
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 11, NOVEMBER 2020 3627

Hardware Memory Management for Future Mobile
Hybrid Memory Systems

Fei Wen , Mian Qin , Paul V. Gratz , Senior Member, IEEE, and A. L. Narasimha Reddy, Fellow, IEEE

Abstract—The current mobile applications have rapidly grow-
ing memory footprints, posing a great challenge for memory
system design. Insufficient DRAM main memory will incur fre-
quent data swaps between memory and storage, a process that
hurts performance, consumes energy, and deteriorates the write
endurance of typical flash storage devices. Alternately, a larger
DRAM has higher leakage power and drains the battery faster.
Furthermore, DRAM scaling trends make further growth of
DRAM in the mobile space prohibitive due to cost. Emerging non-
volatile memory (NVM) has the potential to alleviate these issues
due to its higher capacity per cost than DRAM and minimal static
power. Recently, a wide spectrum of NVM technologies, including
phase-change memories (PCMs), memristor, and 3-D XPoint has
emerged. Despite the mentioned advantages, NVM has longer
access latency compared to DRAM and NVM writes can incur
higher latencies and wear costs. Therefore, the integration of
these new memory technologies in the memory hierarchy requires
a fundamental rearchitecting of traditional system designs. In
this work, we propose a hardware-accelerated memory manager
(HMMU) that addresses in a flat address space, with a small
partition of the DRAM reserved for subpage block-level man-
agement. We design a set of data placement and data migration
policies within this memory manager such that we may exploit
the advantages of each memory technology. By augmenting the
system with this HMMU, we reduce the overall memory latency
while also reducing writes to the NVM. The experimental results
show that our design achieves a 39% reduction in energy con-
sumption with only a 12% performance degradation versus an
all-DRAM baseline that is likely untenable in the future.

Index Terms—FPGA accelerator, heterogeneous memory
system, nonvolatile memory (NVM).

I. INTRODUCTION

AS THE demand for mobile computing power scales,
mobile applications with ever-larger memory footprints

are being developed, such as high-resolution video decoding,
high-profile games, etc. This trend creates a great challenge for
current memory and storage system design in these systems.
The historical approach to address memory footprints larger

Manuscript received April 18, 2020; revised June 12, 2020; accepted
July 6, 2020. Date of publication October 2, 2020; date of current ver-
sion October 27, 2020. This work was supported in part by the National
Science Foundation under Grant I/UCRC-1439722 and Grant FoMR-1823403;
in part by DellEMC; and in part by Hewlett Packard Enterprise. This article
was presented in the International Conference on Compilers, Architecture,
and Synthesis for Embedded Systems 2020 and appears as part of the
ESWEEK-TCAD special issue. (Corresponding author: Fei Wen.)

The authors are with the Department of Electrical and Computer
Engineering, Texas A&M University, College Station, TX 77843 USA
(e-mail: fei8wen@gmail.com; celery1124@tamu.edu; pgratz@gratz1.com;
reddy@tamu.edu).

Digital Object Identifier 10.1109/TCAD.2020.3012213

than the DRAM available is for the OS to swap less used
pages to the storage, keeping higher locality pages in memory.
Given the latencies of modern storage systems (even “high”
performance SSDs [1]–[3]) are several orders of magnitude
higher than DRAM, however, allowing any virtual memory
swapping to storage implies incurring a severe slowdown.
Thus, the mobile device manufacturer rapidly expanded the
DRAM size for the worst case possible memory footprint. For
example, the DRAM capacity of the flagship phones from the
Samsung Galaxy S series has expanded by 16 × over the past
ten years. While this approach has been largely successful to
date, the size of DRAM is constrained by both cost/economics
and energy consumption. Unlike data centers, mobile devices
are highly cost sensitive and have a highly limited energy
budget. Moreover, the DRAM technology has a substantial
background power, constantly consuming energy even in idle
due to its periodic refresh requirement, which scales with
DRAM capacity. Therefore, a larger DRAM means a higher
power budget and a shorter battery life, particularly given
recent hard DRAM VLSI scaling limits. The approach of pro-
visioning more DRAM is not sustainable and hard limits will
soon be hit on the scaling of the future mobile memory system.

The emergence of several nonvolatile-memory (NVM) tech-
nologies, such as Intel 3-D Xpoint [4], memristor [5], and
PCM [6], provides a new avenue to address this growing
problem. These new memory devices promise an order of
magnitude higher density [7] per cost and lower static power
consumption than traditional DRAM technologies, however,
their access delay is significantly higher, typically also within
one order of the magnitude of DRAM. Furthermore, these
new technologies show significant overheads associated with
writes and are nonvolatile. Thus, these emerging memory
technologies present a unique opportunity to address the prob-
lems of growing application workload footprints with hybrid
memory systems composed of both DRAM and emerging
NVM memories. To exploit these new memory devices effec-
tively, however, we must carefully consider their performance
characteristics relative to existing points in the memory hier-
archy. In particular, while memory access and movement in
prior storage technologies, such as flash and magnetic disk are
slow enough that software management via the OS was feasi-
ble. With emerging NVM memory accesses at within an order
of the magnitude of DRAM, relying on traditional OS memory
management techniques for managing placement between
DRAM and NVM is insufficient as illustrated in Fig. 1.

In Fig. 1, a subset of benchmarks from the SPEC CPU2017
benchmark suite is executed in a system where around 128 MB

0278-0070 c 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



3628 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 11, NOVEMBER 2020

TABLE I
APPROXIMATE PERFORMANCE COMPARISON OF DIFFERENT MEMORY TECHNOLOGIES [13]–[15]

Fig. 1. Performance impact of OS memory management.

of the application’s memory footprint is able to fit in the
system DRAM directly. A ramdisk-based swap file is set up to
hold the remainder of the application memory footprint. Since
this ramdisk swapfile is implemented in DRAM, it represents
an upper bound on the performance for pure software swap-
ping. The results shown are normalized against a system where
sufficient DRAM is available to capture the entire memory
footprint. As we see, in this arrangement, the cost of pure OS
managed swapping to NVM would be quite high, with appli-
cations seeing an average of ∼2× slowdown versus baseline.
As we will show, a significant fraction of this overhead comes
explicitly from the costs of the required page fault handling.

Some existing work has begun to explore system design
for emerging hybrid memories. Broadly this prior work falls
into one of two categories, first, some advocate using DRAM
as pure hardware managed cache for NVM [8], [9]. This
approach implies a high hardware cost for metadata man-
agement and imposes significant capacity and bandwidth
constraints. Second, some have advocated for a pure software,
OS managed approach [10]–[12]. As we discussed previously,
this approach implies significant slowdowns due to software
overhead of the operating system calls.

Here, we propose a new, hardware managed hybrid memory
management scheme which retains the performance bene-
fits of caching, without the high metadata overhead such an
approach implies. Compared to previous work, our project has
the following advantages.

1) With a ratio of 1/8 DRAM versus 7/8 NVM, we achieved
88% of the performance of an untenable full DRAM
configuration while reducing the energy consumption
by 39%.

2) Compared to inclusive DRAM caches, we preserve the
full main memory capacity for the user applications.

3) Parallel access to both the DRAM and NVM is sup-
ported, rendering a higher effective memory bandwidth.
This also helps to suppress the excessive cache inser-
tion/replacements and prevent cache thrashing.

4) The data placement and migration are executed by hard-
ware. This eliminates the long latency incurred by the
OS managed virtual memory swap process.

5) To obtain optimal performance with applications with
various localities, we created a combined management
policy that addresses data at page and subpage block
granularity, dependent on locality.

II. BACKGROUND AND MOTIVATION

With emerging NVM technologies providing more memory
system capacity, density, and lower static power, they have the
potential to meet the continuously increasing memory usage of
mobile applications. Given their different characteristics from
traditional DRAM and storage, however, the design of systems
comprising these new technologies together with traditional
DRAM and storage is an open question. Here, we examine
the characteristics of this new memory technologies and the
existing proposals to date on how to leverage them in system
designs.

A. Nonvolatile Memory Technology Characteristics
Table I shows the relative characteristics of several emerging

NVM technologies against traditional DRAM and storage [13],
[14], [17]. HDD and Flash have 100k and 2k times slower read
access than DRAM, respectively, while the emerging NVM
technologies have read access latencies typically within one
order of magnitude of DRAM. Meanwhile, emerging NVM
technologies provide higher memory system capacity, density,
and lower static power. Furthermore, we note that in these new
technologies writes are often more expensive that reads both
in terms of latency as shown and endurance/lifetime cost, as
well as energy consumption for writing.

The relative closeness in performance and capacity to tra-
ditional DRAM of emerging NVM technologies argues for a
different approach to memory management than traditional,
OS or hardware-cache-based approaches. In the remainder of
this section, we examine the prior work approaches to the
design of hybrid memory systems.

B. Operating System-Based Memory Management
Hassan et al. [10] and Fedorov et al. [11] proposed to

leverage the OS to manage placement and movement between



WEN et al.: HARDWARE MEMORY MANAGEMENT FOR FUTURE MOBILE HYBRID MEMORY SYSTEMS 3629

NVM and DRAM. They treat NVM as a parallel memory
device on the same level as that of DRAM in the memory
hierarchy. They argue that this approach can yield better uti-
lization of the large NVM capacity without wasting the also
relatively large DRAM capacity. Their approach is similar to
the traditional approach of using storage as a swap space to
extend the DRAM main memory space. The direct application
of this approach to NVM creates some difficulties, however.
When a given requested data are found to be in the swap space
on the NVM, a page fault occurs which must be handled by
an operating system. The latency of this action is not only
comprised of the device latency itself but also the induced OS
context switch and page fault handling. While in traditional
storage systems with ms-level latencies, that cost is negligible,
with the latency of SSD and other NVM devices significantly
decreased, the OS management overheads come to dominate
this latency, as discussed previously and indicated in Fig. 1.

C. Hardware-Managed DRAM Caches and Related
Approaches

Other groups have proposed using DRAM as the
cache/buffer for NVM, and thus, turning DRAM into the
new last-level cache [8]. Similar schemes have also been
applied to other memory devices with latency discrepancy in
the heterogeneous-memory system (HMS). For instance, 3-D-
stacked DRAM was proposed as a cache for off-chip DRAM
in the works [18]–[21]. A common theme in all these designs
is the difficulty in lookup and maintenance of the tag storage
since the number of tags scales linearly with the cache size.
Assuming the cache block size is 64 and 8 B of tag for each
block, then a 16-GB DRAM cache requires 2 GB for the tag
storage alone. That is, much too large to fit in a fast, SRAM tag
store. Much of the prior work explores mechanisms to shrink
the tag storage overhead [22]. Some researchers explored tag
reduction [23]. Others aimed to reconstruct the cache data
structure. For instance, some works combine the tag or other
metadata bits into the data entry itself [19], [24].

Another issue these works attempt to address is the extended
latency of tag access. DRAM devices have significantly greater
access latency than SRAM. Additionally, their larger cache
capacity requires a longer time for the tag comparison and
data selection hardware. If the requested data address misses
in the TLB, it takes two accesses to the DRAM before the
data can be fetched. Lee et al. [25] attempted to avoid the tag
comparison stage entirely by setting the cache block size to
equal the page size and converting virtual addresses to cache
addresses directly in a modified TLB. This approach, however,
requires several major changes to the existing system archi-
tecture, including requiring extra information bits in the page
table, modifying the TLB hardware, and an additional global
inverted page table.

Broadly, several issues exist with the previously proposed
hardware-based management techniques for future hybrid
memory systems.

1) As with traditional processor cache hierarchies, every
memory request must go through the DRAM cache
before accessing the NVM. The prior work shows that

this approach is suboptimal for systems, where band-
width is a constraint and where a parallel access path is
available to both levels of memory [26]. Furthermore,
given the relatively slow DRAM access latency requir-
ing a miss in the DRAM before accessing the NVM
implies a significantly higher overall system latency.

2) These works largely assume an inclusive style caching.
Given the relative similarity in capacity between DRAM
and NVM, this implies a significant loss of capacity.

3) Given the capacities of DRAM and NVM versus SRAM
used in processor caches, a traditional cache style
arrangement implies a huge overhead in terms of cache
metadata. This overhead will add significant delays to
the critical path of index search and tag comparison,
impacting every data access.

Liu et al. [27] proposed a hardware/software collaborative
approach to address the overheads of pure software approaches
without some of the drawbacks of pure hardware caching.
Their approach, however, requires modifications both to the
processor architecture as well as the operating system kernel.
These modifications have a high NRE cost and hence, are diffi-
cult to be carried out in production. Ramos et al. [28] proposed
a combined OS/hardware scheme where page migrations are
performed in hardware, at the direction of the OS. Here, the
OS maintains the page tables and other data structures.

In this article, we propose a hardware-based hybrid memory
controller that is transparent to the user and as well as the
operating system, thus, it does not incur the overheads of
management of OS-based approaches. The controller is an
independent module and compatible with existing hardware
architectures and OSs. The controller manages both DRAM
and NVM memories in flat address space to leverage the full
capacity of both memory classes. Our approach also reserves
a small portion of the available DRAM space to use as
a hardware-managed cache to leverage spacial locality pat-
terns seen in real application workloads to reduce writes to
the NVM.

III. DESIGN

Here, we describe the proposed design of our proposed
hardware memory management for future hybrid memory
systems. Based on the discussion in Section II and cognizant of
the characteristics of emerging NVM technologies, we aim to
design a system in which the latency overheads of OS memory
management are avoided while hardware tag and meta-data
overheads of traditional caching schemes are minimized.

A. System Architecture Overview
Fig. 2 shows the system architecture of our proposed

scheme. The data access requests are received by the hybrid
memory management unit (HMMU), if they miss in the pro-
cessor cache. These are processed based on the built-in data
placement policies and forwarded with address translation to
either DRAM or NVM. The HMMU also manages the migra-
tion of data between DRAM and NVM by controlling the
high-bandwidth DMA engine connecting the two types of
memory devices.



3630 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 11, NOVEMBER 2020

Fig. 2. System architecture overview.

B. Data Management Policy
A key component of the proposed HMMU design is its data

management policy, i.e., the policy by which it decides where
to place and when to move data between the different memory
levels. Traditionally, in processor caches and elsewhere, cache
blocks are managed with 64-B lines and policies such as set
associative are used to decide what to replace upon the inser-
tion of new lines into a given cache level. While this approach
yields generally good performance results in processor caches,
there are difficulties in adapting it for use in hybrid memories.
As previously discussed in Section II-C, for a hybrid memory
system of 16 GB comprised of 64-B cache lines, the tag store
overhead would be an impractically large 2 GB. Extending the
block size up to 4 KB to match the OS page size would signif-
icantly reduce the overheads of the tag store, bringing it down
to 4 MB for a 16-GB space. Since the host operating system
primarily uses 4-KB pages, using any larger size than 4 KB
for block management, however, risks moving a set of poten-
tially unrelated pages together in a large block, with little, if
any spatial locality between different pages in the block. This
is particularly true because the addresses seen in the HMMU
are “physical addresses,” thus, physically colocated pages may
come from completely different applications, with no spatial
relationship.1 As we will discuss, however, even managing
blocks on a page granularity will yield greater than optimal
page movements between “fast” (DRAM) and “slow” (NVM)
memory levels, due to the fact that only subsets of the page
are ever touched in many applications. Thus, we will examine
a hybrid scheme in which most of the fast memory is managed
on a page basis, lowering tag overheads, while a small frac-
tion is managed on a subpage basis to reduce page movement
when only small portions of each page are being used at a
given time.

In terms of organization and replacement, using traditional
processor cache policies of set associativity and LRU replace-
ment become unwieldy for a memory system of this size.

1While many systems do allow a subset of pages to be managed at larger
granularities, the HMMU has no visibility to this OS-level mapping, thus, we
conservatively assume 4-KB pages.

The practical implementation of such a set-associative cache
requires either a wide/multiported tag array (which becomes
untenable for large SRAM structures) or multiple cycles to
retrieve and compare each way in the set sequentially. The
prior work from the OS domain [29], [30] shows that with a
large number of pages to choose from, set associative, LRU
replacement is not strictly necessary. Inspired by that we first
developed a simple counter-based page replacement policy.

1) Counter-Based Page Management: Rather than imple-
menting a set-associative organization with the drawbacks
described above, we instead propose to implement a secondary,
page-level translation table internal to the HMMU as illus-
trated in Fig. 3. The internal page table provides a one-to-one
remapping, associating each CPU-side “physical” page num-
ber in the host address space to a unique page number in
the hybrid memory address space, either in the fast or slow
memory. Thus, any given host page can be mapped to any
location in either fast or slow memory.

While this design gives great flexibility in mapping, when
a slow memory page must be moved to fast memory (i.e.,
upon a slow memory reference we move that page to fast
memory) it requires a mechanism by which to choose the fast
memory page to be replaced. Inspired by prior work in the OS
domain [29], [30], we designed the counter-based replacement
policy for this purpose.

a) Algorithms and design: The counter-based replace-
ment policy only requires one counter to keep track of the
currently selected fast memory replacement candidate page,
thus, it has minimal resource overhead and can efficiently be
updated each cycle. The counter value is passed through a
hash function and a modulo function to generate an index
into the internal page table. If the retrieved page number turns
out to be in slow memory, the counter increments by one and
the hash function generates a new index for the next query
to the page table. Such process loops until it finds a page
in the fast memory, which becomes the candidate destination
for the page swapping. The chance that a recently accessed
page gets replaced is very rare because: 1) the total number
of pages is very large and 2) the counter increases monoton-
ically. To further reduce the possibility of evicting a recently
touched page, however, we implemented a lightweight bloom
filter that tracks the last 2048 accessed pages. Since checking
against the bloom filter is parallel to normal page scan process
and is also executed in background, it adds no extra delay to
data accesses. Algorithm 1 shows the details of the algorithm.

Further details of the counter-based page management
policy are as follows.

1) Current requests are processed at top priority under
all circumstances. Except for rare cases when a given
write request conflicts with ongoing page movement,
we always process the current request first. As for those
rare cases, since all write requests are treated as non-
blocking, the host system shall not suspend for them to
complete. Therefore, our design does not add overhead
to the critical path of request processing.

2) Due to the parallel nature of the hardware, we search for
free pages in fast memory in the background, without
interference to host read request processing.



WEN et al.: HARDWARE MEMORY MANAGEMENT FOR FUTURE MOBILE HYBRID MEMORY SYSTEMS 3631

Algorithm 1: Counter-Based Page Relocation
Function unsigned pgtb-lookup (address) is

return page_table[address/page_size];
Function unsigned search-free-fast-page() is

while pointed_page ∈fast memory or
pointed_page ∈bloom filter do

counter++;
pointed_page = pagetable[Mod(Hash(counter))];

set candidate page as ready;
return pointed_page;

Function counter-based-page-move(address) is
pointed_page = pgtb-lookup (address);
if pointed_page ∈fast memory then

directly forward the request to DRAM
else

if candidate page is available then
initiate to swap the content between requested

page and candidate page.;
Call page-swap();

else
Forward the current request to NVM;

Function page-swap (source_page, target_page) is
while page swap is not completed do

if new requests conflict with pages on flight then
Froward the requests to the corresponding

device depending on the current moving
progress

Continue the page swap;
Update the corresponding entries in page table.;

3) Page swap is initiated by the HMMU, however, it is
executed by a separate DMA hardware module. Thus, it
does not impact other ongoing tasks. In some very rare
cases, the write requests are held until the current page
copy is finished.

4) Data coherence and consistency are maintained during
page movements.

2) Subpage Block Management: Various applications could
have widely different data access patterns: those with high
spatial locality may access a large number of adjacent blocks
of data; while others may have a larger stride between the
requested addresses. For applications with weak or no spatial
locality, there is very limited benefit to moving the whole page
of data into fast memory as most of the nontouched data may
not be used at all. Based on this observation, we propose a
scheme for a subpage size block management, which manipu-
lates the data placement and migration in finer granularity. Our
design supports flexible block size, ranging from the regular
cache line size of 64 B, up to 1024 B. After comparing the
results by sweeping all possible block sizes, we found the
optimal choice to be 512 B.

a) Data migration policy: We set aside a small frac-
tion of the fast memory and manage that area in a cache-like

Algorithm 2: Subpage Block Management
Function subpage block management(address) is

pointed_page = pgtb-lookup(address);
if pointed_page ∈fast memory then

directly forward the request to DRAM
else

if the count of cached blocks > threshold value
then

if candidate free page available then
initiate to swap the content between

requested page and candidate page.;
Call page-swap();

else
Forward the current request to NVM;

else
initiate moving the block to cache zone

fashion with subpage sized blocks. The basic algorithm used
in shown in Algorithm 2. Upon the first accesses to a slow
memory page, instead of moving the whole page into fast
memory, we will only move the requested block of that page
into the “cache” zone in fast memory. We then keep track
of the total number of cached blocks belonging to every page.
Only after the count of cached blocks meets a certain threshold
will we swap the whole page to fast memory.

Fig. 3 illustrates a walkthrough of the comprehensive data
relocation policy. The memory controller receives a request
to host a physical address 0x124000a200. In the first cycle,
both the page table and cache metadata are checked in paral-
lel to decide the target memory device. If the data are found
only in the slow memory, the memory controller will trigger
the data relocation process. 2 In the second cycle, we check
the 4-b vector counter in the page table entry, which mon-
itors the number of subpage blocks that have been cached
for the current page. Comparing the vector against the preset
threshold, it determines whether to start a full-page swap or
a subblock relocation. If the vector value is smaller than the
threshold value, then only that particular block containing the
requested data (0x40027200 to 0x4002727f) will be copied
to the cache. It is possible that the data might be found in
both slow memory and the cache at the same time. To enforce
data consistency, we always direct the read/write request to
the copy in cache. This dirty data will be written back to the
slow memory upon eviction.

In the other case when the vector value is bigger than
the threshold value, the HMMU directs the DMA engine to
start the full-page swapping process between the requested
page (40027) and the destination page in fast memory. Here,
as described in Algorithm 1, the fast memory pages to be
replaced is selected via the replacement counter, i.e., page
00038 in this example. Once the data swapping is completed,
the memory controller updates the new memory addresses of
the two swapped pages in the internal page table.

2Note that the request is serviced immediately, directly from the slow
memory, while the data migration happens in the background.



3632 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 11, NOVEMBER 2020

Fig. 3. Data relocation policy.

3) Hardware Cost and Overhead: Each page table entry
takes log2 (Memory Space/Page Size) bits to represent
the page address. In addition, we need some bits for statis-
tical metadata such as the counter of misses occurring to the
page. In our sample design, the memory space is 2 GB and
the page size is 4 KB, thus, the hardware cost per page could
be rounded to log 2 (2 GB/4 KB) + 5 bits = 3 bytes, and
the total cost is 1.5 MB. The page table cost scales linearly
with memory size whereas the cost per entry only grows log-
arithmically. The metadata for each cache set is comprised of
three parts: 1) four tags (8 bits × 4); 2) pseudo-LRU bits (3);
and 3) dirty bits (4), which adds to 39 b. The total cost is
39 bits × 216 ≈312 KB. Since the cache is read and check
parallel to the access to the page table, there is no additional
timing cost for handling regular requests. The DMA provides
the nonconflict data relocation for the subpage block level as
same as that of the page relocation.

4) Static Versus Adaptive Caching Threshold: With both
page and block migration available, a new question arises,
how to choose wisely between these two policies for optimal
results? We note that these policies have different characteris-
tics as follows.

1) With page migration, the data are exclusively placed
between NVM and DRAM devices. Thus, larger
memory space is available to applications, and the
bandwidth of both devices is available.

2) Subpage-block migration is done in an inclusive cache
fashion, thus, avoids the additional writes to NVM when
the clean data blocks are evicted from DRAM.

For applications with a strong spatial locality, whole page
migration maximizes performance because the migration cost
is only incurred once, and the following accesses hit in the
fast memory. Alternately, subpage block promotion benefits
applications with less spacial locality because it limits writes
to NVM incurred by full-page migration. We further note that
application behavior may vary over time with one policy being
better in one phase and another better during another.

We, therefore, include in the page translation table an 8-bit
bitmap for tracking accesses to each subpage block of the

given page. This allows measurement of the utilization rate
of promoted pages. If a large portion of blocks were revis-
ited, then we lower the threshold to allow more whole page
migration. Alternately, if few blocks were accessed we sup-
press the whole page promotion by raising the threshold value,
decreasing the rate at which full pages are migrated.

IV. EVALUATION

In this section, we present the evaluation of our proposed
HMMU design. First, we present the experimental method-
ology. Then, we discuss the performance results. Finally, we
analyze some of the more interesting data points.

A. Methodology
1) Emulation Platform: Evaluating the proposed system

presents several unique challenges because we aim to test the
whole system stack, comprising not only the CPU but also the
memory controller, memory devices, and the interconnections.
Furthermore, since this project involves hybrid memory, accu-
rate modeling of DRAM is required. Much of the prior work
in the processor memory domain relies upon software simu-
lation as the primary evaluation framework with tools, such
as Champsim [31] and gem5 [32]. However, detailed soft-
ware simulators capable of our goals impose huge simulation
time slowdowns versus real hardware. Furthermore, there are
often questions about the degree of fidelity of the outcome of
arbitrary additions to software simulators [33].

Another alternative used by some prior work [11] is to use
an existing hardware system to emulate the proposed work.
This method could to some extent alleviate the overlong the
simulation runtime, however, no existing system supports our
proposed HMMU.

Thus, we elected to emulate the HMMU architecture on
an FPGA platform. FPGAs provide flexibility to develop
and test sophisticated memory management policies while its
hardware-like nature provides near-native simulation speed.
The FPGA communicates with the ARM CortexA57 CPU via
a high-speed PCI Express link and manages the two memory



WEN et al.: HARDWARE MEMORY MANAGEMENT FOR FUTURE MOBILE HYBRID MEMORY SYSTEMS 3633

Fig. 4. Energy consumption comparison.

TABLE II
EMULATION SYSTEM SPECIFICATION

modules (DRAM and NVM) directly. The DRAM and NVM
memories are mapped to the physical memory space via the
PCI base address register (BAR) window. From the perspective
of the CPU, they are rendered as available memory resource
same as other regions of this unified space.

Our platform emulates various NVM access delays by
adding stall cycles to the operations executed in FPGA to
access external DRAM. The platform is not constrained to any
specific type of NVM, but rather allows us to study and com-
pare the behaviors across any arbitrary combinations of hybrid
memories. In the following sections, we would show the sim-
ulation results with different memory devices. The detailed
system specification is listed in Table II.

2) NVM Emulation: We measured the round trip time in
FPGA cycles to access external DRAM DIMM first, and then
scaled the number of stalled cycles according to the speed
ratio between DRAM and future NVM as described in Table I.
Thus, we have one DRAM DIMM running at full speed and
the other DRAM DIMM emulating the approximate speed of
NVM memory.

3) Workloads: We use applications from the recently
released SPEC CPU 2017 benchmark suite [34]. To emu-
late memory-intensive workloads for future mobile space, we
selected only those SPEC CPU 2017 benchmarks that require
a larger working set than the fast memory size in our system.
The details of tested benchmarks are listed in Table III.

TABLE III
TESTED WORKLOADS [34]

To ensure that application memory was allocated to the
HMMU’s memory, the default Linux malloc functions are
replaced with a customized jemalloc [35]. Thus, the HMMU
memory access was transparent to the CPU and cache, and no
benchmark changes were needed.

4) Designs Under Test: Here, we test the following data
management policies developed for use with our HMMU.

1) Static: A baseline policy in which host requested pages
are randomly assigned to fast and slow memory. This
serves as a nominal, worst case, memory performance.

2) PageMove: The whole 128-MB DRAM is managed on
the granularity of 4k pages. When a memory request is
missed in fast memory, the DMA engine will trigger a
page relocation from slow memory to fast memory, as
described in Section III-B1.

3) AdpComb: Here, 16 MB out of the 128-MB DDR3 is
reserved for subpage block relocation, managed in the
cache-like fashion, as described in Section III-B2. The
remainder of the DRAM is managed on a full page basis.
An adaptive threshold is used to determine when the full
page should be moved.

4) AllDRAM: Here, we implement a baseline policy in
which there is sufficient fast memory to serve all pages
in the system and no page movement is required. This
serves as a nominal, best case but impractical memory
performance design.

B. Results
1) Energy Saving: Emerging NVM consumes minimal

standby power, which could help save energy consumption on
mobile computation. We evaluated and compared the energy
spent in running SPEC 2017 benchmarks between the full
DRAM configuration and our policies. We referred to Micron
DDR4 technical spec [36] for DRAM and recent work on
3DxPoint [37] for NVM device power consumption, respec-
tively (Table IV). We normalize the energy consumption of
our policies to that of the AllDRAM configuration and present
them in Fig. 4. In the figure, we see that both techniques save
a substantial amount of energy. On average, the AdpComb
adaptive policy only consumes 60.2% energy as compared
to the AllDRAM configuration, while the PageMove is at



3634 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 11, NOVEMBER 2020

Fig. 5. SPEC 2017 performance speedup.

TABLE IV
POWER CONSUMPTION OF DDR4 AND 3-D-XP OINT

65.1%. That said, several benchmarks see energy consumption
increases under the PageMove policy. AdpComb, while also
seeing increased energy consumption under 519.lbm, shows
better energy consumption than the other two policies for all
other cases.

Further investigating the distribution of energy consump-
tion, we track the DRAM background power and the number
of DRAM read/writes and NVM read/writes. Since 7/8 of the
memory was replaced with NVM, the standby power shrinks
significantly. Although write operations to NVM dissipate
more energy than DRAM, the AdpComb policy avoids most of
this increase by absorbing many writes in DRAM. Our policies
saw the greatest energy efficiency improvement with applica-
tions imagick and nab, which spent 17.9% and 21.1% energy
compared to full DRAM. We find that these two applications
have high processor cache hit rates and spent the most time in
computation. Thus, they have few references to the memory,
and the largest portion of energy was spent on DRAM back-
ground power. Thus, AptComb policy’s advantage of having
much lower DRAM static power is best exploited. Our policies
did pretty well with all benchmark applications except lbm,
which spent 63% more energy. This application incurred a
massive number of cache block writebacks to NVM. We inves-
tigated the case and found lbm has the highest percentage of
store instructions among all benchmark applications [38]. This
creates many dirty blocks, and thus, writebacks are expected
when blocks are later evicted. The amount of writes is also
amplified by the writebacks of cache blocks.

2) Runtime Performance: Fig. 5 shows the speedup attained
by different designs under test for the various benchmarks
in the SPEC CPU 2017 benchmark suite. Here, all the
results are normalized to the runtime of the ideal, AllDRAM,
memory configuration. We see that the average performance
of AdpComb is 88.4%, while the random static allocation
“Static” only yields 40% of the AllDRAM performance. Thus,

the adaptive policy achieves more than 2× performance benefit
versus the worst case, static allocation policy under the same
memory resource. Generally, the AdpComb policy outper-
forms the other two policies we propose, though interestingly,
for many benchmarks, including perlbench, parest, xalancbmk,
xz, imagick, and nab, PageMove comes within 5% of the
performance of AllDRAM.

C. Analysis and Discussion
The adaptive AdpComb policy successfully reduces energy

by 40%, with a modest 12% loss of the performance ver-
sus an unrealistic and unscalable AllDRAM design. AdpComb
attempts to make the optimal choice between the full page
and the block migration. In the remainder of this text, we will
further analyze the experiment results.

1) PageMove Policy Performance: The PageMove pol-
icy has similar average runtime performance (86.9%) to the
adaptive AdpComb policy (88.4%). Fig. 6 shows the break-
down of memory requests that hit in the fast pages and slow
pages, respectively. When compared to the speedup in Fig. 5,
we see the benchmarks in which PageMove policy works
best (500.perlbench, 510.parest, 523.xalancbmk, 538.imagick
544.nab, and 557.xz) have more than 95% of their memory
requests hitting in the fast pages, while the hit rate in slow
pages becomes negligible. This provides a large performance
boost considering that the system’s slow memory is 8× slower
than the fast memory.

The PageMove policy performs worst on the benchmark
531.deepsjeng, with a slowdown of 52% versus AllDRAM. We
divided the number of hits in fast memory by the occurrences
of page relocation, and found that deepsjeng has the lowest
rate (0.03) across all the benchmark applications (Geomean is
3.96). This suggests that when a page is relocated from slow
memory to fast memory, the remainder of that page is often not
extensively utilized. Furthermore, we also see an exceptionally
high ratio of blocks moved to cache versus page relocation.
The geometric mean of all benchmarks is 10.5 while deepsjeng
marks 397. This is a sign that in most cases, the page is only
visited for one or two lines, and never accumulates enough
cached blocks to begin a whole page relocation. To sum up,
deepsjeng has a sparse and wide-range memory access pattern,



WEN et al.: HARDWARE MEMORY MANAGEMENT FOR FUTURE MOBILE HYBRID MEMORY SYSTEMS 3635

Fig. 6. Memory accesses breakdown of PageMove policy.

which is quite difficult to prefetch effective data or improve
performance.

519.lbm presents another interesting case, since its
performance is also poor. Similar to deepsjeng, the hit rate in
fast memory is low in contrast to the number of page reloca-
tions. However, a key difference is that over 60% of the cached
blocks were evicted after its underlying pages relocated to fast
memory. This indicates that lbm walks through many blocks of
the same page and triggers the whole page relocation quickly.
On that account, we deduce that this benchmark will benefit
from a configuration with more fast pages and a smaller cache
zone. We reran this benchmark with a cache size of 8 MB and
the threshold value of 1, and found a supportive result of 8%
performance gain on top of the default threshold value of 4.

2) Writes Reduction and NVM Lifetime Saving: Unlike the
traditional DRAM, emerging NVM technologies have different
characteristics for reads and writes. Write operations dissi-
pates more than 8× the energy of reads [13]. Moreover, NVM
technologies often have limited write endurance, i.e., the maxi-
mum cycles of writes before they wear out. Hence, if we could
reduce the amount of writes, we could greatly save energy con-
sumption and extend the lifetime of the NVM device. Fig. 7
shows the percentage of writes to slow memory for both tech-
niques, normalized against the number of writes seen in the
PageMove policy. Note that we measure not only the direct
writes from the host but also the writes induced by page
movements and subpage block writebacks to slow memory.
In the figure, we see that our combined policy has an average
of 20% fewer writes than the PageMove policy. While several
benchmarks benefit from the subpage block cache, this advan-
tage is strongest with omnetpp, with a drop of 86%. We reran
the tests with different static page relocation thresholds and
examined the changes in runtime and total numbers of writes
to NVM. The runtime varied according to the same trend as
the number of writes, and the threshold value of 4 turned out
to be the overall sweet spot. Both metrics started to deteriorate
rapidly when the threshold value shifted. Then, we measured
the number of writes to NVM incurred by page relocation
and block relocation, respectively. The data showed that more
pages were relocated when the threshold was lowered. On the
other hand, the amount of block migration grew rapidly as the

Fig. 7. Writes to NVM.

threshold increased. The tradeoffs reached perfect balance at
the value of 4, which had a slightly more page moves than
that of value 5, yet significantly fewer block migrations.

3) Adaptive Policy: The analysis above showed that the
whole page promotion policy favors certain benchmark appli-
cations in which most blocks were revisited on the promoted
pages. Meanwhile, other applications benefit from subpage
block promotions as only a subset of blocks were reutilized.
If we could always choose the correct policy for each appli-
cation, then we could expect the optimal results for overall
performance. These results reinforce the reasoning behind our
AdpComb policy’s adaptive threshold, wherein for applica-
tions where pages are mostly utilized full page movement is
completed quickly, while for applications where accesses are
sparse, page movement is postponed till most of the page has
been touched once.

V. CONCLUSION

A wide spectrum of NVM technologies are emerging,
including PCMs, memristor, and 3-D XPoint. These technolo-
gies look particularly appealing for inclusion in the mobile
computing memory hierarchy. While NVM provides higher
capacity and less static power consumption, than traditional
DRAM, its access latency and write costs remain problem-
atic. The integration of these new memory technologies in
the mobile memory hierarchy requires a fundamental rearchi-
tecting of traditional system designs. Here, we presented an
HMMU that addresses both types of memory in a flat address
space. We also designed a set of data placement and data
migration policies within this memory manager such that we
may exploit the advantages of each memory technology. While
the page move policy provided good performance, adding a
subpage-block caching policy helps to reduce writes to NVM
and save energy. On top of these two fundamental policies,
we built an adaptive policy that intelligently chooses between
them, according to the various phases of the running applica-
tion. The experimental results show that our adaptive policy
can significantly reduce power consumption by almost 40%.



3636 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 11, NOVEMBER 2020

With only a small fraction of the system memory implemented
in DRAM, the overall system performance comes within 12%
of the full DRAM configuration, which is more than 2 × the
performance of random allocation of NVM and DRAM. By
reducing the number of writes to NVM, our policy also helps
to extend device lifetime.

REFERENCES

[1] Intel Corporation. (2015). Intel 750. [Online]. Available:
https://ark.intel.com/products/86740/Intel-SSD-750-Series-400GB-
12-Height-PCIe-3_0-20nm-MLC

[2] Y. Kwon, H. Fingler, T. Hunt, S. Peter, E. Witchel, and T. Anderson,
“STRATA: A cross media file system,” in Proc. 26th Symp. Oper. Syst.
Principles (SOSP), 2017, pp. 460–477.

[3] J. Zhang et al., “FlashShare: Punching through server storage stack from
kernel to firmware for ultra-low latency SSDs,” in Proc. 13th USENIX
Symp. Oper. Syst. Design Implement. (OSDI), 2018, pp. 477–492.

[4] Intel Corporation. (2016). Intel Optane Technology. [Online].
Available: https://www.intel.com/content/www/us/en/architecture-
and-technology/intel-optane-technology.html

[5] K. Eshraghian, K.-R. Cho, O. Kavehei, S.-K. Kang, D. Abbott,
and S.-M. S. Kang, “Memristor MoS content addressable memory
(MCAM): Hybrid architecture for future high performance search
engines,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 19,
no. 8, pp. 1407–1417, Aug. 2011.

[6] S. Raoux et al., “Phase-change random access memory: A scalable
technology,” IBM J. Res. Develop., vol. 52, nos. 4–5, pp. 465–479,
Jul. 2008.

[7] J. Choe. (2017). Intel 3D Xpoint Memory Die Removed From Intel
Optane PCM. [Online]. Available: https://www.techinsights.com/
blog/intel-3d-xpoint-memory-die-removed-intel-optanetm-pcm-phase-
change-memory

[8] M. K. Qureshi, V. Srinivasan, and J. A. Rivers, “Scalable high
performance main memory system using phase-change memory tech-
nology,” in Proc. 36th Annu. Int. Symp. Comput. Archit. (ISCA), 2009,
pp. 24–33.

[9] C. C. Chou, A. Jaleel, and M. K. Qureshi, “CAMEO: A two-level
memory organization with capacity of main memory and flexibility of
hardware-managed cache,” in Proc. 47th Annu. IEEE/ACM Int. Symp.
Microarchit., Dec. 2014, pp. 1–12.

[10] A. Hassan, H. Vandierendonck, and D. S. Nikolopoulos, “Software-
managed energy-efficient hybrid DRAM/NVM main memory,” in Proc.
12th ACM Int. Conf. Comput. Front. (CF), 2015, pp. 1–8.

[11] V. Fedorov, J. Kim, M. Qin, P. V. Gratz, and A. L. N. Reddy,
“Speculative paging for future NVM storage,” in Proc. Int. Symp.
Memory Syst. (MEMSYS), 2017, pp. 399–410.

[12] Z. Wang, Z. Gu, and Z. Shao, “Optimizated allocation of data vari-
ables to PCM/DRAM-based hybrid main memory for real-time embed-
ded systems,” IEEE Embedded Syst. Lett., vol. 6, no. 3, pp. 61–64,
Sep. 2014.

[13] A. Chen, “A review of emerging non-volatile memory (NVM) tech-
nologies and applications,” Solid-State Electron., vol. 125, pp. 25–38,
Nov. 2016.

[14] S. Mittal and J. S. Vetter, “A survey of software techniques for using
non-volatile memories for storage and main memory systems,” IEEE
Trans. Parallel Distrib. Syst., vol. 27, no. 5, pp. 1537–1550, Jul. 2016.

[15] J. J. Yang, D. B. Strukov, and D. R. Stewart, “Memristive devices for
computing,” Nat. Nanotechnol., vol. 8, pp. 13–24, Dec. 2012.

[16] A. Shilov. (2019). Pricing of Intel’s Optane DC Persistent Memory
Modules. [Online]. Available: https://www.anandtech.com/show/14180/
pricing-of-intels-optane-dc-persistent-memory-modules-leaks

[17] ITRF Semiconductors. (2015). More Moore. [Online]. Available:
https://www.semiconductors.org/resources/2015-international-technolo
gy-roadmap-for-semiconductors-itrs/

[18] N. Madan et al., “Optimizing communication and capacity in a 3D
stacked reconfigurable cache hierarchy,” in Proc. IEEE 15th Int. Symp.
High Perform. Comput. Archit., Feb. 2009, pp. 262–274.

[19] D. Jevdjic, G. H. Loh, C. Kaynak, and B. Falsafi, “Unison cache: A
scalable and effective DIE-stacked dram cache,” in Proc. 47th Annu.
IEEE/ACM Int. Symp. Microarchit., Dec. 2014, pp. 25–37.

[20] M. K. Qureshi and G. H. Loh, “Fundamental latency trade-off in archi-
tecting DRAM caches: Outperforming impractical SRAM-tags with a
simple and practical design,” in Proc. 45th Annu. IEEE/ACM Int. Symp.
Microarchit., Dec. 2012, pp. 235–246.

[21] J. Sim, A. R. Alameldeen, Z. Chishti, C. Wilkerson, and H. Kim,
“Transparent hardware management of stacked DRAM as part of
memory,” in Proc. 47th Annu. IEEE/ACM Int. Symp. Microarchit., Dec.
2014, pp. 13–24.

[22] J. Meza, J. Chang, H. Yoon, O. Mutlu, and P. Ranganathan, “Enabling
efficient and scalable hybrid memories using fine-granularity DRAM
cache management,” IEEE Comput. Architect. Lett., vol. 11, no. 2,
pp. 61–64, Jul.–Dec. 2012.

[23] C.-C. Huang and V. Nagarajan, “ATCACHE: Reducing DRAM cache
latency via a small SRAM tag cache,” in Proc. 23rd Int. Conf. Parallel
Architect. Compilation (PACT), 2014, pp. 51–60.

[24] J. Meza, J. Chang, H. Yoon, O. Mutlu, and P. Ranganathan, “Enabling
efficient and scalable hybrid memories using fine-granularity DRAM
cache management,” IEEE Comput. Archit. Lett., vol. 11, no. 2,
pp. 61–64, Jul.–Dec. 2012.

[25] Y. Lee et al., “A fully associative, tagless DRAM cache,” in Proc.
ACM/IEEE 42nd Annu. Int. Symp. Comput. Archit. (ISCA), Jun. 2015,
pp. 211–222.

[26] X. Wu and A. L. N. Reddy, “Managing storage space in a flash and disk
hybrid storage system,” in Proc. IEEE Int. Symp. Model. Anal. Simulat.
Comput. Telecommun. Syst., Sep. 2009, pp. 1–4.

[27] H. Liu et al., “Hardware/software cooperative caching for hybrid
DRAM/NVM memory architectures,” in Proc. Int. Conf. Supercomput.
(ICS), 2017, pp. 1–10.

[28] L. E. Ramos, E. Gorbatov, and R. Bianchini, “Page placement in
hybrid memory systems,” in Proc. Int. Conf. Supercomput. (ICS), 2011,
pp. 85–95.

[29] T. Johnson and D. Shasha, “2Q: A low overhead high performance
buffer management replacement algorithm,” in Proc. VLDB, 1994,
pp. 439–450.

[30] E. J. O’Neil, P. E. O’Neil, and G. Weikum, “The LRU-K page replace-
ment algorithm for database disk buffering,” in Proc. ACM SIGMOD
Int. Conf. Manag. Data (SIGMOD), 1993, pp. 297–306.

[31] ChampSim. (2016). Champsim. [Online].
Available: https://github.com/ChampSim/ChampSim

[32] N. Binkert et al., “The Gem5 simulator,” SIGARCH Comput. Archit.
News, vol. 39, no. 2, pp. 1–7, Aug. 2011.

[33] T. Nowatzki, J. Menon, C. Ho, and K. Sankaralingam, “Architectural
simulators considered harmful,” IEEE Micro, vol. 35, no. 6, pp. 4–12,
Nov. 2015.

[34] SPEC. (2017). SPEC CPU2017 Documentation. [Online]. Available:
https://www.spec.org/cpu2017/Docs/

[35] J. Evans. (2016). Jemalloc. [Online]. Available: http://jemalloc.net/
[36] “Calculating memory power for DDR4 SDRAM,” Micron, Boise, ID,

USA, Rep. TN-40-07, 2017.
[37] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger, “Architecting phase change

memory as a scalable dram alternative,” in Proc. 36th Annu. Int. Symp.
Comput. Archit. (ISCA), 2009, pp. 2–13.

[38] A. Limaye and T. Adegbija, “A workload characterization of the SPEC
CPU2017 benchmark suite,” in Proc. IEEE Int. Symp. Perform. Anal.
Syst. Softw. (ISPASS), 2018, pp. 149–158.

Fei Wen is currently pursuing the Ph.D degree
in computer engineering with the Department of
Electrical and Computer Engineering, Texas A&M
University, College Station, TX, USA.

He conducted research on interconnect network
design and modeling for exascale systems as
Research Associate with HP Labs, Palo Alto, CA,
USA, where he has been a Research Assistant
since 2016. He has expertise across the hard-
ware/software stack, in RTL design, FPGA devel-
opment, kernel programming, and architecture

performance modeling. His current research interests include computer archi-
tecture, memory systems, and FPGA accelerator.



WEN et al.: HARDWARE MEMORY MANAGEMENT FOR FUTURE MOBILE HYBRID MEMORY SYSTEMS 3637

Mian Qin received the B.S. degree in electrical
engineering and the M.S. degree in information
and communication engineering from Shanghai Jiao
Tong University, Shanghai, China, in 2013 and 2016,
respectively. He is currently pursuing the Ph.D.
degree in computer engineering with Texas A&M
University, College Station, TX, USA.

Since 2016, he has been a Research Assistant
with the Electrical and Computer Engineering
Department, Texas A&M University. From 2012
to 2016, his research interests include high-speed,

multichannel data acquisition and signal processing, RTL design, and FPGA
development. His current research interests include memory/storage system,
computer architecture, and hardware/software co-design.

Paul V. Gratz (Senior Member, IEEE) received
the B.S. and M.S. degrees in electrical engineer-
ing from the University of Florida, Gainesville, FL,
USA, in 1994 and 1997, respectively, and the Ph.D.
degree in electrical and computer engineering from
the University of Texas at Austin, Austin, TX, USA,
in 2008.

He is an Associate Professor with the Department
of Electrical and Computer Engineering, Texas
A&M University, College Station, TX, USA. From
1997 to 2002, he was a Design Engineer with Intel

Corporation, Santa Clara, CA, USA. His research interests include effi-
cient and reliable high performance computer architecture, processor memory
systems, and on-chip interconnection networks.

Dr. Gratz received the “Excellence Award in Teaching” from the
Texas A&M College of Engineering in 2017 and the “Distinguished
Achievement Award in Teaching—College Level” from the Texas A&M
Association of Former Students in 2016. His paper, “Synchronized Progress
in Interconnection Networks: A New Theory for Deadlock Freedom,” was
selected as a Top Pick from the architecture conferences in 2018 by IEEE
Micro. His papers “Path Confidence Based Lookahead Prefetching” and
“B-Fetch: Branch Prediction Directed Prefetching for Chip-Multiprocessors”
were nominated for best papers at MICRO’16 and MICRO’14, respectively.
At ASPLOS’09, he received a best paper award for “An Evaluation of the
TRIPS Computer System.”

A. L. Narasimha Reddy (Fellow, IEEE) received
the B.Tech. degree (Hons.) in electronics and elec-
trical communication engineering from the Indian
Institute of Technology, Kharagpur, India, in 1985,
and the M.S. and Ph.D. degrees in computer engi-
neering form the University of Illinois at Urbana–
Champaign, Champaign, IL, USA, in 1987 and
1990, respectively.

He is currently a J. W. Runyon Professor with the
Department of Electrical and Computer Engineering,
Texas A&M University, College Station, TX, USA,

as well as an Associate Dean for Research with Texas A&M Engineering
Program, and an Assistant Director of Strategic Initiatives and Centers, Texas
A&M Engineering Experiment Station. From 1990 to 1995, he was a Research
Staff Member with IBM Almaden Research Center, San Jose, CA, USA. He
holds five patents and was awarded a technical accomplishment award while
at IBM. His research interests are in computer networks, storage systems, and
computer architecture.

Prof. Reddy received an NSF Career Award in 1996. His honors include
an Outstanding Professor Award by the IEEE student branch at Texas
A&M University from 1997 to 1998, the Outstanding Faculty Award by the
Department of Electrical and Computer Engineering from 2003 to 2004, the
Distinguished Achievement Award for teaching from the Former Students
Association of Texas A&M University, and the citation “for one of the most
influential papers from the first ACM Multimedia Conference.”


	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11

