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We consider a star as a compressible fluid subject to gravitational and magnetic forces. This leads
to an Euler-Poisson system coupled to a magnetic field, which may be regarded as an MHD model
together with gravity. The star executes steadily rotating motion about a fixed axis. We prove, for
the first time, the existence of such stars provided that the rotation speed and the magnetic field are
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1. Introduction

There have been extensive mathematical studies of stars sub-
ject only to gravitational forces but very few that incorporate
magnetic forces. The only study that we are aware of is [1], in
which the star does not rotate. It is well known that magnetic
forces have major physical effects, for instance in the recon-
nection phenomenon of solar flares. Stellar magnetism is a very
active area of physical theory [2,3], typically modeled by MHD, as
well as of observation [4]. Because it is rare for stars to have a net
charge, it is frequently assumed that the electric field vanishes.

Our model consists of the steady compressible Euler equations
together with gravity and magnetic terms. It is as follows.

V.- (pv)=0 (1)
p(v- Vv +Vp=pVU+(V x B) x B (2)
Vx((xB)=0 (3)
V-B=0 (4)
AU = —47p (5)
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Egs. (1)-(3) should hold in the fluid domain {p > 0}, while (4)
and (5) should hold in all of R3. For simplicity, the magnetic
permeability is set equal to 1 throughout R3, although more
realistically it could differ inside and outside the star. We further
impose the boundary conditions limy .~ U(x) = 0, an equation
of state p = p(p), and

p = 0 on the set 3{p > 0}. (6)

The first two equations express mass and momentum conser-
vation. The magnetic force is J] x B, where ] = V x B (from
Ampére’s Law in Maxwell’s equations without E) is the mag-
netic current, omitting the usual 4 factor. The third equation
comes from Faraday’s Law in Maxwell's equations, where the
electric field and the conductivity have been neglected due to the
large length scale in astrophysics. The fourth equation is one of
Maxwell’s equations and the fifth is gravity.

We assume a steady rotation v = wrey around the x3 axis,
where w is a constant rotation speed and ey = (— sin#f, cos 6, 0)
in cylindrical coordinates. Then (1) is satisfied and (v - V)v =
—?V(r?)/2 where r? = x2+x2. Furthermore an equation of state
is assumed: p is a function of p. For instance, we allow p(p) = p”
with & <y <2,y # 3. The specific enthalpy is defined as

h(p) = /ﬂ Ps) ds. (7)
0 N

We will show in Section 2 that, due to the cylindrical symmetry,
there is a scalar function ¥ such that rB" = 93, B> = —9,v.
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Under these conditions we will show in Section 2 that the
system reduces to the three equations

1
- szrZ +h(p) — U + €K(y) = constant in {p > 0}, (8)
Ly = ek(y)p inR’, (9)
U=1x|""%p inR> (10)

where L = V-r~2V and where k = K’ is an arbitrary function. We
call k the magnetic current function, because it takes the magnetic
potential i to a multiple of the magnetic current ] = V x B (see
Section 2).

We will prove the existence of solutions by a perturbation
analysis starting from a spherically symmetric stationary solution.
The tool we employ is the standard implicit function theorem in
Banach space.

For any radius R > 0, it is well-known [5] that there exists
a unique spherical solution pg(|x|) > 0, called the Lane-Emden
solution, with w = € = 0 and ¥ = 0 such that pg > 0 in By =

x| < R} and pg € C%(Bg) N C1*(R3), where o = min (22X, 1).
{Ix| P o
Our main theorem is as follows.

Theorem 1.1. Let R > 0. Let pg be the unique solution mentioned
above. Let k € C%(R). Let p(p) = p” where 6/5 < y < 2
and y # 4/3. Then there exist ® > 0 and € > 0 and solutions
(P = Poe, ¥ = Voe) forall |w| < @ and |e| < €, with the
following properties.

o p € CH¥(R3), ¥ € C3>%(R3), where & = min (% 1).

e Both functions are axisymmetric and even in Xs.

e 0 > 0 has compact support (near Bg).

e [ pdx = M(po) (independently of w, €).

e The mapping (w, €) — (p, ) is continuous from (—w, ®) X
(=€, €) into C'(Byr) x CZ(R3).

More generally, we permit p(p) to be any function that satisfies
(11) and (12) and we assume that M'(po(0)) # 0, where M(p(0)) =
fR3 p dx is the total mass of the unique radial nonrotating star
solution with center density p(0) (more details explained in Theorem

2.1 in [5]).

p(s) € C*(0,00),p" > 0,p(0) =0 (11)
Iy €(1,2), lim s>7p”(s) < 0, and (12)
s—0

6 *
Iy* e (=,2), lim s p'(s) > 0.
5 5—00

Our construction shows that the solutions are modified from
the Lane-Emden solution by a simple radial stretching or contrac-
tion. The support of p,, . takes an oblate shape, as we remark at
the end of Section 2. The shape is only affected by the magnetic
field at higher orders in w? and €. We remark that the case y =
% is excluded from Theorem 1.1, because in that case the key
linearized operator in our construction has a non-trivial kernel.
This corresponds to the fact that there exists a family of non-
rotating radial solutions with zero magnetic field, obtained by
simple rescaling of an unperturbed one. The solutions in this
family all have the same total mass, due to the special scaling
symmetry in this case. With the mass constraint in Theorem 1.1,
the nearby solutions must come from this trivial class. However,
if we were to remove the mass constraint, non-trivial solutions
also could arise at the % power.

There have been many studies, including by the giants Mac-
Laurin, Jacobi, Poincaré, Liapunov and Chandrasekhar, of station-
ary and steadily rotating stars subject to gravitational forces but
without any magnetic field. There are two modern methods of

analysis of rotating stars, the variational method introduced by
Auchmuty and Beals [6] and Li [7] and the perturbation method
introduced by Lichtenstein [8]. The perturbation method was re-
cently revived and further developed in [5] and [9], where further
references and discussions may be found. Furthermore, the two
papers [10] and [11] appeared after this paper was originally
submitted. There are a number of excellent general expositions,
notably the treatises [12,13] and [14].

However, the only mathematical reference of which we are
aware that deals with a magnetic effect is [ 1], which considers a
stationary (v = 0) magnetic star. The authors of [ 1] find solutions
by a variational method and permit y > 2, but they require k to
be a constant function of . Our paper is very different from [1]
with regard to its methodology and most importantly with regard
to the rotation of the star. Besides permitting rotation, we use a
perturbation method and we permit the magnetic current func-
tion k(1) to be completely arbitrary rather than a constant. To the
best of our knowledge, ours is the first mathematically rigorous
result that establishes the existence of rotating magnetic stars.

In Section 2 we state the assumptions in detail, specialize
the model to our situation, and outline the proof of the the-
orem. Section 3 is devoted to studying the detailed properties
of the inverse operator L. Section 4 is devoted to the proof
of Fréchet differentiability, which is a key requirement of the
implicit function theorem.

2. Setup and outline

We are looking for axisymmetric steady rotating solutions to
the magnetic star equations (1)-(5). To that end, let v = rwey,
B = Be, + Bes;, and assume that all the functions p, B, U
depend only on the cylindrical coordinates r and x3. The magnetic
star equations simplify considerably under the aforementioned
assumptions. First of all, by these assumptions we have V-v = 0,
Vp L ey, and v || ey. As a consequence, the mass conservation
equation (1) is automatically satisfied. Eq. (3) is also satisfied as
is seen from the following calculation:

V x (v xB)=—-V,B+ Vgv = —wBeg + wB'ey = 0. (13)
Because there is no 0-dependence, Eq. (4) gives us
0=rV-B=3d(rB") + &(rB*), (14)

which is satisfied if the components of the magnetic field are
induced by a scalar axisymmetric ‘magnetic potential’ v/ in the
following way:

B = 83, 1B = —3,v. (15)

This is equivalent to assuming that the vector magnetic potential
A givenbyB=V xA,isA= —%eg.

Our next step is to express the term (V x B) x B in (2) by .
A short computation shows that

V x B= (838" — 8,B%)ey = r(Ly)es, (16)
where
2
szlar<ar‘”>+¥:v-(%vw>. (17)
r r r r
So

(VxB)x B=(Ly)ey x (0sye; — 9 ye3) = —(Ly)Vy. (18)

w?r?) and ¥ = V(h(p)) from (7), the

Because v - Vv = —V( s
becomes

momentum equation (2

V(—30°r? +h(p)) = VU — J(Ly)VY (19)

(
1
2
)
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Notice that every term but the last one in (19) is a gradient. It
follows that the last term must be curl free, namely,

<L‘/’> Vi = 0. (20)
P

Thus the gradients of % and 1 are parallel. A natural sufficient

condition for this is that £ is a function of Y. Motivated by this
condition, we look for a special but quite wide class of solutions
to (19) for which Ly = epk(y) with an arbitrarily prescribed
function k. The constant € is conveniently included here as a small
parameter. For these solutions, the momentum equation (19) can
now be written as

h(p) — 2w?*r? —U + €K(y) = constant, (21)

where K(s) = fo k(t
To summarize, the magnetic star equations have now been
simplified to the following problem:

1
h(p) — 5w2r2 — U+ eK(¥) = constant in the region {p > 0},

(22)

Ly = epk(y) inR3, (23)

u:p*i in R3. (24)
x|

The last equation comes from (5), together with the assumption
that p(x) vanishes appropriately at infinity. Thus we have (8),
(9), (10). We also assume the boundary condition (oco) =
0. Solutions of (22)-(24) together with the boundary condition
(6) satisfy our original system (1)-(6). The rest of the paper
is devoted to the existence of these solutions, thereby proving
Theorem 1.1.

We will construct solutions to (22), (23), (24) which are close
to the nonrotating, magnetic-free Lane-Emden solutions. We thus
begin by considering a Lane-Emden solution py supported on By,
as is explained in [5], and the deformation

g (x)= (1 + %) (25)

used in [5]. Here ¢ : By — R is an axisymmetric function that
is even in x3. If ¢ is small in a suitable norm, g, is invertible, ¢
can be extended to R? preserving the symmetry requirements.
The deformation g, can then be extended to a homeomorphism
on R3 (as well as diffeomorphic on R? — {0}) accordingly. See [5]
for detailed estimates of these facts. We look for a solution of the
form

pe(2) = M(Z)po(g; '(2)), (26)
where M(¢) is chosen such that p,(x) has the same mass as po(x).

Our model (22), (23), (24) may thus be recast as the pair of
equations

1
(pc ||>( z)— (p; |1|>( )+ 1%z} +23)
— h(p;(2)) + h(p:(0)) — eK(y(2)) + €K(¥(0)) = 0

for z € g.(By), (27)
V(z) — eL ' (pck(¥))(z) = 0 for all z € R3. (28)

The precise definition and properties of L~! are given in Section 3.

We reduce the problem further by observing that (28) only
needs to be solved for z € g((Bl) Indeed, as p; is supported on
g;(Bl) if we can find a smooth enough function v : g;(Bl) — R
for which (28) holds for all z € g;(B1) then we can extend p k()
to R3 by setting it to be zero outside g;(Bi). Now we extend

¥ to R3 by (28) and observe that (28) holds for all z € R?. In
summary, when solving (27) and (28), we only need them to hold
for z € g;(By).

In order that the functions are defined on a fixed domain, we
make the change of variable z = g.(x), and replace ¥ by the
function

@(x) = (g (x)). (29)
It follows that (27), (28) can be written as

2
(ps T |) (8:(x)) — (p; * |]|> (0) + 500°(x] +x3) (1 + ‘I(lxz))

— h(M(&)po(x)) + h(M($)po(0)) — eK(p(x))
+ €K (¢(0)) = 0, (30)
o(x) — L (prek(e(g; 1))g: (%)) =0, (31)

where both equations are now required to be valid only in Bj.
Now we begin to set up the scenario for the implicit function
theorem. We define the operators

1

2
+ 307X +x3) (1 + ?T;)

— h(M(&)po(x)) 4 h(M()0(0))

— eK(p(x)) + €K(9(0)), (32)
FaE, @, w, €)(x) = p(x)
— L™ (pck(o(g; " ))g: (%) (33)

for x € B;. We define 7 = (F;, 7). Note that 7(0,0,0,0) = 0
because pp is the Lane-Emden solution in B;.
Let B; = B; \ {0}. We consider the space

X =CYBy)N{f | f is axisymmetric and even in x5, f(0) = 0,
Ifllx < oo} (34)

where the norm is

Iflix = sup L

xeBj Ix]

It is easy to see that X is a Banach space. In fact, a Cauchy
sequence {u,} in X is also Cauchy and thus converges to u in
C!(By). Now for any x € Bj, |Vup(x) — Vun(x)| < €lx| for n, m
sufficiently large. Taking m to infinity, we get |Vu,(x) — Vu(x)| <
€|x|, which means {u,} converges to u in X. Finally, we define

={f eX [ Iflx =8}

Lemma 2.1. The operator F is continuously Fréchet differentiable
from X5 x Xs x R x R into X x X provided § is sufficiently small.

Lemma 2.1 will be proven in Section 4.

Lemma 2.2. a(; (0.0,0,0): X? — X? is an isomorphism.
Proof. We write 5 (ﬂ)(O 0,0,0): X* — X? as a matrix:
0F 0F dF
9c 99 10,000 ;(0000)0 35
0F  F (0,0,0,0) = : (35)

By Theorem 4.1 in [5], and the fact that £ m [5] is the same
as ‘Fl(O 0, 0, 0), we immediately see that 3. (ﬂ)(O 0,0,0) is an
1somorphlsm O
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Given these two lemmas and the fact that 7(0,0,0,0) = 0,
the implicit function theorem provides a solution for every small
enough € and w.

In addition, with the linearized operators, we may study the
first order approximation of ¢{(w, €) and ¢(w, €) as functions of
w? and e. In fact, one easily obtains

ac 5, 0C
—-(0, 0)w* + —=(0, 0)e
(0r5) = |55 gy o g ) 710 9
B 2 ¥
awZ(O’ 0)w? + 36(0, 0)e
where

a¢ -1
Pl B (a;(o, 0,0,0) 0) (;ﬂ)
87(,0(0’ 0) 0 I 0

dw?
1 0F
—-[=-(0,0,0,0)]'1?
250 ,
0

and

-1
3,00 ?(0,0,0,0) 0 ( 0 )
0ol A7 o 1) =L eok(0))
de

_ 0
— \KO)XL (o))

In other words, the first order approximation of ¢(w,e€) and
¢(w. €) are given by —%[271(0,0,0,0)]"'r> and ek(0)L™"(po)
respectively.

Notice that the magnetic field does not affect the lowest order
change in the shape of the star, because ¢ does not appear in the
approximation for ¢(w, €). By the discussion in Section 4.6 of [5],
we see that the first order approximation of ¢(w, €) gives rise to
an oblate star, which is wider at the equator than at the poles.
On the other hand, if k(0) # 0, the first order approximation of
o(w, €) is necessarily nonzero, giving rise to a genuine magnetic
star.

3. The operator L~!

Before we prove the Fréchet differentiability of 7, we carefully
define L' and compile a few useful estimates of it. Consider the
equation Lu = f in R3, where both u and f are axisymmetric and
even in x3, where f is compactly supported, and where u(oco) = 0.
If we define v = u/r?, then a simple calculation gives

3
Urr+;vr+vzz =f. (37)

We write z = X3, 1 = ,/x% +x§, o(r, z) = v(xq, X2, X3). Follow-
ing [1], we use the five-dimensional extension of the equation to
obtain a simple explicit formula for the solution. Let v be the 5D
extensions of v defined by

U(X1, X2, X3, X4, X5) = V (,/x% + %3 + X2 + x2 cos 6,
N sin0,x5)
:ﬁ(,/x%—i—x%—i—x%—i—xﬁ,xs), (38)

with f defined in the same way. Thus (37) can be written as
Asv = f. Moreover, the condition u(co) = 0 implies v(oco) = 0.

It follows that

v(X1, X2, X3) = U(\/X% +x3,0,x3) = 0(X1, X2, 0, 0, X3)

=G / ! f(y) dy. (39)
5 |(

X1,%,0,0,x3) —y

Thus
(L7F)(%) = u(x1, X2, X3) = Cs(x] + x3)(L7 'F)(x), (40)
where we define the integral operator
1 -
e = | 70) dy. (41)
! ®s |(X1,%2,0,0,%3) — y|?
Since

<|x-yl

‘\/xi +X 4+ X+ x5 — \/y% +¥5+ Y5 +;
for x, y € R>, there exists a constant C = C(8, R) such that

||f||C0=/5(BR(R5)) = C”f”CO»ﬁ(BR(R%) (42)

forany 0 < B < 1 and R > 0. In other words,f is as
regular as f. It is worthwhile to keep in mind that, by (40), L1 is
basically a quadratic function vanishing at the origin multiplied
by the inverse Laplacian in 5D. Therefore, in addition to enjoying
all the regularization properties of the inverse Laplacian, it also
automatically vanishes to quadratic degree at the origin. This
observation gives rise to the next lemma.

Lemma 3.1. Let f € L®(B,). Then L'f e C“F(B,) for every
0 < B < 1. There is a constant C > 0 such that

L7 f (@) + VL f(2)] < Cllf lieqsy) 2] (43)

for any z € Bs.

Proof. Using (40) and its gradient, we have

(VL™f)2) = G V(2 +23)Ly f)2) +Cs(2] +25)(VLT f)(2), (44)
. . ]

the 1nequa11t31/ follows from the boundedness of fBz RS mdy

and fBZcRS Wdy. O

Combining the C'# regularity of L;'f with the properties of
g, we get the next lemma.

Lemma 3.2. Letf € L*°(By), ¢1, {> € X5 where § > 0 is sufficiently
small. For any 0 < B < 1, there exists Cg > 0 such that

IIVL™'F1(ge, (%) — VL' 1(ge, ()] < Collf sy 11 — Lallx Ix]
(45)

for x € B.

Proof. By (44), VL™'f is of the form f; + (z7 + z2)f,, where
Ifillcyey) < Cliflliee, and [If2llco.s(s,) < Cpllf llieo. It follows that

VL™ F1(ge, () — [VL ™ f 1(ge, (X))
< Clf e |82, (%) — 8, (%)] + Calf lioe I8, (X) 1| &2, (%) — g6, (X)IP
< Collf llioay) 121 — Call5 1] (46)

In the last step, we used |g;,(x) — g, (X)| < lI¢&1 — &lIxlxl, and
I8¢, (¥)] < (1 + [I¢lIx)Ix| (cf. Lemma 3.4 of [5]). O

The standard elliptic Schauder estimates immediately imply
the following lemma.
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Lemma 3.3. Let f € C%#(By) for some 0 < B < 1. Then
L~'f € C%F(B,), and there is a constant Cg > O such that

VL™ Fllcosm) < Collflcosa,)- )

Next we discuss a few more delicate estimates involving in-
terior composition with the deformation g, ! before the action
of L1, To that end, we first write an alternative expression for

L (u(g; )2):
L (u(g; )2)

1 __
— G2+ 22) / u(g ")) dy
U Jes 121, 22,0,0,23) —y)PF
1
— G+ 2) / (&) dy
T s 1(21,22,0,0,2) =y
=Gs(22 + z%)/ L
supp i I(z1,22,0,0,23) — g?(Y)Ig
x fi(y) det Dg;(y) dy (48)
where we define g; : R> — RS as
- £(x)
g(x)=x (1 + Tx? . (49)

In the preceding identity we have used the nontrivial but straight-
forward fact that

U(gjl)(y) = (g "W). (50)
Similarly, for a row-vector-valued function u, and a column-
vector-valued function up, we obtain the alternative expression

L™ (ualg; "ID(g; Nunlg; ) (2

[ua(VeE: ) up) ()
=Gz + 25 / 3 =
e +2) s |(z1,22,0,0,23) — & (y)?

The reason we write such alternative expressions is that we
want to estimate the difference L™"(u(g,, ")) — L' (u(g,,")) assum-
ing only an L* control on u. In order to get an estimate depending
on ||{1 — & ]lx, we must use (48) to move the interior composition
ofg;l out of u. The following lemma will be useful in deriving the

difference estimate of L™"(u(g;,")) — L™ (u(g,,")):

detDg;(y) dy. (51)

Lemma 3.4. Suppose {1, {; € X5 where § > 0 is sufficiently small
and u € L*°(By). Then

1
) o7
BicrS \ (21,22, 0,0,23) — g, ()l
1 )~
- — u(y) dy’
(z1,22,0,0,23) — &, )I?
< Cd(1 + |logd|)llullye, (52)

where d = ||¢1 — &2, for z € By C R3.

Proof. The singularities of the integral are at y(;) = g; Uz, 25, 0,
0,z3) and ypy = g’};‘l(zl,zz, 0,0, z3). For any y € B,, we claim
that |(z1, 22, 0, 0, z3) — §Z(y)| is comparable to |y(1y — y|, and that
|(z1,22,0,0,2z3) — gz(y)| is comparable to |yz) — yI. In fact,

I(z1,22,0,0,23) — (V)| = 18:(viy) — V)| < IIDgg e yeiy — ¥I-
Similarly
vy — ¥l < D&, lliel(z1, 22, 0, 0, 23) — & (W)l

The L bound on Dg;, and Dg;,~" follows in a similar fashion to
Lemma 3.4 of [5]. Using similar estimates involving differences of

¢1 and &,, we obtain that |g (y) — &, (¥)| and |y(1) — y(2)| are both
bounded by a constant multiple of ||{; — &2|x. By the preceding
distance estimates, we may choose a ball B; to be centered at the
midpoint of (1) and y,y with radius comparable to d = [|{1— 2 lx,
such that the following facts hold whenever y is outside By:

@y =yal = 2lyo —ye)l i =1, 2. _
(b) |(Zl7 22, Os 0723) _gé‘l(y)| = 2|g{1(.y) _gfz(.y)|v i= 17 2.

We split the integral into one piece on B; and another piece off By.
On By, we use the fact that |(z1, 23, 0, 0, z3) — gN;i(y)| is comparable
to |y — I, so the integral is bounded by

d
2
c/ r—4r4 drjulie = Cd|jul|pe. (53)
0

Off B;, we use the distance estimates above to conclude that
forall0 <t < 1, |(z1,22,0,0,23) — t&, (y) — (1 — t)&, )| is
comparable to the distance between y and the center of By, so
the integral is bounded by

1
1
C/ r—sr“ driig;, — &l lltllee < Cdllogd]||ullee. O (54)
d

Now we use the preceding lemma to prove the relevant esti-
mate on L.

Lemma 3.5. Let u, uq, u, be respectively scalar, row-vector-valued
and column-vector-valued bounded functions supported on By. Let
L1, & € Xs where § > 0 is sufficiently small. Then there is a constant
C > 0 such that

HVL™ (g, )z) — (VL [u(g,, "} 2)
< Cd(1+ [logd])||ufl 2], (55)
and
VL Tud(g,, IV (e, us(g;, 1Hz)
— (VL (ua(gg, )V (e, Dus(e, ()]
< Cd(1 + [log d])|u [l [[uz [l |2]. (56)
Here d = [1¢1 — &2 lx.

Proof. We write {VL™'[u(g, ")I}(z) — (VL '[u(g,,)]}(z) as
G V(23 +23) (17 " [ug; I2) — L' uleg; DIz))
+ (22 +23) (VL7 (e, @ — (VL7 (e, @)
(57)
Using (48), L]_l[u(gal)](z) — L”[u(g;zl)](z) can be written as

/ u(y)Dgz, (v) B u(y)Dgs, (y)
B 1(21,2,0,0,23) = &) (21,22, 0,0,23) — &)
_ / (y)[Dg;, (y) — D&, (v)]

B, 1(21,22,0,0,23) — &, ()

dy

~ 1
+ / u(y)Dg; (y)< —
By : I(z1, 22, 0, 0723)—8'{1(3/”3

1
|(zla 23, 0, 07 23) - g{;()’)|3)

which is easily seen to be bounded by Cd||u||;~ in view of the
estimates |Dg,, (y) — Dg,(¥)l < Cd and |g,(y) — &,(y)I < Cd.
We can treat {VL;'[u(g,, ")]}(z) — {VL;‘[u(g{zl)]}(z) in a similar
way, this time using |Dgz,(y) — Dg;, ()] < Cd and Lemma 3.4

to draw the conclusion. The difference expression (56) can be
treated analogously using (51). O
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Finally, we will also need a lemma concerning the Holder
estimate of u(g; ') — u(ggzl).

Lemma 36. Ifu e C%(R3) forsome 0 < B < 1, and u
is supported in By, and {1,¢; € Xs where § > 0 is sufficiently
small, then ||u(g,,") — u(g,,Mlcoags) < Callér — 2l * for every
O<a<§p.

Remark 1. Notice that ||u( “h— u(gg2 )IICoa(Ra) might not tend
to zero as [|{1 — &llx — O for o = B, as is suggested by the

simple example f.(x) = |x + ¢|® — |x|?. The C®# norm of f. does
not decrease as ¢ — 0.
Proof. let v = (gt1 ) — u(g 1), we have lvllcop < C, and

Il < Cligt — Gl In fact, o(x) = u(g,,'(x) — u(g,,'(x)) is
bounded by a constant multiple of |g;1(x) - g{’21(x)|ﬂ, due to the

Holder continuity of u. The latter is bounded by ||¢1 — £ ||§ by the
property of g, given in Lemma 3.4 of [5]. For any x, y, x # y, note
that

[v(x) = vl _ (Iv(X) —v(y)|
Ix — y|* Ix—ylf

3
) [v(x) —v(y)l 7

= C”U”CO,‘SHUHOO

<Cler— &l %
from which we deduce the result. O

4. Fréchet differentiability

In this section, we prove the Fréchet differentiability of (¢, ¢,
w, €).

Theorem 4.1. The operator F : X} x R* — X2 is continuously
Fréchet differentiable if 5 > 0 is sufficiently small .

4.1. F Maps into X?

Lemma 4.1. There exists a constant C > 0 depending on py, k, and
8 such that

||]:1(§7 <p,a),€)||x =< C(]+w2+€) and ”FZ(C!(pve)HX =< C(]+6)
(58)

if ¢ € X5 and ¢ € X; for sufficiently small § > 0.

Proof. We start with 7. The terms except —eK(¢(x))+ €K (¢(0))
in F; have been shown to map into X in [5] (cf. Lemma 5.1
in [5]). In order for —eK(¢(x)) + €K(¢(0)) to also map into X, it
suffices to show that |K'(¢(x))Ve(x)| is bounded by C|x|. But this
immediately follows from the fact that ¢ € X and |K'(¢(x))| is
bounded.

We next move on to F,. Let us rewrite 7 as

FE, o, 0, €) = @(x) — e M($)F3(L, @) (59)
where
F3(¢, ) = L‘l(po(g;]) k((ﬂ(g{])))(g;(X))- (60)

Since ¢ € X, we only need to show that 73 maps into X. To this
end, we compute the spatial derivative of (60):

aFs(g, 9) = [VL ' (polg; 1) k(g )] (g:(x)) - dige (). (61)

Since |g;(x) — x| < | llx|x] and Ialg;(X)l =< C(1+1¢lx) (cf. Lemma
3.4 in [5]), in order to bound |8 3| by Clx|, it is sufficient to
show that[ “(po(g; k(e(g, )))]( ) is bounded by C|z|. This,
in turn, is a consequence of Lemma 31. O

4.2. Formal derivative of F

To simplify notation, we suppress the w, ¢ dependence in
F. Another reason for doing so is that the differentiability with
respect to w and € is simpler. Therefore, for the moment, we think
of them as being fixed. Let ¢, ¢ € Xs and &, n € X be given.
Consider s € R in a sufficiently small neighborhood of 0 so that
¢ + s&, ¢ + sn € Xs. We define the formal derivatives of F with
respect to ¢, and ¢ respectively as the pointwise limits

dF

|:B§(§’ 90)‘5] (%) = 0s
d

[af({, w)n} (x) =205 F(&, o +sn)x),

4 s=0

for every fixed x. We do not yet claim that this is a Gateaux
derivative, which would require a specific condition making use
of the norm, while for the time being we are only defining it
pointwise. The formal derivative of F; with respect to ¢ was
computed in Lemma 5.2 in [5]. It is easy to see that the formal
derivative of 7; with respect to ¢ is

9
[;;1({, w)n} (x) = —eK'(e(x))n(x) (63)

As for F; it is clear from (59) that

F(& + &, ¢)(x),

s=0

(62)

K 1 d
G20 | = MR 9) - M) [af(:, ¢)s]
(64)

and

d T ad

ﬂ(; o) | =n—eM(©) [ai;(;, w)n} (65)
where F3 is given in (60). According to (5.18) in [5], M'(¢)E is
given by

, —-M

M) =

(fB po(x) det Dg; (x) dx)2

x f po(x) det Dg;(x) tr [(Dg;)”(x)n (ax)ﬁ)] dx
By

(66)

The computation of [8F3 (¢, (p)éj] is similar to the one for the

first term in 7, both of which are integral operators involving

po(gg‘l). Using the formula (see (5.30) of [5]),
gl )

- (67)
|g{+5§( )|

358, e () = —Dg; | (E(E L (1))

we deduce that

d0.F3
[ag(f, </7)§:| x)

- -1 [(Vp()(gg k(o(g; ") + polg; K (plg; NVelg ) -

1y, -1
D(g ) g("”ff"”;](gc(x))
lg, |
+[VL’1( -1 -1 @
pole Wpta W] () - o (68)

Lastly, the formal derivative with respect to ¢ is given by

d
[E(; o) ] (0 =L [polg; K (elg; n(g; ] (ge). (69)
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A rigorous justification of the above formulas involving the cut-off
function method may be found in Lemma 5.2. of [5]. The details
are omitted.

Next we will show that the formal derivative a(g L , just com-
puted, is a bounded linear map on X x X.

Lemma 4.2. If¢, ¢ € X5 and § is sufficiently small, there exists a
constant C > 0 such that

9F dF
H] £,k <C1+a?)Elx, Hal(;,w)n < Cellnlix
2 X

(70)
0F; 0F;
HZ; 0k = Cellx, ‘2; om| < c+ el

X
(71)

Proof. The first inequality in (70) was derived in Lemma 5.5
in [5]. The second inequality in (70) directly follows from (63)
since |K'(¢(x))| is bounded. The rest of the proof is devoted
o (71). It suffices to prove the boundedness of 2 3(; @) and
”3(;“ ) on X.
We start with "f 3 (¢, ¢). To estimate its X norm, we take the
spatial derlvatlves

d0F3
0 [ o ¢, )5] x)

— v [(Vpo(gg)lcmg;‘)) + polg K (elg; )Velg ) -

—1y,—1
Dg; " g(gffg;}(g;(x» - Bige () (72)
g, |
271 -1 -1 £(%)
+ [V2L ™ (polg; Dik(e(g; )] (gc(X))aig;(x)-Wx (73)
+ [V (pole; k(ple; )] (g (x)) - o (f(?‘}x) (74)

We claim, starting with (72), that each term on the right-hand
side is bounded by C||&||x |x|. Due to Lemma 3.1 and the estimates
|g¢(x) — x| < lI¢lIx|x| and [9;g; (x)] < C(1+ lI¢[Ix) (cf. Lemma 3.4
in [5]), we can bound (72) by

1(72)] < c“ [Voolg; ktolg: ) + polg; K (ele; NVelg )]

£(g; g !

Vg’1 . -2
lg; |

¢

Ix]

Note that the first factor is bounded in the L*° norm due to the
assumptions on k and ¢. As for the second factor, since Vg;l is
bounded and since |gc’1(y)| is comparable to |y|, and |E(y)y|/|y|?
is dominated by C|£ x, we have [ Vg; - &(g; g ' /lg: Il <
ClI&lIx-

For (73), since |0;g,(x) - (E(x)/1x|*)x| < C||€||x|x|, it is enough
to have VZL“(,oo(g;l)k((p(g;l)))(z) be bounded and continuous.
With our assumptions on ¢ and ¢, po(g; ' k(g(g; ')) is in C' and
therefore (73) satisfies the desired estimate due to Lemma 3.3.

As for (74), since |9; <‘ |2><)| < C|¢]lx, it is enough to have

|VL*1(p0(g§ )k((p(gg ))(z)| < C|z|, which is indeed the case by
Lemma 3.1, using the fact that ,oo(ggl)k(ga(g;])) is in L*°,

Finally we examine the spatial derivative 33%(;“, ®):
a
2 [%(;, fp)n] )
@
= VL' [polg; K (p(g; Dn(g; )] (8 (X)) - dige (x). (75)
since [|po(g; K (¢(g; " )n(g;

deduce that || ”3( o)nllx < ClInllx|x|. This completes the proof
of the lemma. 0O

Nl < Clinllx, from Lemma 3.1 we

4.3. Continuity of F'

Now we establish the continuity of the formal derivative
W from X5 x X5 x (—6,8) x (—48,8) into X x X.
Lemma 4.3. [f ¢, ¢ € X5 and § is sufficiently small, there exist
constants C > 0,0 < « < 1, and a constant Cg foreach0 < g < 1
such that

0F 0F
(—‘(cl,m— —1(;2,(/)2))5 <Cl&i = oILENK,  (76)
3¢ 3¢ X
0F;
(a e 1) ——(g,m)n < Cellgr — @2llxlnllx,  (77)
(2 X
dF:
(a—z(zl,q)l 220, 0 )s < Cpe(lle1 — &l (78)
¢ X
+ llgr — @2 llDIElIx,
05 B
7({1, ¢1) — 7(4“2,%02 nl| < Cgelllecr — &2lly (79)
X
+ ller — @2 1)l lx,

Proof. The inequality (76) was derived in Lemma 5.6 of [5]. We
focus on the rest of the estimates, beginning with (77). Recalling

(63), we have
0 0
5 [( e — S, sﬂz)) n] )
@ g
K" (o1 (33 (x)n(x)

= (K" (¢2(x))digpa(x) —
+ €(K'(p2(x)) — K'(91(x)))dim(x)
The second term on the right-hand side is bounded by Ce|j¢; —

@2lxlInllx|x| since |[K'(g2(x)) — K'(¢1(x))| is bounded by Cll¢1 —
@2 |lx. Rewriting the first term as

(K" (@2(X))(Bigp2(X) — 3101 (%)) +(K" (02(x)) = K" (01(x))) 3101 (%)) (),
we see that it is also bounded by Cel|¢1 — @2 ||x|Inllx|x|. Thus (77)
holds.

As for (78), we write

d
( Fz({h%)

where

Ji = €IM(52)5 — M(51)E1F3(81, 1)

d
];2(52, wz)) E=lh++]3+]a,

o = e[M'(£2)E1(F3(L2s 902) — F3(¢1, 1))
J3 = €(M(&) — (Cl)) (Cl, ©1)€
dF- JdF:
Ja= 6M(§2)|: o7 2 (&2, 2)6 — 07 (g, §01)5]

We will estimate the X norm of each J;, i = 1,2,3,4. We
start with J;. The X norm of 73 was shown to be bounded
in Lemma 4.1. The estimate of I; in Lemma 5.6 of [5] shows
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[M'(52)6 — M

obtain

(¢1)E e < Cli¢1 — &2lixléllx, and therefore we

Willx < Cellgr — S2lIxlIE|x-

We next estimate J,. By Lemma 5.5 of [5], we have | M'(£2)€ ||x
< C|&llx. In order to estimate the X norm of F3(¢2, ¢2) —
F3(¢1, 1), we rewrite its spatial derivative as

0i(F3(&2, @2) — F3(&1, ¢1))
{VL l[pO(g; )<((p2(g(21)) (glz(x)) -
X (85,(%))}9i8r, (%)
+ (VL [oo(gz k(walgr, DI(ge, (X)) —
X (8¢, (X))}0i8¢, (X)
+ (VL [polgg, K(@a(g, " NIEs, (X)) — VL™ polg;, k(ga(g;, )]
X (8¢, (%))}0igc, (x)
+ VL po(g;, (@18, N(ge, (%))3i(8e, (%) — &¢, (%))
= 1+J2+ls+la
Jo1 can be estimated by the representation (48) and Lemma 3.5
with u = pok((,oz) Since pok(¢,) is in L, we deduce that
Va1l < Csller — Callylx| for any 0 < B < 1. Forjzz. we apply
Lemma 3.2 to deduce that || < Cgll¢1 — ;2||X|x| for any 0 <
B < 1,as po(gg1 e(@a(g {11)) e C'. To estimate J3, we note
that [k(ga(2)) — k(@1(2))] < 1K |l |@a(z) — e1(2)] < Cllgr — e2llx,
which results in |o3] < C|l¢1 — ¢2]Ix|x| by Lemma 3.2. Moreover,
we have [J24] < C||¢1—G2llx|x], since |0i(ge, (%) — & (X)) < Cllg1—
&2|lx. To sum up, we deduce that

VL [polg;, K(pa(g,"))]

VL [polg;, k(ea(g;, )]

U2llx < Ce(ller — Lallg + llor — @2llx)l€lIx

forany0 < 8 < 1.
The estimation of J5 is similar to that of J;. From Lemma 4.2
we deduce that

Wsllx < Cellgr — S2lxlIE|x-

We now turn into J4. Introducing some notation to denote the
functions appearing in (72), (73), (74), we define

v(¢. ) = (Vpolg, k(g ")) + polg, K (elg; )Velg, ")
—1y,—1
'Dg{,].E(g; )é;:
g
w(Z. @) = po(g; Kkip(g; "))

Then we may write 9; [ i (G2, 92)6 — a; 7324, §01)§]

dF3 d0F3
0; , s
[ o7 (&2, )€ — o7 — (& </71)§:|

= VL' (0(¢1, 91))gz, (X)) - 3ige, (X)
— VL (u(Z2, 92))(8, (%)) - i, (%)
+ [VPL (w(Z2, 92))(8, (X))3igr, (X)
£(x)

— V2L (w(Z1, @1))ge, (X)dige, ()] - &
[V (2. 92))ge () = VL (1, 1))(E, (0)]

(5w
K < x? X)

=:Jg1 +Ja2 +Js3.

We will estimate each Jy, i = 1,2, 3 separately. We start with
Ja1 following the same steps as for J,. Namely, we rewrite it as
Ja11 + Jaiz + Ja13 + Ja1a (see Jo1 + Joo + J23 + Jo4) and estimate
each term. The only novelty is that we have v(¢, ¢) instead of
w(¢, p) = ,oo(g;1)k((p(g;1)). Consequently, we just use estimate
(56) instead of (55). We deduce that

Uarl < Co(lizr — &% + lign

forany 0 < 8 < 1.
For J4,, we rewrite the square bracket term as

[-1= VL " w(&, ¢2) — w1, 92)1(8, (%))dige, (%)
+ V2L w(gr, ¢2) — (g, 91)1(8, (%))dige, (%)
+ VL [w (81, 9018, (%) — VLT Tw(gr, ¢1)l(gs, (X))}
X 0igg,(X)
+ V2L w(&r, 9118, ()38, (%) —
= Jao1 +Ja22 + Ja23 + Ja24

We focus first on VZLl’l[w(Q, ©2) — w(<1, 92)1(z) in J421. Since
pok(pz) € C*1, Lemma 3.5 yields [w(2, ¢2) — w(¢1, ¢2)llcoa <
CullC1 — §2||)1<’°‘ for any 0 < « < 1. Lemma 3.3 then gives the
bound

V2L, (w82, @2) — w(r, @)l < Cpllen — 4“2||)f?2

for any 0 < B8 < 1. Similarly, in J4, we also have

V2L [w(Z, @2) — w(Zr, @)l < Collgr — @all

for any 0 < B < 1. The most serious term in J4p3 is as follows.
Since pok(¢q) € C®1, Lemma 3.3 again gives

|V2LT  Tw(&r, 1)1(8e, (%) — VALY Tw(C1, 1)1(ge, (X))
< Cplge, (%) — g, (X)IP < Cslltr — Lol

for any 0 < B < 1. Lastly, g4l < ClI&1 — &llx since

VAL [w(&1, 91)I(g, (%)) is bounded and |3i(gs, () — &, ()| <
Clli¢1 — &llx. Together with |E(X)x| < C||&|Ix|x|, we arrive at

— @21lx)IE lIx x|

g{1 (X))

Va2l < Cp(llg1 — §2||x + o1 — ¢2||§)||5||X|X|

forany 0 < 8 < 1.
The square bracket in J43 can be estimated in the same way as

was done for J,1, J>2 and J3. Together with |9; ( x) | < Cl&lIx,
we have

Vasl = Cp(lig1 — §2||;€ + llo1 — @21l 1x |X]

for any 0 < B < 1. Combining the estimates of J41, J4o and J43, we
find that

Wallx < Coe(ller — Lally + llor — gall )€ NIx

for any 0 < B8 < 1. This completes the proof of (78).
It remains to show (79). Note that

0 0
( 972 (11 1) — ];2(:2, §02)> 0= e(M(&) — M)

0F:
X873(§17(P1)77
4

d.F:
T3(§1, @1 )77]

@
= Kl + K2

Each factor of K; has been previously estimated and it is easy to
see that

IKillx = Cellgr — SallxlInllx-

JF:
+eM(L) [33(;2, @) —
@
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The other term K, can be estimated in the same spirit as for J5,
for instance. We obtain

IKxllx < Cpe(ler — &Ik + Nl

for any 0 < B < 1. We omit the details. This completes the proof
of the proposition. O

— @211x)llnllx

Before proving that the formal derivatives are genuine Fréchet
derivatives, we need a technical lemma that establishes the
equality of the mixed partial derivatives of the functions

Gi(x, s) = F(¢ + &, 9)(x) = (F1(¢ + &, 9)(X), Fa(L + s, @)(x))
and
Ga(x,8) = F(£. @ + sn)(x) = (F1(Z. ¢ + sn)X), Fa(C. ¢ + sn)(x))

This will of course be true if the Gy, G, are C2. However, rather
than showing such regularity, we make a direct computation.

Lemma 4.4. Let Gy, G, be defined as above, where ¢, ¢ € X;s for
8 > 0 sufficiently small, and &, n € X are such that ¢ +s&, ¢ +sn €
Xs for all |s| < 1. Then

0;05Gj(x, s) = 950;Gj(x, s) (80)
forallx e By, all|s| <landj=1,2
Proof. We only show the proof for G4, as G, is similar. For the 7;

part of Gy, (80) is an immediate consequence of Lemma 5.4 of [5].
For F,, we only focus on the part

Gs(x,5) = F3(¢ + 55, 9)%) = L [oo(gr e (@8 e (g 15 ().

(81)
In the following, to simplify notation, we plug in s = 0 after
taking the derivative d;. The general case will be similar but has

more clumsy notation. 9;0;G3(x, 0) is given by (72), (73) and (74).
To find the other mixed partial derivative, we compute

AG3(x, 5) = VL™ [ po(gr s (@87 e DI(Ee £ (X)) - Dig st (X). (82)

If we let the 9, derivative fall on the various terms as follows

{as[po(gmg) (87 e DN Er 456 (X)) - i 456 (X) (83)

+ Vz [po(g;Jrgg )k(‘/’(gg_jsg N8 s (X)) - 05sGypse(X) - 0igryst (x)
(84)
VL o0l k8 o (8 s () - Do), (85)

we will recover (72), (73) and (74), and the proof will be com-
plete. To justify the calculation above, we define

VL [po(g; s K(e(g; L NI(2) (86)
and want to show that
(a) 05Ga(z. 5) = VL™ {05l po(g; e k(e (g;+sg))]}( )

(b) 8:Ga(z. 5) = V2L [polgp s K0 (g D).
(c) Both 95G4(z, s) and 9,Gy4(z, s) are continuous.

Ga(z,s) =

The calculation will therefore be justified by the chain rule.

Since 05 po(g; e Jk(9(g; 5 ))] is bounded, (a) follows directly
from the dominated convergence theorem. (b) is obvious. The
continuity of d;G4(z, s) and 9,G4(z, s) can be proven by the same
kind of estimates employed in the proof of Lemma 4.3. We omit
the straightforward details. O

We finally show that the formal derivatives are genuine
Fréchet derivatives.

Lemma 4.5. Let ¢, ¢ € X5 where § > 0 is sufficiently small. There
exist 51 > 0,0 < o < 1and C > 0 such that if ||€||x, Inllx < &1,
then

F&+E& o+n)—F, 0)— (&, m)
‘ {+& 9+ %% a@’(p)énxz

< C(IENx + Imllx)™*e, (87)
where 3( { denotes the formal derivative defined in (62).

Proof. In order to estimate the X norm on the left hand side of
(87), we compute the spatial derivatives by

lF(C +&, 0+ n)— F(&, p)X)

s=1

= 0iF(¢ + &, ¢ +sn)X)

s=0

= 0;0,.F(¢ + &, ¢ + sn)(x)

s=0(x)

= ;05 F(¢ +s&, ¢ + sn)(X)

=0(x)

oF
=0 [(M(C +s6. 9+ Sn)) (&, 77)] )

where 0 < 6(x) < 1. We have used Lemma 4.4 to exchange the
order of mixed partial derivatives. It follows that

, (88)
s=0(x)

9 [f(i-i-évfp-i-ﬂ)—ﬂé,(ﬂ)— (5,77)] () (89)

9
(¢, 9)

0F
= 0 ,
[(a@,w)““g ¢+ sm)

oF
TAC, (p)(C, w)) (&, 77)] x)

Using Lemma 4.3, the components of (89

s=0(x)
) are bounded by

CClIs&lIx + Nsnllx)* € lx + lnllx)Ix]

s=06(x)
< CUIENx + lInllx) < 1xl.

The estimate (87) thus follows. O

Since the dependence of 7 on w and € is very simple, we easily
see that F is continuously Fréchet differentiable with respect
to these two variables as well. Thus Theorem 4.1 immediately
follows from Lemma 4.5.
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