l)(l)(x,O) be the Jost solution
constructed in Theorem 5.8. If

(5.67) /Ru(x)m?(l)(:c, 0) doz =0,
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then
(a) T— TS(Z) 1s invertible on L‘jo(s_sl)(R);

(b) m?@) (x,0) = (I — T()O(Q))fll is the same as mg(l)(x,()).

Proof. Part (a) is of course already established in Theorem 5.8 if x(?)(¢) satisfies
(5.31). The interesting point, however, is that when v is nongeneric, I — Tg@) must

@)
still be invertible when ff XT(O d¢ is real. To prove that, we need to show that any

GRS L‘io( s—s1) satisfying ¢ = TOO (2)90 must be zero. Examining the sequence of lemmas
before Theorem 5.8, we find that the only place (5.31) was used was to establish the
key vanishing integral (5.32), which we now show by different means. In fact, we
observe that

23 Mg) — (2
(5.68) G8(2)(ZE) _ Gg(l)(l‘) + %/ W d¢ = Gg(l)(x) +c.
™ J1

We have
(5.69) =Ty =Go® x (up) = clp,u) + G * (up) = clp,u) + Ty,

Thus ¢ = c(cp,u}m?(l)(O). Since (m?(l)(O),u> = 0 by (5.67), (p,u) = 0, which is
the key vanishing integral (5.32). Part (a) can be proven by the same arguments
following (5.32).

To show part (b), we observe that

G (wrmy(0)) = G (um ™ (0)) + e(mi™ (0), w)

= G+ (um{™(0))

=mM(0) - 1.

The result now follows by uniqueness. ]

We are now ready to state and compute the asymptotics of the Jost functions
and scattering coefficients as k approaches 0.

THEOREM 5.11. Let s > s; > %, u € L2(R), k € (C\ [0,00)) U (RT £ 0i), and
A > 0. Let my(xz, k) and me(x, A\ £0i) be constructed as in Theorem 3.5, and let T'()\)
and B(\) be defined as in Lemma 4.2. Let md(x,0) be constructed as in Theorem 5.8.

Then there exists € € (0,1) such that as k approaches 0 and \ approaches 0T,
(a) if u is a generic potential,

(5.70) my (k) = Mmiwm?@) +0 (|10g12k|) :
(5.71) me(\ £ 0i) = T} ufﬂ)g(A . Oi)m?(()) +0 <|10;2A> ,
(5.72) T(\) =1+ % +0 <loglz)\|> ,

(5.73) BN = % +0 (“Ogle) ;
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(b) if u is a nongeneric potential,

(5.74) mi (k) = mf(0) + O(|k|| log k|),
(5.75) me (A £ 0i) = mY(0) + O\ log A]),
(5.76) T(\) =1+ O(\log \),
(5.77) B(A) = O(A|log Al).

Here the function log takes the principle branch, with a branch cut on [0,00). The
big O notation has the usual meaning in equations involving I' and B but holds in the

sense of L‘io(sfsl)(]R) norm in equations involving my and M.

Proof. The proof is a straightforward calculation using (5.7), (5.8), (5.65), (5.66),
and the definitions of T'(A) and 3(\). We only need to observe that

1 o0
0 =5 [ 29 ae
_ 1t 1 1? x(9
T om ), g—k;d“%/l 5—kd§
(5.78) _ % log k + h(k),

where log takes the principle branch with branch cut [0,00), and h(k) is analytic
around k& = 0. 0

6. Asymptotic behavior near k = oo. In this section, we obtain asymptotic
formulas for the Jost functions and scattering coefficients as k approaches co in the
cut plane. The situation of large k limit is very different from that of small & limit dis-
cussed in section 5. As we will see in the following, the operator I — T} can be inverted
explicitly when |k| is sufficiently large. This allows explicit calculation and estimation
of error. Similar to the situation of the Fourier transform, high regularity and decay
of the potential v imply high regularity and decay of the scattering coefficients as k
tends to oo. The precise assumptions on u and the corresponding decay estimates
on the scattering coefficients may vary according to the needs in application. As an
example, we work in this section with the following three types of assumptions on wu:
u € L2(R) with s > %, u € H:(R) with s > I, and u in the Schwartz class S. The
first type of spaces keeps the same assumption on u as in the previous sections. The
second type of spaces will provide the proper assumption to obtain a higher order term
for my(z, k). Finally, the choice of the Schwartz class will allow us to see how rapid
decay of the scattering coefficients may be obtained, without having to formulate the
regularity and decay assumptions on u too carefully.

To begin, let’s use the weakest of the three types of assumptions, u € L2(R), and
show how I — T}, can be inverted explicitly on L‘f’(sisl)(R), when s > s1 > % First
assume k is in a fixed Stolz angle away from the positive real line. In other words,
there exists a € (0, §) such that

[Im k| > (tan«)Re k.

For any such k and any £ > 0, |£ — k| and & + |k| are comparable:

1 _Je—H

0< =
Co = &+ K|

< Cy.
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Therefore by the definition of T} and Gy given in (3.42) and (3.6),

(6.1) 1Tkplloe < [|Grll2lluellz < CllGRl2llelLe=
where

6.2 Gl < C —
(62) Gl ( ) <o

It follows that [ T}| L, Therefore (I —Tj)~' = > T} when |k| is
Zo—s1)

e S

large. To invert I — T}, when k is close to the positive real line, we write T}, = S — fk
by (3.8), where for k = A £ pi, with A >0, u >0,

(63) Suela) =i [ D uly)() dy
Foo

and
(6.4) Tep = Gi * (up), G 106”5515

. — * —_ .

S A T Ay

Now that k = A4 pi with A > 0, k is in a fixed Stolz angle away from the negative
real line. By the same argument as above, we have ”Tk”L‘f’(s_s R \/% On

the other hand, I — Si can be inverted explicitly by solving an ODE. In fact, we can
rewrite

(6.5) p=Swp+g=g+ Z/ e (y)p(y) dy
Foo
as
(6.6) (¢ —g)e ™ = Z/ e~ *u(y)p(y) dy.
Foo

Differentiating with respect to = and rearranging terms using an integrating factor,
we get

(67) |: —i [2__u(t) dt _ka(ﬁp _ g):|x _ Zfloc u(t) dt —zkw ug.

By (6.6), p(z) — g(z) — 0 as © — Foo. Hence we may integrate (6.7) from Foo and
get

(69 pla) = glo) 4 [ DT o) dy
Foo
The right-hand side of (6.8) is (I —Sk)~tg. It is easy to see that the operator norm of

(I — Si)~ ! is bounded uniformly in & for |k| large. Combining the calculation above,
we may write

(I-T) =T =Sk+Ti) ' =T+ -5 ") (I —5K)~"

(6.9) _Z (I —Sp) ") (I — Si) !

We have thus proved the following lemma.
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LEMMA 6.1. Let s > s1 > 1 and u € L2(R). Let k € (C\ [0,00)) U (RT + 0i).
There ezists kg > 0 such that for k| > ko, I — Ty is invertible on L>= . (R), and
(a) if k is in a fixed Stolz angle away from the positive real line, i.e., there exists
a € (0,%) such that
[Im k| > (tan ) Re k,

then

Co
(6.10) ITllze=,_, L= < S
and

(6.11) (I —Ty)~ ZTk,

(b) if k= ALip, with A >0, u >0, then for T given in (6.4), and

(6.12) Rupla) =i [ Mo 720 ugy)oly) dy,
Foo
we have
C
(6.13) |Tellz, o= < TR [RellLe,_, L~ <C
and
(6.14) (I-Te) ™' =Y (- +Re)To)"( + Ry).
n=0

The calculation of the scattering coefficients will be simplified by the following
lemma.

LEMMA 6.2. Let u and Rx1o; be given as in Lemma 6.1. If p € Lio(s_sl)(R),
then

(6.15) /Ru(x)e_i”\”’[(l—i— Ryy0i)p)(z) do = / w(z)e et T u®) Ao gy g,

R

Proof. Recall that v € L' and ue € L' by the conditions on u and ¢. Therefore
by Fubini’s theorem

/R w(@)e™ (R0 (@) de
= [ula)e e [ eI Rugy)oly) dy do
R —00
:/u(y)g@(y)e_iﬁocu(t) dtefi)\y/ (eiffoou(t) dt) dz dy
R y x

(6.16) = /Ru(y)e_“yei e At oy dy — /R“(y)e‘“y@(y) dy.

Equation (6.15) thus follows. d

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 11/01/21 to 129.15.64.254 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

BENJAMIN-ONO DIRECT SCATTERING AND JOST SOLUTIONS 5197

We want to use the inversion formulas in Lemma 6.1 to compute asymptotics of
my(x, k), me(z, A £07), T'(A), (M), and f(X). By relations (4.28) and (4.42), we only
need to study mi(x, k), me(z, A+ 03), I'(A), and G(N).

THEOREM 6.3. Let s > 3, u € L%(R), k € (C\ [0,00)) U (RT £ 0i), and A > 0.
Then

(6.17) lim mq(z, k) =1,
k—o0
(6.18) lim me(z, A + 0i) — A%’ Joou®) dt
A—00

; 1
(6.19) L(\) — et Jeu® dt — o ()\) as A — oo,
and
(6.20) B(\) € L?(a, o), /\lim B(A) =0.

—00

Here the limits for my and m. hold in L>°(R) norm, and a > 0 is any fixred number.

Proof. We first work on my(k) = (I — Ty)~ 1. If k is in the left half plane, we
use (6.11) and the fact that || >07 771 [ec < —%= to conclude (6.17). If k is in the

VIkl

right half cut plane, we use (6.14) to write

n=1

and use (6.13) to conclude that the infinite sum in (6.21) has L° norm bounded by
—_. What is left to show is that ||Rj1]l.c — 0 as k approaches oo in the right half

vt

cut plane. For simplicity of presentation, let us work only with the case k = \ + iu
with A > 0, u > 0. In the following proof, this is always assumed. Thus

(6.22) Rkl(l‘):i/ gika—u) i [ (0) dy oy g0

Recall that u € L' if u € L? with s > 1, and le#(==¥)| < 1 when z —y > 0. So
lim, o Rr1(z) =0, and

(6.23) lim Ryl(z) =

T—r00

0 if >0,
i g eiM@=y) gt Jy u(t) “uly) dy  if p=0,

by the dominated convergence theorem. By the Riemann-Lebesgue lemma,

(6.24) lim z/ M@)ot Jy ul®) dty () qyy = 0.
A—oo Jr

Therefore for every e > 0, there is ky > 0 such that if |k| > ki, |lim, 00 Ril(z)| < €.

Since u € L, there exist finitely many points {z,, })_; such that |Rx1(z)—Rr1(y)| < €

if none of the x,,’s is between x and y. As we have already controlled R;1(z) when z

is at +o00, it remains to control Ry1(z) if x is one of {x,,}N_;. For each fixed x,,, we

have

(6.25) Ril(zy,) = Z/ etk(@n—y) i [ ul®) dtu<y) dy.
—o0
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We claim that limg_, oo Ri1(z,) = 0. In fact, one can mimic the proof of the Riemann—
Lebesgue lemma, and approximate u in L' by a C§° function g, while integrating

(6.26) z/ eth(@n—y) gi [y u(®) dtg(y) dy

o0
by parts to get

(6.27) — o)+ [ (0 () gy,
k kJ_ Yy

which obviously tends to 0 as k tends to co. Thus by enlarging ki finitely many
times, we get for |k| > k1, |Ri(z)| < 2¢ for all 2. This completes the proof of (6.17).
By a similar argument as above, the asymptotic behavior of m.(A + 0i) is given by
(I + Rx1o:)e, which in this case can be computed explicitly as

[R>\+Oie] (Qj) = ’L/ eiA(I*y)ei f; u(t) dtu(y)ei)\y dy

_ e [T () di /w (efiffoo u(t) dt) dy
—00 Yy
(628) — 761')\9: + 6i)\mei jjoo u(t) dt.
Hence [(I + Ryyo0i)e](z) = e?*e JZoow® 4t Thig finishes the proof of (6.18).
In order to obtain enough decay estimates of the scattering coefficients, we need
to expand m;y (A + 0i) and m. (A + 0i) by one more order. By (6.13), we have
mi(\ =+ 0i) = (I —Thyos) 11

~ 1
(6.29) = (I + R>\+Oi)1 — (I + R)\+()i)T)\+0i(I + R)_;,_oi)l + O </\)

and

me(A+0i) = (I — Thyo:) e
(6.30) = (I'+ Rayoi)e — (I + Ragoi)Tayoi(I + Rajoie + O (i) :
By the definition of I'(\) and B()) given in (4.24) and (4.26), we have

PO =1+ [ u@e T+ Raso)el(o) da
(6.31) - i/Ru(w)e““[(I + Rar0)Daroi(I + Rayoi)el(x) dz + O (i\)
and

B\ = i/Ru(x)e*i)“'”[(IwL Ryvo0i)1](x) dx

(6.32) —i /R w(z)e ™ [(I 4+ Ragoi)Trroi(I + Ragoi)l](z) dz+ O C\) .
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We first work on I'(A). By Lemma 6.2,
l/ u(z)e” (I 4+ Rayoi)e](x) do = / iu(z)el fe B At gy
R R

_ _/ (eif;o u(t) dt) o
R .

(6.33) = i fpu(t) dt _ g

and

[ @ T+ Rasod PosanlT + Rasonel(a) do
(6.34) = /R w(z)e” el SO AT (T + Rygo)el(z) de,
which is bounded by [[ull2||Tx+0i(I + Rato:)e|l2- By the Plancherel identity,

[ Txy0i(I + Rayoilela < C

H MF(U(I + Rxatoi)e)

2

C
< SN + Ratoi)e) 2

C C
(6.35) < XHU(IﬂL Ryyoiellz < X||U||2~
Hence
(6.36) T =14 éku®d 140 (i) _ e dt | o <i> .

This proves (6.19). The calculation of 5(\) differs basically only in the main term

(6.37) /u(az)eii)‘z[(IJr Ryi0i)1](x) dx = / w(z)e el T u®) dt gy
R R
The result (6.20) follows from the fact that u € L' N L2 d

Our next result shows that a little more information on the asymptotic behavior
of my(x, k) may be obtained by imposing slightly stronger regularity assumptions on
u. For this result, k is allowed to approach oo in a fixed Stolz angle away from the
positive real line.

THEOREM 6.4. Let s > 3 and u € H:(R). Suppose there exists a € (0,%) such
that |[Im k| > (tan«)Re k. Then there exists € > 0 such that

Cru(x) 1
(6.38) mi(z, k) =1-— . +O(|kz|1+€> as k — oo.

Here the big O notation holds in the sense of L>(R).

Proof. If k satisfies |Im k| > (tan a)Re k and |k| is sufficiently large, we use (6.11)
to get

(6.39) my(k) = —Ty) 'l = iT,?l.

n=0
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Since u € HE(R), w*a € L? and @ € L'. Tt follows that the L> norm of

1 [ e

(6.40) @ = 5 [ it de
is bounded by I%I Therefore by (6.10),
(6.41) mi(k) =1+T,14+0 <|k:1|3> .
We now write T3 1 as

R T e, I

(Tix1)(z) = “omk ), © a(g) d§ + ok Jy €= ku(f) dg

(6.42) S IC) S b 617676”65[5%(5)] dg.

k ok Jo  E—k

We estimate the last integral as follows. Since w*@ € L2, by choosing e > 0 sufficiently
small, we can make £¢0(¢) € L. The integral is therefore bounded by

Xe+(£)€' ¢ HXR+ (&g ¢
6.43 C||m/————=—|| <C||=——2=—| < .
(049 e I i I
Thus T1 = —% + O(‘kl%ﬂ), and the result follows. O

Our last result exemplifies how fast decay of the scattering coefficients can be
obtained when u is assumed to be smooth with rapid decay.

THEOREM 6.5. Suppose u € S, the Schwartz class of rapidly decaying functions,
and k € (C\ [0,00)) U (RT £ 0i). Then there exists ko > 0 and C > 0 such that

Cru(x)
k

(6.44) Hml(z,k) 1+

<@
o K[

for |k| > ko, and for every positive integer N, there exists Cn > 0 such that

. e i [T u Cn
(6.45) l[me(z, A+ 0i) — ereel S o ul®) dt) < N
(6.46) D) — et fe® ) < T2 and [B0V)] < 1

for all A > k.

Proof. The improvement from (6.38) to (6.44) is twofold: € is improved to 1, and
the restriction on the Stolz angle is removed. We first assume k is in the left half
plane. The choice of € in the proof of Theorem 6.4 is used only to make £¢a(€) € LY.
It is clear that we may choose € = 1 now that u € S.

To remove the restriction on the Stolz angle, let’s assume k is in the right half
plane with |k| sufficiently large. This time we use (6.14) to write

(6.47) mi(k) = (I —Tp,)"'1 = i(—([ + RO)T)™MI + Ry)1.

n=0
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We again work only with the case k = XA + ip with A > 0, 4 > 0 and compute

(I + Ry)1(z) = 1 +Z~/ ik a—u) i I3 ) dty ) g

P C) I S A e W s SR
=1 2 —+ k/_ooe (e u(y))y dy
. u(x) 1

(6.48) =1 — T 0 (|k|2> .

Here we have used integration by parts to compute the integral and used it one more
time to estimate the remainder. It follows that

e
0 gixg U
w7 (=D @ o ()

1[0 et 1
o I=1CLR )

[T (I + Ry.)1](x)

C_u(x) 1
4 _ 1)
(6.49) 8210
Therefore
u  C_u 1 Ciu 1
. ky=1——+4+— — | =1-— —= .
(6.50) mi (k) r T +O<|k|2) i +O<|k|2)
This completes the proof of (6.44).
Next, we use (6.14) to write
(6.51) me(A+0i) = (I — T,\+0i)716 = Z(—(I + R)\+0i)f)\)n(1 + Rytoi)e
n=0

and recall from the proof of Theorem 6.3 that [(I + Rxio;)e](z) = e@el /7o u®) dt
Thus

1 0 ei:E£

TA(T+ Bacoel(r) = 5 | F (uly)e™e! 220 ) (6) dg
1 0 6”5 i [Y
_ zf_oo u(t) dt _
=57 | g F (e PO ) (6 ) ae
1 [ eiat v
(6.52) =5/ eg F (u(y)e' 'O ) (&) de.

Since F(u(y)e’ 2o u(®) ) is also in the Schwartz class, we have ||T5(I + Ravoi)ellso <

f—%, and (6.45) follows. The asymptotic bound on I'(\) follows immediately from

(6.45). Finally, to find the bound on B()), we write

(6.53) sy =% /R w(@)e" ™ [(—(I + Rayoi)Tn) (I + Rosoi)1](x) da.
n=0
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By Lemma 6.2,
/Ru(x) _“\“”[((I—I—RAJFOJTA) ¢l(z) dx
- / u(z)e et L u 0 MT o) (z) da
R

= F (u(@)el 710 4 T)(2)) ()

= o [P (uwyeis o @) *F([’T&so]u))} "
(6.54) = o [ (e 0 ) - 9 e
whose L*° norm is bounded by
(6.55) Coup P (u()e 740 4 ) fupl < S

£>x

Taking ¢ to be ((I + Rago0i)T2)""H(I + Rxy0i)1, we easily obtain |3()\)] < CN from
(6.53). O

7. Time evolution of scattering data. In this section, we present a formal
derivation of the time evolution of the Jost functions and scattering coefficients given
in [7], assuming u = u(x,t) is sufficiently smooth with sufficiently rapid decay and
evolves with the BO equation (1.1). We spend no effort in justifying the change of
order of derivatives with asymptotic notation. The reason that we don’t try to make
the steps rigorous is as follows. If our goal is to construct solutions to the Cauchy
problem of the BO equation using IST, the shorter path is to evolve the scattering
data by the formulas obtained formally in this section and prove that the solution
constructed by the IST indeed solves the BO equation. Therefore, although it may
be possible to prove the time evolution of scattering data using the H*® solution to
the BO equation constructed in the PDE literature, we do not pursue that path here.

The derivation is done in two steps. In the first step, we will argue that the Jost
functions m; (k), me(A % 04) and the eigenfunctions ¢; defined in section 2 satisfy the
following evolution equations:

(7.1) Ordj = Buoy,
8tm1(k) = Buml(k),
Orme(A £ 0i) = Byme(A £ 0i) — iX?me (X + 0i),
where B,, is defined as (2.4). In the second step, we will use (7.1), (7.2), (7.3) to show

the following time evolution for the eigenvalues {\;}¥ ,, phase constants {v;}%
and scattering coefficients I'(\), S(\):

Jj=1 j=0D

(7.4) Ot =0,

(7.5) Iy =2,
(7.6) 0'(A) =0,

(7.7) 0eB(N) = iNB(N).

We want to use the Lax equation 0y Ly, + [Ly, By] = 0 to derive (7.1), (7.2), (7.3).
However, as is pointed out in section 2, the equivalence of the Lax equation with the
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BO equation has only been derived if L, and B, are regarded as operators on H™.
We prove in the following lemma that the eigenfunctions and Jost functions are in
fact boundary values of bounded analytic functions on the upper half plane. This is
enough to justify the Lax equation.

LEMMA 7.1. Let ¢;(z) be an eigenfunction of L, corresponding to a negative
eigenvalue X;. Let mi(z,k), me(x, A £ 0i) be given as in Lemma 3.1 and satisfy
either (a) or (b) in that lemma. Then ¢, my(x, k), me(z, A £ 0i) € H>F for fized k
and \.

Proof. We first work on mq(z,k). If k is not on R* + 0i, we can repeat the
calculation in Lemma 3.1 to get (3.19), or

oo _ifx
(7.8) mile) 1= 5o [ e de

For z = x + iy with y > 0, define

P 1 [ e J 1 [ eifTe—¥E J
19 P =g [ e d= o [ S R ame de
Since amy € L9 for some 2 < ¢’ < oo, F(2) is obviously bounded and analytic in the
upper half plane. Furthermore, F'(x +iy) converges uniformly to mq(z) — 1 as y \, 0.
This shows mq(z,k) € H>>". The eigenfunction ¢;(x) can be treated in a similar
way.

Next we work on the cases k = A+0i. We provide arguments only for mq (z, A+0i).
The other functions can be treated similarly. We abbreviated mq(x, A 4 0i) simply as
mq. Since

1
(7.10) gawml — Cy(umy) = Amy — 1),
and mi(z) —1 = 0 as x — —o0, we get

(7.11) my(x) =1 —i—z’/x eNT=) L (umq)(s) ds.

—00

For z = x + iy with y > 0, define
(7.12) F(:) = ma(0) +1 [ 90, (wmn)(s) ds.
0

Here the integral is taken along any smooth contour in the upper half plane with end
points at 0 and z. We have used the analytic extension of C (um;) into the upper
half plane as C (umy) € HP*. F(z) is obviously analytic in the upper half plane.
We now estimate F(x + iy) — my(x). To do that, we take the contour of integration
in (7.12) to be the straight line from 0 to z, followed by the straight line from z to
x +1y. It follows that

(7.13) F(x +iy) — mq(x) = i/oy e W=, (umy)(z + is) ds.

Using the elementary estimate on HP>* functions (see Lemma 2.12 in [19])

(7.14) | (wma ) (2 + )| < O™ 5 | O (uma) g+
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we get
Y A\ h
|F(x + iy) = my(2)] < CIIC. (umy) 0.+ / M=) =% g
0
1
(7.15) = Ol (um)lln [ o' Fe 957 s
0

For A>0,y>0,p>1, and 0 < s < 1, we have the elementary estimate

1 1
1— 1 P
(7.16) Y ~he 09 < min 174, L(l_J o

Therefore for some constant C' = C(u, m1,p, A) >0
(7.17) [F(z +iy) — ma(@)] < Cmin (1,477 ).

This implies that F(z) is bounded and F(x + iy) converges to mi(z) uniformly as
y \( 0. In other words, m; € H>*. 0

Next, we show that (0; Ly, + [Ly, Bu])e = 0 if ¢ € H** and is suitably smooth.
In fact, repeating the derivation of the Lax pair in [21] using the modified L,, and B,
given in (2.3) and (2.4) provides

2 1
(7.18) [Lus Bulp = g(C-&-uww)@ - Zc-i- (Uzzp) — 204 (uzuep).

Using the BO equation (1.1), we get

(119)  (@Lu)o = —C4(up) = 204 (0p) + £ Cs (e — ACtza)l).
Hence

(0L + (L B = 2(Crttan)p — 2C4((Cra))
(7.20) =20 [(Cruea)el.

Since ¢ € H*", we get (Cyug,)p € HY, and C_ [(Cyugs)p] = 0. Thus we may
use the Lax equation on all eigenfunctions ¢; and Jost functions m; and m., by
Lemma 7.1.

The standard argument of a Lax pair shows that all eigenvalues {\; }jvzl do not
change with time. We take the time derivative of L,¢; = A\;¢; to get

(7.21) (0tLu) @) + Lu(0i95) = Xj0i ;.-
Using the Lax equation (0yL,, + [Ly, Bu])¢; = 0, (7.21) becomes
(7.22) (Lu = A;)(8:0j = Budj) = 0.

In other words, 0:¢; — By,¢; is an eigenfunction corresponding to A;. By the sim-
plicity of the eigenvalues proven in [21], 0,¢; — B,¢; is a multiple of ¢;. To find
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out the multiplicity constant, we compare the asymptotics when x — 4+oo. By the
normalization used in [21], ¢;(z) ~ L as 2 — Foo. On the other hand, we argue that

(7.23)  8ip; — Bud; = 8ipj — %ag@ —2[(Chug)p; — C((udy)e)] = 0 <i) :

which implies (7.1) as a consequence. In fact, 0;¢; — %(‘ﬁgbj =0 (%) if we formally

exchange derivatives with asymptotics. Cu, — 0 as x — *oo because
(7.24) F(aCyu,)(€) = =0 (xp+&0) = —xp+@ + ixg+ETu € L.

For a similar reason zCy ((u¢;);) — 0 as & — £oo.

We can show (7.2) and (7.3) similarly. A few differences in the arguments are
noted: the step where we used simplicity of eigenvalues is now replaced by uniqueness
of Jost solutions; 9;m. (A & 0i) — B,me (A £ 0i) ~ —iA2e™*® as x — Foo.

We now derive the time evolution of the scattering coefficients, starting with (7.5).
Taking the time derivative of (2.6), we obtain

(7.25) Oymy = 7&&5@%‘ + (ath)¢j + (58 + ’Yj)atd)j + (k — )\j)ath(k‘, )\j).
J

Letting B,, act on (2.6), we obtain

(7.26) Bumy = ————Bud; + Bul(@ +7;)9;] + (k — X)) Buh(k, \y).

_r
[y
Take the difference of (7.25) with (7.26), use (7.1), (7.2), and evaluate at k = \; to
get

(7.27) (075)0;5 + [x + 7, Buldj = 0.
We compute the commutator term and get

[z + v, Buld; = *%ar(ﬁj + 204 (ug;) — 2[xC 4 (ug;)e — Cy(z(ud;))z)]

= *% m¢j + 2C+(’UJ¢J)

(7.28) = —2L,¢; = —2);¢;.

The terms in the square brackets vanish as is easily seen by taking its Fourier trans-
form. It follows that

(7.29) (Oev; — 2X5)0; =0,

from which we get (7.5). To obtain (7.6), we take the time derivative of (4.28) and
also act on it by B,,. We get

(7.30) Bime(\ + 0i) = Ddyme (A — 06) + (9,D)me (X — 0i),
(7.31) Bume(\ + 0i) = T Byme (A — 0i).

Take the difference and use (7.3) to get

(7.32) — iNme (A + 0i) = (0;T — iXN*T)me (X — 0i).
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Now use (4.28) again to get (7.6). Finally to obtain (7.7), we perform a similar
calculation using (4.29). We first get

(733) atm1(>\ + O’L) — 8tm1()\ — OZ) = ﬁatme()\ — 02) + (8tﬁ)me(>\ — 02),
(7.34) Bumi(A + 0i) — Bymi (A — 0i) = BByme (A — 0i).

Take the difference and use (7.2) and (7.3) to get

(7.35) (018 — iN2B)me (X — 0i) = 0,

from which (7.7) follows.
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