Improving MP2 band gaps with low-scaling approximations to EOM-CCSD

Malte F. Lange' and Timothy C. Berkelbach'-2:®

Y Department of Chemistry, Columbia University, New York, New York 10027 USA
DCenter for Computational Quantum Physics, Flatiron Institute, New York, New York 10010 USA

Despite its reasonable accuracy for ground-state properties of semiconductors and insulators, second-order Mgller-
Plesset perturbation theory (MP2) significantly underestimates band gaps. Here, we evaluate the band gap predictions
of partitioned equation-of-motion MP2 (P-EOM-MP2), which is a second-order approximation to equation-of-motion
coupled-cluster theory with single and double excitations. On a test set of elemental and binary semiconductors and
insulators, we find that P-EOM-MP?2 overestimates band gaps by 0.3 eV on average, which can be compared to the
underestimation by 0.6 eV on average exhibited by the GyW, approximation with a PBE reference. We show that
P-EOM-MP2, when interpreted as a Green’s function-based theory, has a self-energy that includes all first- and second-

order diagrams and a few third-order diagrams.

We find that the GW approximation performs better for materials

with small gaps and P-EOM-MP?2 performs better for materials with large gaps, which we attribute to their superior

treatment of screening and exchange, respectively.

Second-order Mgller-Plesset perturbation theory (MP2) is
the simplest ab initio treatment of dynamical electron corre-
lation. Its low cost makes it especially attractive for large
systems including periodic solids. Although periodic MP2
has been found to perform reasonably well for the description
of ground-state properties,'~'? its performance is less satisfac-
tory for charged excitation energies and band gaps.>'* For ex-
ample, in Ref. 5, MP2 was applied to thirteen semiconductors
and insulators and exhibited average errors of 0.5% for lattice
constants, 4.1% for bulk moduli, and 0.23 eV for cohesive en-
ergies, but predicted negative band gaps for materials that are
known to be semiconducting, such as silicon and silicon car-
bide. This unsatisfactory performance was attributed to the
lack of screening in finite-order perturbation theory. Indeed,
the GW approximation'+'¢ and equation-of-motion coupled-
cluster theory!7?! describe excitation energies with infinite-
order perturbation theory and predict accurate band gaps of
semiconductors,'>!%%2 albeit with a computational cost that is
higher than that of MP2.

Here, we study the performance of a second-order approxi-
mation to equation-of-motion coupled-cluster theory with sin-
gle and double excitations (EOM-CCSD), first presented in
Refs. 23 and 24. Despite making sequential second-order ap-
proximations, the method will be seen to be equivalent to the
use of a self-energy containing all second-order diagrams and
a few third-order diagrams.

Consider the Mgller-Plesset partitioning of the many-body
Hamiltonian, leading to the Hartree-Fock (HF) orbitals ¢,(r)
with orbital energies &,; as usual, we denote the orbitals occu-
pied in the HF determinant by i, j, k, [, those unoccupied by
a,b,c,d, and general orbitals by p,q,r,s. The self-energy
evaluated to second-order in perturbation theory is
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where the antisymmetrized two-electron integrals are defined
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and « is a combined space and spin variable. Unlike the GW
approximation, the MP2 self-energy has exact second-order
exchange and is therefore free of self-screening error.

An alternative theory can be obtained by a second-order ap-
proximation to EOM-CCSD, leading to a method originally
referred to as EOM-MBPT(2)?* or EOM-CCSD(2).% In this
method, the ground-state CCSD amplitudes are approximated
by their MP2 values, avoiding the expensive iterative solu-
tion of the CCSD amplitude equations. In this work, we con-
sider the additional approximation of partitioning the EOM
Hamiltonian into single and double excitation spaces and per-
turbatively treating the latter. Under this approximation, the
large double excitation block of the similarity-transformed
Hamiltonian is a diagonal matrix of orbital energy differences.
This method has been referred to as DSO-GF?} and P-EOM-
MBPT(2);?!2426-28 because we always use a Hartree-Fock
reference, we will refer to the method as P-EOM-MP2.

Unlike typical Green’s function techniques, the EOM ap-
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FIG. 1. Self-energy diagrams included in the MP2 and P-EOM-MP2
Green'’s function beyond first-order. All diagrams are time-ordered
with time increasing from left to right; hole lines point towards de-
creasing time and particle lines point towards increasing time. All
Coulomb interactions (wavy lines) are antisymmetrized, yielding ex-
change diagrams not explicitly drawn here. The MP2 self-energy
includes diagrams (a) and (b) only. The P-EOM-MP2 self-energy
includes all four diagrams shown. The GW self-energy includes the
non-exchange versions of diagrams (a), (b), (c), and many others.
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proach yields ionization potentials (IPs) and electron affini-
ties (EAs) from separate eigenvalue calculations. In practice,
these eigenvalues are found iteratively using the Davidson al-
gorithm. As shown by Nooijen and Snijders,”® the P-EOM-
MP2 IPs can equivalently be obtained from the self-consistent
eigenvalues of a matrix with elements g;0;; + ZSQM(O)), where
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and likewise for the EAs. The above matrix is clearly simi-
lar to the MP2 self-energy matrix (1), except for three differ-
ences. The first difference is the neglected coupling between
the particle and hole spaces. Within the common diagonal ap-
proximation to the self-energy, this coupling is irrelevant and
we have numerically confirmed that it is a negligible differ-
ence in this work. The second difference is the perturbative
replacement of w = &; in one of the two terms. When this
replacement is done in the MP2 self-energy, we find that it
makes the results slightly worse and is thus not responsible
for the improvement to be shown in the P-EOM-MP2 band
gaps (vide infra).
The third and most important difference is the presence of
the intermediate
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where the antisymmetrization operator is P_(kl)Ay = A — A
and
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Viewed in terms of the similarity-transformed Hamiltonian
H = e THeT, the first term in Eq. (3) reflects a renormaliza-
tion of the one-body interactions due to ground-state correla-
tion and the presence of W in the second term reflects a renor-
malization of the two-body interactions, i.e. it is a screened
Coulomb interaction. Alternatively, the intermediate W can
be understood as the inclusion of a few third-order self-energy
diagrams, with a perturbative evaluation of the frequency de-
nominator. These conclusions concerning the importance of
the various differences between MP2 and P-EOM-MP2 are the
same as those observed for the IPs of molecules.?? In Fig. 1,
we show the time-ordered self-energy diagrams included in
the MP2 and P-EOM-MP2 Green’s functions beyond first-
order (i.e. beyond Hartree-Fock).

The computational and storage costs of P-EOM-MP2 are
significantly less than those of EOM-CCSD. Assuming N, oc-
cupied orbitals and N, virtual orbitals with N, > N,, then the
ground-state CCSD calculation has an iterative O(N2Ny) cost
whereas the ground-state MP2 calculation has a non-iterative
O(N2N?) cost [or O(N°) when including the one-time inte-
gral transformation]. The cost of excited-state calculations by
both methods is determined by the non-iterative cost of form-
ing matrix elements of the similarity transformed Hamiltonian
H and the iterative cost of contracting this matrix with a trial

vector R. Both methods have the same non-iterative O(N2N?)
cost associated with formation of intermediates such as the
one shown in Eq. (4), but the cost of this step can be domi-
nated by that of the iterative steps. In EOM-CCSD for EAs,
the most expensive contraction is due to the doubles-doubles
block,
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(HR)" = 5 Z;‘ WER 4. (6)
with O(N(,Nét ) scaling. In P-EOM-MP?2 for EAs, the diagonal
approximation to the doubles-doubles block shifts the most
expensive contraction to the off-diagonal blocks that couple
single and double excitations, e.g.,
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with O(NONV3) scaling. If the one-time O(N®) intermediate
construction is too expensive, then it can be avoided by re-
ordering the contraction in Eq. (7) to yield iterative O(N2N3)
scaling. Regarding storage, EOM-CCSD requires four-virtual
integrals with O(NY) storage, whereas P-EOM-MBPT?2 only
requires three-virtual integrals with O(N,N?) storage.

We have applied the above two theories to the calculation of
the minimum band gaps of eleven simple, three-dimensional
semiconductors and insulators. Seven have a diamond/zinc-
blende crystal structure: Si, SiC, GaP, BP, GaN, C, BN; two
have a rock-salt crystal structure: MgO and LiF; and two
have a face-center cubic crystal structure: Ar and Ne. Cal-
culations were done with periodic boundary conditions using
the PySCF software package.?>** All calculations were done
without pseudopotentials using the all-electron cc-pVTZ ba-
sis set except for Ne and Ar, which used the aug-cc-pVTZ
basis set. Calculations using larger basis sets (not shown)
suggest that our results are close to the basis set limit, con-
sistent with analogous results obtained with the GW approx-
imation.?! Two-electron integrals were calculated by periodic
Gaussian density fitting*?> using JKFIT auxiliary basis sets.*

For charged excitation energies, finite-size effects are
large.'?* Here, we have included one Madelung constant cor-
rection to the occupied orbital energies and another to the final
IPs. The former correction has no impact in wavefunction-
based theories such as EOM-CCSD, but does have an impact
in finite-order perturbation theories (similar to the differing
behaviors of ground-state CCSD and MP2); the latter correc-
tion is familiar from periodic calculations of charged systems
and can be given a many-body interpretation on the basis of
the excited-state structure factor.’* We have performed cal-
culations with Ny = 23 — 53 k-points sampled uniformly in
the Brillouin zone. Band gaps were then extrapolated to the
thermodynamic limit assuming an O(N, '3) finite-size error.
Other treatments of finite-size effects are possible, but all are
expected to exhibit finite-size errors with the same scaling.
The rock-salt and face-centered cubic materials have direct
band gaps at the I point, and the diamond/zinc-blende mate-
rials have indirect band gaps, which were determined by per-
forming separate IP and EA calculations with k-point meshes
shifted to include the valence band maximum and conduction
band minimum, respectively.



Material a(A) Reference MP2 P-EOM-MP2 GoW,@PBE
Expt. E, el-ph E, Error E, Error E, Error
Si 5.431 1.24 -0.06 -2.13 -3.43 2.26 0.96 1.08 -0.22
SiC 4.350 22 -0.17 -1.21 -3.58 2.66 0.29 2.44 0.07
GaP 5.450 227 -0.07 -0.93 -3.27 2.96 0.62 2.33 -0.01
BP 4.538 2.4 - -2.25 (—4.65) 3.04 (0.64) 2.15 (-0.25)
GaN 4.520 3.30 -0.18 1.68 -1.80 3.70 0.22 3.13 -0.35
C 3.567 5.48 -0.33 1.57 —4.24 5.70 -0.11 5.52 -0.29
BN 3.615 6.2 -0.41 3.00 -3.61 6.15 —-0.46 6.41 -0.20
MgO 4.213 7.67 -0.52 7.70 —-0.49 8.52 0.33 7.43 -0.76
Ar 5.256 14.2 ~0 13.80 —-0.40 14.38 0.18 13.24 —-0.96
LiF 4.035 14.5 -0.59 14.88 -0.21 15.59 0.50 13.27 -1.82
Ne 4.429 21.7 ~0 21.00 -0.70 21.98 0.28 20.01 -1.69
MSE (eV) -2.17 +0.28 -0.62
MUE (eV) 2.17 0.40 0.64

TABLE I. Minimum band gap E, as measured experimentally and as predicted by MP2, P-EOM-MP2 and GoW, @PBE (from Ref. 31). Errors
in predicted band gaps are calculated with respect to experimental values with electron-phonon (el-ph) renormalization. All energies are in
eV. Mean signed error (MSE) and mean unsigned error (MUE) are given in eV. percentage. Results on BP were excluded from error statistics
due to the missing electron-phonon renormalization. Experimental band gaps are from Refs. 36-38, zero-point contributions to electron-
phonon renormalization are from Refs. 39 and 40, the thermal contribution to electron-phonon renormalization for LiF is from Ref. 41, and

GoW,@PBE results are from Refs. 31 and 35.

In Fig. 2, we compare the minimum band gaps obtained
by MP2, P-EOM-MP2, and the GW approximation to ex-
perimental values at 300 K. Because the calculations do not
account for vibrational effects, we have adjusted the ex-
perimental values according to calculated electron-phonon
renormalizations from the literature’>* based on the Allen-
Heine-Cardona framework.*”** We only include the zero-
point renormalization for all materials except LiF, which has a
sizable thermal contribution to the renormalization at 300 K;*!
for the other materials, this latter contribution is relatively
small. Lattice expansion is already accounted for because our
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FIG. 2. Comparison of calculated band gaps to experimental band
gaps (including zero-point renormalization) for the eleven semicon-
ducting and insulating materials indicated. GW approximation re-
sults were obtained at the GyW, @PBE level of theory.’!3

lattice constants are experimental 300 K values. Precise num-
bers and crystal geometries are given in Tab. I. We note that
experimental band gaps and calculated electron-phonon renor-
malizations vary throughout the literature.

Consistent with Ref. 5, we find that MP2 systematically un-
derestimates the band gap and predicts negative band gaps for
Si, GaP, BP, and SiC (our MP2 band gaps are similar to those
of Ref. 5, but some differ by as much as 0.5 eV, which we
attribute to differences in the treatment of core electrons, ba-
sis set effects, finite-size effects). Remarkably, the P-EOM-
MP2 band gaps are a significant improvement and show good
agreement for all materials. The mean signed error (MSE)
is +0.28 eV and the mean unsigned error (MUE) is 0.40 eV.
The largest signed error is for Si (+0.96 eV), which has the
smallest gap of all materials considered.

In Fig. 2 and Tab. I, we also compare results to those cal-
culated by the GoW, approximation with a PBE reference.
For all materials except LiF, we compare to all-electron, full-
frequency calculations by Zhu and Chan,?' which were per-
formed with PySCF using identical treatments of core elec-
trons and identical Gaussian basis sets. The result for LiF
is from Ref. 35. Remarkably, the P-EOM-MP2 and GW ap-
proximation perform similarly well, despite their underlying
physical differences. Roughly speaking, the GW approxima-
tion performs better for materials with the smallest gaps while
P-EOM-MP2 performs better for those with the largest gaps.
The largest errors for the GW approximation are for the large-
gap insulators, whose band gaps are underestimated by about
1 eV or more, which we attribute to the use of a PBE starting
point and the absence of second-order exchange. For the GW
approximation, the MSE is —0.62 eV and the MUE is 0.64 eV.

We performed additional calculations to estimate the effect
of the various diagrams included in the P-EOM-MP2 self-
energy shown in Fig. 1. The HF band gap is always much too
large and the direct second-order diagrams yield a large neg-
ative correction, which is largely responsible for the perfor-



mance exhibited by MP2. Consistent with Ref. 5, we find that
the second-order exchange diagrams make a small contribu-
tion (< 0.2 eV) for small-gap materials but a larger contribu-
tion (= 0.5 eV) for large-gap materials. This can be attributed
to the more localized nature of the electronic states in large-
gap insulators. The diagram in Fig. 1(c) makes a large contri-
bution (1 eV or more) for all materials and is most responsible
for the significant improvement of P-EOM-MP2 over MP2.
The final diagram in Fig. 1(d), a vertex correction beyond the
GW approximation, typically raises the gap by about 0.2 eV.

In Fig. 3, we show the convergence of the band gap towards
the thermodynamic limit for four of the materials considered
here. As mentioned earlier, the finite-size error is large and
must be removed by extrapolation. Interestingly, although
MP2 and P-EOM-MP?2 give similar band gaps for small k-
point meshes, they exhibit very different convergence to the
thermodynamic limit. This difference is largest for materi-
als with small band gaps. We attribute this behavior to our
use of Madelung constant corrections in the HF orbital ener-
gies. These corrections cause the HF gap to converge to the
thermodynamic limit from above, such that the systems with
smaller k-point meshes are more weakly correlated and the
importance of third-order diagrams in the self-energy is di-
minished. On approach to the thermodynamic limit, the sys-
tem becomes more strongly correlated and the results of the
two methods deviate.

In conclusion, we have shown that the P-EOM-MP2 ap-
proach, a second-order approximation to EOM-CCSD, yields
solid-state band gaps that are a significant improvement over
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FIG. 3. Convergence and extrapolation to the thermodynamic limit
of the MP2 and P-EOM-MP2 band gaps for four example materials.
Experimental values are corrected with a zero-point renormalization.

those predicted by MP2. The success of P-EOM-MP2 con-
tradicts the conventional wisdom that infinite-order screening
is necessary for quantitative accuracy in band gap prediction.
Rather, P-EOM-MP2 represents an affordable balance of low-
order screening and exchange, yielding semiquantitative accu-
racy for materials with a wide range of band gaps. By starting
from Hartree-Fock theory and including antisymmetrization
in all interaction vertices, the method is completely ab ini-
tio and free of self-interaction and self-screening errors. We
note that P-EOM-MP?2 is very similar to CC2* and we there-
fore expect similar performance from the latter, which also in-
cludes some amount of orbital relaxation. Although P-EOM-
MP2 has been found to perform well for three-dimensional
materials, it will be interesting to apply it to low-dimensional
semiconductors, where screening is more complicated. The
present results should be compared to those produced with the
more expensive EOM-MP2 (without the diagonal approxima-
tion) and EOM-CCSD methods. We have recently done this
comparison for neutral excitations calculated with EE-EOM-
CCSD* and work is currently in progress for band structures
and band gaps.
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