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• Rotating magnetic star modeled by the Euler–Poisson and MHD equations.
• First existence proof with both rotation and magnetic field.
• The star has an oblate shape for small rotation and magnetic field.
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a b s t r a c t

We consider a star as a compressible fluid subject to gravitational and magnetic forces. This leads
to an Euler–Poisson system coupled to a magnetic field, which may be regarded as an MHD model
together with gravity. The star executes steadily rotating motion about a fixed axis. We prove, for
the first time, the existence of such stars provided that the rotation speed and the magnetic field are
sufficiently small.

© 2019 Published by Elsevier B.V.

1. Introduction

There have been extensive mathematical studies of stars sub-
ject only to gravitational forces but very few that incorporate
magnetic forces. The only study that we are aware of is [1], in
which the star does not rotate. It is well known that magnetic
forces have major physical effects, for instance in the recon-
nection phenomenon of solar flares. Stellar magnetism is a very
active area of physical theory [2,3], typically modeled by MHD, as
well as of observation [4]. Because it is rare for stars to have a net
charge, it is frequently assumed that the electric field vanishes.

Our model consists of the steady compressible Euler equations
together with gravity and magnetic terms. It is as follows.

∇ · (ρv) = 0 (1)

ρ(v · ∇)v +∇p = ρ∇U + (∇ × B)× B (2)

∇ × (v × B) = 0 (3)

∇ · B = 0 (4)

∆U = −4πρ (5)

∗ Corresponding author.
E-mail address: allenwu@ou.edu (Y. Wu).

Eqs. (1)–(3) should hold in the fluid domain {ρ > 0}, while (4)
and (5) should hold in all of R3. For simplicity, the magnetic
permeability is set equal to 1 throughout R3, although more
realistically it could differ inside and outside the star. We further
impose the boundary conditions lim|x|→∞ U(x) = 0, an equation
of state p = p(ρ), and

p = 0 on the set ∂{ρ > 0}. (6)

The first two equations express mass and momentum conser-
vation. The magnetic force is J × B, where J = ∇ × B (from
Ampère’s Law in Maxwell’s equations without E) is the mag-
netic current, omitting the usual 4π factor. The third equation
comes from Faraday’s Law in Maxwell’s equations, where the
electric field and the conductivity have been neglected due to the
large length scale in astrophysics. The fourth equation is one of
Maxwell’s equations and the fifth is gravity.

We assume a steady rotation v = ωreθ around the x3 axis,
where ω is a constant rotation speed and eθ = (− sin θ, cos θ, 0)
in cylindrical coordinates. Then (1) is satisfied and (v · ∇)v =

−ω2
∇(r2)/2 where r2 = x21+x22. Furthermore an equation of state

is assumed: p is a function of ρ. For instance, we allow p(ρ) = ργ

with 6
5 < γ < 2, γ ̸=

4
3 . The specific enthalpy is defined as

h(ρ) =
∫ ρ

0

p′(s)
s

ds. (7)

We will show in Section 2 that, due to the cylindrical symmetry,
there is a scalar function ψ such that rBr

= ∂3ψ, rB3
= −∂rψ .
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Under these conditions we will show in Section 2 that the
system reduces to the three equations

−
1
2
ω2r2 + h(ρ)− U + ϵK (ψ) = constant in {ρ > 0}, (8)

Lψ = ϵk(ψ)ρ in R3, (9)

U = |x|−1
∗ ρ in R3, (10)

where L = ∇·r−2
∇ and where k = K ′ is an arbitrary function. We

call k the magnetic current function, because it takes the magnetic
potential ψ to a multiple of the magnetic current J = ∇ × B (see
Section 2).

We will prove the existence of solutions by a perturbation
analysis starting from a spherically symmetric stationary solution.
The tool we employ is the standard implicit function theorem in
Banach space.

For any radius R > 0, it is well-known [5] that there exists
a unique spherical solution ρ0(|x|) ≥ 0, called the Lane–Emden
solution, with ω = ϵ = 0 and ψ ≡ 0 such that ρ0 > 0 in BR =

{|x| < R} and ρ0 ∈ C2(BR) ∩ C1,α(R3), where α = min
(

2−γ
γ−1 , 1

)
.

Our main theorem is as follows.

Theorem 1.1. Let R > 0. Let ρ0 be the unique solution mentioned
above. Let k ∈ C2(R). Let p(ρ) = ργ where 6/5 < γ < 2
and γ ̸= 4/3. Then there exist ω̄ > 0 and ϵ̄ > 0 and solutions
(ρ = ρω,ϵ, ψ = ψω,ϵ) for all |ω| < ω̄ and |ϵ| < ϵ̄, with the
following properties.

• ρ ∈ C1,α
c (R3), ψ ∈ C3,α(R3), where α = min

(
2−γ
γ−1 , 1

)
.

• Both functions are axisymmetric and even in x3.
• ρ ≥ 0 has compact support (near BR).
•
∫
ρ dx = M(ρ0) (independently of ω, ϵ).

• The mapping (ω, ϵ) → (ρ,ψ) is continuous from (−ω̄, ω̄) ×
(−ϵ̄, ϵ̄) into C1(B2R)× C2

0 (R
3).

More generally, we permit p(ρ) to be any function that satisfies
(11) and (12) and we assume that M ′(ρ0(0)) ̸= 0, where M(ρ(0)) =∫
R3 ρ dx is the total mass of the unique radial nonrotating star

solution with center density ρ(0) (more details explained in Theorem
2.1 in [5]).

p(s) ∈ C3(0,∞), p′ > 0, p(0) = 0 (11)

∃γ ∈ (1, 2), lim
s→0+

s3−γ p′′′(s) < 0, and (12)

∃γ ∗
∈ (

6
5
, 2), lim

s→∞
s1−γ

∗

p′(s) > 0.

Our construction shows that the solutions are modified from
the Lane–Emden solution by a simple radial stretching or contrac-
tion. The support of ρω,ϵ takes an oblate shape, as we remark at
the end of Section 2. The shape is only affected by the magnetic
field at higher orders in ω2 and ϵ. We remark that the case γ =
4
3 is excluded from Theorem 1.1, because in that case the key
linearized operator in our construction has a non-trivial kernel.
This corresponds to the fact that there exists a family of non-
rotating radial solutions with zero magnetic field, obtained by
simple rescaling of an unperturbed one. The solutions in this
family all have the same total mass, due to the special scaling
symmetry in this case. With the mass constraint in Theorem 1.1,
the nearby solutions must come from this trivial class. However,
if we were to remove the mass constraint, non-trivial solutions
also could arise at the 4

3 power.
There have been many studies, including by the giants Mac-

Laurin, Jacobi, Poincaré, Liapunov and Chandrasekhar, of station-
ary and steadily rotating stars subject to gravitational forces but
without any magnetic field. There are two modern methods of

analysis of rotating stars, the variational method introduced by
Auchmuty and Beals [6] and Li [7] and the perturbation method
introduced by Lichtenstein [8]. The perturbation method was re-
cently revived and further developed in [5] and [9], where further
references and discussions may be found. Furthermore, the two
papers [10] and [11] appeared after this paper was originally
submitted. There are a number of excellent general expositions,
notably the treatises [12,13] and [14].

However, the only mathematical reference of which we are
aware that deals with a magnetic effect is [1], which considers a
stationary (v = 0) magnetic star. The authors of [1] find solutions
by a variational method and permit γ ≥ 2, but they require k to
be a constant function of ψ . Our paper is very different from [1]
with regard to its methodology and most importantly with regard
to the rotation of the star. Besides permitting rotation, we use a
perturbation method and we permit the magnetic current func-
tion k(ψ) to be completely arbitrary rather than a constant. To the
best of our knowledge, ours is the first mathematically rigorous
result that establishes the existence of rotating magnetic stars.

In Section 2 we state the assumptions in detail, specialize
the model to our situation, and outline the proof of the the-
orem. Section 3 is devoted to studying the detailed properties
of the inverse operator L−1. Section 4 is devoted to the proof
of Fréchet differentiability, which is a key requirement of the
implicit function theorem.

2. Setup and outline

We are looking for axisymmetric steady rotating solutions to
the magnetic star equations (1)–(5). To that end, let v = rωeθ ,
B = Brer + B3e3, and assume that all the functions ρ, B,U
depend only on the cylindrical coordinates r and x3. The magnetic
star equations simplify considerably under the aforementioned
assumptions. First of all, by these assumptions we have ∇ ·v = 0,
∇ρ ⊥ eθ , and v ∥ eθ . As a consequence, the mass conservation
equation (1) is automatically satisfied. Eq. (3) is also satisfied as
is seen from the following calculation:

∇ × (v × B) = −∇vB+∇Bv = −ωBreθ + ωBreθ = 0. (13)

Because there is no θ-dependence, Eq. (4) gives us

0 = r∇ · B = ∂r (rBr )+ ∂3(rB3), (14)

which is satisfied if the components of the magnetic field are
induced by a scalar axisymmetric ‘magnetic potential’ ψ in the
following way:

rBr
= ∂3ψ, rB3

= −∂rψ. (15)

This is equivalent to assuming that the vector magnetic potential
A, given by B = ∇ × A, is A = −

ψ

r eθ .
Our next step is to express the term (∇ × B)× B in (2) by ψ .

A short computation shows that

∇ × B = (∂3Br
− ∂rB3)eθ = r(Lψ)eθ , (16)

where

Lψ =
1
r
∂r

(
∂rψ

r

)
+
∂23ψ

r2
= ∇ ·

(
1
r2
∇ψ

)
. (17)

So

(∇ × B)× B = (Lψ)eθ × (∂3ψer − ∂rψe3) = −(Lψ)∇ψ. (18)

Because v · ∇v = −∇( 12ω
2r2) and ∇p

ρ
= ∇(h(ρ)) from (7), the

momentum equation (2) becomes

∇(− 1
2ω

2r2 + h(ρ)) = ∇U −
1
ρ
(Lψ)∇ψ (19)
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Notice that every term but the last one in (19) is a gradient. It
follows that the last term must be curl free, namely,

∇

(
Lψ
ρ

)
×∇ψ = 0. (20)

Thus the gradients of Lψ
ρ

and ψ are parallel. A natural sufficient
condition for this is that Lψ

ρ
is a function of ψ . Motivated by this

condition, we look for a special but quite wide class of solutions
to (19) for which Lψ = ϵρk(ψ) with an arbitrarily prescribed
function k. The constant ϵ is conveniently included here as a small
parameter. For these solutions, the momentum equation (19) can
now be written as

h(ρ)− 1
2ω

2r2 − U + ϵK (ψ) = constant, (21)

where K (s) =
∫ s
0 k(t) dt .

To summarize, the magnetic star equations have now been
simplified to the following problem:

h(ρ)−
1
2
ω2r2 − U + ϵK (ψ) = constant in the region {ρ > 0},

(22)

Lψ = ϵρk(ψ) in R3, (23)

U = ρ ∗
1
|x|

in R3. (24)

The last equation comes from (5), together with the assumption
that ρ(x) vanishes appropriately at infinity. Thus we have (8),
(9), (10). We also assume the boundary condition ψ(∞) =

0. Solutions of (22)–(24) together with the boundary condition
(6) satisfy our original system (1)–(6). The rest of the paper
is devoted to the existence of these solutions, thereby proving
Theorem 1.1.

We will construct solutions to (22), (23), (24) which are close
to the nonrotating, magnetic-free Lane–Emden solutions. We thus
begin by considering a Lane–Emden solution ρ0 supported on B1,
as is explained in [5], and the deformation

gζ (x) = x
(
1+

ζ (x)
|x|2

)
(25)

used in [5]. Here ζ : B1 → R is an axisymmetric function that
is even in x3. If ζ is small in a suitable norm, gζ is invertible, ζ
can be extended to R3 preserving the symmetry requirements.
The deformation gζ can then be extended to a homeomorphism
on R3 (as well as diffeomorphic on R3

− {0}) accordingly. See [5]
for detailed estimates of these facts. We look for a solution of the
form

ρζ (z) = M(ζ )ρ0(g−1
ζ (z)), (26)

where M(ζ ) is chosen such that ρζ (x) has the same mass as ρ0(x).
Our model (22), (23), (24) may thus be recast as the pair of

equations(
ρζ ∗

1
|·|

)
(z)−

(
ρζ ∗

1
|·|

)
(0)+ 1

2ω
2(z21 + z22 )

− h(ρζ (z))+ h(ρζ (0))− ϵK (ψ(z))+ ϵK (ψ(0)) = 0

for z ∈ gζ (B1), (27)

ψ(z)− ϵL−1(ρζ k(ψ))(z) = 0 for all z ∈ R3. (28)

The precise definition and properties of L−1 are given in Section 3.
We reduce the problem further by observing that (28) only

needs to be solved for z ∈ gζ (B1). Indeed, as ρζ is supported on
gζ (B1), if we can find a smooth enough function ψ : gζ (B1) → R
for which (28) holds for all z ∈ gζ (B1), then we can extend ρζ k(ψ)
to R3 by setting it to be zero outside gζ (B1). Now we extend

ψ to R3 by (28) and observe that (28) holds for all z ∈ R3. In
summary, when solving (27) and (28), we only need them to hold
for z ∈ gζ (B1).

In order that the functions are defined on a fixed domain, we
make the change of variable z = gζ (x), and replace ψ by the
function

ϕ(x) = ψ(gζ (x)). (29)

It follows that (27), (28) can be written as(
ρζ ∗

1
|·|

)
(gζ (x))−

(
ρζ ∗

1
|·|

)
(0)+ 1

2ω
2(x21 + x22)

(
1+

ζ (x)
|x|2

)2

− h(M(ζ )ρ0(x))+ h(M(ζ )ρ0(0))− ϵK (ϕ(x))

+ ϵK (ϕ(0)) = 0, (30)

ϕ(x)− L−1(ρζ ϵk(ϕ(g−1
ζ )))(gζ (x)) = 0, (31)

where both equations are now required to be valid only in B1.
Now we begin to set up the scenario for the implicit function

theorem. We define the operators

F1(ζ , ϕ, ω, ϵ)(x) =
(
ρζ ∗

1
|·|

)
(gζ (x))−

(
ρζ ∗

1
|·|

)
(0)

+
1
2ω

2(x21 + x22)
(
1+

ζ (x)
|x|2

)2

− h(M(ζ )ρ0(x))+ h(M(ζ )ρ0(0))

− ϵK (ϕ(x))+ ϵK (ϕ(0)), (32)
F2(ζ , ϕ, ω, ϵ)(x) = ϕ(x)

− ϵL−1(ρζ k(ϕ(g−1
ζ )))(gζ (x)) (33)

for x ∈ B1. We define F = (F1,F2)t . Note that F(0, 0, 0, 0) = 0
because ρ0 is the Lane–Emden solution in B1.

Let Ḃ1 = B1 \ {0}. We consider the space

X = C1(B1) ∩ {f | f is axisymmetric and even in x3, f (0) = 0,

∥f ∥X <∞} (34)

where the norm is

∥f ∥X = sup
x∈Ḃ1

|∇f (x)|
|x|

.

It is easy to see that X is a Banach space. In fact, a Cauchy
sequence {un} in X is also Cauchy and thus converges to u in
C1(B1). Now for any x ∈ Ḃ1, |∇un(x)−∇um(x)| < ϵ|x| for n,m
sufficiently large. Taking m to infinity, we get |∇un(x)−∇u(x)| <
ϵ|x|, which means {un} converges to u in X . Finally, we define
Xδ = {f ∈ X | ∥f ∥X ≤ δ}.

Lemma 2.1. The operator F is continuously Fréchet differentiable
from Xδ × Xδ × R× R into X × X provided δ is sufficiently small.

Lemma 2.1 will be proven in Section 4.

Lemma 2.2. ∂F
∂(ζ ,ϕ) (0, 0, 0, 0) : X

2
→ X2 is an isomorphism.

Proof. We write ∂F
∂(ζ ,ϕ) (0, 0, 0, 0) : X

2
→ X2 as a matrix:⎛⎜⎜⎝

∂F1

∂ζ

∂F1

∂ϕ

∂F2

∂ζ

∂F2

∂ϕ

⎞⎟⎟⎠ (0, 0, 0, 0) =

⎛⎜⎝∂F1

∂ζ
(0, 0, 0, 0) 0

0 I

⎞⎟⎠ . (35)

By Theorem 4.1 in [5], and the fact that L in [5] is the same
as ∂F1

∂ζ
(0, 0, 0, 0), we immediately see that ∂F

∂(ζ ,ϕ) (0, 0, 0, 0) is an
isomorphism. □
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Given these two lemmas and the fact that F(0, 0, 0, 0) = 0,
the implicit function theorem provides a solution for every small
enough ϵ and ω.

In addition, with the linearized operators, we may study the
first order approximation of ζ (ω, ϵ) and ϕ(ω, ϵ) as functions of
ω2 and ϵ. In fact, one easily obtains

(
ζ (ω, ϵ)
ϕ(ω, ϵ)

)
=

⎛⎜⎝ ∂ζ

∂ω2 (0, 0)ω
2
+
∂ζ

∂ϵ
(0, 0)ϵ

∂ϕ

∂ω2 (0, 0)ω
2
+
∂ϕ

∂ϵ
(0, 0)ϵ

⎞⎟⎠+ o(|ω|2 + |ϵ|), (36)

where⎛⎜⎝ ∂ζ

∂ω2 (0, 0)

∂ϕ

∂ω2 (0, 0)

⎞⎟⎠ = −

(
∂F1

∂ζ
(0, 0, 0, 0) 0

0 I

)−1 (1
2
r2

0

)

=

(
−

1
2
[
∂F1

∂ζ
(0, 0, 0, 0)]−1r2

0

)
,

and⎛⎜⎝ ∂ζ∂ϵ (0, 0)
∂ϕ

∂ϵ
(0, 0)

⎞⎟⎠ = −

(
∂F1

∂ζ
(0, 0, 0, 0) 0

0 I

)−1 (
0

−L−1(ρ0k(0))

)

=

(
0

k(0)L−1(ρ0)

)
.

In other words, the first order approximation of ζ (ω, ϵ) and
ϕ(ω, ϵ) are given by −

ω2

2 [
∂F1
∂ζ

(0, 0, 0, 0)]−1r2 and ϵk(0)L−1(ρ0)
respectively.

Notice that the magnetic field does not affect the lowest order
change in the shape of the star, because ϵ does not appear in the
approximation for ζ (ω, ϵ). By the discussion in Section 4.6 of [5],
we see that the first order approximation of ζ (ω, ϵ) gives rise to
an oblate star, which is wider at the equator than at the poles.
On the other hand, if k(0) ̸= 0, the first order approximation of
ϕ(ω, ϵ) is necessarily nonzero, giving rise to a genuine magnetic
star.

3. The operator L−1

Before we prove the Fréchet differentiability of F , we carefully
define L−1 and compile a few useful estimates of it. Consider the
equation Lu = f in R3, where both u and f are axisymmetric and
even in x3, where f is compactly supported, and where u(∞) = 0.
If we define v = u/r2, then a simple calculation gives

vrr +
3
r
vr + vzz = f . (37)

We write z = x3, r =

√
x21 + x22, v̂(r, z) = v(x1, x2, x3). Follow-

ing [1], we use the five-dimensional extension of the equation to
obtain a simple explicit formula for the solution. Let ṽ be the 5D
extensions of v defined by

ṽ(x1, x2, x3, x4, x5) = v

(√
x21 + x22 + x23 + x24 cos θ,√

x21 + x22 + x23 + x24 sin θ, x5

)
= v̂

(√
x21 + x22 + x23 + x24, x5

)
, (38)

with f̃ defined in the same way. Thus (37) can be written as
∆5ṽ = f̃ . Moreover, the condition u(∞) = 0 implies ṽ(∞) = 0.

It follows that

v(x1, x2, x3) = v(
√
x21 + x22, 0, x3) = ṽ(x1, x2, 0, 0, x3)

= C5

∫
R5

1
|(x1, x2, 0, 0, x3)− y|3

f̃ (y) dy. (39)

Thus

(L−1f )(x) = u(x1, x2, x3) = C5(x21 + x22)(L
−1
1 f )(x), (40)

where we define the integral operator

(L−1
1 f )(x) =

∫
R5

1
|(x1, x2, 0, 0, x3)− y|3

f̃ (y) dy. (41)

Since⏐⏐⏐⏐√x21 + x22 + x23 + x24 −
√
y21 + y22 + y23 + y24

⏐⏐⏐⏐ ≤ |x− y|

for x, y ∈ R5, there exists a constant C = C(β, R) such that

∥f̃ ∥C0,β (BR(R5)) ≤ C∥f ∥C0,β (BR(R3)) (42)

for any 0 < β ≤ 1 and R > 0. In other words, f̃ is as
regular as f . It is worthwhile to keep in mind that, by (40), L−1 is
basically a quadratic function vanishing at the origin multiplied
by the inverse Laplacian in 5D. Therefore, in addition to enjoying
all the regularization properties of the inverse Laplacian, it also
automatically vanishes to quadratic degree at the origin. This
observation gives rise to the next lemma.

Lemma 3.1. Let f ∈ L∞(B2). Then L−1f ∈ C1,β (B2) for every
0 < β < 1. There is a constant C > 0 such that

|L−1f (z)| + |∇L−1f (z)| ≤ C∥f ∥L∞(B2)|z| (43)

for any z ∈ B2.

Proof. Using (40) and its gradient, we have

(∇L−1f )(z) = C5∇(z21 + z22 )(L
−1
1 f )(z)+ C5(z21 + z22 )(∇L−1

1 f )(z), (44)

the inequality follows from the boundedness of
∫
B2⊂R5

1
|x−y|3

dy
and

∫
B2⊂R5

1
|x−y|4

dy. □

Combining the C1,β regularity of L−1
1 f with the properties of

gζ , we get the next lemma.

Lemma 3.2. Let f ∈ L∞(B2), ζ1, ζ2 ∈ Xδ where δ > 0 is sufficiently
small. For any 0 < β < 1, there exists Cβ > 0 such that

|[∇L−1f ](gζ1 (x))− [∇L−1f ](gζ2 (x))| ≤ Cβ∥f ∥L∞(B2)∥ζ1 − ζ2∥
β

X |x|

(45)

for x ∈ B1.

Proof. By (44), ∇L−1f is of the form f1 + (z21 + z22 )f2, where
∥f1∥C1(B2) ≤ C∥f ∥L∞ , and ∥f2∥C0,β (B2) ≤ Cβ∥f ∥L∞ . It follows that

|[∇L−1f ](gζ1 (x))− [∇L−1f ](gζ2 (x))|

≤ C∥f ∥L∞ |gζ1 (x)− gζ2 (x)| + Cβ∥f ∥L∞ |gζ1 (x) ∥ gζ1 (x)− gζ2 (x)|
β

≤ Cβ∥f ∥L∞(B2)∥ζ1 − ζ2∥
β

X |x|. (46)

In the last step, we used |gζ1 (x)− gζ2 (x)| ≤ ∥ζ1 − ζ2∥X |x|, and
|gζ1 (x)| ≤ (1+ ∥ζ∥X )|x| (cf. Lemma 3.4 of [5]). □

The standard elliptic Schauder estimates immediately imply
the following lemma.
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Lemma 3.3. Let f ∈ C0,β (B2) for some 0 < β < 1. Then
L−1f ∈ C2,β (B2), and there is a constant Cβ > 0 such that

∥∇
2L−1f ∥C0,β (B2) ≤ Cβ∥f ∥C0,β (B2). (47)

Next we discuss a few more delicate estimates involving in-
terior composition with the deformation g−1

ζ before the action
of L−1. To that end, we first write an alternative expression for
L−1(u(g−1

ζ ))(z):

L−1(u(g−1
ζ ))(z)

= C5(z21 + z22 )
∫
R5

1
|(z1, z2, 0, 0, z3)− y|3

ũ(g−1
ζ )(y) dy

= C5(z21 + z22 )
∫
R5

1
|(z1, z2, 0, 0, z3)− y|3

ũ(g̃ζ−1)(y) dy

= C5(z21 + z22 )
∫
supp ũ

1
|(z1, z2, 0, 0, z3)− g̃ζ (y)|3

× ũ(y) detDg̃ζ (y) dy (48)

where we define g̃ζ : R5
→ R5 as

g̃ζ (x) = x

(
1+

ζ̃ (x)
|x|2

)
. (49)

In the preceding identity we have used the nontrivial but straight-
forward fact that

ũ(g−1
ζ )(y) = ũ(g̃ζ−1)(y). (50)

Similarly, for a row-vector-valued function ua and a column-
vector-valued function ub, we obtain the alternative expression

L−1 (ua(g−1
ζ )D(g−1

ζ )ub(g−1
ζ )
)
(z)

= C5(z21 + z22 )
∫
R5

[ua(∇gζ )−1ub] (̃y)
|(z1, z2, 0, 0, z3)− g̃ζ (y)|3

detDg̃ζ (y) dy. (51)

The reason we write such alternative expressions is that we
want to estimate the difference L−1(u(g−1

ζ1
))− L−1(u(g−1

ζ2
)) assum-

ing only an L∞ control on u. In order to get an estimate depending
on ∥ζ1−ζ2∥X , we must use (48) to move the interior composition
of g−1

ζ out of u. The following lemma will be useful in deriving the
difference estimate of L−1(u(g−1

ζ1
))− L−1(u(g−1

ζ2
)):

Lemma 3.4. Suppose ζ1, ζ2 ∈ Xδ where δ > 0 is sufficiently small
and u ∈ L∞(B1). Then⏐⏐⏐⏐∇z

∫
B1⊂R5

(
1

|(z1, z2, 0, 0, z3)− g̃ζ1 (y)|
3

−
1

|(z1, z2, 0, 0, z3)− g̃ζ2 (y)|
3

)
ũ(y) dy

⏐⏐⏐⏐
≤ Cd(1+ |log d|)∥u∥L∞ , (52)

where d = ∥ζ1 − ζ2∥X , for z ∈ B2 ⊂ R3.

Proof. The singularities of the integral are at y(1) = g̃ζ1
−1(z1, z2, 0,

0, z3) and y(2) = g̃ζ2
−1(z1, z2, 0, 0, z3). For any y ∈ B2, we claim

that |(z1, z2, 0, 0, z3)− g̃ζ1 (y)| is comparable to |y(1) − y|, and that
|(z1, z2, 0, 0, z3)− g̃ζ2 (y)| is comparable to |y(2) − y|. In fact,

|(z1, z2, 0, 0, z3)− g̃ζi (y)| = |g̃ζi (y(i))− g̃ζi (y)| ≤ ∥Dg̃ζi∥L∞ |y(i) − y|.

Similarly

|y(i) − y| ≤ ∥Dg̃ζi
−1
∥L∞ |(z1, z2, 0, 0, z3)− g̃ζ (y)|.

The L∞ bound on Dg̃ζi and Dg̃ζi
−1 follows in a similar fashion to

Lemma 3.4 of [5]. Using similar estimates involving differences of

ζ1 and ζ2, we obtain that |g̃ζ1 (y)− g̃ζ2 (y)| and |y(1) − y(2)| are both
bounded by a constant multiple of ∥ζ1 − ζ2∥X . By the preceding
distance estimates, we may choose a ball Bd to be centered at the
midpoint of y(1) and y(2) with radius comparable to d = ∥ζ1−ζ2∥X ,
such that the following facts hold whenever y is outside Bd:

(a) |y− y(i)| ≥ 2|y(1) − y(2)|, i = 1, 2.
(b) |(z1, z2, 0, 0, z3)− g̃ζi (y)| ≥ 2|g̃ζ1 (y)− g̃ζ2 (y)|, i = 1, 2.

We split the integral into one piece on Bd and another piece off Bd.
On Bd, we use the fact that |(z1, z2, 0, 0, z3)− g̃ζi (y)| is comparable
to |y(i) − y|, so the integral is bounded by

C
∫ d

0

2
r4

r4 dr∥u∥L∞ = Cd∥u∥L∞ . (53)

Off Bd, we use the distance estimates above to conclude that
for all 0 ≤ t ≤ 1, |(z1, z2, 0, 0, z3)− tg̃ζ1 (y)− (1− t)g̃ζ2 (y)| is
comparable to the distance between y and the center of Bd, so
the integral is bounded by

C
∫ 1

d

1
r5

r4 dr∥gζ1 − gζ2∥∞∥u∥∞ ≤ Cd|log d|∥u∥∞. □ (54)

Now we use the preceding lemma to prove the relevant esti-
mate on L−1.

Lemma 3.5. Let u, ua, ub be respectively scalar, row-vector-valued
and column-vector-valued bounded functions supported on B1. Let
ζ1, ζ2 ∈ Xδ where δ > 0 is sufficiently small. Then there is a constant
C > 0 such that

|{∇L−1
[u(g−1

ζ1
)]}(z)− {∇L−1

[u(g−1
ζ2

)]}(z)|

≤ Cd(1+ |log d|)∥u∥L∞ |z|, (55)

and

|{∇L−1
[ua(g−1

ζ1
)∇(g−1

ζ1
)ub(g−1

ζ1
)]}(z)

− {∇L−1(ua(g−1
ζ2

)∇(g−1
ζ2

)ub(g−1
ζ2

)]}(z)|

≤ Cd(1+ |log d|)∥u1∥L∞∥u2∥L∞ |z|. (56)

Here d = ∥ζ1 − ζ2∥X .

Proof. We write {∇L−1
[u(g−1

ζ1
)]}(z)− {∇L−1

[u(g−1
ζ2

)]}(z) as

C5∇(z21 + z22 )
(
L−1
1 [u(g−1

ζ1
)](z)− L−1

[u(g−1
ζ2

)](z)
)

+ C5(z21 + z22 )
(
{∇L−1

1 [u(g−1
ζ1

)]}(z)− {∇L−1
1 [u(g−1

ζ2
)]}(z)

)
.

(57)

Using (48), L−1
1 [u(g−1

ζ1
)](z)− L−1

[u(g−1
ζ2

)](z) can be written as∫
B1

ũ(y)Dg̃ζ1 (y)

|(z1, z2, 0, 0, z3)− g̃ζ1 (y)|
3 −

ũ(y)Dg̃ζ2 (y)

|(z1, z2, 0, 0, z3)− g̃ζ2 (y)|
3 dy

=

∫
B1

ũ(y)[Dg̃ζ1 (y)− Dg̃ζ2 (y)]

|(z1, z2, 0, 0, z3)− g̃ζ1 (y)|
3 dy

+

∫
B1

ũ(y)Dg̃ζ2 (y)
(

1
|(z1, z2, 0, 0, z3)− g̃ζ1 (y)|

3

−
1

|(z1, z2, 0, 0, z3)− g̃ζ2 (y)|
3

)
dy

which is easily seen to be bounded by Cd∥u∥L∞ in view of the
estimates |Dg̃ζ1 (y)− Dg̃ζ2 (y)| ≤ Cd and |g̃ζ1 (y)− g̃ζ2 (y)| ≤ Cd.
We can treat {∇L−1

1 [u(g−1
ζ1

)]}(z) − {∇L−1
1 [u(g−1

ζ2
)]}(z) in a similar

way, this time using |Dg̃ζ1 (y)− Dg̃ζ2 (y)| ≤ Cd and Lemma 3.4
to draw the conclusion. The difference expression (56) can be
treated analogously using (51). □
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Finally, we will also need a lemma concerning the Hölder
estimate of u(g−1

ζ1
)− u(g−1

ζ2
).

Lemma 3.6. If u ∈ C0,β (R3) for some 0 < β ≤ 1, and u
is supported in B1, and ζ1, ζ2 ∈ Xδ where δ > 0 is sufficiently
small, then ∥u(g−1

ζ1
) − u(g−1

ζ2
)∥C0,α (R3) ≤ Cα∥ζ1 − ζ2∥

β−α

X for every
0 < α < β .

Remark 1. Notice that ∥u(g−1
ζ1

) − u(g−1
ζ2

)∥C0,α (R3) might not tend
to zero as ∥ζ1 − ζ2∥X → 0 for α = β , as is suggested by the
simple example fϵ(x) = |x+ ϵ|β − |x|β . The C0,β norm of fϵ does
not decrease as ϵ → 0.

Proof. Let v = u(g−1
ζ1

) − u(g−1
ζ2

), we have ∥v∥C0,β ≤ C , and
∥v∥∞ ≤ C∥ζ1 − ζ2∥

β

X . In fact, v(x) = u(g−1
ζ1

(x)) − u(g−1
ζ2

(x)) is

bounded by a constant multiple of |g−1
ζ1

(x)− g−1
ζ2

(x)|
β
, due to the

Hölder continuity of u. The latter is bounded by ∥ζ1−ζ2∥
β

X by the
property of gζ given in Lemma 3.4 of [5]. For any x, y, x ̸= y, note
that

|v(x)− v(y)|
|x− y|α

=

(
|v(x)− v(y)|
|x− y|β

) α
β

|v(x)− v(y)|1−
α
β

≤ C∥v∥
α
β

C0,β∥v∥
1− α

β
∞

≤ C∥ζ1 − ζ2∥
β−α

X ,

from which we deduce the result. □

4. Fréchet differentiability

In this section, we prove the Fréchet differentiability of F(ζ , ϕ,
ω, ϵ).

Theorem 4.1. The operator F : X2
δ × R2

→ X2 is continuously
Fréchet differentiable if δ > 0 is sufficiently small .

4.1. F Maps into X2

Lemma 4.1. There exists a constant C > 0 depending on ρ0, k, and
δ such that

∥F1(ζ , ϕ, ω, ϵ)∥X ≤ C(1+ω2
+ϵ) and ∥F2(ζ , ϕ, ϵ)∥X ≤ C(1+ϵ)

(58)

if ζ ∈ Xδ and ϕ ∈ Xδ for sufficiently small δ > 0.

Proof. We start with F1. The terms except −ϵK (ϕ(x))+ϵK (ϕ(0))
in F1 have been shown to map into X in [5] (cf. Lemma 5.1
in [5]). In order for −ϵK (ϕ(x)) + ϵK (ϕ(0)) to also map into X , it
suffices to show that |K ′(ϕ(x))∇ϕ(x)| is bounded by C |x|. But this
immediately follows from the fact that ϕ ∈ X and |K ′(ϕ(x))| is
bounded.

We next move on to F2. Let us rewrite F2 as

F2(ζ , ϕ, ω, ϵ) = ϕ(x)− ϵM(ζ )F3(ζ , ϕ) (59)

where

F3(ζ , ϕ) := L−1(ρ0(g−1
ζ ) k(ϕ(g−1

ζ )))(gζ (x)). (60)

Since ϕ ∈ X , we only need to show that F3 maps into X . To this
end, we compute the spatial derivative of (60):

∂iF3(ζ , ϕ) =
[
∇L−1(ρ0(g−1

ζ ) k(ϕ(g−1
ζ )))

]
(gζ (x)) · ∂igζ (x). (61)

Since |gζ (x)− x| ≤ ∥ζ∥X |x| and |∂igζ (x)| ≤ C(1+∥ζ∥X ) (cf. Lemma
3.4 in [5]), in order to bound |∂iF3| by C |x|, it is sufficient to
show that

[
∇L−1(ρ0(g−1

ζ )k(ϕ(g−1
ζ )))

]
(z) is bounded by C |z|. This,

in turn, is a consequence of Lemma 3.1. □

4.2. Formal derivative of F

To simplify notation, we suppress the ω, ϵ dependence in
F . Another reason for doing so is that the differentiability with
respect to ω and ϵ is simpler. Therefore, for the moment, we think
of them as being fixed. Let ζ , ϕ ∈ Xδ and ξ , η ∈ X be given.
Consider s ∈ R in a sufficiently small neighborhood of 0 so that
ζ + sξ , ϕ + sη ∈ Xδ . We define the formal derivatives of F with
respect to ζ , and ϕ respectively as the pointwise limits[
∂F
∂ζ

(ζ , ϕ)ξ
]
(x) = ∂s

⏐⏐⏐⏐
s=0

F(ζ + sξ, ϕ)(x),[
∂F
∂ϕ

(ζ , ϕ)η
]
(x) = ∂s

⏐⏐⏐⏐
s=0

F(ζ , ϕ + sη)(x),

(62)

for every fixed x. We do not yet claim that this is a Gateaux
derivative, which would require a specific condition making use
of the norm, while for the time being we are only defining it
pointwise. The formal derivative of F1 with respect to ζ was
computed in Lemma 5.2 in [5]. It is easy to see that the formal
derivative of F1 with respect to ϕ is[
∂F1

∂ϕ
(ζ , ϕ)η

]
(x) = −ϵK ′(ϕ(x))η(x) (63)

As for F2 it is clear from (59) that[
∂F2

∂ζ
(ζ , ϕ)ξ

]
= −ϵ[M′(ζ )ξ ]F3(ζ , ϕ)− ϵM(ζ )

[
∂F3

∂ζ
(ζ , ϕ)ξ

]
(64)

and[
∂F2

∂ϕ
(ζ , ϕ)η

]
= η − ϵM(ζ )

[
∂F3

∂ϕ
(ζ , ϕ)η

]
(65)

where F3 is given in (60). According to (5.18) in [5], M′(ζ )ξ is
given by

M′(ζ )ξ =
−M(∫

B1
ρ0(x) detDgζ (x) dx

)2
×

∫
B1

ρ0(x) detDgζ (x) tr
[
(Dgζ )−1(x)D

(
ξ (x)

x
|x|2

)]
dx

(66)

The computation of
[
∂F3
∂ζ

(ζ , ϕ)ξ
]
is similar to the one for the

first term in F1, both of which are integral operators involving
ρ0(g−1

ζ ). Using the formula (see (5.30) of [5]),

∂sg−1
ζ+sξ (y) = −Dg−1

ζ+sξ (y)ξ (g
−1
ζ+sξ (y))

g−1
ζ+sξ (y)

|g−1
ζ+sξ (y)|

2 , (67)

we deduce that[
∂F3

∂ζ
(ζ , ϕ)ξ

]
(x)

= − L−1
[(
∇ρ0(g−1

ζ )k(ϕ(g−1
ζ ))+ ρ0(g−1

ζ )k′(ϕ(g−1
ζ ))∇ϕ(g−1

ζ )
)
·

D(g−1
ζ ) ·

ξ (g−1
ζ )g−1

ζ

|g−1
ζ |

2

]
(gζ (x))

+
[
∇L−1(ρ0(g−1

ζ )k(ϕ(g−1
ζ )))

]
(gζ (x)) ·

ξ (x)
|x|2

x. (68)

Lastly, the formal derivative with respect to ϕ is given by[
∂F3

∂ϕ
(ζ , ϕ)η

]
(x) = L−1 [ρ0(g−1

ζ )k′(ϕ(g−1
ζ ))η(g−1

ζ )
]
(gζ (x)). (69)
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A rigorous justification of the above formulas involving the cut-off
function method may be found in Lemma 5.2. of [5]. The details
are omitted.

Next we will show that the formal derivative ∂F
∂(ζ ,ϕ) , just com-

puted, is a bounded linear map on X × X .

Lemma 4.2. If ζ , ϕ ∈ Xδ and δ is sufficiently small, there exists a
constant C > 0 such that∂F1

∂ζ
(ζ , ϕ)ξ


X
≤ C(1+ ω2)∥ξ∥X ,

∂F1

∂ϕ
(ζ , ϕ)η


X
≤ Cϵ∥η∥X

(70)

and∂F2

∂ζ
(ζ , ϕ)ξ


X
≤ Cϵ∥ξ∥X ,

∂F2

∂ϕ
(ζ , ϕ)η


X
≤ C(1+ ϵ)∥η∥X .

(71)

Proof. The first inequality in (70) was derived in Lemma 5.5
in [5]. The second inequality in (70) directly follows from (63)
since |K ′(ϕ(x))| is bounded. The rest of the proof is devoted
to (71). It suffices to prove the boundedness of ∂F3

∂ζ
(ζ , ϕ) and

∂F3
∂ϕ

(ζ , ϕ) on X .
We start with ∂F3

∂ζ
(ζ , ϕ). To estimate its X norm, we take the

spatial derivatives

∂i

[
∂F3

∂ζ
(ζ , ϕ)ξ

]
(x)

= −∇L−1
[(
∇ρ0(g−1

ζ )k(ϕ(g−1
ζ ))+ ρ0(g−1

ζ )k′(ϕ(g−1
ζ ))∇ϕ(g−1

ζ )
)
·

Dg−1
ζ ·

ξ (g−1
ζ )g−1

ζ

|g−1
ζ |

2

]
(gζ (x)) · ∂igζ (x) (72)

+
[
∇

2L−1(ρ0(g−1
ζ )k(ϕ(g−1

ζ )))
]
(gζ (x))∂igζ (x) ·

ξ (x)
|x|2

x (73)

+
[
∇L−1(ρ0(g−1

ζ )k(ϕ(g−1
ζ )))

]
(gζ (x)) · ∂i

(
ξ (x)
|x|2

x
)
. (74)

We claim, starting with (72), that each term on the right-hand
side is bounded by C∥ξ∥X |x|. Due to Lemma 3.1 and the estimates
|gζ (x)− x| ≤ ∥ζ∥X |x| and |∂igζ (x)| ≤ C(1+ ∥ζ∥X ) (cf. Lemma 3.4
in [5]), we can bound (72) by

|(72)| ≤ C
 [∇ρ0(g−1

ζ )k(ϕ(g−1
ζ ))+ ρ0(g−1

ζ )k′(ϕ(g−1
ζ ))∇ϕ(g−1

ζ )
]
·

∇g−1
ζ ·

ξ (g−1
ζ )g−1

ζ

|g−1
ζ |

2


L∞

|x|

Note that the first factor is bounded in the L∞ norm due to the
assumptions on k and ϕ. As for the second factor, since ∇g−1

ζ is
bounded and since |g−1

ζ (y)| is comparable to |y|, and |ξ (y)y|/|y|2

is dominated by C∥ξ∥X , we have ∥∇g−1
ζ · ξ (g−1

ζ )g−1
ζ /|g−1

ζ |
2
∥L∞ ≤

C∥ξ∥X .
For (73), since |∂igζ (x) · (ξ (x)/|x|2)x| ≤ C∥ξ∥X |x|, it is enough

to have ∇
2L−1(ρ0(g−1

ζ )k(ϕ(g−1
ζ )))(z) be bounded and continuous.

With our assumptions on ζ and ϕ, ρ0(g−1
ζ )k(ϕ(g−1

ζ )) is in C1 and
therefore (73) satisfies the desired estimate due to Lemma 3.3.
As for (74), since |∂i

(
ξ (x)
|x|2

x
)
| ≤ C∥ξ∥X , it is enough to have

|∇L−1(ρ0(g−1
ζ )k(ϕ(g−1

ζ )))(z)| ≤ C |z|, which is indeed the case by
Lemma 3.1, using the fact that ρ0(g−1

ζ )k(ϕ(g−1
ζ )) is in L∞.

Finally we examine the spatial derivative ∂F3
∂ϕ

(ζ , ϕ):

∂i

[
∂F3

∂ϕ
(ζ , ϕ)η

]
(x)

= ∇L−1 [ρ0(g−1
ζ )k′(ϕ(g−1

ζ ))η(g−1
ζ )
]
(gζ (x)) · ∂igζ (x). (75)

Since ∥ρ0(g−1
ζ )k′(ϕ(g−1

ζ ))η(g−1
ζ )∥L∞ ≤ C∥η∥X , from Lemma 3.1 we

deduce that ∥ ∂F3
∂ϕ

(ζ , ϕ)η∥X ≤ C∥η∥X |x|. This completes the proof
of the lemma. □

4.3. Continuity of F ′

Now we establish the continuity of the formal derivative
∂F

∂(ζ ,ϕ,ω,ϵ) from Xδ × Xδ × (−δ, δ)× (−δ, δ) into X × X .

Lemma 4.3. If ζ , ϕ ∈ Xδ and δ is sufficiently small, there exist
constants C > 0, 0 < α < 1, and a constant Cβ for each 0 < β < 1
such that(∂F1

∂ζ
(ζ1, ϕ1)−

∂F1

∂ζ
(ζ2, ϕ2)

)
ξ


X
≤ C∥ζ1 − ζ2∥αX∥ξ∥X , (76)(∂F1

∂ϕ
(ζ1, ϕ1)−

∂F1

∂ϕ
(ζ2, ϕ2)

)
η


X
≤ Cϵ∥ϕ1 − ϕ2∥X∥η∥X , (77)(∂F2

∂ζ
(ζ1, ϕ1)−

∂F2

∂ζ
(ζ2, ϕ2)

)
ξ


X
≤ Cβϵ(∥ζ1 − ζ2∥

β

X (78)

+ ∥ϕ1 − ϕ2∥
β

X )∥ξ∥X ,(∂F2

∂ϕ
(ζ1, ϕ1)−

∂F2

∂ϕ
(ζ2, ϕ2)

)
η


X
≤ Cβϵ(∥ζ1 − ζ2∥

β

X (79)

+ ∥ϕ1 − ϕ2∥X )∥η∥X ,

Proof. The inequality (76) was derived in Lemma 5.6 of [5]. We
focus on the rest of the estimates, beginning with (77). Recalling
(63), we have

∂i

[(
∂F1

∂ϕ
(ζ1, ϕ1)−

∂F1

∂ϕ
(ζ2, ϕ2)

)
η

]
(x)

= ϵ(K ′′(ϕ2(x))∂iϕ2(x)− K ′′(ϕ1(x))∂iϕ1(x))η(x)
+ ϵ(K ′(ϕ2(x))− K ′(ϕ1(x)))∂iη(x)

The second term on the right-hand side is bounded by Cϵ∥ϕ1 −
ϕ2∥X∥η∥X |x| since |K ′(ϕ2(x))− K ′(ϕ1(x))| is bounded by C∥ϕ1 −

ϕ2∥X . Rewriting the first term as

ϵ(K ′′(ϕ2(x))(∂iϕ2(x)−∂iϕ1(x))+(K ′′(ϕ2(x))−K ′′(ϕ1(x)))∂iϕ1(x))η(x),

we see that it is also bounded by Cϵ∥ϕ1−ϕ2∥X∥η∥X |x|. Thus (77)
holds.

As for (78), we write(
∂F2

∂ζ
(ζ1, ϕ1)−

∂F2

∂ζ
(ζ2, ϕ2)

)
ξ = J1 + J2 + J3 + J4,

where
J1 = ϵ[M′(ζ2)ξ −M′(ζ1)ξ ]F3(ζ1, ϕ1)
J2 = ϵ[M′(ζ2)ξ ](F3(ζ2, ϕ2)− F3(ζ1, ϕ1))

J3 = ϵ(M(ζ2)−M(ζ1))
∂F3

∂ζ
(ζ1, ϕ1)ξ

J4 = ϵM(ζ2)
[
∂F3

∂ζ
(ζ2, ϕ2)ξ −

∂F3

∂ζ
(ζ1, ϕ1)ξ

]
We will estimate the X norm of each Ji, i = 1, 2, 3, 4. We
start with J1. The X norm of F3 was shown to be bounded
in Lemma 4.1. The estimate of I1 in Lemma 5.6 of [5] shows
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∥M′(ζ2)ξ − M′(ζ1)ξ∥L∞ ≤ C∥ζ1 − ζ2∥X∥ξ∥X , and therefore we
obtain

∥J1∥X ≤ Cϵ∥ζ1 − ζ2∥X∥ξ∥X .

We next estimate J2. By Lemma 5.5 of [5], we have ∥M′(ζ2)ξ∥X
≤ C∥ξ∥X . In order to estimate the X norm of F3(ζ2, ϕ2) −

F3(ζ1, ϕ1), we rewrite its spatial derivative as

∂i(F3(ζ2, ϕ2)− F3(ζ1, ϕ1)) =

{∇L−1
[ρ0(g−1

ζ2
)k(ϕ2(g−1

ζ2
))](gζ2 (x))−∇L−1

[ρ0(g−1
ζ1

)k(ϕ2(g−1
ζ1

))]

× (gζ2 (x))}∂igζ2 (x)

+ {∇L−1
[ρ0(g−1

ζ1
)k(ϕ2(g−1

ζ1
))](gζ2 (x))−∇L−1

[ρ0(g−1
ζ1

)k(ϕ2(g−1
ζ1

))]

× (gζ1 (x))}∂igζ2 (x)

+ {∇L−1
[ρ0(g−1

ζ1
)k(ϕ2(g−1

ζ1
))](gζ1 (x))−∇L−1

[ρ0(g−1
ζ1

)k(ϕ1(g−1
ζ1

))]

× (gζ1 (x))}∂igζ2 (x)

+ ∇L−1
[ρ0(g−1

ζ1
)k(ϕ1(g−1

ζ1
))](gζ1 (x))∂i(gζ2 (x)− gζ1 (x))

=: J21 + J22 + J23 + J24

J21 can be estimated by the representation (48) and Lemma 3.5
with u = ρ0k(ϕ2). Since ρ0k(ϕ2) is in L∞, we deduce that
|J21| ≤ Cβ∥ζ1 − ζ2∥

β

X |x| for any 0 < β < 1. For J22, we apply
Lemma 3.2 to deduce that |J22| ≤ Cβ∥ζ1 − ζ2∥

β

X |x| for any 0 <
β < 1, as ρ0(g−1

ζ1
)k(ϕ2(g−1

ζ1
)) ∈ C1. To estimate J23, we note

that |k(ϕ2(z))− k(ϕ1(z))| ≤ ∥k′∥L∞ |ϕ2(z)− ϕ1(z)| ≤ C∥ϕ1 − ϕ2∥X ,
which results in |J23| ≤ C∥ϕ1 − ϕ2∥X |x| by Lemma 3.2. Moreover,
we have |J24| ≤ C∥ζ1−ζ2∥X |x|, since |∂i(gζ2 (x)− gζ1 (x))| ≤ C∥ζ1−
ζ2∥X . To sum up, we deduce that

∥J2∥X ≤ Cϵ(∥ζ1 − ζ2∥
β

X + ∥ϕ1 − ϕ2∥X )∥ξ∥X

for any 0 < β < 1.
The estimation of J3 is similar to that of J1. From Lemma 4.2

we deduce that

∥J3∥X ≤ Cϵ∥ζ1 − ζ2∥X∥ξ∥X .

We now turn into J4. Introducing some notation to denote the
functions appearing in (72), (73), (74), we define

v(ζ , ϕ) :=
(
∇ρ0(g−1

ζ )k(ϕ(g−1
ζ ))+ ρ0(g−1

ζ )k′(ϕ(g−1
ζ ))∇ϕ(g−1

ζ )
)

· Dg−1
ζ ·

ξ (g−1
ζ )g−1

ζ

|g−1
ζ |

2

w(ζ , ϕ) := ρ0(g−1
ζ )k(ϕ(g−1

ζ ))

Then we may write ∂i
[
∂F3
∂ζ

(ζ2, ϕ2)ξ −
∂F3
∂ζ

(ζ1, ϕ1)ξ
]
as

∂i

[
∂F3

∂ζ
(ζ2, ϕ2)ξ −

∂F3

∂ζ
(ζ1, ϕ1)ξ

]
= ∇L−1(v(ζ1, ϕ1))(gζ1 (x)) · ∂igζ1 (x)

−∇L−1(v(ζ2, ϕ2))(gζ2 (x)) · ∂igζ2 (x)

+
[
∇

2L−1(w(ζ2, ϕ2))(gζ2 (x))∂igζ2 (x)

−∇
2L−1(w(ζ1, ϕ1))(gζ1 (x))∂igζ1 (x)

]
·
ξ (x)
|x|2

x

+
[
∇L−1(w(ζ2, ϕ2))(gζ2 (x))−∇L−1(w(ζ1, ϕ1))(gζ1 (x))

]
· ∂i

(
ξ (x)
|x|2

x
)

=: J41 + J42 + J43.

We will estimate each J4i, i = 1, 2, 3 separately. We start with
J41 following the same steps as for J2. Namely, we rewrite it as
J411 + J412 + J413 + J414 (see J21 + J22 + J23 + J24) and estimate
each term. The only novelty is that we have v(ζ , ϕ) instead of
w(ζ , ϕ) = ρ0(g−1

ζ )k(ϕ(g−1
ζ )). Consequently, we just use estimate

(56) instead of (55). We deduce that

|J41| ≤ Cβ (∥ζ1 − ζ2∥
β

X + ∥ϕ1 − ϕ2∥X )∥ξ∥X |x|

for any 0 < β < 1.
For J42, we rewrite the square bracket term as

[ · ] = ∇
2L−1

[w(ζ2, ϕ2)− w(ζ1, ϕ2)](gζ2 (x))∂igζ2 (x)

+ ∇
2L−1

[w(ζ1, ϕ2)− w(ζ1, ϕ1)](gζ2 (x))∂igζ2 (x)

+ {∇
2L−1

[w(ζ1, ϕ1)](gζ2 (x))−∇
2L−1

[w(ζ1, ϕ1)](gζ1 (x))}
× ∂igζ2 (x)

+ ∇
2L−1

[w(ζ1, ϕ1)](gζ1 (x))∂i(gζ2 (x)− gζ1 (x))
=: J421 + J422 + J423 + J424

We focus first on ∇
2L−1

1 [w(ζ2, ϕ2) − w(ζ1, ϕ2)](z) in J421. Since
ρ0k(ϕ2) ∈ C0,1, Lemma 3.5 yields ∥w(ζ2, ϕ2) − w(ζ1, ϕ2)∥C0,α ≤

Cα∥ζ1 − ζ2∥
1−α
X for any 0 < α < 1. Lemma 3.3 then gives the

bound

∥∇
2L−1

1 (w(ζ2, ϕ2)− w(ζ1, ϕ2))∥L∞ ≤ Cβ∥ζ1 − ζ2∥
β

X

for any 0 < β < 1. Similarly, in J422 we also have

∥∇
2L−1

1 [w(ζ1, ϕ2)− w(ζ1, ϕ1)]∥L∞ ≤ Cβ∥ϕ1 − ϕ2∥
β

X

for any 0 < β < 1. The most serious term in J423 is as follows.
Since ρ0k(ϕ1) ∈ C0,1, Lemma 3.3 again gives

|∇
2L−1

1 [w(ζ1, ϕ1)](gζ2 (x))−∇
2L−1

1 [w(ζ1, ϕ1)](gζ1 (x))|

≤ Cβ |gζ1 (x)− gζ2 (x)|
β
≤ Cβ∥ζ1 − ζ2∥

β

X

for any 0 < β < 1. Lastly, |J424| ≤ C∥ζ1 − ζ2∥X since
∇

2L−1
[w(ζ1, ϕ1)](gζ1 (x)) is bounded and |∂i(gζ2 (x)− gζ1 (x))| ≤

C∥ζ1 − ζ2∥X . Together with |
ξ (x)
|x|2

x| ≤ C∥ξ∥X |x|, we arrive at

|J42| ≤ Cβ (∥ζ1 − ζ2∥
β

X + ∥ϕ1 − ϕ2∥
β

X )∥ξ∥X |x|

for any 0 < β < 1.
The square bracket in J43 can be estimated in the same way as

was done for J21, J22 and J23. Together with |∂i

(
ξ (x)
|x|2

x
)
| ≤ C∥ξ∥X ,

we have

|J43| ≤ Cβ (∥ζ1 − ζ2∥
β

X + ∥ϕ1 − ϕ2∥X )∥ξ∥X |x|

for any 0 < β < 1. Combining the estimates of J41, J42 and J43, we
find that

∥J4∥X ≤ Cβϵ(∥ζ1 − ζ2∥
β

X + ∥ϕ1 − ϕ2∥
β

X )∥ξ∥X

for any 0 < β < 1. This completes the proof of (78).
It remains to show (79). Note that(
∂F2

∂ϕ
(ζ1, ϕ1)−

∂F2

∂ϕ
(ζ2, ϕ2)

)
η = ϵ(M(ζ2)−M(ζ1))

×
∂F3

∂ϕ
(ζ1, ϕ1)η

+ϵM(ζ2)
[
∂F3

∂ϕ
(ζ2, ϕ2)η −

∂F3

∂ϕ
(ζ1, ϕ1)η

]
=: K1 + K2

Each factor of K1 has been previously estimated and it is easy to
see that

∥K1∥X ≤ Cϵ∥ζ1 − ζ2∥X∥η∥X .
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The other term K2 can be estimated in the same spirit as for J2,
for instance. We obtain

∥K2∥X ≤ Cβϵ(∥ζ1 − ζ2∥
β

X + ∥ϕ1 − ϕ2∥X )∥η∥X

for any 0 < β < 1. We omit the details. This completes the proof
of the proposition. □

Before proving that the formal derivatives are genuine Fréchet
derivatives, we need a technical lemma that establishes the
equality of the mixed partial derivatives of the functions

G1(x, s) = F(ζ + sξ, ϕ)(x) = (F1(ζ + sξ, ϕ)(x),F2(ζ + sξ, ϕ)(x))t

and

G2(x, s) = F(ζ , ϕ + sη)(x) = (F1(ζ , ϕ + sη)(x),F2(ζ , ϕ + sη)(x))t

This will of course be true if the G1, G2 are C2. However, rather
than showing such regularity, we make a direct computation.

Lemma 4.4. Let G1, G2 be defined as above, where ζ , ϕ ∈ Xδ for
δ > 0 sufficiently small, and ξ, η ∈ X are such that ζ + sξ, ϕ+ sη ∈

Xδ for all |s| ≤ 1. Then

∂i∂sGj(x, s) = ∂s∂iGj(x, s) (80)

for all x ∈ B1, all |s| ≤ 1 and j = 1, 2.

Proof. We only show the proof for G1, as G2 is similar. For the F1
part of G1, (80) is an immediate consequence of Lemma 5.4 of [5].
For F2, we only focus on the part

G3(x, s) = F3(ζ + sξ, ϕ)(x) = L−1
[ρ0(g−1

ζ+sξ )k(ϕ(g
−1
ζ+sξ ))](gζ+sξ (x)).

(81)

In the following, to simplify notation, we plug in s = 0 after
taking the derivative ∂s. The general case will be similar but has
more clumsy notation. ∂i∂sG3(x, 0) is given by (72), (73) and (74).
To find the other mixed partial derivative, we compute

∂iG3(x, s) = ∇L−1
[ρ0(g−1

ζ+sξ )k(ϕ(g
−1
ζ+sξ ))](gζ+sξ (x)) · ∂igζ+sξ (x). (82)

If we let the ∂s derivative fall on the various terms as follows

∇L−1
{∂s[ρ0(g−1

ζ+sξ )k(ϕ(g
−1
ζ+sξ ))]}(gζ+sξ (x)) · ∂igζ+sξ (x) (83)

+∇
2L−1

[ρ0(g−1
ζ+sξ )k(ϕ(g

−1
ζ+sξ ))](gζ+sξ (x)) · ∂sGζ+sξ (x) · ∂igζ+sξ (x)

(84)

+∇L−1
[ρ0(g−1

ζ+sξ )k(ϕ(g
−1
ζ+sξ ))](gζ+sξ (x)) · ∂s∂igζ+sξ (x), (85)

we will recover (72), (73) and (74), and the proof will be com-
plete. To justify the calculation above, we define

G4(z, s) = ∇L−1
[ρ0(g−1

ζ+sξ )k(ϕ(g
−1
ζ+sξ ))](z) (86)

and want to show that

(a) ∂sG4(z, s) = ∇L−1
{∂s[ρ0(g−1

ζ+sξ )k(ϕ(g
−1
ζ+sξ ))]}(z).

(b) ∂zG4(z, s) = ∇
2L−1

[ρ0(g−1
ζ+sξ )k(ϕ(g

−1
ζ+sξ ))](z).

(c) Both ∂sG4(z, s) and ∂zG4(z, s) are continuous.

The calculation will therefore be justified by the chain rule.
Since ∂s[ρ0(g−1

ζ+sξ )k(ϕ(g
−1
ζ+sξ ))] is bounded, (a) follows directly

from the dominated convergence theorem. (b) is obvious. The
continuity of ∂sG4(z, s) and ∂zG4(z, s) can be proven by the same
kind of estimates employed in the proof of Lemma 4.3. We omit
the straightforward details. □

We finally show that the formal derivatives are genuine
Fréchet derivatives.

Lemma 4.5. Let ζ , ϕ ∈ Xδ where δ > 0 is sufficiently small. There
exist δ1 > 0, 0 < α < 1 and C > 0 such that if ∥ξ∥X , ∥η∥X < δ1,
thenF(ζ + ξ, ϕ + η)− F(ζ , ϕ)−

∂F
∂(ζ , ϕ)

(ξ, η)

X2

≤ C(∥ξ∥X + ∥η∥X )1+α, (87)

where ∂F
∂(ζ ,ϕ) denotes the formal derivative defined in (62).

Proof. In order to estimate the X norm on the left hand side of
(87), we compute the spatial derivatives by

∂i[F(ζ + ξ, ϕ + η)− F(ζ , ϕ)](x)

= ∂iF(ζ + sξ, ϕ + sη)(x)
⏐⏐⏐⏐s=1

s=0

= ∂s∂iF(ζ + sξ, ϕ + sη)(x)
⏐⏐⏐⏐
s=θ (x)

= ∂i∂sF(ζ + sξ, ϕ + sη)(x)
⏐⏐⏐⏐
s=θ (x)

= ∂i

[(
∂F

∂(ζ , ϕ)
(ζ + sξ, ϕ + sη)

)
(ξ, η)

]
(x)
⏐⏐⏐⏐
s=θ (x)

, (88)

where 0 < θ (x) < 1. We have used Lemma 4.4 to exchange the
order of mixed partial derivatives. It follows that

∂i

[
F(ζ + ξ, ϕ + η)− F(ζ , ϕ)−

∂F
∂(ζ , ϕ)

(ξ, η)
]
(x) (89)

= ∂i

[(
∂F

∂(ζ , ϕ)
(ζ + sξ, ϕ + sη)

−
∂F

∂(ζ , ϕ)
(ζ , ϕ)

)
(ξ, η)

]
(x)
⏐⏐⏐⏐
s=θ (x)

.

Using Lemma 4.3, the components of (89) are bounded by

C(∥sξ∥X + ∥sη∥X )α(∥ξ∥X + ∥η∥X )|x|
⏐⏐⏐⏐
s=θ (x)

≤ C(∥ξ∥X + ∥η∥X )1+α|x|.

The estimate (87) thus follows. □

Since the dependence of F on ω and ϵ is very simple, we easily
see that F is continuously Fréchet differentiable with respect
to these two variables as well. Thus Theorem 4.1 immediately
follows from Lemma 4.5.
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