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The amplitude (Higgs) mode near the two-dimensional superfluid-Mott glass quantum phase
transition is studied. We map the Bose-Hubbard Hamiltonian of disordered interacting bosons
onto an equivalent classical XY model in (2+1) dimensions and compute the scalar susceptibility
of the order parameter amplitude via Monte Carlo simulation. Analytic continuation of the scalar
susceptibilities from imaginary to real frequency to obtain the spectral densities is performed by a
modified maximum entropy technique. Our results show that the introduction of disorder into the
system leads to unconventional dynamical behavior of the Higgs mode that violates naive scaling,
despite the underlying thermodynamics of the transition being of conventional power-law type. The
computed spectral densities exhibit a broad, non-critical response for all energies, and a momentum-
independent dispersion for long-wavelengths, indicating strong evidence for the localization of the
Higgs mode for all dilutions.

I. INTRODUCTION

Zero-temperature phase transitions between quantum
ground states of interacting many-body systems have
become a central focus of modern condensed matter
physics. The interest in these quantum phase transi-
tions (QPTs) is justified by the rich physics that they
exhibit, from unconventional thermodynamics and trans-
port properties, to novel phases of matter. [1–4] The ef-
fects of the inevitable disorder in condensed matter sys-
tems (impurities, defects, etc.) on these QPTs have also
been intensely studied in the past two decades. Disorder
leads to additional interesting physics, including infinite-
randomness critical points [5], Griffiths singularities[6–8],
and smeared phase transitions[9, 10] (for reviews see e.g.
Refs. 11–13).

While much is understood about the thermodynam-
ics of disordered QPTs, much less is known about the
properties and dynamics of excitations near these criti-
cal points. Of particular interest are collective excitations
in systems with spontaneously broken continous symme-
try. A fundamental consequence of the breaking of the
continuous symmetry of an N -component order param-
eter is the emergence of two distinct types of collective
modes; the (N − 1) massless Goldstone modes – fluc-
tuations of the order parameter phase – and a massive
amplitude (Higgs) mode – fluctuations of the order pa-
rameter amplitude.[14, 15] Prominent examples of con-
densed matter systems that exhibit this continuous sym-
metry breaking include Heisenberg and XY spin systems,
superfluids, superconductors, and optical lattice bosons.
Higgs excitations have also been observed experimentally
in a number of these systems including: the superconduc-
tor NbSe2 [16], the antiferromagnetic TiCuCl3 [17], and
some incommensurate charge density wave compounds
[18, 19].

In Lorentz-invariant systems without disorder the
Higgs mode is a sharp excitation in the ordered (bro-
ken symmetry) phase sufficiently close to the QPT, with
a peak in the spectral density centered at the Higgs en-

ergy ωH . This energy softens as the critical point is ap-
proached. At zero wave vector, it obeys a power-law
relationship controlled by the correlation length critical
exponent ωH ∼ |r|ν , where r is the reduced distance
from criticality. Higgs excitations in these clean systems
have been widely studied.[20, 21] While the existence of
a sharp Higgs peak in two-dimensions was initially in
doubt, it was later proven by both analytic and numeri-
cal techniques. However, the fate of Higgs modes in the
presence of disorder is much less understood.

In this article we therefore consider the effects of dis-
order on the Higgs mode excitation near the prototypi-
cal superfluid-Mott glass transition of disordered bosons.
We model this transition using a particle-hole symmet-
ric diluted quantum rotor model. This model is mapped
onto an equivalent (2+1) dimensional classical XYmodel,
which is then simulated via large-scale Monte Carlo
methods. The imaginary (Matsubara) frequency scalar
susceptibility of the order parameter is calculated. The
associated spectral densities are found via analytic con-
tinuation of the Matsubara frequency data to the real-
frequency axis via maximum entropy methods.

Our results show that despite the critical behavior of
the superfluid-Mott glass transition being of conventional
power-law type, the Higgs mode shows unconventional
dynamics that violates naive scaling. Specifically, the
Higgs mode becomes strongly localized below the critical
point for all dilutions, resulting in a broad non-critical
response in the spectral densities arbitrarily close to the
critical point. A short account of part of this work has
already been published in Ref. 22.

The remainder of the article is organized as follows. In
Section II we introduce the model Hamiltonian, the map-
ping to an equivalent classical model, and briefly discuss
the thermodynamics of the corresponding superfluid-
Mott glass transition. Section III discusses the Monte
Carlo simulations. Analytic continuation of the Matsub-
ara frequency Monte Carlo data is detailed in Section V
and the results discussed in Section VI. We conclude and
discuss experimental ramifications in Section VII.
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FIG. 1. Phase diagram of the classical (2+1)-dimensional XY
model (3) determined from Monte Carlo simulation.[23] The
emergence of the Mott glass phase is seen for arbitrarily small
dilutions. Large dots mark the numerically calculated tran-
sitions, lines are spline fits that only serve as a visual guide.
Here, we consider the Higgs mode for p = 1/8, 1/5, 2/7, 1/3
across these numerically determined generic transition points.

z β/ν γ/ν ν η

Clean 1 0.5189(2) 1.961(4) 0.6717(1) 0.0381(2)

Diluted 1.52(3) 0.48(2) 2.52(4) 1.16(5) −0.52(4)

TABLE I. Critical exponents for the (2+1)d XY model. Clean
exponents are from Ref. 24. Disordered exponents are from
Ref. 23.

II. SUPERFLUID-MOTT GLASS TRANSITION

We start from the Bose-Hubbard Hamiltonian describ-
ing bosons hopping between nearest-neighbor sites of a
two-dimensional (d = 2) square-lattice of linear size L

HBH =
1

2

∑

i

Ui(n̂i − n̄i)
2 −

∑

〈ij〉

Jij(a
†
iaj + h.c.) (1)

where a†i and ai are bosonic creation and annihilation op-

erators at a lattice site i with [ai, a
†
j ] = δij and n̂i = a†iai

as the number operator. Site-dependent interaction en-
ergy Ui, hopping amplitudes Jij , and average filling n̄i

allow for a rich phase diagram. The phases and phase
boundaries of this model have been well established via
analytic methods.[25] In the clean case of spatially uni-
form on-site interactions Ui = U , hopping amplitude
Jij = J , and average filling n̄i = n̄ (excepting half-integer
n̄), the system exhibits a direct quantum phase transi-
tion between a superfluid (J ≫ U) and a Mott insu-
lating (U ≫ J) ground state. Allowing spatially varied
distributions (disorder) of Ui, Jij and n̄i introduces a
third, intermediate phase that separates the bulk super-
fluid and Mott insulating phases. The character of this
intermediate phase is dependent on the qualitative na-
ture of the distributions of Ui, Jij , and n̄i. For generic

disorder (realized, e.g., by random on-site potentials n̄i)
the intermediate phase is the Bose glass, a compressible
gapless insulator. If the disorder is such that the system
is particle-hole symmetric (uniform integer n̄i = n̄ and
random Ui, Jij), this intermediate phase instead becomes
the incompressible gapless Mott glass.
We introduce disorder into the system with site-

dilution by considering Ui = Uǫi and Jij = Jǫiǫj where
U and J are constants. The site-dilution is controlled
then by the quenched random variables ǫi that take on
the values 0 (creates a vacancy) with probability p and 1
(creates an occupied lattice site) with probability 1 − p.
If we consider the limit of large integer filling n̄i = n̄,
the Hamiltonian (1) becomes equivalent to the Joseph-
son junction (or quantum rotor) Hamiltonian

HJJ =
U

2

∑

i

ǫin̂
2
i + J

∑

〈ij〉

ǫiǫj cos(φ̂i − φ̂j) (2)

where n̂i now represents the fluctuations on top of the

(uniform) filled background and φ̂i is the phase operator
of a boson at site i. This model exhibits particle-hole
symmetry for our site-dilution disorder and undergoes a
QPT between the superfluid and Mott glass phases at a
critical ratio U/J .
To facilitate the study of the dynamics near the QPT

via Monte Carlo simulation, we map the 2D quantum ro-
tor Hamiltonian HJJ onto an equivalent classical model
HC that is in the same universality class.[26] This map-
ping yields a Hamiltonian with total dimensionality D =
d+ 1 = 3,

HC = −Js
∑

〈ij〉,τ

ǫiǫjSi,τ · Sj,τ − Jτ
∑

i,τ

ǫiSi,τ · Si,τ+1 (3)

with Si,τ as an O(2) unit vector at space coordinate i and
imaginary-time coordinate τ . The coupling constants are
defined such that βCJs ∼ 1/U and βCJτ ∼ J where
βC = 1/T is the inverse temperature of the classical
model. This mapping allows us to interpret the quan-
tum model in two dimensions as a classical model at the
inverse temperature βC = 1/T in three-dimensions. The
temperature of the classical model is not the physical
temperature of the quantum system (which is at abso-
lute zero), but represents the ratio of the quantum cou-
pling constants U & J of the quantum system. There-
fore, we can study the universal properties of the zero-
temperature superfluid-Mott glass transition tuned by
the ratio of couplings U/J , by tuning the classical tem-
perature T through the transition in the classical Hamil-
tonian HC . For the remainder of this article, we will
discuss the transition in HC in terms of the reduced dis-
tance from criticality r = (T − Tc)/Tc, for which the
transition corresponds to r → 0.

The thermodynamic critical behavior of HC falls into
the 3D XY universality class for the undiluted case
(p = 0). The critical behavior in the presence of dis-
order was studied in Ref. 23. It is of conventional finite-
disorder type with a dynamical scaling characterized by
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tical error and must be considered. To eliminate these
biases we utilize improved estimators as discussed e.g. in
Ref. 33.
As the introduction of quenched disorder breaks the

isotropy between the space and imaginary-time dimen-
sions in the Hamiltonian (3), the standard finite-size
scaling techniques to calculate critical exponents breaks
down in the disordered case. There are two characteris-
tic length scales we must consider in the simulations: the
spatial correlation length ξs and the correlation length in
imaginary-time ξτ . Correspondingly, the system sizes in
the spatial dimensions L and the imaginary-time dimen-
sion Lτ are independent parameters. Anisotropic two-
parameter finite-size scaling needs to be used to find the
“optimal” aspect ratios Lτ/L

z (equivalently determin-
ing the dynamical exponent z), by considering system
sizes that maximize the Binder cumulant at the quan-
tum critical point (QCP). We utilize the results for the
“optimal shapes” obtained in our previous simulations of
the thermodynamic critical behavior.[23] Further techni-
cal details can be found in Ref. 23, as well as other works
on the critical behavior of Ising spin glasses. [34]
To suppress any finite-size effects, we consider only the

largest system sizes accessible within our computational
limits. We consider spatial sizes up to L = 100 and
imaginary-time sizes up to Lτ = 452 for diluted sys-
tems. These system sizes exceed the correlation lengths
and times of the excitations we examine. For example,
the smallest Higgs energy calculated for the clean case is
ωH ≈ 0.21 giving a characteristic time of 2π/ωH ≈ 30,
much smaller than any of the imaginary-time system sizes
used. Finite-size effects in the disordered case are of even
lesser concern as our results suggest that the Higgs mode
localizes, and the energy of the Higgs spectral peak re-
mains microscopic (see Fig. 5).

IV. SCALAR SUSCEPTIBILITY AND

SPECTRAL DENSITIES

The amplitude mode is a collective excitation of the
order parameter magnitude. The local degrees of free-
dom of the system defined by (3) are of fixed magnitude
|Si,τ | = 1, so we must define a local order parameter
that can fluctuate. We define our order parameter by
considering a course-graining of the local degrees of free-
dom. This is calculated as the vector sum of the Si,τ

at the site i with its nearest (spatial) neighbors.[35] It’s
magnitude reads

ρ(xi, τ) =
1

5

∣

∣

∣

∣

ǫiSi,τ +

n.n.
∑

j

ǫjSj,τ

∣

∣

∣

∣

. (5)

Information about the Higgs mode is contained in the
imaginary-time scalar susceptibility of the local order pa-
rameter magnitude ρ(x, τ)

χρρ(x, τ) = 〈ρ(x, τ)ρ(0, 0)〉 − 〈ρ(x, τ)〉〈ρ(0, 0)〉 (6)

and it’s Fourier transform χ̃ρρ(q, iωm) =
∫

dxdτe−iq·x−iωmτχρρ(x, τ) in terms of Matsubara
frequencies ωm = 2πm/β and wave vector q. The
real-frequency dynamic susceptibility is obtained via
analytic continuation

χρρ(q, ω) = χ̃ρρ(q, iωm → ω + i0+). (7)

The spectral density, which is related to many experimen-
tal probes, is then proportional to the imaginary part of
the dynamic susceptibility

χ′′
ρρ(q, ω) = Imχρρ(q, ω). (8)

A scaling form for the real-frequency susceptibility at
the clean superfluid-Mott insulator transition has been
derived by Podolsky and Sachdev.[36] This can be gen-
eralized to include the quenched disorder and an appro-
priate dynamical exponent for the diluted transition we
are interested in. We start from a d-dimensional, quan-
tum field theory for an N -component order parameter ψ
defined by the action

S =

∫

ddxdτ [(∂xψ)
2+(∂τψ)

2+(r+δr(x))ψ2+uψ4] (9)

where r is the reduced distance from criticality, δr(x)
represents a quenched random-mass disorder and u is the
quartic interaction strength. For the parameters of our
system, d = 2 and N = 2, the action (9) is a coarse-
grained, long-wavelength approximation of the quantum
rotor model (2) and exhibits a QPT in the same univer-
sality class.
The free energy is given as

f = −
1

βV
lnZ = −

1

βV
ln

∫

D[ψ]e−S . (10)

We then notice that with two derivatives of this free en-
ergy with respect to the distance from criticality, we ar-
rive at the expression

d2f

dr2
=

1

βV

∫

ddxdτ

∫

ddx′dτ ′

×[〈ψ2(x, τ)ψ2(x′, τ ′)〉 − 〈ψ2(x, τ)〉〈ψ2(x′, τ ′)〉]

which is the exact expression for the q = 0, ωm = 0
Fourier components of the scalar susceptibility of the or-
der parameter χρρ. More precisely, this yields the suscep-
tibility of the square of the order parameter amplitude,
however as the order parameter magnitude is non-zero at
criticality, the scaling behavior of both correlation func-
tions is the same. The singular part of the free energy
fulfills the homogeneity relationship

f(r) = b−(d+z)f(rb1/ν) (11)

with b as an arbitrary scale factor. From the argument
above, taking two derivatives of the free energy (11) with
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respect to r gives the scaling behavior of the scalar sus-
ceptibility, thus implying the scaling form

χρρ(r,q, ω) = b−(d+z)+2/νχρρ(rb
1/ν ,qb, ωbz) (12)

from which we identify the scale dimension of χρρ as
−(d+ z) + 2/ν. Setting b = r−ν we arrive at the scaling
form

χρρ(r,q, ω) = r(d+z)ν−2X(qr−ν , ωr−zν) (13)

or equivalently, with r ∼ ω1/zν

χρρ(r,q, ω) = ω[(d+z)ν−2]/(νz)Y (qr−ν , ωr−zν) (14)

whereX and Y are scaling functions, and z is the dynam-
ical critical exponent. If we set the dynamical exponent
to the clean value z = 1 in two-dimensions d = 2 in
equation (13), we arrive at the scaling form derived by
Podolsky & Sachdev for the clean superfluid-Mott insu-
lator transition

χρρ(q, ω) = r3ν−2X(qr−ν , ωr−ν). (15)

Considering the critical exponents calculated for the
two-dimensional superfluid-Mott glass transition, the
scaling form (14) makes some interesting predictions
about the fate of the Higgs mode in the diluted case.
For our case, using the critical exponents calculated for
the diluted transition, z = 1.52 and ν = 1.16 (see table
I), we see that we have

[(d+ z)ν − 2]/(νz) ≈ 1.18 > 0. (16)

This positive scaling dimension suggests that the am-
plitude of the singular part of the scalar susceptibility
becomes strongly suppressed as the critical point is ap-
proached. Thus, the introduction of disorder may de-
stroy a sharp, well-defined Higgs mode excitation near
the QCP.
This argument can be extended to any quantum sys-

tem with random mass disorder. The condition for a
strongly suppressed Higgs peak near the QCP [(d+z)ν−
2]/(νz) > 1 is equivalent to the condition dν > 2. It is
well known that general disordered systems must satisfy
the inequality dν ≥ 2.[37] Thus it is guaranteed that
we have a scaling dimension [(d + z)ν − 2]/(νz) > 1 for
the scalar susceptibility, strongly suppressing the singu-
lar part of χρρ in the excitation spectra as the QCP is
approached.

V. MAXIMUM ENTROPY METHODS

The Monte Carlo simulations output the scalar suscep-
tibility χ̃ρρ(q, iωm) as a function of Matsubara frequency
ωm = 2πm/β. The spectral densities χ′′

ρρ(q, ω) we are in-
terested in are related to the scalar susceptibilities by the
Kramers-Kronig relationship

χ̃ρρ(q, iωm) =
1

π

∫ ∞

0

dωχ′′
ρρ(q, ω)

2ω

ω2
m + ω2

. (17)

In principle, one could invert this relationship to ex-
tract the spectral densities from the computed scalar
susceptibility directly. Unfortunately, this inversion is ill-
conditioned and the inevitable noise of Monte Carlo data
only exaggerates the problem (small errors in the input
data can create large features in the spectral density).
To overcome this issue, we use a modified maximum

entropy (MaxEnt) method.[38, 39] The method utilizes
Bayesian inference to transform the integral inversion
problem (17) into finding the most probable spectral den-
sity given the input quantum Monte Carlo (QMC) data.
This reduces the problem to minimizing a cost function

Q = ∆− αS. (18)

The first term in Q,

∆ = (χ̃ρρ −Kχ′′
ρρ)

TΣ−1(χ̃ρρ −Kχ′′
ρρ) (19)

serves as a measure of how well the fitted spectral den-
sity χ′′

ρρ reproduces the input data χ̃ρρ. Here, K is a
discretized version of the integration kernel K(ω, ωm) =
2ω/(ω2

m + ω2) and Σmn = 〈χ̃ρρ(iωm)χ̃ρρ(iωn)〉 −
〈χ̃ρρ(iωm)〉〈χ̃ρρ(iωn)〉 is the covariance matrix of the
scalar susceptibility data. The second term is an entropy
of the spectral density

S = −
∑

ω

χ′′
ρρ(ω) lnχ

′′
ρρ(ω) (20)

that serves to regularize the inversion process, prevent-
ing over-fitting of Monte Carlo noise. This regularization
is achieved because large entropy values favor a smooth
spectral density, thus punishing over-fitting of the un-
physical noise in the minimization of Q.
This leaves an additional free parameter α that con-

trols the relative weight between the goodness-of-fit term
∆ and the entropy term in Q. There are a number of
choices in the literature concerning the determination
of the value of α for a given fit. In our calculations
we choose the value of α by a version of the L-curve
method (see Figs. 3a-b) which maximizes the curva-
ture κ = d2∆/d(lnα)2.[40, 41] This maximum marks a
crossover from the fitting of information to the fitting of
noise. Additional methods of determining the optimal fit
parameter choose α such that ∆ is roughly equal to the
number of independent Matsubara frequencies ωm being
fit. In our simulations, we use this condition as a check
for the suitability of the optimal alpha found by maxi-
mizing the curvature.
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the Monte Carlo results, showing a broad, non-critical re-
sponse in the ordered phase arbitrarily close to the crit-
ical point. The mean-field theory permits the explicit
analysis of the excitation eigenmodes which were found
to be localized. Given that a mean-field theory has in-
finitely long-living excitations, this indicates localization
as the source of the spectral density broadening.
The effects of disorder on the Higgs mode has also

been studied from a number of other theoretical and ex-
perimental perspectives. Swanson and collaborators[44]
have considered the fate of the Higgs mode across the
disorder-induced superconductor-insulator transition by
calculating complex conductivity Reσ(ω). In the clean
case, the Higgs mode is predicted to give rise to an ab-
sorption threshold in the conductivity. This absorption
threshold is not observed in the diluted case. Rather, ex-
cess spectral weight is observed for the sub-gap frequen-
cies. The complex conductivity has also been studied
experimentally in the disordered superconducting thin-
films NbN and InO. This paper reports the observation
of a critical Higgs mode after accounting for excess spec-
tral weight in the complex conductivity arising from the
superfluid condensate and quasiparticle dynamics. The
experimental data were approximately reproduced in a

Monte Carlo simulation of a Josephson junction Hamil-
tonian similar to (2). At first glance, the observation
of the critical Higgs mode seems to contradict our re-
sults. However, the apparent observation of this Higgs
mode is likely due to relatively weak disorder, with a
maximum bond dilution of p ≈ 0.125 considered in the
simulations accompanying the experiment. For weak dis-
order, the system is expected to display a slow crossover
from the clean to disorder behavior. Further study of
this crossover region would be worthwhile, but requires
considerably more computational effort.
These results have the broader implication that disor-

dered QPTs in general can exhibit unconventional col-
lective excitations even in the case of conventional ther-
modynamic critical behavior. This motivates the fur-
ther study of characteristics of this Higgs mode as well
as the corresponding Goldstone modes. Additionally, it
will certainly be interesting to investigate how spatial di-
mensionality and symmetries may affect these modes in
disordered systems. Is it possible to classify disordered
dynamics in a similar manner as the critical behavior?
[29]
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