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Abstract Diffusive transport in many complex sys-
tems features a crossover between anomalous diffusion
at short times and normal diffusion at long times. This

behavior can be mathematically modeled by cutting off
(tempering) beyond a mesoscopic correlation time the
power-law correlations between the increments of frac-
tional Brownian motion. Here, we investigate such tem-

pered fractional Brownian motion confined to a finite

interval by reflecting walls. Specifically, we explore how
the tempering of the long-time correlations affects the

strong accumulation and depletion of particles near re-
flecting boundaries recently discovered for untempered

fractional Brownian motion. We find that exponential

tempering introduces a characteristic size for the accu-
mulation and depletion zones but does not affect the
functional form of the probability density close to the
wall. In contrast, power-law tempering leads to more

complex behavior that differs between the superdiffu-
sive and subdiffusive cases.

1 Introduction

Diffusive transport phenomena can be found in a wide
variety of fields such as physics, chemistry, biology, and
beyond. According to Einstein [1], Langevin [2], and

Smoluchowski [3], diffusion arises from the motion of

the particles in question being stochastic. It is often
characterized in terms of the power-law relation 〈x2〉 ∼

tα between the mean-square displacement 〈x2〉 of a dif-
fusing particle and the elapsed time t. The exponent

value α = 1 corresponds to normal diffusion which

emerges naturally if the stochastic motion is local in
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time and space [4]. Recently, there has been signifi-
cant interest in stochastic motion with α 6= 1, i.e., in
anomalous diffusion [5, 6]. Depending on the value of

the anomalous diffusion exponent α, one can distin-
guish subdiffusion (0 < α < 1) for which 〈x2〉 grows
slower than t and superdiffusion (1 < α < 2) for which
〈x2〉 grows faster than t. Both subdiffusion and su-

perdiffusion have been observed experimentally in nu-

merous systems (see. e.g. Ref. [7–12] and references
therein), in part because modern microscopy provides

unprecedented information about the motion of single
molecules in complex environments [13–15].

Anomalous diffusion can arise if the random mo-
tion violates the condition of locality in time and space,

e.g., when individual displacements (steps) of the dif-

fusing particle are long-range correlated in time. Frac-
tional Brownian motion (FBM) is a paradigmatic math-
ematical model of this situation. It was was first intro-
duced by Kolmogorov [16] and later explored by Man-

delbrot and van Ness [17]. FBM is a self-similar Gaus-
sian stochastic process with long-time (power-law) cor-
related increments which are antipersistent (anticorre-

lated) in the subdiffusive regime, 0 < α < 1, but persis-

tent (positively correlated) in the superdiffusive regime
1 < α < 2. In the marginal case, α = 1, FBM is iden-
tical to normal Brownian motion with uncorrelated in-

crements. FBM processes have been used to describe

the motion inside biological cells [18–23], the patterns
of serotonergic fibers in verebrate brains [24, 25], poly-

mer dynamics [26, 27], electronic network traffic [28],
as well as fluctuations of financial markets [29, 30].

Even though FBM has been explored quite exten-
sively in mathematical literature (see, e.g., Refs. [31–

34]), much of its behavior in confined geometries re-

mains elusive because a generalized diffusion equation
for FBM has yet to be found. Additionally, the method
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of images [6, 35], often invoked for boundary value prob-
lems, fails. Existing results concern the first-passage
problem on a semi-infinite interval [36–39]) and two-
dimensional wedge and parabolic domains [40, 41]. In

addition, properties of FBM close to an absorbing bound-

ary were investigated in Refs. [42–48].

Recently, reflected FBM has attracted significant

attention because the interplay between the long-time
correlations and the reflecting barriers modifies the prob-

ability density function P (x, t) of the diffusing particles.
In the case of superdiffusive FBM, particles accumulate
at the barrier whereas they are depleted near the bar-

rier for subdiffusive FBM. More specifically, on a semi-
infinite interval with a reflecting wall at the origin, P
becomes highly non-Gaussian and develops a power-law
singularity, P ∼ xκ, at the wall [49, 50]. On a finite in-

terval with reflecting walls at both ends, the stationary
probability density deviates from the uniform distribu-
tion found for normal diffusion [51] and also features

power-law singularities at the walls [52]. Analogous re-
sults were obtained in higher dimensions [52].

In many of the experimental systems that feature

anomalous diffusion, the anomalous power law 〈x2〉 ∼
tα with α 6= 1 does not extend to arbitrarily long times
but eventually crosses over to normal diffusion (α = 1)

when the time exceeds a characteristic correlation time.
To model this crossover, Molina-Garcia et al. [53] intro-

duced the notion of tempered FBM, a stochastic pro-

cess in which the long-time power-law correlations are
cutoff beyond the tempering time t∗.

1 As the unusual
behavior of the probability density of reflected FBM

stems from the interplay of the reflecting barriers and
the long-time correlations, it is important to ask how
the tempering of these correlations affects the probabil-
ity density.

Here, we therefore study the behavior of tempered
FBM that is confined to a finite interval by reflecting

walls at both ends. We employ large-scale computer
simulations to study the mean-square displacement as
well as the probability density function for hard expo-

nential tempering of the correlations as well as softer
power-law tempering. We distinguish the superdiffusive

and subdiffusive regimes and compare our findings to
the corresponding behavior of untempered FBM.

Our paper is organized as follows. We introduce
FBM and tempered FBM in Sec. 2. Section 3 briefly

summarizes key properties of (untempered) FBM with
reflecting walls for later comparison with the tempered

1A different type of tempering was proposed by Meerschaert
and Sabzikar [54]. It leads to fundamentally different behav-
ior and does not describe the anomalous to normal diffusion
crossover. We will briefly come back to this point in the con-
cluding section.

case. Simulation results for exponentially tempered FBM
on a finite interval with reflecting walls at both ends are
presented in Sec. 4 whereas the corresponding results
for power-law tempering are shown in Sec. 5. We con-

clude in Sec. 6.

2 Fractional Brownian motion and tempered

fractional Brownian motion

2.1 Definition of fractional Brownian motion

We start from the definition of FBM as a continuous-

time centered Gaussian stochastic process. Consider a
particle located at position X = 0 at time t = 0. The
covariance function of its position X at later times s

and t is given by

〈X(s)X(t)〉 = K(sα − |s− t|α + tα) (1)

where the exponent α is in the range 0 < α < 2. Set-

ting s = t results in a mean-square displacement of
〈X2〉 = 2Ktα, i.e., the particle undergoes anomalous

diffusion, with α playing the role of the anomalous dif-
fusion exponent.

In preparation of the computer simulations, we now

discretize time, tn = ǫn, and define positions xn =
X(tn). Here, ǫ is the time step, and n is an integer.
The resulting discrete version of FBM [55] can be un-

derstood as a random walk with identically Gaussian

distributed and long-time correlated steps. The parti-
cle position xn now evolves according to the recursion
relation

xn+1 = xn + ξn . (2)

Here, the increments ξn constitute a discrete fractional
Gaussian noise, a stationary Gaussian process of zero
mean, variance σ2 = 2Kǫα, and covariance

CFBM
n = 〈ξmξm+n〉 =

1

2
σ2(|n+1|α − 2|n|α + |n− 1|α) .

(3)

The covariance is positive (persistent) for α > 1 and

negative (anti-persistent) for α < 1 (and n 6= 0). If
α = 1, the covariance vanishes for all n 6= 0 leading

to an uncorrelated random walk, i.e., normal Brownian
motion. In the long-time limit n → ∞, the covariance
follows the power-law form 〈ξmξm+n〉 ∼ α(α−1)|n|α−2.

The time discretization error becomes unimportant

if the time step ǫ is small compared to the considered
times t. Equivalently, the individual step size σ needs to
be small compared to the considered distances or sys-

tem sizes. This continuum limit can be reached either
by taking the time step ǫ to zero at fixed total time t
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or, equivalently, by taking t to infinity at fixed ǫ. We
will follow the latter route by setting ǫ = const and
considering long times t → ∞.

2.2 Tempering the correlations

To model the crossover between anomalous diffusion
and normal diffusion that is observed in many experi-

mental systems, we now follow Ref. [53] and introduce

a tempering (truncation) of the long-range correlations
encoded in the covariance (3) of the fractional Gaus-

sian noise. We will consider both a “hard” exponential
tempering and a “softer” power-law tempering.

In the case of exponential tempering, the noise co-

variance (3) gets replaced by

Cn = CFBM
n exp(−|tn|/t∗) (4)

where t∗ is the tempering (crossover) time scale gov-

erning the crossover from anomalous diffusion for times

less than t∗ to normal diffusion on time scales larger
than t∗. For power-law tempering, the noise covariance
reads

Cn = CFBM
n (1 + |tn|/t∗)

−µ . (5)

It is characterized by a positive decay exponent µ in ad-
dition to the tempering time t∗. Note that the Fourier

transform C̃(ω) of the covariance Cn must be nonneg-

ative because it represents the power spectrum of the
noise ξn. Both (4) and (5) fulfill this condition as was
demonstrated in Ref. [53] and verified numerically in

our simulations.

Exponentially tempered fractional Gaussian noise
with α = 1.2 (in the superdiffusive regime) is illustrated

in Fig. 1. Panel (a) shows how the power-law correla-
tions are truncated beyond the tempering time. The
corresponding noise power spectra in panel (b) are in-

deed nonnegative and feature crossovers from the FBM

power law C̃ ∼ ω1−α at higher frequencies to C̃ = const
at lower frequencies when the noise becomes effectively
uncorrelated. Figure 2(a) illustrates the negative (anti-

persistent) covariance for α = 0.8 (in the subdiffusive
regime). The corresponding Fourier transforms C̃(ω),
shown in Fig. 2(b) for several tempering times, cross

over from C̃ ∼ ω1−α to C̃ = const just as in the su-

perdiffusive case.

The effects of power-law tempering are more com-
plex than those of exponential tempering, and they dif-

fer between the superdiffusive and subdiffusive regimes.
Let us first consider superdiffusive FBM (1 < α < 2).
In the presence of power-law tempering, the asymptotic

large-n behavior of the noise covariance (5) is given
by Cn ∼ |n|α−2−µ. If α − 2 − µ > −1 (called “weak
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Fig. 1 (a) Covariance Cn of exponentially tempered frac-
tional Gaussian noise with α = 1.2 for different values of
the tempering time t∗. (b) Corresponding Fourier transforms
C̃(ω), representing the power spectra of the noise.
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Fig. 2 (a) Covariance Cn of exponentially tempered frac-
tional Gaussian noise with α = 0.8 for different values of
the tempering time t∗. The time axis in the plot is restricted
to n ≤ 15 to make the negative (anti) correlations clearly vis-
ible. For these n, the curves for all studied tempering times
t∗ coincide. (b) Corresponding Fourier transforms C̃(ω), rep-
resenting the power spectra of the noise.

power-law tempering” in Ref. [53]), the Fourier trans-

form C̃(ω) of the covariance diverges as C̃ ∼ ω1−α+µ

for ω → 0 implying that the power-law correlations are
still relevant [see Fig. 3(a)]. If α − 2 − µ < −1 (called
“strong power-law tempering” in Ref. [53]), the Fourier

transform C̃(ω) of the covariance approaches a constant

for ω → 0 as in the case of uncorrelated disorder.

Let us now turn to the subdiffusive case (0 < α < 1).
The Fourier transform C̃(ω) of untempered fractional

Gaussian noise vanishes for ω → 0 in this regime, re-
flecting the perfect anticorrelations,

∑

n Cn = 0, of the
noise. As any tempering destroys this equality (unless
∑

n Cn is fine tuned to zero), the power spectra of the
tempered noise contain an uncorrelated component re-
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Fig. 3 Power spectrum C̃(ω) of power-law tempered frac-
tional Gaussian noise for different values of the tempering
time t∗. (a) α = 1.5 and µ = 0.3 (b) α = 0.8 and µ = 0.5.

flected in the nonzero low-frequency limit of the Fourier

transform C̃(ω), see Fig. 3(b).

2.3 Reflecting boundaries

Reflecting boundaries that confine the motion of the
diffusing particle can be introduced by modifying the

recursion (2). The fractional Gaussian noise ξn defining

the increments is understood as externally given [56];
it is therefore not modified by the barriers. Different
implementations of the reflecting boundary conditions

and their effects on FBM were studied in Ref. [52]. This

paper demonstrated that details of the wall implemen-
tation are unimportant in the continuum limit. They

influence the behavior only in a narrow spatial region
close to wall (whose size is controlled by the step size
σ).

Here, we define a reflecting boundary at position w

that restricts the motion to x ≥ w by means of the
recursion

xn+1 =

{

xn + ξn if xn + ξn ≥ w
xn otherwise

. (6)

In other words, the particle does not move at all if the
step would take it into the forbidden region x < w. A

reflecting boundary that restricts the motion to x ≤ w

can be defined analogously.

2.4 Simulation details

In our computer simulations we investigate both ex-
ponentially and power-law tempered FBM on a finite

interval of length L with reflecting walls at both ends.
We use anomalous diffusion exponents α ranging from

0.6 (in the subdiffusive regime) to 1.6 (in the superdiffu-

sive regime). The time step is set to ǫ = 1 and K = 1/2
which fixes the variance of the individual increments at
unity, σ2 = 1.

Each simulation employs a large number of particles

(between 20,000 and more than 106), leading to small
statistical errors (characteristic errors will be given in

some of the figure captions). Each particle carries out
up to 226 ≈ 6.7× 107 time steps. These long simulation

times allow us to reach the continuum limit for which
the time discretization becomes unimportant, as was

explained in Sec. 2.1. Consequently, we select interval
lengths that fulfill the condition L/σ ≫ 1. Specifically,
the interval lengths range from L = 500 for the most

subdiffusive α to L = 105 for the most superdiffusive α
values.

The fractional Gaussian noise, i.e., the increments
ξn, are precalculated before each simulation run using

the Fourier-filtering technique [57]. This method starts

from a sequence of independent Gaussian random num-
bers χi of zero mean and unit variance (which are cre-

ated via the Box-Muller transformation from random
numbers produced by the LFSR113 [58] and KISS 2005

[59]) random number generators. The Fourier trans-

form χ̃ω of these numbers is then converted via ξ̃ω =
[C̃(ω)]1/2χ̃ω, where C̃(ω) is the Fourier transform of
the desired covariance function (4) or (5). The inverse

Fourier transformation of the ξ̃ω gives the desired noise
values.

3 Review of fractional Brownian motion with

reflecting walls

The behavior of (untempered) fractional Brownian mo-

tion in the presence of reflecting boundaries has re-
cently attracted considerable attention because large-
scale computer simulations have demonstrated that the

interplay between the long-time correlations of FBM

and the geometric confinement strongly affects the prob-
ability density of the diffusing particles.

In the case of FBM on the semi-infinite interval

(0,∞) with a reflecting wall at the origin, particles
accumulate close to the wall for superdiffusive FBM
(α > 1) whereas they are depleted at the wall for subd-
iffusive FBM (α < 1) [49]. Specifically, the probability

density function P (x, t) of the particle position x at

time t develops a power-law singularity, P ∼ xκ, for
x → 0. Based on extensive numerical data, Wada et al.

[49] conjectured the relation κ = 2/α − 2. Analogous
results were found for biased FBM on a semi-infinite
interval [50].

The properties of FBM confined to a finite interval
by reflecting walls at both ends were studied in Ref.
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[51]. The computer simulations showed that the sta-
tionary probability density depends on the value of the
anomalous diffusion exponent α and differs from the flat
distribution observed for normal diffusion. More specif-

ically, the stationary probability density P (x, L) on the

interval (−L/2, L/2) fulfills the scaling form

P (x, L) =
1

L
Yα(x/L) (7)

in the continuum limit L ≫ σ. Close to the left interval
boundary, the α-dependent scaling function Yα(z) de-

velops a power-law singularity, Yα(z) ∼ (z+1/2)κ gov-
erned by the same exponent κ = 2/α− 2 as the prob-
ability density on the semi-infinite interval [52]. The

behavior near the right interval boundary is analogous.

We emphasize that the accumulation and depletion
of the diffusing particles close to reflecting walls arise
from the nonequilibrium nature of FBM. In contrast,

the fractional Langevin equation, which is driven by
the same fractional Gaussian noise as FBM but ful-

fills the fluctuation-dissipation theorem [60], reaches a

thermal equilibrium stationary state. The correspond-
ing probability density is governed by the Boltzmann
distribution. This implies a flat probability density on

a finite interval with reflecting walls, independent of the
value of α, as was confirmed by computer simulations
of the fractional Langevin equation [61].

We also note that there is an interesting similarity

between the behavior of the probability density close to

a reflecting wall (at position w), P ∼ |x−w|2/α−2, and
the corresponding behavior close to an absorbing wall,

P ∼ |x− w|2/α−1 [43, 44, 48].

4 Results: exponentially tempered fractional

Brownian motion

In this section, we report the computer simulation re-
sults for exponentially tempered FBM, employing the

noise covariance (4), on the interval (−L/2, L/2) with
reflecting boundaries at both ends. The particles start
from the center of the interval, x = 0, at time t = 0.

The simulations proceed until a steady state is reached,

i.e., until the mean-square displacement, the probability
density, and other quantities become time-independent.

To make contact with Ref. [53] where tempered FBM

was introduced, we first discuss the time evolution of

the mean-square displacement 〈x2〉. Figure 4 presents
〈x2〉 as a function of time t for the case of the superdif-

fusive anomalous diffusion exponent α = 1.5 and sev-
eral tempering times t∗. The data clearly reveal three
different time regimes. Initially, for times small com-

pared to the tempering time t∗, the mean-square dis-

placement follows the same anomalous diffusion law

Fig. 4 Mean-square displacement 〈x2〉 vs. time t of exponen-
tially tempered FBM for interval length L = 40, 000, anoma-
lous diffusion exponent α = 1.5, and several values of the
tempering time t∗. The data are averages over 1.2× 106 par-
ticles. The resulting relative statistical error of 〈x2〉 is about
10−3, well below the line width. The dotted line is a fit of the
early-time behavior to 〈x2〉 ∼ tα while the dash-dotted line is
a fit to normal diffusion 〈x2〉 ∼ t.

〈x2〉 ∼ tα as untempered (and unconfined) FBM. When
the time reaches t∗, the mean-square displacement un-
dergoes a sharp crossover to normal diffusion 〈x2〉 ∼ t.

Finally, 〈x2〉 saturates at a time-independent value in-
dicating that a steady state has been reached. (Note

that for a sufficiently large tempering time, 〈x2〉 may

saturate before reaching the crossover to normal dif-
fusion.) The properties of subdiffusive tempered FBM
are completely analogous, as can be seen in Fig. 5 which

presents the time evolution of the mean-square displace-

ment for α = 0.667. We have further confirmed this
behavior by analyzing the cases α = 1.4, 1.2, 0.8 and
0.6.

In the following, we focus on the steady state reached

at sufficiently long times and investigate its probability

density function. Figure 6 presents an overview over the
stationary probability density P (x) for the (superdiffu-
sive) anomalous diffusion exponent α = 1.5 and sev-

eral tempering times t∗. The data show that particles
accumulate close to the wall for all tempering times.
The width of the accumulation region decreases with

decreasing tempering time because the long-time cor-
relations responsible for the accumulation are cut off at

a distance d∗ from the wall, defined by d2
∗
= 2Ktα

∗
. For

positions x outside of the accumulation region of width

d∗, the stationary probability density is constant in
agreement with the normal diffusion behavior at times
beyond t∗. Analogous behavior is observed in the sub-

diffusive case α = 0.667, as illustrated in Fig. 7. Here,
particles are depleted close to the wall for all tempering
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Fig. 9 Log-log plot of the stationary probability density P
vs. the distance x−w from the left reflecting wall (w = −L/2)
for exponentially tempered FBM, interval length L = 40, 000,
anomalous diffusion exponent α = 1.5, and several values of
the tempering time t∗. The data are averages over 217 time
steps for 1.2 × 106 particles. The dotted line is a power-law
fit P ∼ (x−w)κ using the same exponent κ = 2/α−2 = −2/3
as applies to untempered FBM.

power-laws are represented by straight lines) of P near
the left interval boundary (w = −L/2) vs. distance

x − w from the wall for α = 1.5. The probability den-
sities for all tempering times t∗ display power-law be-

havior sufficiently close to the wall (for positions within
their respective accumulation regions). The asymptotic
behavior near the wall can be fitted well by the same

power law, P ∼ (x − w)κ with κ = 2/α − 2 = −2/3,
as holds for untempered FBM. (As all curves become
parallel for small x − w, this power law holds for all

t∗.) The behavior near the right interval boundary is

completely analogous.

Figure 10 presents the same analysis for the sub-
diffusive case of α = 0.667. It demonstrates that the

stationary probability density behaves as a power-law,
P ∼ (x − w)κ with κ = 2/α − 2 = 1, in the depletion
region close to the wall for all tempering times.

5 Results: power-law tempered fractional

Brownian motion

As explained in Sec. 2.2, the properties of power-law
tempered FBM, characterized by the noise covariance
(5), are more complex than those of exponentially tem-

pered FBM. Moreover, superdiffusive and subdiffusive
FBM are affected by the tempering in qualitatively dif-
ferent fashions.

Let us start with the superdiffusive case (1 < α <

2). If the tempering exponent µ fulfills the inequal-
ity α − µ > 1 (weak power-law tempering), the mo-

Fig. 10 Log-log plot of the stationary probability density P
vs. the distance x−w from the left reflecting wall (w = −L/2)
for exponentially tempered FBM, interval length L = 600,
anomalous diffusion exponent α = 0.667, and several values
of the tempering time t∗. The data are averages over 217 time
steps for 1.2 × 106 particles. The dotted line is a power-law
fit P ∼ (x−w)κ using the same exponent κ = 2/α− 2 = 1 as
applies to untempered FBM.
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Fig. 11 Mean-square displacement 〈x2〉 vs. time t of power-
law tempered FBM for interval length L = 105 and several
values of the tempering time t∗. (a) Weak power-law tem-
pering, α = 1.6, µ = 0.3. (b) Strong power-law tempering,
α = 1.6, µ = 0.8 The data are averages over 20,000 parti-
cles. The resulting relative statistical error of 〈x2〉 is about
10−2, well below the line width. The dotted lines are fits of
the early-time behavior to 〈x2〉 ∼ tα. The dashed line is a fit
to 〈x2〉 ∼ tα−µ in panel (a) while it represents a fit to normal
diffusion 〈x2〉 ∼ t in panel (b).

tion crosses over from anomalous diffusion governed

by 〈x2〉 ∼ tα at times t ≪ t∗ to anomalous diffusion

〈x2〉 ∼ tα−µ for times t ≫ t∗ [53]. The behavior of the
mean-square displacement for weakly power-law tem-
pered FBM on a finite interval is illustrated in Fig.

11(a) for α = 1.6 and µ = 0.3. The data demonstrate

two distinct anomalous diffusion regimes with expo-
nents α and α−µ before the mean-square displacement
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Fig. 12 (a) Scaled stationary probability density PL vs.
scaled position x/L of power-law tempered FBM for inter-
val length L = 105, anomalous diffusion exponent α = 1.6,
tempering exponent µ = 0.3, and several values of the tem-
pering time t∗. The data are averages over 225 ≈ 33 million
time steps after the steady state has been reached for 20,000
particles. (b) Log-log plot of the scaled stationary probability
density PL vs. the scaled distance from the wall (x − w)/L.
The dotted line is a power-law fit P ∼ (x−w)κ of the untem-
pered data using κ = 2/α − 2 = −0.75. The dashed line is a
power-law fit of the preasymptotic behavior for t∗ = 24 using
the exponent κ = 2/(α− µ)− 2 ≈ −0.462.

saturates when the particles have spread over the inter-

val. For strong power-law tempering (α − µ < 1), in
contrast, the motion for times t ≫ t∗ is normal diffu-

sion. This can be seen in Fig. 11(b) which presents the

mean-square displacement for α = 1.6 and µ = 0.8.
Note that the crossover from anomalous to normal dif-
fusion is much slower than in the case of exponential
tempering, see Fig. 4.

We now discuss the stationary probability density

for superdiffusive power-law tempered FBM on a finite
interval. Figure 12(a) presents an overview of the sta-
tionary probability density for α = 1.6 and µ = 0.3, i.e.,

for a weak tempering situation. In contrast to the be-
havior of exponentially tempered FBM (see Fig. 6), the
probability density does not become flat away from the
reflecting walls, even for the shortest tempering time

of only t∗ = 24. This reflects the fact that the motion
does not cross over to normal diffusion but remains su-
perdiffusive beyond t∗. Figure 12(b) analyzes the func-

tional form of the probability density P near the re-
flecting wall. The data demonstrate that P follows the

power law P ∼ (x − w)κ with κ = 2/α − 2 asymptoti-
cally close to the wall. Outside the asymptotic region of

width d∗ = (2Ktα
∗
)1/2, the behavior is governed by the

anomalous diffusion exponent α−µ. Assuming that the
condition d∗ ≪ L is fulfilled, we therefore expect a well-

defined preasymptotic region d∗ ≪ x ≪ L in which the
probability density follows a power law P ∼ (x − w)κ,

but with exponent κ = 2/(α− µ)− 2. This behavior is
indeed observed in Fig. 12(b).

We have performed an analogous analysis for the
strongly power-law tempered case of α = 1.6 and µ =
0.8. In agreement with the fact that the motion crosses

over to normal diffusion for times beyond t∗, the prop-
erties of the stationary probability density qualitatively
resemble those of exponentially tempered FBM (Figs. 6

and 9) rather than those of weakly power-law tempered

FBM. Specifically, P follows the power law P ∼ (x−w)κ

with κ = 2/α− 2 asymptotically close to the wall, but
outside of the asymptotic region of width d∗, the prob-

ability density approaches the constant behavior ex-
pected for normal diffusion. As in the case of the mean-
square displacement [Fig. 11(b)], the crossover between

the anomalous and normal diffusion regimes is much
slower than in the exponentially tempered case.

So far, our discussion of power-law tempered FBM
has focused on the superdiffusive case. We now turn to
subdiffusive power-law tempered FBM. The discussion

in Sec. 2.2 emphasized that the subdiffusive behavior of
FBM with α < 1 is the result of the perfect anticorre-
lations of the corresponding fractional Gaussian noise,
encoded in the relation

∑

n Cn = 0 for the noise covari-

ance. This is equivalent to a vanishing of the covari-

ance Fourier component C̃(0). These anticorrelations
are fragile, however, as any modification of the noise

covariance function generically leads to a violation of
the relation

∑

n Cn = 0 unless the covariance is fine

tuned. More specifically, the power-law tempered noise

with covariance (5) violates the perfect anticorrelation
condition for all µ and t∗. Consequently, power-law tem-
pered subdiffusive FBM is expected to cross over from
anomalous diffusion for times below t∗ to normal diffu-

sion at longer times.2

Figure 13(a) presents the time evolution of the mean-

square displacement for α = 0.8, µ = 0.5 and several
t∗; the data confirm this expectation. The (scaled) sta-
tionary probability density for the same stochastic pro-

cesses is presented in Fig. 13(b) which shows that the
probability density P goes to zero at the reflecting wall,
as in the untempered case. Power-law fits demonstrate

that P follows the same asymptotic behavior, P ∼
(x− w)κ with κ = 2/α − 2 as in the untempered case.

Outside the asymptotic region of width d∗ = (2Ktα
∗
)1/2,

P approaches the constant behavior expected for nor-

mal diffusion.

2Naively, one might have expected a crossover between two
anomalous diffusion regimes, characterized by anomalous dif-
fusion exponent values α (for times below t∗) and α− µ (for
times above t∗). Because of the fragility of the anticorrelations
in subdiffusive FBM, this is not the case.
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Fig. 13 (a) Mean-square displacement 〈x2〉 vs. time t of
power-law tempered FBM for α = 0.8, µ = 0.5, interval length
L = 3000 and several values of the tempering time t∗. The
data are averages over 50,000 particles. The dotted line is a
fit of the early-time behavior to 〈x2〉 ∼ tα. The dashed line is
a fit of the behavior after t∗ to normal diffusion 〈x2〉 ∼ t. (b)
Scaled stationary probability density PL vs. scaled position
x/L for the same parameters as in panel (a). The data are
averages over 225 ≈ 33 million time steps after the steady
state has been reached.

6 Conclusions

In summary, we have employed large-scale computer
simulations to study tempered FBM [53], a stochastic
process with long-time power-law correlations that are

cut off at some mesoscopic time scale, the tempering
time t∗. Specifically, we have analyzed the behavior of
tempered FBM confined to a finite one-dimensional in-

terval by means of reflecting walls in order to under-
stand how the tempering of the correlations affects the

unusual accumulation and depletion effects recently ob-

served for (untempered) reflected FBM.

The motion of particles that start at the center of

the interval features three distinct time regimes (assum-

ing the interval length is sufficiently large and/or the
tempering time is sufficiently small). At times below t∗,

the particles spread exactly as they would for untem-
pered FBM. Beyond t∗, the particles continue to spread
but the motion changes qualitatively due to the cutoff

of the correlations. At the longest times, when the par-

ticles have spread over the entire interval, the particle
distribution reaches a stationary state.

The character of the stochastic process beyond t∗
depends on the type of the tempering. For a hard ex-
ponential cutoff of the correlations, the motion crosses

over to normal diffusion. For the softer power-law tem-
pering, the behavior is more complex and depends on
the values of α and µ. The motion beyond t∗ is of nor-

mal diffusion type if the underlying FBM is either su-
perdiffusive with α − µ < 1 or subdiffusive (for any

subdiffusive α and µ > 0). For superdiffusive power-law

tempered FBM with α − µ > 1, in contrast, the mo-
tion beyond t∗ is anomalous diffusion with a reduced
anomalous diffusion exponent value of α− µ.

The main focus of the present paper has been on
the stationary probability density that the stochastic
process reaches after sufficiently long times. Our simu-

lation results demonstrate that tempered FBM features

the same accumulation and depletion effects close to a
reflecting wall as untempered FBM. More specifically,

particles accumulate near the wall in the superdiffusive
case but are depleted at the wall in the subdiffusive
case. Asymptotically close to the wall, the functional

form of the stationary probability density of tempered

FBM is governed by the same power-law singularity
P ∼ (x − w)κ with κ = 2/α − 2 as untempered FBM
(x − w represents the distance from the wall). How-

ever, due to the cutoff of the correlations, this power-
law behavior is restricted to a region of finite width
d∗ = (2Ktα

∗
)1/2 near the wall. Outside of this region,

the probability density becomes flat in the cases where
the motion beyond t∗ is of normal diffusion type. The

most interesting case occurs for superdiffusive power-
law tempered FBM with α − µ > 1. Here, the prob-

ability density features two power-law regimes with κ
values κ = 2/α − 2 (asymptotically close to the wall)

and κ = 2/(α− µ)− 2 (for d∗ ≪ |x− w| ≪ L).

We also found that the tempering of the correlations
introduces the new length scale d∗ and thus leads to the
generalized scaling form (8) of the stationary probabil-

ity density. Our numerical data fulfill this scaling form
with high accuracy.

Let us now put our results into a broader perspec-

tive. In the present work we have considered tempered
FBM confined to a finite interval by two reflecting walls.
Instead, one could also consider a situation with only

a single reflecting wall and introduce a bias (nonzero
mean of the increments) towards the wall as was done

for untempered FBM in Ref. [50]. We expect that the

behavior of such a system close to the wall is quali-
tatively identical to the behavior found in the present
paper.

It is also interesting to consider a generalized Lange-
vin equation driven by the same tempered fractional
Gaussian noise as the tempered FBM studied in the

present paper [53]. A key question is whether the prob-

ability density of such a Langevin equation confined to a
finite interval also shows accumulation and or depletion
effects close to the confining walls. If the generalized

Langevin equation fulfills the fluctuation-dissipation the-

orem (which connects the noise covariance and the damp-
ing kernel), the stationary state is expected to be a

thermal equilibrium state which has a flat probabil-
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ity density independent of the values of α and µ. (For
the untempered fractional Langevin equation, this ab-
sence of accumulation and depletion effects was recently
observed in simulations [61].) This highlights that the

nonequilibrium nature of FBM (tempered or untem-

pered) is responsible for the accumulation and deple-
tion effects near a reflecting wall.

We emphasize that the notion of tempering the frac-
tional Gaussian noise, as introduced in Ref. [53] and em-
ployed in the present paper, differs fundamentally from

a model proposed by Meerschaert and Sabzikar [54] in
which exponential tempering factors are introduced di-
rectly into Mandelbrot’s definition [17] of FBM. That
process does not describe the crossover from anomalous

diffusion to normal diffusion. Instead, its mean-square
displacement approaches a constant in the long-time
limit, i.e., it describes a confined motion [53, 62]. A

Langevin equation driven by the corresponding noise
leads to ballistic long-time behavior, very different from

the processes considered in the present paper.
Finally, we point out that the tempering of the cor-

relations provides a powerful tool in applications in
which a stochastic process is used to model experimen-

tal data. For example, FBM was recently put forward

as a model to explain the spatial distribution of sero-
tonergic fibers in vertebrate brains [24, 25]. Despite the
limited “neurobiological input”, the model captures im-

portant aspects of the highly nonuniform distributions

of these fibers throughout the brain. Tempering will
permit further refinements of the model to better rep-
resent the observed fiber densities. We expect similar

advantages in many other applications.

Acknowledgements This work was supported in part by
a Cottrell SEED award from Research Corporation and by
the National Science Foundation under Grant Nos. DMR-
1828489 and OAC-1919789. The simulations were performed
on the Pegasus and Foundry clusters at Missouri S&T. We
acknowledge helpful discussions with Ralf Metzler and Skir-
mantas Janusonis.

Author Contribution Statement T.V. conceived and coor-
dinated the study. Z.M. and S.H. performed the computer
simulations and analyzed the data. Z.M. and T.V. created
the figures. T.V. wrote the manuscript.

References

1. A. Einstein, Investigations on the Theory of the Brownian

Movement (Dover, New York, 1956).
2. P. Langevin, C. R. Acad. Sci. Paris 146, 530 (1908).
3. M. von Smoluchowski, Z. Phys. Chem. 92U, 129 (1918).
4. B. Hughes, Random Walks and Random Environments,

Volume 1: Random Walks (Oxford University Press, Ox-
ford, 1995).

5. J.-P. Bouchaud and A. Georges, Physics Reports 195,
127 (1990).

6. R. Metzler and J. Klafter, Physics Reports 339, 1 (2000).
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