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Abstract
A rotating star may be modeled as a continuous system of particles attracted
to each other by gravity and with a given total mass and prescribed angular
velocity.Mathematically this leads to the Euler–Poisson system. A white dwarf
star is modeled by a very particular, and rather delicate, equation of state for the
pressure as a function of the density. We prove an existence theorem for rapidly
rotatingwhite dwarfs that depend continuouslyon the speed of rotation. The key
tool is global continuation theory, combined with a delicate limiting process.
The solutions form a connected set K in an appropriate function space. As the
speed of rotation increases, we prove that either the supports of white dwarfs
inK become unbounded or their densities become unbounded.We also discuss
the polytropic case with the critical exponent γ = 4/3.

Keywords: white dwarf star, Euler–Poisson equations, global continuation,
rotating star, rapid rotation

Mathematics Subject Classification numbers: 85, 35.

1. Introduction

A white dwarf is a very dense remnant of a star that no longer undergoes fusion reactions [1].
They were discovered around 1910 by observations of the luminosity and temperature of stars
at a known distance. White dwarfs have high effective surface temperature but low luminosity.
It is now known that the evolution of a star can lead to three final states: white dwarfs, neutron
stars or black holes. Most stars, especially those below about 6 solar masses eventually become
white dwarfs. Their luminosities gradually fade away over a period of billions of years. At the
end of this period, the star burns out its nuclear fuel and is no longer able to support itself against
gravitational collapse by the thermal pressure generated by nuclear fusion. As a result, the size
of the star shrinks dramatically, until it is supported again by a new mechanism known as the
electron degeneracy pressure. A white dwarf is thereby formed. White dwarfs are extremely

3Author to whom any correspondence should be addressed.

1361-6544/20/094783+16$33.00 © 2020 IOP Publishing Ltd & London Mathematical Society Printed in the UK 4783

https://doi.org/10.1088/1361-6544/ab8d13
mailto:allenwu@ou.edu
http://crossmark.crossref.org/dialog/?doi=10.1088/1361-6544/ab8d13&domain=pdf&date_stamp=2020-7-28


Nonlinearity 33 (2020) 4783 W A Strauss and Y Wu

dense, of the order of 106 g cm−3. The high densities imply that the electron velocities must be
relativistic. Chandrasekhar [2] concluded in 1931 that there must be a limiting mass where the
gravitational forces overwhelmelectron degeneracy pressure so that a non-rotatingwhite dwarf
becomes unstable and collapses; this is the ‘Chandrasekhar limit’. The study of the electron
degeneracy pressure also leads to the standard equation of state in the basic mathematical
model for a white dwarf, sometimes called the relativistically degenerate model. In this paper
we consider a white dwarf under such a model that rotates about a fixed axis and thereby
loses its spherical shape. Fixing its mass, we construct a connected set of steady-state rotating
solutions.

The equation of state relates the pressure p of a white dwarf to the density ρ by the formula

p(ρ) = A
∫ Bρ1/3

0

σ4

√
m2c2 + σ2

dσ, (1.1)

wherem is the mass of an electron, c is the speed of light, and A, B are constants. This equation
is derived by considering the theory of quantum statistical mechanics on the electrons (see
appendix for more details). Indeed, the number of electrons in phase space can be calculated by
filling the momentum space according to the Pauli exclusion principle. One can then calculate
the electron gas pressure by relating momentum to kinetic energy using the special relativisitic
energy–momentum law.

The density ρ evolves in time by the compressible Euler–Poisson equations (EP), subject
to the internal forces of gravity due to the particles themselves.⎧⎪⎪⎪⎨

⎪⎪⎪⎩

ρt +∇ · (ρv) = 0,

(ρv)t +∇ · (ρv ⊗ v)+∇p= ρ∇U,

U(x, t) =
∫
R3

ρ(x′, t)
|x − x′| dx

′.

(1.2)

The first two equations hold where ρ > 0, and the last equation definesU on the entireR3. The
equation of state p = p(ρ) given by (2.1) closes the system. To model a rotating star, one looks
for a steady axisymmetric rotating solution to (1.2). That is, we assume ρ is symmetric about

the x3-axis and v = κω(r)(−x2, x1, 0), where r = r(x) =
√
x11 + x22, with a prescribed function

ω(r).κ is a constantmeasuring the intensity of rotation. (Note, however, that in sections 2 and 3,

the letter r is used to mean |x| =
√
x21 + x22 + x23.) With such specifications, the first equation

in (1.2) concerning mass conservation is identically satisfied. The second equation in (1.2)
concerning momentum conservation simplifies to

−ρκ2 rω2(r)er +∇p = ρ∇
(

1
| · | ∗ ρ

)
, er =

1
r(x)

(x1, x2, 0). (1.3)

The first term in (1.3) can be written as −ρ∇
(∫ r

0 ω
2(s)s ds

)
.

As a consequence, in the region {x ∈ R
3 | ρ(x) > 0} occupied by the star, EP reduces to the

equation
1
|x| ∗ ρ+ κ2

∫ r

0
sω2(s) ds− h(ρ)+ α = 0, (1.4)

where h is the enthalpy defined by h′(ρ) = p′(ρ)
ρ with h(0) = 0, and α is a constant. We have

normalized the physical constants. The density must vanish at the boundary of the star.
Non-rotating radial (spherically symmetric) white dwarfs were first analysed by Chan-

drasekhar [2] (see also chapter 9 of [3]). He proved that there is a maximum mass M0 for a
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white dwarf to exist. Auchmuty and Beals [4] proved that for anyM < M0, there exists a rotat-
ing white dwarf of massMwith compact support; it is obtained by minimizing the energy. Lieb
and Yau [5] considered non-rotating white dwarfs as semi-classical limits of many quantum
particles that are governed by a Schrödinger Hamiltonian.

Our goal in this article is to prove that there is a global connected set of rotating solutions,
that is, it contains solutions which have arbitrarily large density somewhere or which have
arbitrarily large support. They may rotate arbitrarily fast. The conclusion is stated somewhat
informally in the following theorem.

Theorem 1.1. Let M be the mass of the non-rotating solution. Assume the pressure p(·) is
given by (1.1) and the angular velocity ω(·) satisfies (4.1) and (4.2). By a ‘solution’ of the
problem for a rotating white dwarf, we mean a triple (ρ,κ,α), where ρ is an axisymmetric
function with mass M that satisfies (1.4) and κ refers to the intensity of rotation speed. Then
there exists a set K of solutions satisfying the following three properties.

• K is a connected set in the function space C1
c (R

3)× R× R.
• K contains the non-rotating solution.
• Either

sup
{
ρ(x) | x ∈ R

3, (ρ,κ,α) ∈ K
}
= ∞

or

sup {|x| | ρ(x) > 0, (ρ,κ,α) ∈ K} = ∞.

The last statement means that either the densities become pointwise unbounded or the
supports become unbounded along K.

In [6] we constructed slowly rotating stars with fixed mass. In [7] we constructed a global
connected set of slowly and rapidly rotating stars for a general class of equations of state.
However, the white dwarf case does not fall into this class. Keeping the mass constant is a
key to our methodology, so that there is no loss or gain of particles when the star changes its
rotation speed. Moreover, we permit a non-uniform angular velocity.

A subtlety of the white dwarf case occurs in the proof that the total mass M is a strictly
monotone function both of the central density ρ(0) and of the radius R of the star in the non-
rotating radial case. We give a self-contained proof of this fact in section 3. It is based on a
fundamental lemma given in section 2. The monotonicity is ultimately a consequence of the
virial identity and the minimization of the energy. In a different context a weaker form of the
monotonicity was proven in [5]. This monotonicity property of the mass is used in two crucial
places in our proof in section 4.

In section 4 we use the same basic method as in [7]. That means we force the total mass
M to be fixed and introduce the constant α as a variable. We get the support to be compact
by artificially forcing the parameter α to be sufficiently negative (see lemma 4.1). Then we
begin the construction of rotating star solutions in the standard way by continuation from a
non-rotating solution (κ = 0). Letting κ increase, we continue the construction by applying a
global implicit function theorem, which is based on the Leray–Schauder degree. Later on, in
theorem4.1, we obtain the whole global connected setK of solutions by allowingα to increase.

The equation of state (1.1) for the white dwarf satisfies p(ρ) = O(ρ4/3) as ρ→∞. However,
the exact polytropic case p = ργ with γ = 4

3 was also excluded from [7] because in that case
the constant mass condition introduces a non-trivial nullspace of the linearized operator, which
prevents the employment of the implicit function theorem. Here we supplement our discussion
of the white dwarf stars with a discussion of the polytropic case p = ργ with γ = 4

3 . In that
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case we prove in section 5 that there is no slowly uniformly rotating solution at all with the
given massM. In particular, one has

Theorem 1.2. Assuming the equation of state p = ρ4/3 and the uniform rotation profile
ω ≡ κ, there are no solutions close to ρ0 with the same total mass as ρ0 that are slowly rotating.

2. Preliminaries

With the physical constants set to be 1, the equation of state is

p(ρ) =
∫ ρ1/3

0

σ4

√
1+ σ2

dσ. (2.1)

We write s = ρ for simplicity. Note that explicit calculations yield

p′(s) =
s2/3

3
√
1+ s2/3

, (2.2)

h(s) =
√

1+ s2/3 − 1, (2.3)

h′(s) =
p′(s)
s

=
1

3s1/3
√
1+ s2/3

. (2.4)

Writing t = h(s) � 0, we have

h−1(t) = (2t + t2)3/2, (2.5)

(h−1)′(t) = 3(1+ t)
√

2t + t2. (2.6)

The key properties (2.9) and (2.10) of our paper [6] are

lim
s→0+

s3−γ p′′′(s) = constant < 0 (2.7)

and

lim
s→∞

s1−γ∗ p′(s) = constant > 0. (2.8)

They are true for γ = 5/3 and γ∗ = 4/3, respectively.
In section 3 we will have to study the equation

wrr + g(w, r) = 0, (2.9)

where

g(w, r) = 4πrh−1
(w+

r

)
= 4πr

(
2
w+

r
+

w2
+

r2

)3/2

(2.10)

for r > 0. Here

w+ = max(w, 0). (2.11)
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We need to understand how the solution depends on its data at r = 0. This is described in the
following lemma.

Lemma 2.1. For a > 0, denote byw(r, a) the solution ofwrr + g(w, r) = 0withw(0, a) = 0
and wr(0, a) = a. Assume that for some a0 > 0 and some R > 0 we have w(R, a0) = 0 and
w(r, a0) > 0 for all 0 < r < R. Then there exists r0 ∈ (0,R) such that

wa(r, a0) > 0 in (0, r0), wa(r, a0) < 0 in (r0,R]. (2.12)

Proof. The proof is closely related to lemma 4.9 in [6]. We calculate

1
4π

(g− wgw) =

(
2
w

r
+

w2

r2

)1/2{
−w − 2

r
w2

}
< 0, (2.13)

which is (4.52) in [6], and

1
4π

gr =

(
2
w

r
+

w2

r2

)1/2{
−w

r
− 2
r2
w2

}
< 0, (2.14)

which is (4.53) in [6]. Furthermore, calculate

1
4π

(rgr + 2g) =

(
2
w

r
+

w2

r2

)1/2

{3w} > 0, (2.15)

which is weaker than (4.54) in [6].
Where convenient, we write ∂

∂r as
′. We define the three auxiliary functions

x(r; a) = rw′(r; a), y(r; a) = w′(r; a), z(r; a) = wa(r; a). (2.16)

Their values at r = 0 are

x(0+; a) = 0, x′(0+; a) = w′(0; a)− lim
r→0+

rg(w, r) = a. (2.17)

y(0+; a) = a, y′(0+; a) = − lim
r→0+

g(w, r) = 0. (2.18)

z(0+; a) = 0, z′(0+; a) = 1. (2.19)

Now

x′′ = (rw′)′′ = rw′′′ + 2w′′ = r(−gr − gww
′)− 2g = −rgr − gwx − 2g.

(2.20)

So x satisfies the equation

x′′ + gwx + rgr + 2g = 0. (2.21)

Similarly,

y′′ + gwy+ gr = 0, z′′ + gwz = 0. (2.22)
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The derivatives of various Wronskians are

W(x, z)′ =

∣∣∣∣ x z
x′ z′

∣∣∣∣
′
= z(rgr + 2g). (2.23)

W(y, z)′ =

∣∣∣∣y z
y′ z′

∣∣∣∣
′
= zgr. (2.24)

W(w, z)′ =

∣∣∣∣w z
w′ z′

∣∣∣∣
′
= z(g− wgw). (2.25)

In the rest of the proofwe set a equal to a0 in all functions.Becausew > 0 andw′′ = −g < 0
for r ∈ (0,R), we see that w is a positive concave function with a unique maximum and zero
boundary values on [0,R]. By (2.19), z(r) > 0 for r close to 0.

We claim that z vanishes somewhere in (0,R). On the contrary, suppose that z(r) > 0 for all
r ∈ (0,R). Integrating (2.25) on (0,R) and using the boundary conditions of w and z, we have

−w′(R)z(R) =
∫ R

0
z(g− wgw) dr < 0. (2.26)

The inequality is a consequence of (2.13). However, since w′(R) < 0 and z(R) = z(R−) � 0,
the left side of (2.26) is non-negative. This contradiction shows that z vanishes somewhere in
the open interval.

Let r0 be the smallest value in (0,R) for which z(r0) = 0. Integrating (2.23) on (0, r0), we
find

x(r0)z′(r0) =
∫ r0

0
z(rgr + 2g) dr > 0 (2.27)

by (2.15) and the fact that z(r) > 0 for r ∈ (0, r0). Since z′(r0) < 0, we deduce that x(r0) < 0,
and hence w′(r0) < 0.

Thus it suffices to show that z(r) < 0 for all r0 < r � R. Again supposing the contrary, let
r1 ∈ (r0,R] be the first zero of z strictly bigger than r0. Integrating (2.24) on (r0, r1) and recalling
the definition y = w′, we obtain

w′(r1)z
′(r1)− w′(r0)z

′(r0) = y(r1)z
′(r1)− y(r0)z

′(r0) =
∫ r1

r0

zgr dr � 0. (2.28)

The last inequality follows from (2.14) and the fact that z(r) < 0 for r ∈ (r0, r1). However, since
w is concave and w′(r0) < 0, it must also be the case that w′(r1) < 0. We also have z′(r0) < 0,
and z′(r1) > 0. These conditions together imply that the left side of (2.28) is negative. This
contradiction implies z(r) < 0 for all r0 < r � R. �

3. Monotonicity of the mass

For a non-rotating (spherical) star, ρ(0) is the density at its centre. Let a = h(ρ(0)). Denote the
density of this star at any radius r = |x| by ρ(r; a) and denote the radius of the star by R(a).
Defining u = h(ρ), it turns out thatΔu+ 4πh−1(u) = 0 for r < R(a). The star’s radius R(a) is
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finite for all a > 0, as is seen by applying the criterion
∫ 1
0 h

−1(t)t−4 dt = ∞ of theorem 1 in
[8]. The total mass of the star is defined as

M(a) =
∫
R3
ρ dx = 4π

∫ R(a)

0
ρ(r; a) r2dr. (3.1)

SoM′(a) =
∫
B(R(a))ρa(x; a)dx. Our goal is to prove the following lemma.

Lemma 3.1. M′(a) > 0 for all a > 0.

As already hinted in the introduction, a proof thatM(a) is strictly increasing appears within
a different context in [5]. However, the comparison method in their proof cannot show that
M′(a) > 0. In section 4 we will require the strict positivity of the derivative. The present section
is devoted to providing a completely self-contained proof of this stronger statement.

To this end we define the total energy as

E(ρ) =
∫
H(ρ)dx − D(ρ, ρ), D(ρ, ρ) =

1
2

∫∫
ρ(x)ρ(y)
|x − y| dxdy, (3.2)

where

H(ρ) =
∫ ρ

0
h(s) ds. (3.3)

Lemma 3.2. Any radial solution satisfies the virial identity

E(ρ) =
∫
[4H(ρ)− 3ρh(ρ)] dx. (3.4)

Proof. We have u = h(ρ) in Ω=: {ρ > 0} andΔu = 1
r2 (r

2ur)r = −4πρ in R
3. We consider

ρ to vanish outside Ω. From the latter equation, we have

∫
R3
|∇u|2dx = 4π

∫
R3
ρudx = 4π

∫
R3
ρ

(
1
| · | ∗ ρ

)
dx = 2πD(ρ, ρ). (3.5)

We therefore have
∫ ∞

0
r3ρh′(ρ)ρrdr =

∫ ∞

0
r3ρurdr = − 1

4π

∫ ∞

0
r2ur

(
r2ur

)
r

1
r
dr. (3.6)

Integrating by parts, the right side equals

1
8π

∫ ∞

0

(
r2ur

)2 1
r2
dr =

1
8π

∫ ∞

0
u2r r

2dr =
1

32π2

∫
R3
|∇u|2dx = 1

8π
D(ρ, ρ).

(3.7)

On the other hand, the left side of (3.6) equals

∫ ∞

0
r3[ρh(ρ)− H(ρ)]rdr = −

∫ ∞

0
3r2 [ρh(ρ)− H(ρ)] dr = − 3

4π

∫
R3
[ρh(ρ)− H(ρ)] dx.

(3.8)
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Combining the last three equations, we have

3
∫
R3
[ρ (h(ρ)− H(ρ)]dx = D(ρ, ρ). (3.9)

This proves (3.2). �

Proof of lemma 3.1. The function u(r; a) = h(ρ(r; a)) defined for r � R(a) satisfies Δu+
4πh−1(u) = 0, u(r; a) > 0 and ur(r; a) < 0 for 0 < r < R(a), as well as the boundary condi-
tions u(R(a); a) = 0, u(0, a) = a. This function u is extended to all of R3 by solving Δu =
−4πh−1(u+) in R3. Thus u is harmonic outside the star.

Now we define w = ru. This change of variables gives us wrr + g(w; r) = 0 for 0 � r �
R(a), where g is defined in (2.10). Alsow(0, a) = 0,wr(0, a) = a,w(R(a); a) = 0 andw(r, a) >
0 for 0 < r < R(a). Therefore lemma 2.1 is applicable, so that wa strictly changes sign in the
interval (0,R(a)). Now wa = rua = rh′(ρ)ρa and h′ > 0, so that ρa also strictly changes sign in
the interval (0,R(a)).

From the definition of the energy E , we have

d
da

E(ρ(·; a)) =
∫
B(R(a))

h(ρ(x; a))ρa(x; a))−
∫∫

B(R(a))2

ρa(x; a)ρ(x; a)
|x − y| dxdy

=

∫
B(R(a))

{
h(ρ(x; a))−

(
1
| · | ∗ ρ(·; a)

)
(x)

}
ρa(x; a) dx (3.10)

since ρ(R(a); a) = 0 and H(0) = 0. By (1.4) in section 1, the factor in curly brackets is a
constant α < 0, so that

d
da

E(ρ(·, a)) = αM′(a). (3.11)

We will prove by contradiction thatM′(a) �= 0.
Now suppose that M′(a) = 0 for some a. Then d

daE(ρ(·, a)) = 0. Using the virial identity,
we therefore have

0 =

∫
[h(ρ)− 3ρh′(ρ)] ρa dx =

∫ [(
1+ ρ2/3

)−1/2
− 1

]
ρa dx. (3.12)

The function k(s) = 1− (1+ s2/3)−1/2 is positive and increasing for s > 0, so that the radial
function r→ k̃(r) =: k(ρ(r)) is positive and decreasing as a function of r = |x| and it vanishes
at r = R(a). Now we have both

∫
ρadx = 0 and

∫
k̃ ρa dx = 0. This is impossible, due to the

facts that ρa strictly changes sign from positive to negative, while k̃ is positive and decreasing.
This contradiction means thatM′(a) �= 0.

Thus we have shown thatM(a) is either strictly increasing or strictly decreasing. We claim
that M(a) � Ca3/4 for sufficiently small a. To prove this claim, we let v(x; a) be the unique
solution of

Δv +
(
2v+ + av2+

)3/2
= 0, v(0) = 1, v′(0) = 0 (3.13)

for a � 0 and |x| � 0. For a > 0, a simple rescaling, using the formula for h−1 given in (2.5)
and the definition of u, shows that v(x; a) = 1

au
(
a−1/4x; a

)
, now by [8] the solution v(x; 0)

has a unique zero R0. We obviously have v′(R0; 0) < 0. By the continuous dependence of
solution of the ODE on the parameter a, for arbitrarily small ε > 0 we have v(R0; a) < ε
and v′(R0; a) < v′(R0; 0)+ ε < 0, provided that a is sufficiently small. Furthermore, |v′′(x; a)|
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is uniformly bounded for |x| < R0 + 1 and a small. Thus v′(x; a) < v′(R0; 0)+ 2ε for R0 <
|x| < R0 + δ and some constant δ. If v(R0; a) < 0, the zero of v(x; a) occurs before |x| reaches
R0. Otherwise v(x; a) must cross zero before |x| reaches R0 + δ. Thus we have the follow-
ing estimate on the radius of the star, which is the zero of u(x; a): R(a) � a−1/4(R0 + δ) for
small a. Because u(x; a) and ρ(r; a) are radially decreasing, we have ρ(r; a) � h−1(a) and
M(a) � Ch−1(a)[R(a)]3 � Ca3/2a−3/4 = Ca3/4 for sufficiently small a. This proves the claim.
Now if we assume by contradiction thatM(·) is decreasing, then let 0 < ε < a. It follows that
0 � M(a) � M(ε) � Cε3/4 for small ε. HenceM(·) cannot be decreasing. ThereforeM′ > 0.�

4. Existence of rotating white dwarf solutions

With the key difficulty about the mass functionM(a) having been resolved in section 3, we will
be able to prove theorem 1.1. In order to formulate the result precisely, let us put the following
conditions on the rotation profile ω(s):

sω2(s) ∈ L1(0,∞), ω2(s) is not compactly supported, (4.1)

lim
r(x)→∞

r(x)

(
sup
x
j− j(x)

)
= 0, (4.2)

where

j(x) =
∫ r(x)

0
sω2(s) ds. (4.3)

Let ρ0(x) be the unique non-rotating (κ = 0) solution with mass M =
∫
ρ0(x)dx. In view of

(1.4) and the mass constraint, we define the pair F (ρ,κ,α) = (F1(ρ,κ,α),F2(ρ)), where

F1(ρ,κ,α) = ρ(·)− h−1

([
1
| · | ∗ ρ(·)+ κ2 j(·)+ α

]
+

)
, (4.4)

and

F2(ρ) =
∫
R3
ρ(x) dx −M. (4.5)

As usual, a solution to F (ρ,κ,α) = 0 with ρ ∈ Cloc(R3) ∩ L1(R3) will give rise to a steady
solution of the EP with rotation profile κω(s), and massM. In particular,F (ρ0, 0,α0) = 0. We
have the following main theorem, more precise than theorem 1.1.

Theorem 4.1. For given ω(s) satisfying the above assumptions, and given non-rotating
white dwarf solution ρ0, there exists a connected set K in C1

c (R
3)× R× R such that

(a) F (ρ,κ,α) = 0 for all (ρ,κ,α) ∈ K. In other words, K is a set of rotating white dwarf
solutions.

(b) (ρ0, 0,α0) ∈ K.
(c) Either

sup {‖ρ‖∞ | (ρ,κ,α) ∈ K} = ∞

or

sup {|x| | ρ(x) > 0, (ρ,κ,α) ∈ K} = ∞.
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This means that either the densities become unbounded or the supports of the stars become
unbounded. The proof of theorem 4.1 is basically parallel to the argument in [7] now that we
have proven M′(a) �= 0 in section 3. For completeness, we provide a sketch of the complete
argument below. We refer to [7] for more details.

For fixed constants s > 3, let us define the weighted space

Cs =
{
f : R3 → R

∣∣ f is continuous, axisymmetric, even in x3, and ‖ f ‖s < ∞
}
,

where

‖ f‖s =: sup
x∈R3

〈x〉s| f (x)| < ∞.

Also define for N > 0,

ON =

{
(ρ,κ,α) ∈ Cs × R

2
∣∣ α+ κ2 sup

x
j(x) < − 1

N

}
. (4.6)

We begin by showing an elementary support estimate for the nonlinear part of F1 on ON .

Lemma 4.1. There exists a constant C0 such that for all (ρ,κ,α) ∈ ON the expression[
1
|·| ∗ ρ(·)+ κ2 j(·)+ α

]
+
is supported in the ball {x ∈ R

3 : |x| � C0N‖ρ‖s}.

Proof. First we note that
∣∣∣ 1
|·| ∗ ρ(·)(x)

∣∣∣ � C0‖ρ‖s 1
〈x〉 because s > 3. Hence for |x| >

C0N‖ρ‖s,
[

1
| · | ∗ ρ(·)(x)+ κ2 j(x)+ α

]
� C0‖ρ‖s

1
〈x〉 −

1
N

< 0

since (ρ,κ,α) ∈ ON . Therefore its positive part vanishes for such x. �

We see from this lemma that F1 differs from ρ only by a perturbation on a compact set.
Using this observation and the smoothing effect ofΔ−1, it is easy to obtain

Lemma 4.2. F maps ON to Cs × R. It is C1 Fréchet differentiable, where ∂F
∂(ρ,α) (ρ,κ,α) is

Fredholm of index zero. The nonlinear part of F1 (i.e. F1 − ρ) is compact from ON to Cs.

Proof. By lemma 4.1, if (ρ,κ,α) is bounded, the support of
[

1
|·| ∗ ρ(·)+ κ2 j(·)+ α

]
+

is

contained in some ball BR. The map is obviously compact fromON to C0(BR). Using again the
trivial bound ‖u‖Cs � 〈R〉s‖u‖C0(BR)

for u ∈ Cs supported in BR, we obtain the compactness of
this mapping into Cs. �

Lemma 4.3. ∂F
∂(ρ,α) (ρ0, 0,α0) : Cs × R→ Cs × R is an isomorphism.

Proof. This lemma is the first placewhere the crucial conditionM′(a) �= 0 proven in section 3
will be used. Let (δρ, δκ) belong to the nullspace of ∂F

∂(ρ,α) (ρ0, 0,α0). Let w = 1
|·| ∗ δρ+ α0. As

shown in lemma 4.3 of [7], w is radial. Indeed, that argument shows that w must be a radial
solution of the boundary value problem

Δw + 4π
[(
h−1

)′
(u0)

]
w = 0, w′(0) = w′(R0) = 0 (4.7)
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in the ball BR0 , where BR0 is the support of ρ0, and u0 = h(ρ0). Being an ODE, (4.7) can have
an at most a one-dimensional solution space. On the other hand, we recall the definition for
any a > 0 that u(r; a) solves

Δu+ 4πh−1(u) = 0, u′(0) = 0, u(0; a) = a. (4.8)

Denoting ua = ∂au(r; u0(0)), we obviously have

Δua + 4π
[(
h−1

)′
(u0)

]
ua = 0, u′a(0) = 0. (4.9)

Comparing (4.7) with (4.9), we see that w = Cua for some constant C. Integrating (4.7), we
also have ∫

BR0

[(
h−1

)′
(u0)

]
Cua dx = 0. (4.10)

On the other hand, taking account of ρ = h−1(u) and (3.1), we see that

∫
BR0

[(
h−1

)′
(u0)

]
ua dx =

d
da

∣∣∣∣
a=u0(0)

∫
u(x;a)>0

h−1(u(x; a)) dx = M′(u0(0)) �= 0.

(4.11)

There is no boundary term because h−1(0) = 0. The last two equations imply that C = 0, so
thatw = 0. This implies that the kernel of ∂F

∂(ρ,α) (ρ0, 0,α0) is trivial, which is the key ingredient
of the operator being an isomorphism. �
Proof of theorem 4.1. With the suitable compactness properties given by lemma 4.2 and
local solvability given by lemma 4.3, one is in a position to apply a global implicit function
theorem of Rabinowitz (see theorem 3.2 in [10], theorem 2.6.1 of [9], or [11]). The result is
a connected set KN ⊂ ON of solutions to F = 0 for which at least one of the following three
properties holds:

(a) KN\{(ρ0, 0,α0)} is connected.
(b) KN is unbounded, i.e.

sup
KN

(‖ρ‖s + |κ|+ |α|) = ∞.

(c) KN approaches the boundary of ON , i.e.

inf
KN

∣∣∣∣κ2 sup
x
j(x)+ α+

1
N

∣∣∣∣ = 0.

The first alternative (the ‘loop’) can be eliminated by observing that, since KN is even
in κ, if KN\{(ρ0, 0,α0)} were connected, it must contain a different non-rotating solution
(ρ1, 0,α1) �= (ρ0, 0,α0). As in lemma 5.1 of [7], it must be a radial non-rotating white-
dwarf solution with a different centre density ρ1(0) �= ρ0(0) but with the same total mass∫
R3 ρ1(x) dx =

∫
R3 ρ0(x) dx. This contradicts the strict monotonicity of M(a) established in

section 3.
The sets KN are nested, so their union K = ∪∞

N=1KN is also connected. Therefore one of
the following statements is true:

(a) supK (‖ρ‖s + |κ|+ |α|) = ∞.
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(b) infK |κ2 supx j(x)+ α| = 0.

We suppose that both supK supx∈R3ρ(x) < ∞ and R∗ =: supK supρ(x)>0 |x| < ∞, and will
derive a contradiction.

We will first prove that (a) is true. On the contrary, suppose that (a) is false. Then (b) must
be true and supK (‖ρ‖s + |κ|+ |α|) < ∞. Since |x − y| � |x|+ R∗ for all y in the support of
ρ, we have

(
1
| · | ∗ ρ

)
(x) =

∫
1

|x − y|ρ(y) dy �
M

|x|+ R∗
.

We may now write

1
| · | ∗ ρ (x)+ κ2 j (x)+ α � M

|x|+ R∗
− κ2 (sup j− j (x))+

(
κ2 sup j+ α

)
.

(4.12)

Let κ0 = supK|κ|. Considering a point x in the plane {x3 = 0}, we have |x| = r(x). By (4.2),

sup j− j(x) = o
(

1
|x|

)
as |x| →∞. Thus by (4.12),

1
| · | ∗ ρ(x)+ κ2 j(x)+ α � M

|x|+ R∗
− o

(
κ2
0

|x|

)
+

(
κ2sup

x
j(x)+ α

)
. (4.13)

Choosing |x| > R∗ sufficiently large, we can make the sum of the first two terms on the right
side of (4.13) positive. Then because of (b), there exists a solution (ρ,κ,α) ∈ K such that
the right side of (4.13) is positive. Hence, due to F1(ρ,κ,α) = 0, we have ρ(x) > 0. This
contradicts the assumption that the support of ρ is bounded by R∗. Thus (a) must be true.

Since we have assumed that ρ is pointwise bounded and its support is also bounded all along
K, it follows that ρ is also bounded in the weighted space Cs. Because of (a), it must be the
case that |κ|+ |α| is unbounded. From the definition of ON , we know that α < 0. In case κ
were bounded, it would have to be the case that α→−∞ along a sequence. Then the equation
F1 = 0 would imply that ρ ≡ 0, which contradicts the mass constraint.

So it follows that κn →∞ for some sequence (ρn,κn,αn) ∈ K with αn < 0. For each n, let
us choose any point xn such that ρn(xn) > 0. By (4.1), we may also choose a point y0 such that
r(y0) > R∗ and j(y0) > j(R∗). Since ρn(y0) = 0 and ρn(xn) > 0, we have

0 �
[

1
| · | ∗ ρn(·)+ κ2

n j(·)+ αn

]
(y0) �

[
1
| · | ∗ ρn(·)+ κ2

n j(·)+ αn

]∣∣∣∣
y0

xn

.

On the right side, the αn cancels. Due to our assumption that the values of ρn and the supports
of ρn are uniformly bounded, we deduce that

0 � κ2
n[ j(r(y0))− j(r(xn))]− C,

where C is a fixed constant. Thus j(r(xn))→ j(r(y0)) since κn →∞. But r(xn) � R∗ < r(y0)
and j is an increasing function of r, so that j(r(xn)) � j(R∗) < j(r(y0)). This is the desired
contradiction.

Finally, we remark on why K is also connected in C1
c (R

3)× R
2. In fact, we know that

for each N the set KN is connected in Cs × R
2. We also know from lemma 4.1 that all the

solutions in KN ⊂ ON have a uniform bound on their supports, This bound may depend on
N. The regularizing effect of Δ−1 then implies that KN is connected in C1(FN)× R

2 for a
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suitable compact set FN ⊂ R
3. Thus KN is connected in C1

c (R
3)× R

2 under the usual direct
limit topology. Because K is a nested union of KN , it too is connected in C1

c (R
3)× R

2. �

5. Pure 4/3 power under uniform rotation

In this section, we briefly study the Euler–Poisson equation under the pure power equation of
state p = ρ4/3 and constant angular velocity profile. Analogously to the white dwarf case, we
define F = F (ρ,κ,α) = (F1,F2) by

F1(ρ,κ,α) = ρ(x)−
[

1
| · | ∗ ρ(x)−

1
| · | ∗ ρ(0)+ κr2(x)+ α

]3
+

, (5.1)

F2(ρ,κ,α) =
∫
B1

ρ(x) dx −M, (5.2)

and solve forF (ρ,κ,α) = (0, 0). The cubic function in (5.1) corresponds to the pure 4
3 power in

the equation of state. As before, the radial non-rotating solution ρ0 = u30 satisfies the equivalent
equation

Δu0 + 4πu30 = 0 (5.3)

on its support, which we may take to be the unit ball B1 without loss of generality. Let
α0 = u0(0), andM =

∫
B1
ρ0(x) dx. We readily check that F (ρ0, 0,α0) = (0, 0). By the scaling

symmetry of (5.3), we easily see that for any α > 0 and

ρα(x) =

(
α

α0

)3

ρ0

(
α

α0
x

)
,

we have F (ρα, 0,α) = (0, 0). This ρα has the same massM for all α.
Let X = Csym(B2) be defined to have the same symmetry properties as Cs but only

defined on B2. We will show that the linear operator ∂F
∂(ρ,κ) (ρ0, 0,α0) : X × R→ X × R is iso-

morphic. Once this is proven, the implicit function theorem implies that (ρ,κ) is locally
uniquely determined by α. Therefore the trivial solutions (ρα, 0,α) defined above are the
unique local solutions and they are non-rotating. We thus obtain the curious conclusion given
in theorem 1.2.

Proof of theorem 1.2. We just need to prove the bijectivity. We compute the derivative of

F as follows, recalling that u0 = ρ
1/3
0 =

[
1
|·| ∗ ρ0(x)−

1
|·| ∗ ρ0(0)+ α0

]
+
.

∂F1

∂(ρ,κ)

∣∣∣∣
(ρ,κ,α)=(ρ0,0,α0)

(δρ, δκ) = δρ− 3u20

[
1
| · | ∗ δρ(x)−

1
| · | ∗ δρ(0)+ δκr2(x)

]
,

(5.4)

∂F2

∂(ρ,κ)

∣∣∣∣
(ρ,κ,α)

(δρ, δκ) =
∫
B2

δρ(x) dx. (5.5)

This derivative is a compact perturbation of the identity and thus is Fredholm of index zero.
Hence we merely need to show it is injective. To that end, let us assume that (5.4) and (5.5)
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both vanish. Denoting

ϕ(x) =
1
| · | ∗ δρ(x)−

1
| · | ∗ δρ(0)+ δκr2(x), (5.6)

we then have

Δϕ = −4πδρ+ 4δκ = −12πu20ϕ+ 4δκ, (5.7)

and ∫
B1

u20ϕ dx = 0. (5.8)

We project (5.7) onto the radial component (integrating against 1 on S
2), where ϕ00 denotes

the radial component of ϕ, to obtain

Δϕ00 = −12πu20ϕ00 + 4δκ, (5.9)

while (5.8) naturally selects the radial component so that∫
B1

u20ϕ00 dx = 0. (5.10)

If δκ �= 0, we can divide (5.9) by it, and without loss of generality, we may assume δκ = 1.
Integrating (5.9) on B1 and using (5.10), we get

4πϕ′
00(1) = 4

4π
3
, (5.11)

ϕ′
00(1) =

4
3
. (5.12)

Then the function u(|x|) = ϕ00(|x|)− 2
3 |x|2 satisfies

Δu+ 12πu20u = −8πu20|x|2 (5.13)

and

u′(1) = 0. (5.14)

Referring to the proofs of lemmas 4.3 and 4.7 in [6] in the case that γ = 4
3 , the radial function

v(|x|) = ∂

∂α
(ρα(|x|))1/3

∣∣∣∣
α=α0

= u0(|x|)+ ru′0(|x|) (5.15)

satisfies on B1

Δv + 12πu20v = 0, (5.16)

and

v′(1) = 0, (5.17)
∫
B1

u20v dx = 0. (5.18)
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In fact, (5.16) is a special case of (4.27) in [6] (where h−1(s) = s3). (4.28) in [6] shows the
left-hand side of (5.17) and that of (5.18) are the same. (4.45) in [6] implies (5.17), and finally
(5.15) follows from (4.44) in [6] (ignoring an irrelevant constant multiple). We multiply (5.13)
by v, multiply (5.16) by u, and take the difference, obtaining

vΔu− uΔv = −8πu20|x|2v. (5.19)

Integrating (5.19) over B1, using Green’s identity and the boundary conditions (5.14) and
(5.17), we get ∫

B1

u20v|x|2 dx = 0. (5.20)

But notice that (5.18) and (5.20) contradict each other! Indeed, v′ = 2u′0 + ru′′0 =
−4π|x|u30 < 0 for |x| < 1. It follows from (5.18) that u20v is positive near 0 and negative near
∂B1, and only switches sign once. Therefore (5.20) cannot hold. This contradiction implies
that δκ = 0. Then the same argument as in the proof of lemma 4.3 in [6] shows that δρ = 0.
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Appendix

For completeness, we give a heuristic derivation of (1.1) from quantum statistics. See [3] and
[12] for more discussions.

A star is considered to be a completely degenerate electron gas, which means that all the
lowest quantum states are occupied. The Pauli exclusion principle states that no two electrons
can occupy the same quantum state. Therefore there is an upper limit of the number of electrons
in a cube of side h in momentum space, where h is Planck’s constant. The size of the momenta
must be less than a certain maximum value P0 > 0, called the Fermi momentum. Since every
momentum state produces two quantum states corresponding to different spins, the distribution
function of momenta is f (P) = 2

h3
χ|P|�P0 . Here P ∈ R

3 is the momentum variable.
The density of the electron gas at a point in space is proportional to the total number of

electrons:

ρ =

∫
R3
f (P) dP =

8π
3h3

P3
0. (6.1)

The pressure p at a point in space is proportional to the momentum transfer on an imaginary
surface of unit size per unit time.Without loss of generality, assume the surface is normal to the
x3-axis. Denote by S(|P|) > 0 the speed of an electron with momentum P. Thus the velocity of
such an electron is V(P) = S(|P|) P|P| . Supposing the electrons hit the surface and bounce back
elastically, the momentum transfer caused by electrons with momentum P is given by 2P3.
The number of electrons with momentum P that hit the surface per unit time is f (P)V3(P) =
f (P)S(P) P3|P| . Thus the pressure is given by

p=
∫
P3<0

2P3 f (P)V3(P) dP =

∫
P3<0

2 f (P)S(|P|)P
2
3

|P| dP =
8π
3h3

∫ P0

0
σ3S(σ) dσ.

(6.2)
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The speed S(|P|) = E′(|P|), where the energy E(|P|) is given by the special relativistic
energy–momentum relation:

E(|P|) = c
√
m2c2 + |P|2 − mc2. (6.3)

It follows that

p=
8πc
3h3

∫ P0

0

σ4

√
m2c2 + σ2

dσ. (6.4)

One readily observes that (6.1) and (6.4) imply (1.1).
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