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Abstract

We consider a partial light-cone limit of a correlation function of the stress-tensor multiplet and identify 

an integrable structure emerging at one loop order of perturbation theory. It corresponds to a noncompact 

open spin chain with one boundary being recoil-less while the other one fully dynamical. We solve the 

system by means of techniques of the Baxter operator and Separation of Variables. The eigenvalues of 

the separated variables define rapidities of excitations propagating on the color flux tube and encode their 

factorizable dynamics in the presence of a dynamical boundary.

 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 

(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

As we now know from the gauge/string correspondence [1], planar Yang-Mills theories are, 

in fact, string theories in a disguise. This allows one to map complicated dynamics occurring 

in real space-time to the one of the world-sheet. The latter is in turn amenable to treatments 

devised for two-dimensional systems, which are much simpler indeed. Sometimes they can even 

be integrable and, therefore, corresponding physical observables found exactly for any value of 

the ’t Hooft coupling a = g2
YMNc/(2π)2.

To date, the best studied example of this kind is the maximally supersymmetric Yang-Mills 

theory. The latter is a superconformal interacting theory. Any two-point correlations functions of 

composite operators are known exactly in this model since the corresponding spectral problem 

for anomalous dimensions was solved thanks to its integrability, see [2] and references cited 
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therein. Recently, higher point correlation functions were addressed within a framework of the 

so-called hexagon expansion [3], which relies on a tessellation of the two-dimensional world-

sheet defining the correlation function in the dual string description in terms of certain form 

factors which can be found exactly from a set of axioms valid nonperturbatively.

A multiple pair-wise light-cone limit of the aforementioned correlators gives access to vac-

uum expectation values of Wilson loops on null polygonal contours in Minkowski space-time 

[4]. These in turn were found to be in a dual pair with scattering amplitudes [5] of properly regu-

larized N = 4 super-Yang-Mills theory. It is the Wilson loop side that provides a viable language 

for two-dimensional description: by singling out two nonadjacent sides of the loop, we can think 

of them as a “quark-antiquark” pair propagating with a speed of light and sourcing out a flux tube 

between them, which from the point of view of holography looks like a one-dimensional string 

projected on the boundary. The string sweeps a two-dimensional world-sheet which turns out to 

be integrable as well [6].

In this paper we study a somewhat hybrid of a function, which is obtained from multi-point 

correlation functions by taking a partial light-cone limit. The advantage of this kinematics is that 

it allows one to probe boundary interactions of the flux-tube attached to a dynamical rather than 

recoil-less “quark”. We find that, again, particle-like excitations propagating on top of the flux 

with an end have diffractionless scattering and can be solved exactly. Presently, we analyze phys-

ical observables to one-loop order and uncover that the physics is encoded in a one-dimensional 

model of noncompact Heisenberg spins living on an semi-infinite interval. We solve this model 

within the framework of the Baxter operator and Separation of Variables (SoV). We identify the 

eigenvalues of a complete set of charges with the momentum injected into the recoiled boundary 

and rapidities of flux-tube excitations.

Our subsequent consideration is organized as follows. In the next section, we introduce corre-

lation functions with all operators placed on a two-dimensional Minkowski plane and take their 

partial pairwise light-cone limit reducing our analysis to a study of correlation functions of cer-

tain light-ray operators. We address a particular class of one-loop corrections in Section 3 that is 

driven by a non-local renormalization group evolution of these operators, which is then brought 

into the form of a Hamiltonian system for a collection of noncompact spins. The Hilbert space of 

the model and an inner product defined on it are introduced in Section 4. Next, we give a lightning 

overview of the formalism of factorized R-matrix in Section 5, which is used to build the Baxter 

operator in Section 6. We find a finite-difference relation, known as the Baxter equation, which 

it obeys in Section 7. Remarkably, multiparticle wave functions for this magnet can be found 

explicitly in an integral form on certain multi-variable two-dimensional graphs as addressed in 

Section 8. In fact, these are nothing else as the wave functions of an off-diagonal element of the 

monodromy matrix analyzed more than a decade ago in Ref. [9]. Finally, we conclude. Through-

out our analysis, we heavily rely on a Feynman diagram approach to verify and prove various 

statements. In spite of the fact that the rung moves in Feynman graphs had already appeared a 

dozen of times in the literature before, we will repeat them in the Appendix, along with a few of 

other ingredients, for integrity of our presentation.

2. Partial light-like limit

In this paper we are going to relax the strict pairwise light-like limit which led to the Wilson 

loop stretched on a null polygonal contour [4]. To simplify our consideration, we will place 

all operators on a two-dimensional surface R1,1. This is a special kinematics akin to the one 

discussed within the context of scattering amplitudes [5]. The first nontrivial Wilson loop in this 
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kinematics was an octagon. To draw analogies to the consideration at hand, we will presently 

address this case as well. Analyses along these lines were done in the past and the reader will 

benefit from consulting with Refs. [7,8] first.

We start with an eight-point bosonic correlation function,

G8 =
〈

4∏

j=1

O(z2j )Ō(z2j−1)

〉
, (1)

where the operators sitting at the odd and even positions are specific components of a pro-

tected 1/2 BPS operator OABCD , built from six real scalars of the vector multiplet φAB =
−φBA = εABCDφ̄CD (with A, B = 1, 2, 3, 4), transforming in the 20′ representation of the SU(4) 

R-symmetry group. Namely,

O = trϕ2 , Ō = tr ϕ̄2 , (2)

where ϕ ≡ φ12 and ϕ̄ ≡ φ34. The partial light-like limit we are currently considering involves 

sending all consecutive points to become light-like separated z2
jj+1 ≡ (zj − zj+1)

2 → 0 except 

one, say, z2
12 �= 0,

F8 ≡ lim
{z2

jj+1}\z2
12→0

⎛
⎝G8/

8∏

j=2

Dtree
jj+1

⎞
⎠ = tr〈DA(z1, z2)[z2, z3] . . . [z8, z1]〉A , (3)

as shown in the left panel in Fig. 1. Here we factored out a free scalar propagator Dtree
jj+1 ≡

〈ϕ(zj )ϕ̄(zj+1)〉|gYM=0 = −1/(4π2z2
jj+1) with the remainder given by the product of the path-

ordered exponents in the adjoint representation

[zj , zj+1] = P exp

⎛
⎜⎝ i

2
gYM

zj+1∫

zj

dzα̇αAαα̇(z)

⎞
⎟⎠ . (4)

This phase is the only modification of the leading singularity an interacting particle propaga-

tor acquires compared to the free theory [12,13]. They are path integral averaged over SU(Nc)

gauge fluctuations Aαα̇ , 〈. . .〉A with the exact scalar propagator DA(z1, z2) = 〈ϕ(z1)ϕ̄(z2)〉 in the 

external field Aαα̇ .

The above scalar operator OABCD is a superconformal primary state of the N = 4 stress-

tensor multiplet, which contains among other states, the energy-momentum tensor of the theory. 

So considering the chiral superspace extension, we define echoing [10],

G8 =
〈

4∏

j=1

T (Z2j )T̄ (Z2j−1)

〉
(5)

with the chiral stress tensor operator1

T = trW 12W 12 , T̄ = trW 34W 34 (6)

built from the superfield

1 Instead of using specific components, SU(4) covariance can be achieved by means of auxiliary harmonic variables.
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Fig. 1. Left panel: the two-dimensional octagonal correlation function (1), and its superspace extension (8), in the partial 

null limit when all but the interval z12 becomes light-like. Right panel: the collinear limit z+
34

, z+
78

→ 0 of the correlation 

function on the left panel and resulting two-point correlation function (13) of light-ray operators in the light-cone operator 

product expansion. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

WAB(Z) = φAB(z) − iθα[AψB]
α (z) + . . . , (7)

that depends on the chiral space coordinate Z = (zαα̇, θαA) and contains the above 20′ as its 

lowest component, i.e., when all Grassmann variables are set to zero, θ = 0. The partial light-

like limit now yields the result

F8 ≡ lim
{z2

jj+1}\z2
12→0

⎛
⎝G8/

8∏

j=2

Dtree
jj+1

⎞
⎠ = tr〈DW (Z1,Z2)[[Z2,Z3]] . . . [[Z8,Z1]]〉 , (8)

where the [[Zj , Zk]] stands for a super-Wilson link

[[Zj ,Zk]] = P exp

⎛
⎜⎝ i

2
gYM

Zk∫

Zj

[
dzα̇αAαα̇ + 2dθαAFαA

]
⎞
⎟⎠ , (9)

determined by the bosonic Aαα̇ = Aαα̇ + O(θ) and fermionic FαA = i
2
φ̄ABθαB + O(θ2) con-

nections, and where DW (Z1, Z2) stands for the W -propagator. Obviously, setting all fermionic 

coordinates to zero, one gets back its bosonic counterpart, F8|θ=0 = F8. Introducing two-

dimensional conjugate Weyl spinors |j 〉 and |j ] for each light-cone distance zjj+1 = |j 〉[j |, 
one defines projected fermionic variables χA

j = 〈j |θA〉, which keep track of the quantum 

numbers of flux-tube excitations in the pentagon picture to scattering amplitudes [6]. Below, 

we focus on a single Grassmann component of the supercorrelator, namely proportional to 

χ2χ3χ5χ6 ≡ εABCDχA
2 χB

3 χC
5 χD

6 ,

F8 = · · · + χ2χ3χ5χ6F8;1 + . . . . (10)

At leading order in ’t Hooft coupling a = g2
YMNc/(2π)2, it is merely given by the product of two 

propagators as shown in the left panel of Fig. 1,

F tree
8;1 = a

4π2

1

〈23〉〈67〉z2
37z

2
12

, (11)

where in the two-dimensional kinematics z2
jk = 2z+

jkz
−
jk factorizes in terms of the light-cone 

coordinates z±. Our choice is driven by its simplicity. In addition, when all distances are taken 
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to the light cone, including z2
12, i.e., 
 = 0 in Fig. 1, it goes into a NMHV amplitude induced by 

a flux-tube scalar exchange at tree level, see, e.g., Ref. [11].

In this work, we focus on the interpretation of the above formula (11) in terms of a light-cone 

operator product expansion. The operators in questions are of the form of a �-shaped cusped 

Wilson line contour with a field ϕ sourcing the chromoelectric field at the origin,2

O�(0, z1, z2, . . . , z∞) = ϕ(0)[0, z1]ϕ(z1)[z1, z2] . . .W [z∞] . (12)

Here [zk, zk] is a straight link long the z− direction while W [z] starts at z and runs along the 

z+ axis as shown in the right panel of Fig. 1. Then, Eq. (11) is determined by the correlation 

function of two of these

F tree
8;1 = g2

YM〈O�(0, z3, z∞)Ō�(z1, z5, z∞)〉|gYM=0 , (13)

where we denoted the right-most coordinate as z∞ (= z8, for the octagon).

The light-ray operator (12) is not a single-trace operator but rather it possesses two open 

SU(N) indices, one belongs to the Wilson line extending to infinity, while the other one attached 

to the scalar field ϕ. Though, this is not per se a gauge invariant quantity, everywhere in this work, 

we consider only its two-point correlation function (13), where the color indices are implicitly 

contracted pair-wise. When we analyze individual operators, as long as all diagrammatic calcu-

lations are done in the same gauge (for the top and bottom in Fig. 1), when combined together 

the result is warranted to be gauge invariant. Let us move on to the one-loop order next.

3. One-loop renormalization

Above, we were rather cavalier in our approach to the partial light-cone limit. While it was in-

consequential at tree level, it needs to be properly addressed when quantum effects are accounted 

for as loop diagrams yield divergencies. Let us introduce, in the spirit of factorization theorems, 

a scale μ that will separate inverse distances involved and measure the deviation of an interval 

from the light ray. The light-cone limit then implies that z2
jj+1μ

2 	 1, such the propagation of 

particles along corresponding sides is recoil-less since their virtuality q2 ∼ z−2
jj+1 � μ2. In other 

words, particles move very fast and observe their surroundings as a long wave-length external 

field, which does not distort their motion in an abrupt fashion. Their effect does not change the 

singularity structure of the free propagation [12,13]. The momentum of the gluon that travels on 

the z− interval is of order 1/z∞ and it sets the scale of the soft radiation μ. On the contrary, the 

particle propagating along the z12 interval has the energy of order or less than μ, z2
12μ

2 ∼ 1, and, 

therefore, gets recoiled. We will adopt the following nomenclature in what follows: we will call 

the Wilson loop links as the hard boundary while the z12-side as the soft one.

Let us focus on the large-time evolution logarithms τ = 1
2

ln z+
12 of the correlation function 

(13). It is plagued by collinear singularities. So a question arises what ratio one has to form 

that makes the observable in question finite, on the one hand, while still staying sensitive to 

the boundary dynamics, on the other. These quantum corrections can be encoded in terms of a 

light-ray Hamiltonian acting on the fields propagating in the exchange channel,

〈O�(0, z3, z∞)Ō�(z1, z5, z∞)〉|gYM=0 → G ≡ 〈O�(0, z3, z∞)(1 + aτH)Ō�(z1, z5, z∞)〉 ,

(14)

2 In what follows, all coordinates will refer to the z− light ray and we will drop corresponding superscript designating 

this, unless it is ambiguous.



6 A.V. Belitsky / Nuclear Physics B 957 (2020) 115093

where

H = h01 + h1∞ + h0∞ , (15)

with the SL(2)-invariant pairwise Hamiltonian hjk acting on a field X with conformal spin s

hjkX(zj )X(zk) =
1∫

0

dα

ᾱ

[
α2s−1X(αzj + ᾱzk)X(zk) + α2s−1X(zj )X(αzk + ᾱzj )

− 2X(zj )X(zk)
]
. (16)

The action of H on the tree-level function yields (here we set s = 1
2

)

HF tree
8;1 =

(
ln

z37z1

z31z7
+ ln

εz37

z2∞
+ ln

εz1

z2∞

)
F tree

8;1 , (17)

corresponding to the three terms in Eq. (15). Above, we regularized the intrinsic collinear di-

vergence by deviating the hard boundary off the light cone ε ≡ z8/6 − z5 and took the light-ray 

operator z∞ to be very long, i.e., larger than any other light-cone distances involved in accord 

with the flux-tube interpretation [14].

If we were to adopt the same reasoning as in the formation of the ratio function used in the 

amplitude framework, see, e.g., Ref. [6], we would normalize the above light-cone correlation 

function (14) to the one without the insertion of the flux-tube excitation propagating from z3

to z7, see Fig. 1. In that case, both boundaries were recoil-less and thus not dynamical and 

resulted into the subtraction of 2h0∞ from Eq. (15). In the present case, the left boundary is 

soft and gets recoiled. We therefore, would only like to get rid of the interaction term between 

the soft and hard boundaries (on the back face of the correlator), without over-subtraction of 

the physics of recoil (on its front). This implies that we have to take the square root of the 

light-cone correlator without the flux-tube insertions G� = G|no flux−tube insertions, rather than its 

whole and, thus, subtract only h0∞. The function G� corresponds to the correlator of light-cone 

operators with the (blue) dashed contour in the right panel of Fig. 1. However, we immediately 

observe that collinear logarithms are not completely cancelled. To accomplish this, we have 

to additionally divide the correlator by the square root of the rectangular Wilson W� in the 

fundamental representation over the (red) square contour in Fig. 1. The ratio function then to 

study is3

R= G√
G�W�

. (18)

The large-time one-loop corrections to the resulting observable effectively emerge from the fol-

lowing Hamiltonian

HR = h01 + h̃1∞ , (19)

with the same SL(2) invariant Hamiltonian between the light boundary and the flux-tube excita-

tion, but a modified one for the interaction between the flux-tube excitation and the hard Wilson 

line boundary,

3 At higher orders of perturbation theory, the front and back faces of the ratio R start interacting and their factorization 

is lost.
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h̃j∞X(zj )W(z∞) =
1∫

0

dα

ᾱ

[
α2s−1X(αzj + ᾱz∞)W(z∞) − X(zj )W(z∞)

]

− ln(μzj∞)X(zj )W(z∞) , (20)

where the factorization scale μ ≡ 1/z∞, introduced for obvious dimensional reasons, separates 

the soft and hard gluon radiation. This Hamiltonian is obviously not SL(2) invariant and was 

considered before within the context of heavy-light hadrons [15,16] and N = 4 SYM scattering 

amplitudes [7]. These Hamiltonians can be re-written in terms of generators of the collinear 

conformal algebra as (see, e.g., [8,17]),

hjk = 2ψ(1) − 2ψ(Jjk) , h̃j∞ = ψ(1) − ln
(
μS+

j

)
, (21)

where the arguments of the digamma functions are given in terms of the pairwise Casimir 

Jjk(Jjk − 1) = (Sj + Sk)
2 and components of the sl(2) generators to be introduced in the next 

section.

It is now straightforward to place any number of flux-tube excitations on the z− light rays on 

the top and bottom sides of the square. In the multicolor limit, their interaction Hamiltonian is 

merely given by the sum of pairwise nearest-neighbor interactions such that for N of them, we 

have

H =
N−1∑

j=0

hjj+1 + h̃N∞ . (22)

The system described by this Hamiltonian is integrable.

4. Soft-hard open spin chain

The Hamiltonian (22) defines a non-periodic one-dimensional lattice model of interacting 

noncompact spins Sj = (S0
j , S+

j , S−
j ) living on a semi-infinite light ray, with the (hard)soft 

boundary interaction terms determined by the SL(2) (non)invariant Hamiltonian (̃hN∞) h01. The 

spins form an infinite-dimensional representation of the sl(2, R) algebra,

[S+
n , S−

n ] = 2S0
n , [S0

n, S±
n ] = ±S±

n , (23)

with an explicit representation for the action on fields at positions zj being

S+
j = z2

j∂j + 2szj , S−
j = −∂j , S0

j = zj∂j + s , (24)

where the conformal spin s labels the sl(2, R) representations Vj of a discrete series. It will be 

chosen to be the same for any site j as well as for the soft boundary. The latter condition defines 

a homogeneous open spin chain. Its generalization to inhomogeneous case will be touched upon 

in the concluding section.

In our discussion, we will heavily rely on properties of functions of the light-cone coordi-

nates analytically continued to the upper half of the complex z plane with the light ray being 

its boundary. Therefore, we have to introduce a proper scalar product on this space that is tai-

lored to our needs. The inner product on the Hilbert space ⊗N
j=0Vj of (N +1)-variable functions 

holomorphic in the upper half-plane is defined as follows [18]
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〈�|�〉 =
∫ N∏

j=0

Dzj (�(z0, . . . , zN ))∗ �(z0, . . . , zN ) , (25)

where zj = xj + iyj and the integration measure reads

Dzj = 2s − 1

π
dxjdyj (2yj )

2s−2 θ(yj ) . (26)

The integration runs over the upper half-plane due to the presence of a step-function θ(yj ). The 

sl(2, R) generators are antihermitian with respect to it,

(
S

0,±
j

)†
= −S

0,±
j , (27)

so that the Hamiltonian (22) is explicitly self-adjoint H† = H yielding an orthogonal set of 

eigenstates.

In fact, we find it more economical to solve a unitary equivalent system obtained from the 

above Hamiltonian (22) by inversion J . This operation is defined at each spin-chain site zj as

[J�](zj ) = z−2s
j �(−z−1

j ) , (28)

which, being one of the SL(2) transformations, leaves the inner product (25) invariant, but inter-

twines the sl(2, R) generators

J S
0,±
j = −S

0,∓
j J . (29)

Consequently, in the inverted Hamilltonian JHJ −1 the hard boundary is moved close to the 

origin z−1
∞ → 0, while the soft one moved to a large distance away. As a consequence, we find 

it convenient to relabel the sites in the increasing manner from the origin, i.e., σ(∞, N, N −
1, . . . , 2, 1, 0) = (0, 1, 2, . . . , N, ∞),

HJ ≡ σ
(
JHJ −1

)
= h̃01 +

N∑

j=1

hjj+1 , (30)

where, e.g.,

h̃01 = σ
(
J h̃N∞J −1

)
= ψ(1) − ln

(
−μS−

1

)
, (31)

and the soft boundary being the (N +1)-st site of the chain. The dynamical system determined by 

HJ will be solved below. To get back the original one, all one has to do is to invert all distances 

in final expressions and reenumerate the sites backwards.

5. Factorized R matrices and Hamiltonians

Our construction of a commutative system of conserved charges will be based on the existence 

of the Baxter operator [19] and Separation of Variables (SoV) [20]. The former, in turn, will be 

built from intertwining operators emerging in the factorization [21] of SL(2) invariant R matrices 

which are the foundation of the Algebraic Bethe Ansatz approach to integrable systems [22]. So 

we will give a lightning outline of the most invaluable ingredients first.

The Lax operator, that acts on the direct product C2 ⊗ Vj of the Hilbert space at j -th site Vj

and an auxiliary two-dimensional one C2, depends on the complex spectral parameter u (as well 

as the label s of the representation Vj ) and reads
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Lj (u, s) =
(

u + iS0
j iS−

j

iS+
j u − iS0

j

)
. (32)

The product of N + 1 copies of this operator in the auxiliary space determines the closed chain 

monodromy matrix T (u),

Tcl(u) = L1(u, s) . . .LN+1(u, s) =
(

a(u) b(u)

c(u) d(u)

)
, (33)

with its elements acting on the quantum space of the chain ⊗N+1
j=1 Vj . The open spin chain 

monodromy matrix is determined by “doubling and folding” the closed chain through the soft 

boundary, such that [23]

Top(u) = Tcl(−u)σ2T t
cl(u)σ2

= L1(−u, s) . . .LN+1(−u, s)LN+1(u, s) . . .L1(u, s) =
(

A(u) B(u)

C(u) D(u)

)
. (34)

A fundamental reflection Yang-Baxter relation involving an R matrix acting on the product of 

auxiliary spaces C2 ⊗ C2 immediately implies that B(u) and C(u) entries form a commutative 

family of conserved charges,

[B(u),B(v)] = [C(u),C(v)] = 0 , (35)

while A and D are not individually, but only in the sum. Since the B-entry of the open spin chain 

monodromy matrix will play a distinguished role in our consideration below, let us a point out a 

few of its salient properties. Making use of the first definition in Eq. (34), one finds its relation 

to the elements of the closed chain monodromy

B(u) = b(−u)a(u) − a(−u)b(u) . (36)

From Eq. (36) and the conjugation property (27), it is straightforward to verify that

(
B(u)

)† = −B(−u∗) (37)

as a consequence of 
(
a(u)

)† = a(u∗) and 
(
b(u)

)† = b(u∗). Finally, from the definition (34), it 

follows that B(u) is an operator polynomial in u of degree 2N + 1. However, it possesses a 

kinematic zero at u = −i/2 as was shown in Ref. [9] and found explicitly by different means in 

Section 7 below. Then the operator can be decomposed as

B(u) = (−1)N (2u + i)iS−
N∏

j=1

(u2 − x̂2
j ) , (38)

in terms of N operator zeros ̂xj , i.e., the Separated Variables.

The pairwise Hamiltonians defining the open chain arise, on the other hand, from the SL(2) 

invariant R matrices acting on the product of noncompact quantum spaces and obey an RLL

relation

Řjk(u − v)Lj (u, sj )Lk(v, sk) = Lj (v, sj )Lk(u, sk) Řjk(u − v) , (39)

where one conventionally pulls out a permutation operator �jk acting on the product of two 

spaces, Rjk = �jkŘjk . It is this operator that was found to factorize in terms of intertwiners 

R± [21]
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Řjk(u) = R+
jk(γkj )R

−
jk(γjk) , (40)

which depend on a linar combination of the spectral parameter and spins γjk = sj − sk + iu,

R−
jk(γ ) = R+

kj (γ ) = �(2sj )

�(2sj − γ )

�(zjk∂j + 2sj − γ )

�(zjk∂j + 2sj )
. (41)

These operators intertwine the quantum spaces of the chain in the following fashion4

R∓
jk(γ ) : Vsj ⊗ Vsk → Vsj ∓γ /2 ⊗ Vsk±γ /2 , (42)

such that the original Rjk maps Vsj ⊗ Vsk → Vsj ⊗ Vsk .

As can be easily verified, the expansion of R∓ in the vicinity of γ = 0 generates the bulk 

pairwise Hamiltonians (including the one for the interaction with the soft boundary),

R∓
jk(γ ) = 1 + γ

(
h∓

jk + ψ(2s) − ψ(1)
)

+ O(γ 2) , (43)

where

h−
jk = ψ(2s) − ψ(zjk∂j + 2s) , h+

jk = ψ(2s) − ψ(zkj∂k + 2s) , (44)

such that hjk = h−
jk + h+

jk + 2ψ(1) − 2ψ(2s) with hjk introduced in Eq. (21). While the Hamil-

tonian for the interaction with the hard boundary emerges from a limit of the bulk R matrix. 

Namely, taking zk → ∞, we find

R−
j (γ ) ≡ lim

zk→∞
eiπγ z2s

j Rjk(γ ) = �(2s)

�(2s − γ )
∂

−2γ

j , (45)

with the small-γ expansion producing

R−
j (γ ) = 1 + γ

(
h̃0j + ψ(2s) − ψ(1)

)
+ O(γ 2) . (46)

Possessing this knowledge, let us move on to the construction of the Baxter operator and prove 

its commutativity with certain elements of the monodromy matrix (34).

6. Baxter operator

Within the context of the Hamiltonian system (30), the Baxter operator Q maps the open spin 

chain into itself ⊗N+1
j=1 Vj → ⊗N+1

j=1 Vj and obeys the properties:

• Baxter equation

B(u)Q(u) = (−1)N (2u + i)(u + is)2N+1Q(u + i) , (47)

• Commutativity conditions

[Q(u),Q(v)] = 0 (48)

and

[B(u),Q(v)] = 0 . (49)

4 Here for clarity, we temporarily introduced different conformal spins sj for all sites and used them to label quantum 

spaces.
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Fig. 2. Representation for the kernel of the Baxter kernel.

Its construction can be systematically accomplished making use of intertwining relations for the 

R± operators as was done, for instance, in Ref. [8] for the hard-hard open spin chains. However, 

we will not follow this route in the current presentation and rely instead on a diagrammatic 

technique introduced in Ref. [24].

Motivated by our findings at the end of the last section, let us consider the following ‘doubled 

and folded’ chain of R− operators of the argument γ = αu ≡ s + iu

Q(u) = R−
12(αu)R

−
23(αu) . . .R−

NN+1(αu)R
−
N+1N (αu) . . .R−

32(αu)R
−
21(αu)R

−
1 (αu) , (50)

with R−
jk and R−

j defined in Eqs. (41) and (45), respectively. To start with, let us find an integral 

kernel corresponding to it. The latter can be put in correspondence to any operator A acting on 

the Hilbert space of the chain and can be associated to a function A of N + 1 holomorphic and 

N + 1 anti-holomorphic variables in a unique way via the relation

[A�](z0, . . . , zN ) =
∫ N+1∏

k=1

Dwk A(z1, . . . , zN+1|w̄1, . . . , w̄N+1)�(w1, . . . ,wN+1) . (51)

A straightforward calculation making use of the integral representation for the Euler Beta func-

tion and basic integrals from, e.g., Appendix A of Ref. [8], allows us to cast the kernel Qu of the 

Q(u) into the form

Qu(z1, . . . ,zN+1|w̄1 . . . , w̄N+1) = eiπs(2N+1)

∫ N∏

j=1

Dsyj (z1 − ȳ1)
−βu (52)

× Yu(z2, . . . , zN , zN+1|ȳ1, . . . , ȳN , w̄N+1)

× Y−u(y1, . . . , yN−1, yN |w̄1, . . . , w̄N , w̄N+1) ,

where we introduced the function [25]

Yu(z1, . . . , zN−1, zN |w̄1, . . . , w̄N , w̄N+1) =
N∏

j=1

yu(zj |w̄j , w̄j+1) , (53)

with individual factors in it being

yu(zj |w̄j , w̄j+1) = (zj − w̄j )
−αu(zj − w̄j+1)

−βu , (54)

and αu ≡ s + iu and βu = s − iu. The kernel of the Baxter operator is shown in Fig. 2 as a 

two-dimensional Feynman graph with the propagator from w to z defined by
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Fig. 3. Proof of the commutativity of the Baxter operators.

The commutativity of the Baxter operators for different values of the spectral parameter fol-

lows immediately from the diagrammatic representation of the their product and is shown by the 

moves in the sequence of graphs in Fig. 3. Namely, first, one integrates out the leftmost vertex 

(see the top left graph in Fig. 3) connecting the two Baxter kernels via the chain rule given in 

Appendix A. Then one moves (see the top right graph) the vertical propagator from left to right 

via the permutation identity from Appendix A. At the next step, one splits the labels of the two 

rightmost lines within each Baxter kernel as αu/v = αv/u ± i(u − v) and moves the ±i(u − v)-

propagators all the way to the left with the same permutation identity (as shown in the middle 

right panel). After that, one shifts the remaining propagator, left over from step one, to the left 

as well (left middle graph). As a result, one ends up with the left diagram in the bottom row of 

Fig. 3. Finally, reconstructing two propagators from one by using the chain rule backwards, we 

get the right bottom graph, where compared to the one we started from, the u and v parameters 

are interchanged. This completes the verification of Eq. (48).

The commutativity of Q and B immediately follows from the Baxter relation (47) by taking 

the hermitian conjugate of both of its sides. Namely, the left-hand side gives −Q(−u∗)B(−u∗), 
where we used the property (37). A conjugate of the right-hand side of the Baxter relation yields 

(2u∗ − i)(u∗ − is)2N+1Q(u∗ − i) = −B(−u∗)Q(−u∗). Equating the results, immediately con-

firms Eq. (49). Thus everything boils down to establishing Eq. (47). We will turn to its proof 

next.
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Before we come to this, we close this section with a relation of the open spin chain Hamil-

tonian to the Baxter operator. Namely, the former is determined by the logarithmic derivative of 

Q(u) at u = is,

HJ = −i
(

ln Q(is)
)′ + (2N + 1)

(
ψ(1) − ψ(2s)

)
, (55)

with HJ of Eq. (30).

7. Baxter equation

To establish the Baxter equation (47) for the operator (50), we will use the Gaudin-Pasquier 

trick [26]. It relies on transformation properties of the elements of the monodromy matrix under 

a gauge transformation of the Lax operators,

Lj (u, s) → L′
j (u, s; w̄j , w̄j+1) = M−1

j Lj (u, s)Mj+1 . (56)

It will be convenient to choose Mj in the form

Mj =
(

1 w̄−1
j

0 1

)
, (57)

such that it goes to the identity matrix as the gauge parameter is sent to infinity, w̄j → ∞. The 

calculation of the elements of L′
j is simplified making use of the lower-triangular factorization 

of the Lax operator,

Lj (u, s) = iz
−αu−βu

j

(
1 z−1

j

0 1

)( −αu 0

z2
j∂j −1 + βu

)(
1 −z−1

j

0 1

)
z
αu+βu

j . (58)

Instead of listing explicit elements, let us demonstrate their action on the function Yu introduced 

in the previous section. In fact, it was introduced as a function that is annihilated by [L′
j (u, s)]12, 

such that

[L′
j (u, s; w̄j , w̄j+1)]11 yu(zj |w̄j , w̄j+1) = (u + is)

w̄j+1

w̄j

yu+i(zj |w̄j , w̄j+1) , (59)

[L′
j (u, s; w̄j , w̄j+1)]12 yu(zj |w̄j , w̄j+1) = 0 , (60)

[L′
j (u, s; w̄j , w̄j+1)]21 yu(zj |w̄j , w̄j+1) = − ∂

∂z−1
j

yu(zj |w̄j , w̄j+1) , (61)

[L′
j (u, s; w̄j , w̄j+1)]22 yu(zj |w̄j , w̄j+1) = (u − is)

w̄j

w̄j+1
yu−i(zj |w̄j , w̄j+1) . (62)

Relying on the first line in Eq. (34), we find that the elements of the open spin chain mon-

odromy matrix depend only on the gauge parameter w̄0. Since we focus, for obvious reasons, on 

the B-element, let us introduce a two spectral-parameter function in particular,

B ′(u, v;w0) = b′(v; w̄0)a
′(u; w̄0) − a′(v; w̄0)b

′(u; w̄0) , (63)

such that

B(u) = lim
w̄0→∞

B ′(u,−u;w0) . (64)

This is a crucial property which we will explore in our subsequent derivation.
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Fig. 4. Graphical representation for the auxiliary function Wu,v (top) and its transformed form (bottom) after splitting 

the rightmost vertical line as βu = βv + i(v − u) and moving the line with the index i(v − u) all the way to the left till it 

lands in the red subgraph.

Now, we introduce an auxiliary function

Wu,v(z1, . . . , zN+1|w̄0, . . . , w̄N+1) = eiπs(2N+1)

∫ N∏

j=1

Dsyj (w0 − w̄1)
−βv (65)

× Yu(z1, . . . , zN , zN+1|w̄0, ȳ1, . . . , ȳN , w̄N+1)

× Yv(y1, . . . , yN−1, yN |w̄1, . . . , w̄N , w̄N+1) ,

with its diagrammatic realization shown in Fig. 4. One can immediately see, as a result of 

Eq. (60), that

b′(u; w̄0)Wu,v(z1, . . . , zN+1|w̄0, . . . , w̄N+1) = 0 , (66)

so that the second term in the definition of B ′(u, v; w0) in Eq. (63) does not contribute, and we 

find in this manner

B ′(u, v;w0)Wu,v(z1, . . . , zN+1|w̄0, . . . , w̄N+1) (67)

= (u + is)N+1 w̄N+1

w̄0
× b′(v; w̄0)Wu+i,v(z1, . . . , zN+1|w̄0, . . . , w̄N+1) ,

where Eq. (59) was applied.

To calculate the result of the action of b′(v; w̄0) in the most efficient manner, let us use the 

permutation identity by moving the propagator (zN+1 − w̄N+1)
i(u−v) from right to left, such that 

the result for Wu+i,v(z1, . . . , zN+1|w̄0, . . . , w̄N+1) now reads
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Fig. 5. Graphical representation for the layer kernel �u .

Wu+i,v(z1, . . . , zN+1|w̄0, . . . , w̄N+1) (68)

= eiπs(2N+1)

∫ N∏

j=1

Dsyj (w0 − w̄1)
−βv ỹu+i,v(z1|w̄0, w̄1, ȳ1)

× Yv(z2, . . . , zN , zN+1|ȳ1, . . . , ȳN , w̄N+1)

× Yu+i(y1, . . . , yN−1, yN |w̄1, . . . , w̄N , w̄N+1) ,

and it is shown explicitly in Fig. 4, with a combination of the propagators ỹu,v(z1|w̄0, w̄1, ȳ1)

designated by the red subgraph,

ỹu,v(z1|w̄0, w̄1, ȳ1) ≡ (z1 − w̄0)
−αu(z1 − w̄1)

i(u−v)(z1 − ȳ1)
−βv . (69)

The action of b′(v; w̄0) on the integrand Wu+i,v , again thanks to Eq. (60), factorizes as

b′(v; w̄0)ỹu+i,vYvYu+i = (v − is)N
ȳ1

w̄N+1
Yv−1Yu+i[L′

j (u, s; w̄0, ȳ1)]12 ỹu+i,v , (70)

where, for brevity, we did not display the arguments of the functions involved, but they can easily 

be read off from Eq. (68). Finally,

[L′
j (u, s; w̄0, ȳ1)]12 ỹu+i,v(z1|w̄0, w̄1, ȳ1) = (v − u − i)

w̄0 − w̄1

w̄0ȳ1
ỹu+i,v−i(z1|w̄0, w̄1, ȳ1) .

(71)

Combining all results together, we find that the auxiliary function obeys the following equation

B ′(u, v;w0)Wu,v(z1, . . . , zN+1|w̄0, . . . , w̄N+1) (72)

= (u + is)N+1(v − is)N (v − u − i)

× w̄0 − w̄1

w̄2
0(w0 − w̄1)

Wu+i,v−i(z1, . . . , zN+1|w̄0, . . . , w̄N+1) .

Taking the limit w0 → ∞ with a proper scaling factor, we uncover the kernel of the Baxter 

operator

Qu(z1, . . . , zN+1|w̄0, . . . , w̄N+1) (73)

= lim
|w0|→∞

(−w0w̄0)
αuWu,−u(z1, . . . , zN+1|w̄0, . . . , w̄N+1) ,

and the Baxter equation itself (47).
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Since the Baxter equation is a one-term recursion relation, it can be solved in a straightforward 

fashion. However, an overall normalization constant and a periodic function f (u + i) = f (u)

remain arbitrary. We will fix both of them in the next section by explicitly computing the eigen-

values of Q(u). The result of the analysis which follows is summarized in the equation

Q(u) =

⎛
⎝(S−)−iu

N∏

j=1

�(−iu − ix̂j )�(−iu + ix̂j )

⎞
⎠/�2N+1(−iu + s) , (74)

where we used the representation of B(u) in terms of its operator zeros (38).

8. Eigenfunctions

As it is clear from Eq. (72) that, if in addition to sending |w0| → ∞, we would follow it up 

by w̄1 → ∞, we immediately uncover that

B(u)�u(z1, . . . , zN+1|w2, . . . ,wN+1) = 0 , (75)

where

�u(z1, . . . , zN+1|w2, . . . ,wN+1) = lim
w̄1→∞

w̄
αu

1 Qu(z1, . . . , zN+1|w1, . . . ,wN+1) , (76)

with the kernel given by

�u(z1, . . . , zN+1|w2, . . . ,wN+1) (77)

= eiπs(2N+1)

∫ N∏

j=1

Dsyj (z1 − ȳ1)
−βu(y1 − w̄2)

−αu

× Yu(z2, . . . , zN , zN+1|ȳ1, . . . , ȳN , w̄N+1)

× Y−u(y1, . . . , yN−1, yN |w̄2, . . . , w̄N , w̄N+1) ,

shown in Fig. 5. This is nothing else as the defining equation for the so-called layer kernel of 

the open spin chain [9] (see also recent [27]). It is now straightforward to recursively construct 

the eigenfunction that diagonalizes the B operator by stacking these layers up with their labels 

x = (x1, . . . , xN ) determined by the eigenvalues of its operators zeros,

x̂j�p,x(z1, . . . , zN+1) = xj�p,x(z1, . . . , zN+1) . (78)

Explicitly [9],

�p,x(z1, . . . , zN+1) =
∫ N+1∏

j=2

Dsw
(N)
j �x1

(z1, . . . , zN+1|w(N)
2 , . . . ,w

(N)
N+1)

×
∫ N+1∏

j=3

Dsw
(N−1)
j �x2

(w
(N)
2 , . . . ,w

(N)
N+1|w

(N−1)
3 , . . . ,w

(N−1)
N+1 )

...

×
∫

Dsw
(1)
N+1�xN

(w
(2)
N ,w

(2)
N+1|w

(1)
N+1) exp

(
ip w

(1)
N+1

)
(79)
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Fig. 6. Graphical representation for the wave functions of the operators B(u) (left) and C(u) (right).

demonstrated graphically in the left panel of Fig. 6, where the top is crowned by the plane wave 

(see the left panel in Fig. 7) with the eigenvalue p of S− = − 
∑N+1

j=1 ∂j ,

iS−�p,x(z1, . . . , zN+1) = p �p,x(z1, . . . , zN+1) . (80)

With this formula, one can immediately find the eigenvalues of the Baxter operator in a re-

cursive fashion. We exemplify it in Fig. 8 for N = 2. To start with, one integrates the leftmost 

vertex in the product of the Baxter kernel and the wave function (see the top left graph in Fig. 8) 

making use of the chain rule giving the middle graph in the top row multiplied by

e−iπsa(βu, βx1
) , (81)

with a given in Eq. (89). Then, one moves the vertical propagator relying on the permutation 

identity to the rightmost position (right top panel). Next, one repeats the same for the remaining 

leftmost vertex of this layer acquiring the factor

e−iπsa(βu, αx1
) (82)

along the way, and then moving this propagator to the right as shown in the rightmost figure in 

the middle row of Fig. 8. At a subsequent step, the label on the rightmost vertical propagator 

is decomposed as αx1
= αu + i(x1 − u), with the propagator i(x1 − u) moved leftmost as in 

the middle panel of the middle row. Finally, to complete this layer, one moves the overarching 

propagator −i(x1 + u), remaining from the first step, all the way to the left again. One ends up 

with the graph in the left of the bottom row of Fig. 8. We see that after all of these steps, one ends 

up with the Baxter kernel (shown by the red subgraph) acting on a layer of wave-function with 

one site less than we started from. Repeating all of the above all over again, we get the factor

e−2iπsa(βu, βx2
)a(βu, αx2

) , (83)

multiplying the middle bottom diagram. Computing the remaining Fourier integral with the help 

of Eq. (90), we get the rightmost graph, which is nothing else as the N = 2 wave function multi-

plied by

�(2s)

�(βu)
e−iπβu/2p−αu . (84)
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Fig. 7. Feynman diagrams for the vertex of the factor of the wave functions for the operators B(u) (left) and C(u) (right).

Combining everything together in this manner, we establish Eq. (74), where the operators are 

replaced by their eigenvalues for N = 2.

The proof of the orthogonality of �p,x can, again, be accomplished recursively. However, we 

spare the reader the details since they can be found in Ref. [9] and merely quote the final result. 

The scalar product reads

〈�p′,x′ |�p,x〉 = μ(x)δ(p′ − p)
∑

σ

δN (x′
σ − x) , (85)

where the sum stands for all permutations of N eigenvalues and the measure reads

μ(x) = (2π)N�N+1(2s)

N∏

j=1

[
�(2s)

�(s − ixj )�(s + ixj )

]2N

(86)

×
∏

1≤j≤k≤N

�(ixj + ixk)�(−ixj − ixk)�(ixj − ixk)�(−ixj + ixk) .

This completes the solution of the open spin chain with soft-hard boundaries in the Sepa-

rated Variables for the Hamiltonian HJ commuting with the top off-diagonal B-element of the 

monodromy matrix. As we alluded to above, to find the wave functions �̃p,x for the bottom 

off-diagonal C-entry, on has to perform an inversion via Eq. (28),

�̃p,x = J�p,x . (87)

The outcome of this operation is shown in the right panel of Fig. 6 with the top vertex given in 

Fig. 7.

9. Discussion and conclusions

Having found the complete basis of functions governed by multi-particle dynamics of flux-

tube excitations in the presence of soft and hard boundaries, we can decompose the subtracted 

correlation function (18) as

Rγ = 〈ObotŌ
γ
top〉subtracted =

∞∫

0

dp eipγ

∫ N−1∏

j=1

dxj

2π
μ−1(x)〈Obot|�̃p,x〉〈�̃p,x |Ōtop〉 , (88)

where γ encodes the shifted conformal frame for the top operator with respect to the bottom. 

It arises in higher than eight correlation function in two-dimensional kinematics, with the re-

ciprocal variable being the recoil momentum of the soft boundary. The separated variables 

x = (x1, . . . , xN ) play the role of the flux-tube excitations’ rapidities. Upon proper interpreta-

tion, this expansion is akin to the pentagon expansion of the Wilson loop on null polygonal 

contours [6] that was analyzed in terms of the Separated Variables in Ref. [8].

Our present consideration can be generalized in a straightforward fashion to a situation when 

the soft boundary possesses the value of the conformal spin different from the ones of particles 

in the chain interior. The integrable system in this case is an inhomogeneous open spin chain. 
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Fig. 8. Calculation of eigenfunctions of the Baxter operator.
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A first step in this direction was undertaken in Ref. [27]. One can equally consider a kinematical 

situation when both boundaries become soft and therefore dynamical. This case was analyzed 

a couple of decades ago within the context of QCD within the framework of high-twist quark-

gluon-quark operators, when the flux-tube is sourced by fundamental matter fields with gluons 

propagating in the middle [28–30].

Possibly, the partial light-cone limit considered in this paper could provide a bridge between 

the pentagon and hexagon frameworks alluded to above for nonperturbative calculation of am-

plitudes and correlators, respectively. This calls for a detailed consideration of how much of the 

current one-loop analysis can be bootstrapped to all orders in ’t Hooft coupling. For the cor-

relation function studied in this work, the factorization of the front and back into independent 

observables is violated at higher orders of the perturbative series, the two faces start interacting 

in spite of the devised subtraction.

However, the sought after connection between hexagons and octagons can be studied in more 

basic observables like three (four) point correlation functions of two (three) BPS and one spin-S

twist-L Wilson operator from the SL(2) sector. As one increases the number of magnons S → ∞, 

one anticipates emergence of the flux-tube, while inclusion of L −2 holes introduces rapidities of 

corresponding flux-tube excitations, and thus would provide an explicit relation between the two 

formalisms [31]. This is particularly encouraging in light of the recent discovery that the same 

(octagon) anomalous dimension [32] governs the Sudakov-like asymptotics of the null limit of 

four-point correlators of infinitely-charged BPS operators [33], on the one hand, and the behavior 

at the origin of the six-point gluon scattering amplitude [34], on the other.
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Appendix A

In this appendix, we summarize the main rules in handling rungs in two-dimensional Feynman 

graphs, which are indispensable in various calculations in the body of the paper. Their proof can 

be found in the literature, see, e.g., [24,9,8].

• Chain rule:

where

a(α,β) = �(α + β − 2s)�(2s)

�(α)�(β)
. (89)

• Cross relation:
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• Fourier transform:
∫

Dsw
eipw

(z − w̄)α
= �(2s)

�(α)
pα−2se−iπα/2eipz , (90)

for p > 0.
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