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Abstract
We expand methods for estimating an optimal treatment regime (OTR) from the per-
sonalized medicine literature to educational data mining applications. As part of this 
development, we detail and modify the current state-of-the-art, assess the efficacy of 
the approaches for student success studies, and provide practitioners the machinery 
to apply the methods in their specific problems. Our particular interest is to esti-
mate an optimal treatment regime for students enrolled in an introductory statistics 
course at San Diego State University (SDSU). The available treatments are combi-
nations of three programs SDSU implemented to foster student success in this large 
enrollment, bottleneck STEM course. We leverage tree-based reinforcement learn-
ing approaches based on either an inverse probability-weighted purity measure or an 
augmented probability-weighted purity measure. The thereby deduced OTR prom-
ises to significantly increase the average grade in the introductory course and also 
reveals the need for program recommendations to students as only very few, on their 
own, selected their optimal treatment.
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1  Introduction

In recent years, the strongly increasing availability of data on students made it 
possible for universities to assess their programs to aid student success through 
data-informed advising. One important field of assessment is for instance the esti-
mation of treatment effects to study the efficacy of implemented programs. To 
this end, various methods have been deployed. We will mention just two that set 
up the methodological underpinnings for this paper. Spoon et  al. (2016) lever-
ages random forests to estimate the impact of supplemental instruction on student 
success in introductory statistics courses at San Diego State University (SDSU). 
Another widely applied method is propensity score matching as Powell et  al. 
(2020) demonstrates to estimate the effect of changing the curriculum for a math 
course on student success.

In this paper, we bring—to our knowledge for the first time—the concept of 
optimal treatment regimes (OTR) from the personalized medicine literature to the 
educational data mining community to take the analysis from assessing programs 
to recommending programs. Loosely speaking, an OTR is a decision rule which 
recommends for every individual a treatment such that the mean potential out-
come of the population is maximized. With respect to student success programs, 
our application considers performance in a specific course with the treatment 
regime including subject-specific one-on-one or small group tutoring, a Supple-
mental Instruction program, and an optional course-specific recitation class. A 
recommendation is relevant from a student’s perspective, as students—especially 
those who are new to university—might struggle to decide which suite of stu-
dent success programs is optimal for them. A recommendation is important from 
the university’s perspective as it facilitates the efficient allocation of resources to 
those who need the programs and thereby potentially raising the success rate in 
this specific course. We will find such an OTR for students attending a bottleneck 
introductory statistics course at San Diego State University.

In recent years, various methods to estimate OTRs have been explored in the 
personalized medicine literature. To make our review of these approaches more 
comprehensible at this point in the paper, we consider the following example. A 
university offers a small number of tutoring hours per week to students enrolled 
in an introductory math course. To ensure that those tutoring hours are allocated 
to the students who need them most, the university conducts an analysis of data 
collected for the same math course in the previous semesters. The data include 
grade point average (GPA), age, tutoring attendance indicator, and the final course 
grade for every student in the math course. In the context of treatment regimes, 
there are two treatments available for every student in this example: whether the 
student shall attend tutoring or not.

Of importance, all following OTR approaches rely inherently on estimating the 
subgroup effects of the available treatments and interaction effects between stu-
dents’ characteristics and treatments on the grade via an outcome model such as 
a linear regression. If not, we would simply recommend for all students the treat-
ment with the highest subgroup effect as optimal.
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An intuitive first approach to identify optimal treatment regimes in our example is 
proposed by Qian and Murphy (2011): we predict the course grade with a regression 
model on the student characteristics, e.g., GPA and age, the chosen treatment, and 
interactions between characteristics and treatment. For a new student, the approach 
predicts a course grade for every treatment and estimates the OTR for this student 
as the one with the higher predicted course grade. To avoid overfitting, Qian and 
Murphy (2011) leverages a l1-penalized regression. One drawback of this method, 
as Zhao et al. (2012) points out, is that this approach will likely yield a sub-optimal 
treatment regime if the regression model is misspecified.

Zhao et  al. (2012) proposes a new method which formulates the problem as a 
misclassification problem and solves it by their Outcome Weighted Learning (OWL) 
approach. In our example, this method would predict whether the student attended 
tutoring or not for every student in the dataset based on their GPA and age. Each 
time the prediction is wrong, this error would be weighted by the outcome. Sum-
ming over all students yields then the total weighted classification error. The OTR is 
then defined as the treatment regime which minimizes that classification error. We 
refer readers, who find solving the OTR problem within a classification framework 
unintuitive, to Lemma 1 in the next section where we dwell on this further. Using 
non-parametric methods such as support vector machines to predict the treatment, 
their approach is robust compared to the one of Qian and Murphy (2011). How-
ever, the approach of Zhao et  al. (2012) is formulated only for binary treatments, 
i.e., when there are only two treatments available. In our experience, we find that 
students often can choose from more than two treatment options, in particular our 
application identifying an OTR of student success programs for an introductory sta-
tistics course.

Another approach introduced by Tao and Wang (2017) called Adaptive Contrast 
Weighted Learning (ACWL) also perceives the estimation of the OTR as a misclas-
sification problem. Tao and Wang (2017) estimates the OTR as the treatment regime 
which either minimizes the maximal (denoted as ACWL-C1 ) or minimal (denoted 
as ACWL-C2 ) expected loss if the subjects are assigned to a sub-optimal treatment, 
i.e., are misclassified. Applied to our example, we first predict a grade for every 
treatment for every student in the dataset. The method then assigns the treatment to 
the students which minimizes the respective loss for the whole student population 
if they were to be assigned a sub-optimal treatment. To make the grade prediction 
robust against misspecification of the model for the grade, Tao and Wang (2017) uti-
lizes a so-called Augmented Inverse Probability-Weighted (AIPW) estimator for the 
grade. Their simulation study indicates that thereby the accuracy of the OTR estima-
tion increases significantly.

We note that the two previous mentioned approaches both leverage methods 
which might resemble a “black box” to practitioners. In our example, the director 
of the tutoring center might be reluctant to exclude students from tutoring merely 
based on an OTR estimated by a misclassification error, a quantification that may be 
hard to grasp intuitively, or hard to justify to advisors and university administrators. 
To address this issue, Laber and Zhao (2015) introduces a novel tree-based rein-
forcement learning approach. The analysis leads to treatment regimes representable 
as a decision tree whose interpretability is widely appreciated. Those trees assign 
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treatments based on splits of the predictor space. In our example, this decision tree 
might recommend to assign tutoring hours just to students with a GPA of at most 3.5 
as displayed in Fig. 1. To determine which split is optimal, i.e., which variable to use 
and which value shall be the split threshold, Laber and Zhao (2015) develops a new 
purity measure which assesses the optimality of the respective tree split. This meas-
ure, however, suffers from instability in certain circumstances, and we shall address 
these later. To this end, Tao et al. (2018) introduces a new, more robust purity meas-
ure based on the AIPW estimator developed in Tao and Wang (2017). Our contribu-
tion to the literature is threefold: first, we extend the latter two approaches to esti-
mate OTR in an educational setting, including a study of their efficacy therein and 
considering of regression and random forest implementations not previously consid-
ered; second, we flush out details we found lacking in the literature and step through 
our R code (in the appendix) for practitioners to apply these approaches and make 
data-informed decisions relative to the OTR; third, we present, to our knowledge, 
the first quantitative analysis of potentially optimal combinations of Supplemental 
Instruction programs and Mathematics tutoring center visits for success in a core, 
bottleneck introductory STEM course.

The remaining parts of the paper are organized as follows. First, we define in 
mathematical terms what is meant precisely by an OTR and review the two methods 
developed by Laber and Zhao (2015) and Tao et al. (2018), respectively. Second, we 
show results of a simulation—where the OTR will be known—to scrutinize the per-
formance of the two methods and their advantages and drawbacks. Finally, we apply 
the methods to determine an optimal “treatment cocktail” of Supplemental Instruc-
tion, Statistics tutoring, and Statistics recitation sections, all voluntarily chosen by 

Fig. 1   Example tree with a split at an GPA of 3.5.
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students, for success in a large enrollment introductory statistics course. We also 
discuss the implications therein and more generally for estimating OTR of student 
success programs.

2 � Methodology

To formalize the OTR problem, we consider a population with n individuals. 
For each individual, we record p characteristics in a vector X = xi ∈ ℝ

p where 
i = 1,… , n . In addition, there are m treatments A1,… ,Am ∈ A for each member of 
the population available where A denotes the set of all treatments. In this paper, 
we will consider only discrete treatments. A treatment regime � is a function which 
assigns a treatment to each individual depending on its characteristics X = xi , that is

Note that � has no index i as the treatment regime is for all members of the popula-
tion identically. The potential outcome for an individual i with characteristics X = xi 
under the treatment regime is then denoted as Y∗{�(xi)} . Hence, we define an opti-
mal treatment regime �opt as follows:

Definition 1  We call a treatment regime �opt optimal if it satisfies

where � denotes the class of all treatment regimes (Laber and Zhao 2015).

This definition reveals one major challenge in estimating the OTR: we neither 
observe the OTR nor the potential outcomes for all possible treatments as an indi-
vidual can only be given one treatment. Hence, estimating the OTR directly proves 
difficult. Instead, we deduce a link between the potential and the observed outcomes 
to eventually use reinforcement learning-based decision trees to estimate the OTR.

Traditionally, decision trees are used for classification or regression problems 
where the quantity of interest is observed. For instance, you will observe the cor-
rect label Y = y in a classification problem given certain characteristics X = x and 
you can train your tree on these data. Yet, this does not hold when you estimate an 
OTR. To exemplify how we leverage the decision tree, nevertheless, we consider our 
example from the introduction with merely two treatments, i.e., whether the student 
shall attend tutoring or not. Identifying the treatment no tutoring with 0 and tutor-
ing with 1, the set of possible treatments is A = {0, 1} . Basically, a decision tree is a 
segmentation of the predictor space ℝp of X. And so is the OTR �opt . The OTR will 
divide the predictor space into two regions

where students shall attend tutoring, i.e., A = 1 and in a region

� ∶ ℝ
p
→ A, xi ↦ �(xi).

(1)�opt = arg max�∈��[Y∗{�(X)}],

R
opt

1
= {x ∈ ℝ|�opt(x) = 1}
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where students are not recommended to attend tutoring, i.e., A = 0 . The regions are 
also referred to as rectangular regions or nodes. Hence, if we find a tree which—
with the help of multiple splits based on certain characteristics—partitions the pre-
dictor space in the same way as the OTR does, we have found the OTR. The split of 
the predictor space associated with the tree in our example in Fig. 1 is displayed in 
Fig. 2 where every point represents a fictional student with the respective GPA and 
age. Based on a split at a GPA of 3.5, the tree partitions the predictor space into the 
rectangular region R0 where students shall not attend tutoring and R1 where stu-
dents shall attend tutoring.

To estimate the OTR, we want to approximate the rectangular regions Ropt

0
 and 

R
opt

1
 for each split better or, as it is termed in the literature, to maximize our node 

purity. The notion of purity refers to a decision tree’s goal of partioning the data 
into homogeneous groups. We will develop a purity measure in the next section.

2.1 � Inverse probability‑weighted purity measure

In this paper, we estimate the OTR for observational studies. Consequently, treat-
ments in our sample data are not assigned but chosen by each individual. For 
every member of the sample, we record the individual’s characteristic Xi = xi , the 
treatment Ai = ai the individual chose, and the observed outcome Yi = yi under 
Ai = ai , where i = 1,… , n is our sample size. We assume that our observations 
are independent and drawn from the same distribution, i.e., (Xi,Ai, Yi) are i.i.d. 
To be able to identify for each individual i with treatment a its potential outcome 
Y∗(a) , we assume that the following holds:

Assumption 1  (Stable unit treatment value) For every individual i, j = 1,… , n and 
treatment a ∈ A , it holds

R
opt

0
= ℝ

p�R1 = {x ∈ ℝ|�opt(x) = 0},

Fig. 2   Rectangular region splits into two rectangles R
0
 and R

1
 based on a GPA of 3.5.
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	 (i)	 that there are no spill-over effects, i. e. the potential outcome of individual 
i with treatment a is not contingent on which treatment individual j, j ≠ i , 
received; and

	 (ii)	 that there are no different versions of treatment a

(Rubin 1980).
This is a standard assumption for causal inference. The two SUTVA implica-

tions might be violated in an educational environment for example if students work 
together or classes are taught by different teachers of varying quality. For the first 
implication, we thus must assume that there are no spill-over effects. The second 
implication should hold in our study as each treatment followed a strict template for 
instructional design and curricular content. The interested reader is referred to Sobel 
(2006) or VanderWeele and Hernan (2013) for causal inference if one of the impli-
cations does not hold.

It is important to understand that the observed outcome Y and the potential out-
come Y∗ are not necessarily the same. The potential outcome for an individual is the 
outcome which is realized under a specific treatment. Consequently, each treatment 
yields its own potential outcome. Yet, we assume with the following consistency 
assumption that we observe one of the potential outcomes:

Assumption 2  (Consistency) The observed outcome is the potential outcome that 
would be observed under the treatment received, that is

(Robins 1986).

To use our data for the estimation, we need two additional assumptions that are 
typically made for drawing causal inferences in observational studies. The first deals 
with the relationship between the potential outcome and the treatment:

Assumption 3  (Strong ignorability) All potential outcomes {Y∗(a), a ∈ A} are, con-
ditioned on X, marginally independent from A (Gill and Robins 2001).

Assumption 3 means that in X, every necessary information for assigning treat-
ments is observed, i.e., there are no confounding variables. Note that for observa-
tional studies, this assumption is unverifiable as mentioned by Zhang et al. (2012). 
In our student success studies, we thus must assume that we have collected enough 
student characteristics that there are no confounding variables remaining. We note 
that research on variables correlated to student success in higher education might 
help to collect relevant variables to assure that this assumption is reasonable. The 
interested reader is referred to Schneider and Preckel (2017) for a comprehen-
sive literature review and a list of over a hundred variables like High School GPA 
(HSGPA) or socio-economic status which will be used in our study. We also note 
that in a study design, one should ensure to measure variables which are specific 
to potential student struggles in the scrutinized course, and not just connected to 

Y = Y∗(A)
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academic achievement in general. For example, a student who performs well overall 
might nevertheless struggle with a statistics course.

The last necessary assumption requires that it is possible for every individual to 
choose any treatment option a ∈ A:

Assumption 4  (Positivity) There exists an 𝜖 > 0 , such that P{A = a|X} ≥ � with 
probability 1 for all treatments a ∈ A (Gill and Robins 2001).

Assumption 4 requires that every student has a chance to attend any student suc-
cess program. This assumption is reasonable in our study as Supplemental Instruc-
tion, Statistics tutoring, and the Statistics recitation class are available to all stu-
dents; students may attend any or all. Note that if treatments are assigned randomly, 
Assumptions 3 and 4 are automatically satisfied.

Equipped with these assumptions, we reformulate the definition of the OTR:

Lemma 1  If Assumptions 1 through 4 hold, we have

Note that the proof is included in the appendix. Lemma  1 expresses the OTR 
in terms of the observed outcome Y as prefigured in the beginning of this section. 
The probability p�(X) ∶= P{A = �(X)|X} of choosing the treatment assigned by the 
treatment regime given certain characteristics is called the propensity score. Rosen-
baum and Rubin (1983) shows that propensity scores help to account for self-selec-
tion bias in observational studies.

Equation  (2) can be perceived as a weighted classification problem. Each time, 
a treatment regime � assigns the observed treatment to an individual, i.e., classifies 
it correctly, it is weighted with the quotient of the observed outcome and the pro-
pensity score. The optimal treatment regime is then the one which maximizes this 
reward.

In a next step, we set out to minimize the variance of our OTR estimation. We 
prove in the appendix that substituting Y − g(X) for Y in (2) still leads to the OTR, 
for any function g. In addition, Laber and Zhao (2015) shows that by choosing 
g(X) = �[Y|X,A = 𝜋̄] for any treatment regime 𝜋̄ , the thereby obtained expectation 
can be estimated with minimal variance. As we are aiming at the OTR, it is natural 
that we choose the treatment regime 𝜋̄ to be the optimal treatment regime �opt . This 
leads us to the estimator

where m(xi) ∶= �[Y|X = xi,A = �opt(xi)] denotes the conditional mean outcome 
of student i under the OTR given their characteristics x, whereas yi is the student’s 
observed outcome. To obtain m̂(x) , we estimate for all treatment options a ∈ A and 

(2)�opt(X) = arg max�∈��

[
Y

P{A = �(X)|X}1{A=�(X)}

]
.

(3)
1

n

n∑
i=1

{yi − m̂(xi)}1{ai=𝜋(xi)}

p𝜋(xi)
,
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all characteristics X = x the conditional mean outcome �a(x) = �[Y|X = x,A = a] . 
We then set m̂(x) = maxa∈A𝜇̂a(x).

The estimator in Eq. (3) lays the foundation for the purity measure of our tree 
growing algorithm. Denote the treatment rule which assigns treatment a to all indi-
viduals with characteristics x in some arbitrary rectangle r and treatment a′ other-
wise with �r,a,a′ . Then, the purity of the split of the rectangular region R according 
to that treatment rule is measured as follows:

where n denotes our sample size. The numerator is basically inherited from Eq. 
(3). Note that the indicator function 1{xi∈R} ensures that the purity is estimated only 
based on students in the rectangular region R which we would like to split. The 
denominator is introduced to stabilize the purity measure in case that the assigned 
treatment is not often observed for the subjects in the node to split. As multiple 
treatment assignments a and a′ are conceivable for each split, the combination which 
maximizes the estimator in (4) is identified as the purity associated to that split.

Note that the purity measure does not necessarily lead to an OTR according to 
Definition 1 as it finds only the OTR for each individual node; this point is criticized 
by Doubleday et al. (2018). Another drawback of the purity measure defined in (4) 
is specific to observational studies. As individuals assign themselves the treatment 
they receive, we do not know the probability that they will choose a certain treat-
ment a based on their characteristics. Hence, we need to estimate the propensity 
scores pa . As Tao et  al. (2018) points out, this makes the purity measure vulner-
able to misspecification of the propensity score model. Therefore, they introduced a 
so-called augmented inverse probability-weighted (AIPW) purity measure which we 
will detail in the next section.

2.2 � Augmented inverse probability‑weighted purity measure

Tao et  al. (2018) proposes to use the estimator developed by Bang and Robins 
(2005)

for the mean of the potential outcomes �{Y∗(a)} where p̂a(xi) denotes the estimated 
propensity score and 𝜇a(xi) denotes the estimator of the conditional mean outcome 
given characteristics xi and treatment a. The first summand in Eq. (5) is drawn from 
the expectation in Lemma 1. The second one can be thought of as a stabilizer for 
students in our dataset where the observed treatment ai is not the treatment a we 

(4)

P
LZ(R, r) =maxa,a�∈A

{
n∑
i=1

{yi − m̂(xi)}1{xi∈R}1{ai=𝜋r,a,a� (xi)}

p𝜋r,a,a� (xi)

}

⋅

{
n∑
i=1

1{xi∈R}1{ai=𝜋r,a,a� (xi)}

p𝜋r,a,a� (xi)

}−1

,

(5)�̂{Y∗(a)} =
1

n

n∑
i=1

𝜇̂AIPW
i,a

(xi) =
1

n

n∑
i=1

yi ⋅ 1{ai=a}

p̂a(xi)
+

(
1 −

1{ai=a}

p̂a(xi)

)
𝜇a(xi)
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would like to estimate the potential mean outcome for. In this case, the first sum-
mand in (5) vanishes as 1{ai=a}

= 0 . Instead, the estimated conditional mean out-
come 𝜇̂a is taken into account for this student.

Of importance, Tao et al. (2018) shows that if either the propensity score model 
pa(X) or the conditional mean model �a(X) is correctly specified, �̂{Y∗(a)} in (5) is 
a consistent estimator of �{Y∗(a)} , a desired result as the sample size increases.

Based on this estimator, Tao et al. (2018) proposes the following purity measure:

Like the purity measure PLZ , PTao identifies the combination of treatments a1 and 
a2 which maximizes the estimator in (6) as the purity associated to the respective 
split. Summing over all treatment options a ∈ A ensures that we merely consider 
the AIPW estimator of the conditional mean outcome given the assigned treatment 
under the candidate treatment regime. Consequently, the purity measure PTao aver-
ages the respective AIPW estimator for the respective treatment for every student in 
the rectangular region R , which is a consistent estimator of �[Y∗{�(X)}] . Equipped 
with the two purity measures, we will elaborate on how to grow a tree in the next 
section.

2.3 � Growing a tree

Consider a rectangular region R like displayed in Fig.  2 which we would like to 
split. Of course, we set out to find the split which is the most pure in terms of our 
purity measures. Yet, as our purity measures become more instable for smaller 
nodes—especially in the case of PLZ in (4) where we omit observations when they 
do not exhibit a compatible treatment—we impose a minimum node size � to even 
consider a split with the following two rules:

Rule 1  If the number of observations in our sample which fall into the rectangular 
region R only allows for child nodes which undercut a minimum node size of � , i.e. ∑n

i=1
1{xi∈R} < 2𝛾 , do not split (Tao et al. 2018).

Rule 2  If every possible split yields a child node with size smaller than the minimum 
node size � , we do not split the node (Tao et al. 2018).

However, this is not enough to split the rectangular region R for sure. With each 
split, not only our purity increases but our tree complexity as well. An increased 
complexity potentially deteriorates our tree’s interpretability and lets the tree resem-
ble a black-box to practitioners. We introduce two rules to address this issue. First, 
we set a maximum depth, i.e., the maximum number of layers for a tree:

Rule 3  If a pre-defined maximum tree depth is attained, the tree growing is stopped 
(Tao et al. 2018).

(6)P
Tao(R, r) = maxa1,a2∈A

1

n

n∑
i=1

∑
a∈A

𝜇̂AIPW
i,a

(xi)1{𝜋r,a1,a2
(xi)=a}

1{xi∈R}.
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Furthermore, we define a minimum purity gain at which we are willing to tol-
erate the disadvantages of a more complex tree:

Rule 4  If the number of observations in the rectangular region exceeds 2� and the 
maximum depth of the tree is not attained yet, compute the rectangle r which is asso-
ciated with the maximal purity split. If the purity gain exceeds a pre-defined thresh-
old 𝜆 > 0 , i.e., P(R, r) ≥ P(R) ⋅ (1 + �) , then split the rectangular region R into the 
rectangle r and its complement rc , otherwise do not split (Tao et al. 2018).

There is no consensus in the literature on how to choose the minimum purity 
gain � . Laber and Zhao (2015) proposes to define � by expert judgement to grow 
a tree and later prune it back using another purity threshold estimated by a cross-
validation approach. However, Tao et  al. (2018) suggests to directly estimate � 
via maximizing the tenfold cross-validation estimator of the mean of the potential 
outcomes, which we will elaborate on in the next section. But first, we will sum-
marize the outlined steps in an algorithm.

To compute the purity measures PLZ in (4) or PTao in (6), we need to find esti-
mates for the propensity scores p̂a(xi) and for the conditional mean outcomes 
𝜇̂a(xi) s. Our algorithm estimates the propensity scores via multinomial regression 
and the conditional mean outcomes either using random forest or linear regres-
sion. All estimates are based on the full data. This yields the following algorithm:  

Step 1 Set values for the minimum purity gain � , the minimum node size � , 
and the maximum tree depth.

Step 2 Obtain estimates for propensity scores p̂ and conditional mean out-
comes 𝜇̂a.

Step 3 Compute either m̂(xi) for any individual i for the Laber and Zhao (2015) 
approach or 𝜇̂AIPW

i,a
(xi) for a ∈ A and i = 1,… , n for the Tao et al. (2018) approach 

and set l = 1.
Step 4 At every rectangle Rl , check the four Rules 1 to 4. If any of them is sat-

isfied, do not split. If l = 1 , find the best single treatment for all subjects in Rl by

for the Laber and Zhao (2015) approach or

for the Tao et al. (2018) approach.
Otherwise, compute the rectangle r which is associated with the maximal 

purity split using purity measure PLZ in (4) or PTao in (6) and split the rectangular 
region Rl into r and rc.

Step 5 Set l = l + 1 and repeat Step 4 until all nodes are terminal.

argmaxa∈A

{
n∑
i=1

{yi − m̂(xi)}1{xi∈Rl}
1{ai=a}

p̂a(xi)

}
⋅

{
n∑
i=1

1{xi∈Rl}
1{ai=a}

p̂a(xi)

}−1

arg maxa∈A
1

n

n∑
i=1

𝜇̂AIPW
i,a

(xi)1{xi∈Rl}
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3 � Simulation study

In reality, we do not know what treatment is optimal for a subject. We only observe 
the treatment choice of the individual and the associated outcome. This makes 
assessing the performance of the introduced methods for real-world problems 
impossible. However, in this section, we conduct a simulation study in which we do 
know the underlying structure of the outcome. This equips us with knowledge about 
the optimal treatment regime (OTR). In this case, an intuitive performance measure 
of our methods is the percentage of correctly assigned OTRs which we denote by 
opt%. To test the stability of the methods, we misspecify the models for the propen-
sity score p̂ and the conditional mean outcome �a . This section illustrates the imple-
mentation of this approach for which we utilized version 3.6.3 of R as the program-
ming software R Core Team (2020). The interested reader can find further details 
and an example in Appendix B.

Our approach for the simulation study is partly based on Tao et al. (2018). We 
simulate two data sets. The first dataset contains five covariates X1,… ,X5 which 
are all normally distributed with mean zero and variance one. The second data-
set consists of 21 covariates where the first ten covariates are independently nor-
mally distributed with mean zero and variance one. The normal distributions 
in both models represent continuous variables one sees in practice. We did not 
directly model them after our particular application to ensure that our simula-
tion results do apply in a more general practice. Ten covariates are Bernoulli dis-
tributed, i.e., X

11
,…X

14
∼ Ber(0.25); X

15
, X

16
∼ Ber(0.4); X

17
∼ Ber(0.1); X

18

∼ Ber(0.3); X
19

∼ Ber(0.6); and X20 ∼ Ber(0.8) . The success probabilities were cho-
sen to be akin to those of one of the empirical distributions of the binary variables in 
our application. The remaining covariate X21 is an unordered factor variable with six 
levels where the levels are attained with the probabilities

The probabilities are chosen, so that they resemble the empirical distribution of the 
GPA variables in our application later. In each dataset, there are three treatments 
available, i.e., the set of all treatments is A = {0, 1, 2} . The probability that a certain 
treatment is observed given the characteristics X is determined by

P(X21 = i) =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

0.31 if i = 1

0.41 if i = 2

0.16 if i = 3

0.04 if i = 4

0.07 if i = 5

0.01 if i = 6.

(7)P{A = 0|X} =
(
1 + e0.5X1+0.5X4 + e−0.5X1+0.5X5

)−1
,

(8)P{A = 1|X} = e0.5X1+0.5X4
⋅

(
1 + e0.5X1+0.5X4 + e−0.5X1+0.5X5

)−1
,
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We define our underlying OTR to be

For our first dataset, we generate the associated observed outcome given the charac-
teristics X, the simulated treatment A, and the defined OTR �opt by

For our second dataset, we utilize a more sophisticated model for generating the 
outcome

The random variable � in Eqs. (11) and (12) follows a standard normal distribution.
For both models, we are also interested in the potential mean outcome 

�[Y∗{�opt(X)}] . In the first model, it can be shown by an easy computation that 
the mean equals two in this case. For the second model, it is possible to deduce a 
mean of 2.25 theoretically by leveraging the symmetry of the sine function with 
respect to the origin and the independence of the normal variates.

To test our approach’s robustness against misspecification of the model for 
propensity scores p̂ , we consider two models. The first one includes every covari-
ate which influences the probability of treatment choice and is therefore correctly 
specified as 

The second one includes only X2 and X3 which do not determine the probability of 
treatment choice. The model is therefore misspecified as 

To check the sensitivity regarding the choice of model for the conditional mean 
outcome �a = �[Y|X,A = a] , we will consider both linear regression-based and 
random forest-based estimation procedures which we will misspecify by omitting 
the fourth covariate X4 . By considering linear regression (REG) and random forest 
(RF), we check the sensitivity of our approaches regarding the statistical procedure 
to estimate �a , and an aspect Tao et al. (2018) and Laber and Zhao (2015) did not 
consider. They used either linear regression or random forest respectively.

(9)P{A = 2|X} = 1 − P{A = 0|X} − P{A = 1|X}.

(10)𝜋opt(X) =

⎧
⎪⎨⎪⎩

0 ifX1 ≤ 0,X2 ≤ 0.5

2 ifX1 > 0,X3 ≤ 0.5

1 otherwise.

(11)
Y = 0.79 + X4 + X5 + 21{A=0}(21{�opt(X)=0} − 1)

+ 1.51{A=2}(21{�opt(X)=2} − 1) + �.

(12)
Y = 0.79 + X4 + X5 + sin(X8) + X12 + X6 ⋅ X7 + 21{A=0}(21{�opt(X)=0} − 1)

+ 1.51{A=2}(21{�opt(X)=2} − 1) + �.

log(pd∕p0) = �0d + �1dX1 + �2dX4 + �3dX5, d = 1, 2.

log(pd∕p0) = �0d + �1dX2 + �2dX3, d = 1, 2.
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We set the minimal node size � to 5% of all data points in our training set and the 
maximal depth of the tree equals 5 as Tao et al. (2018) proposes in their simulation 
approach.

Finally, to perform the algorithm in Sect. 2, we need to choose the required mini-
mum purity gain � for a split to be performed. Following the approach of Tao et al. 
(2018), we divide a dataset of 1000 simulations of the model in (11) ten times ran-
domly in ten subsets for every � we seek to evaluate. For each repetition j, we use 
nine of them to estimate the tree using the purity measure PTao in Eq. (6). For the 
remaining subset, we predict with the estimated tree the respective OTR for each 
observation. We then estimate the mean potential outcome �[Y∗(𝜋̂opt)] via Eq. (5). 
Finally, we average the thereby acquired values to get an average mean potential 
outcome associated with each � value. Consequently, we choose the � which yields 
the highest mean on average. This approach yields an optimal � of 0.02—for which 
we could reproduce the results in the first simulation study of Tao et al. (2018)—as 
a required minimal purity gain at each step. We set this � for both models to make 
sure that performance differences can only be attributed to the different models and 
not to a different �.

The results of the next section are based on training datasets of size 1000 and on 
test datasets of size 500. We repeated the simulation 500 times. For every simulation 
run, we simulated the covariates according to the specified distributions. Based on 
them, we assigned treatments in the training set according to Eqs. (7) to (9). We then 
determined the true OTR �opt for every individual based on (10). The observed out-
come was computed by either Eq. (11) or (12). On the thereby completed training 
set, we trained the propensity score model and the conditional mean outcome model 
to eventually grow the tree either maximizing PTao or PLZ . Subsequently, we lever-
aged this tree to predict the OTR for each individual in the test data set and assigned 
this as the individual’s treatment. Comparing the predicted OTR with the true one, 
we compute ���% . Furthermore, we deduced the observed outcome under the pre-
dicted OTR for every individual in the test set by leveraging either Eq. (11) or (12). 
Due to consistency of observed and potential outcome postulated in Assumption 2, 
we can simply average the observed outcomes under the predicted OTR to obtain 
the mean potential outcome in the test data set. The thereby acquired results for the 
approach by Tao et al. (2018) and Laber and Zhao (2015) are presented in Tables 1 
and 2.

For the linear model in Eq. (11), the results are displayed in Table 1. When using 
the purity measure PTao proposed by Tao, we observe that the method works best 
if linear regression is used to estimate the conditional mean outcomes �a . Further-
more, the method seems to be rather immune against misspecification of either the 
propensity score model p̂ or the model for �a , as expected from the development in 
Sect. 2.2. However, if both models are misspecified, we record a significant decline 
in the mean of correctly assigned treatments ���% along with a higher stand-
ard deviation. If we use the model of Tao et al. (2018) along with a random forest 
approach to grow the tree, we observe worse results especially if we misspecify the 
propensity score model, as well. This is in line with the literature as Bang and Rob-
ins (2005) deduces the AIPW estimator in Eq. (5) assuming explicitly a parametric 
outcome regression model. Using a random forest, the AIPW estimator apparently 
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loses its double robustness and thereby becomes vulnerable regarding the misspeci-
fication of the propensity score model. Chernozhukov et al. (2018) delivers a pos-
sible explanation. They argue that non-parametric estimators for nuisance param-
eters such as the conditional mean outcome in (5) might fail to satisfy the so-called 
Donsker properties. In such a case, plugging the non-parametric estimator naively 
into estimation equations like (5) induces significant bias of the thereby estimated 
quantity of interest. They propose Neyman-orthogonal moments and crossfitting of 
the nuisance estimators to remedy this issue. We refer the interested reader to their 
paper for further details as this is beyond the scope of this paper.

The results obtained by the method of Laber and Zhao (2015) generally coincide 
with the method of Tao et al. (2018). The method of Laber and Zhao (2015) also 
works better for linear regression as the model for �a . However, while the method 
of Tao et  al. (2018) yields slightly better results when using linear regression 

Table 1   Simulation results 
with three treatment options, 
five covariates, and outcome 
generated according to Eq. (11).

The simulation is run with 500 replications, i.e., n = 500 . The size 
of the training set is 1000, whereas the size of the test set is 500. The 
minimal node size required is 50 and the maximal depth 5. The min-
imal required purity gain � for every split was set to 0.02. The letter 
p̂ denotes the propensity score model and �a displays which model 
was used to estimate the conditional mean outcomes. The abbrevia-
tions REG and RF denote whether a linear regression or a random 
forest was used for �a . The abbreviation opt% denotes the empirical 
mean of the percentage of subjects correctly assigned to their true 
optimal treatments. The respective standard deviation is given in 
parentheses. Finally, note that the true value of �[Y∗{�opt(X)}] is 2

�[Y∗{�opt(X)}] = 2

p̂ �a Method Model in Eq. (11)

���% �̂[Y∗(𝝅̂
opt
)]

Correct REG correct Tao 0.98 (0.02) 1.97 (0.09)
REG incorrect Tao 0.97 (0.03) 1.95 (0.10)

Incorrect REG correct Tao 0.96 (0.05) 1.95 (0.12)
REG incorrect Tao 0.84 (0.17) 1.74 (0.29)

Correct RF correct Tao 0.88 (0.12) 1.81 (0.22)
RF incorrect Tao 0.91 (0.07) 1.85 (0.14)

Incorrect RF correct Tao 0.67 (0.08) 1.48 (0.17)
RF incorrect Tao 0.60 (0.10) 1.37 (0.21)

Correct REG correct Laber 0.97 (0.04) 1.94 (0.10)
REG incorrect Laber 0.96 (0.03) 1.94 (0.10)

Incorrect REG correct Laber 0.92 (0.10) 1.87 (0.19)
REG incorrect Laber 0.91 (0.11) 1.84 (0.20)

Correct RF correct Laber 0.96 (0.05) 1.93 (0.12)
RF incorrect Laber 0.96 (0.04) 1.93 (0.10)

Incorrect RF correct Laber 0.90 (0.11) 1.83 (0.20)
RF incorrect Laber 0.88 (0.13) 1.81 (0.24)
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to estimate the conditional mean outcome, the method of Laber and Zhao (2015) 
does not exhibit the significant decline when changing to a random forest. This is 
also in line with the literature as Laber and Zhao (2015) deduces its purity meas-
ure independently of the choice between parametric and non-parametric outcome 
regressions.

Moving from our rather simple model for the observed outcome in Eq. (11) to 
the more sophisticated model of Eq. (12), we observe a similar pattern in the results 
of Table 2. In general, the estimates for ���% worsen with lower mean and higher 
standard deviation which we would anticipate for a more complicated model. For 
both methods, the regression model still works best for estimating the conditional 
mean outcome �a . Note that the method Laber and Zhao (2015) now presents a 
steep performance decline when the model for both propensity score and condi-
tional mean outcome is misspecified and a random forest is used. According to our 

Table 2   Simulation results 
with three treatment options, 
21 covariates, and outcome 
generated according to Eq. (12)

The simulation is run with 500 replications, i.e., n = 500 . The size 
of the training set is 1000, whereas the size of the test set is 500. The 
minimal node size required is 50 and the maximal depth 5. The min-
imal required purity gain � for every split was set to 0.02. The letter 
p̂ denotes the propensity score model and �a displays which model 
was used to estimate the conditional mean outcomes. The abbrevia-
tions REG and RF denote whether a linear regression or a random 
forest was used for �a . The abbreviation opt% denotes the empirical 
mean of the percentage of subjects correctly assigned to their opti-
mal treatments. The respective standard deviation is given in paren-
theses. Finally, note that the true value of �[Y∗{�opt(X)}] is 2.25

�[Y∗{�opt(X)}] = 2.25

p̂ �a Method Model in Eq. (12)

���% �̂[Y∗(𝝅̂opt)]

Correct REG correct Tao 0.95 (0.05) 2.18 (0.13)
REG incorrect Tao 0.92 (0.08) 2.12 (0.16)

Incorrect REG correct Tao 0.94 (0.06) 2.16 (0.13)
REG incorrect Tao 0.76 (0.18) 1.88 (0.31)

Correct RF correct Tao 0.79 (0.17) 1.91 (0.31)
RF incorrect Tao 0.65 (0.20) 1.65 (0.38)

Incorrect RF correct Tao 0.67 (0.11) 1.72 (0.22)
RF incorrect Tao 0.47 (0.12) 1.37 (0.26)

Correct REG correct Laber 0.94 (0.07) 2.14 (0.16)
REG incorrect Laber 0.93 (0.08) 2.12 (0.17)

Incorrect REG correct Laber 0.87 (0.12) 2.06 (0.23)
REG incorrect Laber 0.85 (0.13) 2.00 (0.24)

Correct RF correct Laber 0.90 (0.11) 2.07 (0.23)
RF incorrect Laber 0.85 (0.15) 1.98 (0.28)

Incorrect RF correct Laber 0.84 (0.14) 1.98 (0.26)
RF incorrect Laber 0.56 (0.22) 1.50 (0.41)
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simulation results, we shall use a linear regression model for �a for both methods in 
the application in the next section.

4 � Results: optimal treatment regime for student success 
in introductory statistics

One of the courses at San Diego State University (SDSU) with the highest failure 
rate is an introductory statistics course for undergraduates. To improve student suc-
cess in this course, the university has implemented three programs in recent years

•	 Statistics recitation class A weekly one-unit supplemental course taught by grad-
uate teaching assistants. The sessions review that week’s lecture content and pro-
vide in-class assignments to encourage students to practice the statistics mate-
rial. Upon successfully passing this one-unit class, students receive an additional 
two percentage points on their overall grade in the introductory statistics course. 
To pass, students need to attend a certain number of in-class meetings and com-
plete all assignments.

•	 Supplemental instruction (SI) Weekly active problem solving sessions taught by 
a student who earned an A- or better in a recent semester of the introductory sta-
tistics course. The sessions are in a classroom setting with one SI leader. Class 
size depends on how many students voluntarily choose to attend. The SI program 
follows the peer-assisted tutoring model of Martin and Arendale (1992), and SI 
leaders receive extensive training on how to lead SI sessions within this model.

•	 Tutoring at SDSU’s Math & Stats Learning Center (MSLC) One-on-one tutoring 
by qualified students or graduate teaching assistants available for certain hours 
during the week.

All three programs are voluntary: students sign up for the one-unit statistics recita-
tion class and attend as many SI and MSLC tutoring sessions as they wish each 
week of the semester. Each individual program is potentially costly, both in terms of 
space and personnel, depending on attendance. The administration is thus interested 
in an optimal success program for each student among these three options not only 
to maximize student performance in the course, but appropriately allocate resources. 
Therefore, the goal of this section is to deduce an individual recommendation based 
on the student’s characteristics—or to put in the terms of Sect. 2—to deduce an opti-
mal treatment regime. The data which we use for this analysis are summarized in the 
next subsection.

4.1 � Description of data

The data set covers enrollment in introductory statistics for two spring semesters 
with the same instructor; 1397 students in total. We did not include graduate nor 
transfer students. If students repeated the course multiple times due to a failing grade 
in previous semesters (96 students), we took only the most recent enrollment into 
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account. Our response variable Y is Grade, which is the number of points scored out 
of 1030 possible points. This course grade is adjusted for the two percentage point 
boost if the student passed the supplemental statistics recitation class.

Table 3 displays the available treatments, i.e., the combination of the programs a 
student attended, and how often the respective combination was observed. A major-
ity of 58% of students participated in at least one program and every fifth student 
attended at least two programs. For a student to be counted as “participating” or 
“attending” the SI or MSLC, it is sufficient to have participated in one SI or tutor-
ing session, respectively. This seems to be a low threshold; however, a higher one 
would necessarily diminish the already low percentages of treatments 5, 6, 7, and 
8 further making the statistical analysis potentially infeasible. Besides the response 
variable Grade and the treatment variable, there are 19 covariates which consider 
only information available at the beginning of each semester. Table 4 gives an over-
view of the categorical variables including the number of levels and the proportion 
of students for each of them. Certain variables like Gender are easy to understand, 
whereas others require further explanation. We consider, for instance, a student to 
be the First Generation at College if the student’s father and mother have at most 
some college education, which means that they attended some college courses with-
out graduating with a degree. The COMPACT Scholarship is awarded to students 
from a local school district to foster student success from this area. The three GPAs 
have been adjusted for coursework during the observed semester to make sure that 
they include only information available at the beginning of the semester. The level 
N/A is necessary to distinguish between students who have a GPA of 0.00 due to 
weak performance and students who simply did not do any course work yet. For the 
Total GPA and the Campus GPA, this distinction seems to be rather irrelevant as less 
than 1% of the students fall in one of these categories. However, we consider two 
spring semesters in our study. If we were to include fall semesters, this distinction 
would gain importance as in the fall semester the number of first-time-freshmen is 
considerable. 

Table 5 gives an overview of the included continuous variables. Note that ACT 
scores were converted to SAT scores by the official converting formulas. Converted 

Table 3   Summary of the prevalence of treatments in the given dataset

Level Description Proportion 
of students 
(%)

1 No attendance: Stat recitation, MSLC, SI 42
2 No attendance: Stat recitation, SI; attendance: MSLC 9
3 No attendance: Stat recitation MSLC; attendance: SI 11
4 No attendance: SI, MSLC; attendance: Stat recitation 16
5 No attendance: SI; attendance: Stat recitation, MSLC 8
6 No attendance: MSLC; attendance: SI, Stat recitation 4
7 No attendance: Stat recitation; attendance: SI, MSLC 5
8 Attendance: Stat recitation, MSLC, SI 5
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SAT Math and SAT Verbal scores are not bound to add up to the respective con-
verted SAT composite score as the underlying ACT composite score is the average 
and not the sum of the ACT scores of both sections. Therefore, the average SAT 
Composite score in Table 5 is not the sum of the SAT Math and Verbal score. If 
neither ACT-Scores nor SAT-Scores were provided, the student was not included in 
the dataset (81 students were omitted). The variables Campus units earned and Total 
units earned are the respective number of units at the beginning of the observed 

Table 4   Summary of the categorical variables in the given dataset

Variable Description Proportion 
of students 
(%)

Gender 0 is female 60
1 is male 40

URM 0 is no member of URM 60
underrepresented minorities 1 is member of URM 40
AP credit 0 is no AP credit 42

1 is AP credit 58
First generation at college 0 is not first generation college 77

1 is First Generation College 23
Compact scholar 0 is Compact scholar 89

1 is not compact scholar 11
Science, technology, 0 is no STEM major 69
engineering, mathematics (STEM) 1 is STEM major 31
Premajor 0 is major declared 18

1 is no major declared yet 82
Total GPA A is GPA in [3.3, 4] 32.0

B is GPA in [2.3, 3.3) 49.7
C is GPA in [1.3, 2.3) 14.5
D is GPA in (0.00, 1.3) 3.3
F is GPA of 0.00 0.1
N/A is no course work yet 0.4

Campus GPA A is GPA in [3.3, 4] 31.3
B is GPA in [2.3, 3.3) 48.3
C is GPA in [1.3, 2.3) 15.9
D is GPA in (0.00, 1.3) 3.7
F is GPA of 0.00 0.1
N/A is no campus course work yet 0.8

Transfer GPA A is GPA in [3.3, 4] 14.3
B is GPA in [2.3, 3.3) 7.7
C is GPA in [1.3, 2.3) 1.1
D is GPA in (0.00, 1.3) 0.1
F is GPA of 0.00 0.1
N/A is no transferred course work 76.7
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semester. Furthermore, the variable Total units enrolled in semester does not include 
the one unit which students receive upon successfully passing the statistics recitation 
class. The next subsection deals with the application of the two proposed methods to 
the introduced data.

4.2 � Estimation of the optimal treatment regime

For both trees presented in this section, a minimum purity gain of � = 0.025 at each 
split was required. The conditional mean outcome �a was—taking our simulation 
results into account—estimated in both cases via a linear regression where all covar-
iates, the recorded treatment, and their interaction terms were included. The poten-
tial average grade �[Y∗{�opt(X)}] was estimated as presented in Eq. (5).

Applying the purity measure PTao defined in (6) gives us the tree displayed in 
Fig. 3. It recommends for students with at most 14 units earned on campus to attend 
all programs, i.e., enroll in the statistics recitation class and attend MSLC and SI at 
least once (node 1). This might be reasonable as students which are new to the uni-
versity system often do not know which format works best for them. Hence, enroll-
ing in the statistics recitation class and attending the other two programs at least 
once could facilitate their decision-making. For students who have earned more 
units on campus, the tree differentiates further between students based on their SAT 
composite score. Students with a score up to 990 are recommended to enroll in the 
statistics recitation class and attend MSLC at least once (node 2). The remaining 
students in node 3 are recommended to enroll also in the statistics recitation class 
but attend SI at least once instead of attending the MSLC. One possible interpreta-
tion could be that the MSLC is one-on-one tutoring which can therefore address the 
needs of weaker students more efficiently than SI.

Looking at the distribution of characteristics in each node, one notices an interest-
ing pattern. Node 1 and node 3 gather students whose distributions of characteristics 
do not deviate strongly from the overall student sample displayed in Tables 4 and 5. 
Yet, node 2 collects students who are predominantly female (75% in node 2 vs. 60% 
in the overall data) from an underrepresented minority (63% in node 2 vs. 40% in 

Table 5   Summary of the 
continuous variables in the 
given dataset

Variable Min Max Mean Median SD

Grade 24 1018 776 812 174
Age 17 25 19 18 1
SAT composite 730 1540 1169 1180 131
SAT math 320 790 582 580 74
SAT verbal 280 780 498 490 110
High school GPA 2.40 4.44 3.69 3.73 0.31
Transfer units accepted 0 49 2 0 5
Campus units earned 0 130 21 16 15
Total units enrolled in semester 3 23 15 15 2
Total units earned 0 137 30 24 18
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the overall data). Also, the share of students who are the first generation at college 
is disproportionately high (35% in node 2 vs. 23% in the overall data). In terms of 
performance, the students in node 2 are weaker introductory statistics students with 
an average grade of 683 points compared to 776 points overall (one-sided t test p 
value of 1.78 × 10−5 ). The share of students with a total GPA of A in the node even 
indicates that those students are weaker in their studies in general (7.1% in node 2 
vs. 32% in the overall data).

The described OTR was actually chosen by only 5% of the students who are dis-
tributed over all three nodes. In general, those students tend to perform well in their 
overall studies (92% of them have a Total GPA of at least an B). A bias-corrected 
and accelerated (BCa) bootstrap 95% interval of [53,166] of the difference in aver-
age grades suggests that choosing the treatment optimally could increase the average 
grade (based on 10,000 bootstrap samples). In our case, the average grade could 
improve from 776 to 856 points, i.e., from the letter grade C to B.

Applying the purity measure PLZ defined in (4) yields a tree with three instead 
of two splits, as shown in Fig. 4. According to this tree, weaker high school stu-
dents, i.e., students with a high school GPA of at most 3.69, should enroll in the 
statistics recitation class and attend SI at least once (node 1). One possible expla-
nation is that students who showed weaker performance during high school might 
struggle with learning at university, which requires potentially more independent 
study, and should therefore attend the statistics recitation class and its weekly 

Fig. 3   Tree grown with the help of the purity measure PTao
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lectures and assignments. For the better performing high school students, the tree 
recommends attendance in at least one session of SI and MSLC (nodes 2 and 3), 
except for students with an SAT composite score of above 1220 and an SAT math 
score of at most 640 (node 4). Those students are additionally recommended to 
enroll in the statistics recitation class. While it is intuitively reasonable to provide 
students with high SAT composite score but low SAT math score with additional 
training, it is not immediately clear why this recommendation shall not be given 
to students with a low SAT composite score as a poor score might stem from a 
poor SAT math score. However, the potential increase in the average grade of 
29% for students with high SAT composite score and low SAT math score justi-
fies the recommendation of all three programs.

Looking at the distributions of the characteristics, nodes 3 and 4 are striking. 
They exhibit a low share of people with an underrepresented minority background 
(27% in node 3 and 18% in node 4 against 40% in the overall data). Furthermore, 
the students are less frequently the first generation at college (14% in node 3 and 
12% in node 4 against 23% in the overall data). The students perform well in the 
introductory statistics course with an average grade of 856 points in node 3 and 884 
points in node 4 compared to an overall average grade of 776 points (one-sided t 
test p value smaller than 2.2 ⋅ 10−16 in both cases). The students also have a higher 

Fig. 4   Tree grown with the help of the purity measure PLZ
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share of Total GPAs of A (53% in node 3 and 69 % in node 4 against 32% in the 
overall data).

Again, a 95% BCa interval of [42,157] of the difference in average grades 
suggests that choosing the treatment optimally could increase the average grade 
(based on 10  000 bootstrap samples). In our case, the average grade could 
improve from 776 to 844 points, i.e., from the letter grade C to B. Only 4.5% 
chose their treatment optimally in the sense of Definition 1. Again, those students 
are present in all nodes and tend to be academically stronger in their overall stud-
ies (89% of them have a total GPA of at least an B).

Overall, the trees agree for 30% of the students (414 in total) in their treatment 
recommendation. Comparing both trees, the two promise to potentially increase the 
average grade significantly if the suggested treatment regime is implemented. Stu-
dents seem to need a recommendation in the first place, as only 5% or 4.5%, respec-
tively, of the students chose their treatment optimally in these semesters of intro-
ductory statistics. Yet, the trees differ significantly from each other in terms of the 
balance of their recommendation. Applied to our dataset, the purity measure PTao 
is proposing to split the students into one large group of about 70% of all students 
and two small groups with less than 10% and 20% of all students, respectively. The 
split recommended by the purity measure PLZ is in this regard more balanced with 
the first node splitting the data almost in two halves. Regarding the choice of vari-
ables, it is striking that both trees use SAT scores to assign treatments. However, for 
the first split, PTao suggests as the split variable Campus units earned, whereas PLZ 
proposes HSGPA. Table 6 shows that the use of either of the variables is consid-
ered reasonable by both purity measures as Campus units earned yields the seventh 
highest purity for PLZ and HSGPA yields the third highest purity for PTao.

The most important difference between the trees lies in the interpretability. As 
mentioned before, the tree grown with PLZ exhibits an inconsistency at first sight 
when recommending the statistics recitation class to students with high SAT com-
posite scores and low SAT math scores, but not to students with low SAT com-
posite scores and low SAT math scores; even though the high potential increase 
in the average grade in the first group justifies it at a second glance. This apparent 
inconsistency might raise concern among practitioners and make them reluctant 
to implement the recommended treatment regime. Therefore, we propose to use 
the more consistent tree grown with PTao . The fact that this tree also yields a 
higher potential average grade �[Y∗{�(X)}] makes this choice consistent with the 
definition of the OTR in (1).

Table 6   Comparison between 
HSGPA and Campus units 
earned at the first split

Variable P
Tao

P
LZ

Campus units earned 849 (���) 830 ( 7th)
HSGPA 844 ( 3th) 843 (���)
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5 � Discussion and conclusions

Originated in the personalized medicine literature, this paper applies the con-
cept of optimal treatment regimes—to our knowledge for the first time—to an 
educational data mining problem. We used the tree-based reinforcement learning 
approaches by Laber and Zhao (2015) and Tao et  al. (2018). Other methods to 
estimate the OTR as random forests or a reinforcement learning approach based 
on neural networks, or alternative ensemble learning procedures are interesting to 
explore. However, leveraging those methods would most likely be at the expense 
of the interpretability of results and thus potentially less desirable to key univer-
sity administrative stakeholders in the recommendation process.

Our estimated OTR gives students a recommendation based on their amount 
of campus units already earned and their SAT composite score. We estimate that 
this OTR potentially increases the average letter grade from an C to an B, indi-
cating that the implementation of the OTR is likely to foster student success in 
the introductory statistics course. Furthermore, it became evident that students 
exhibit a need for an individual recommendation as for the given dataset only 
roughly 5% of students chose their treatment optimally.

Interestingly, no students are recommended to not attend any of the student suc-
cess programs. This is a double-edged-sword suggesting on one hand that the sta-
tistics recitation class, MSLC, and SI program do indeed foster student success for 
every student. On the other hand, the implementation of the OTR becomes poten-
tially infeasible as it would lead to a significant increase in resources from its current 
implementation. For instance, 210 students out of the roughly 1000 introductory 
statistics students in the Spring 2020 semester enrolled in the statistics recitation 
class. Implementing the OTR to the letter would therefore mean that SDSU needs 
to increase the capacity of the statistics recitation class by a factor of five. One cost 
efficient way to achieve this is to allow more students to the existing classes. How-
ever, increasing capacity in such a way might lead to a violation of Assumption 1. 
For example, significantly more students in each class would almost certainly impact 
the program’s quality negatively, to wit: the treatment of one student affects other 
students’ potential outcome, i.e., there are spill-over effects. Therefore, incorporat-
ing resource constraints in the estimation procedure is not only important from the 
educational institution’s financial point of view but also from a theoretical one.

The personalized medicine literature approaches the resource allocation problem 
as a trade-off between health gains, side effects, and intervention costs. For example, 
Xu et al. (2020) presents an OTR to incorporate cost-effectiveness into the individ-
ualized treatment decision. On a front perhaps more in line with resource alloca-
tion problems in education settings, Luedtke and van der Laan (2016) and Toth and 
van der Laan (2018) include cost constraints in estimating the OTR for binary treat-
ment. Both approaches are quite involved requiring additional constraints in setting 
up the optimization routines, the latter two papers being mathematical expositions 
on the efficacy of the proposed method. As significant algorithm and software devel-
opment are required to bring these methods to fruition in our educational data min-
ing context, we shall pursue these ideas in a future research study.
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Though these resource allocation approaches are beyond the scope of this paper, 
a pilot subgroup analysis of our data may hint at the benefit of a cost-constrained 
OTR. The results in Sect. 4 recommend that every student shall attend at least two 
programs. If we reduce the data set to only those students that attended exactly one 
program, we may explore the trade-off between the programs. We term this a prelim-
inary study for discussion purposes as statistics students were not limited to a choice 
of only one program and the programs were not designed as a “one-stop shop”. This 
subgroup is thus a selective smaller sample of 503 students. The tree grown with the 
P
Tao purity measure recommends all 503 students attend SI, presenting a 2% poten-

tial increase in performance. The tree grown with the PLZ purity measure recom-
mends students with a high school GPA below 3.48 attend the MSLC (110 students; 
6% potential increase in performance), and students above an HSGPA of 3.48 attend 
SI (393 students; 3% potential increase in performance). We note that the potential 
increases are not as strong as the analyses in Sect. 4 and neither approach recom-
mends the Statistics recitation class as an option.

A reviewer brought up a query of whether any of these three programs may lower 
a student’s course grade. We believe that negative treatment effects are possible. For 
example, stronger students who attend these programs may substitute attendance for 
study time and consequently perform worse on assessments. Or students who attend 
these programs may be less motivated students that are using attendance to avoid 
the harder work of studying. Alternatively, students who attend these programs may 
find the specific material harder (in that week or in general), thus motivating them to 
attend. And there could be a diminishing return along these lines by attending multi-
ple programs. We note also that if we believe it is impossible for a program attendee 
to have lower course performance, then the strong ignorability assumption does not 
hold. Nonetheless, as the reviewer mentions, bias from unmeasured confounding or 
sampling error could result in the trees recommending a student into one or two pro-
grams instead of all three. To this end, the pilot analysis restricting to a subgroup of 
students that chose to attend exactly one program is free of these potential unmeas-
ured biases. As we collect further semesters of data (larger sample size), these anal-
yses along with a formal methodology of OTR under cost constraints may be of 
great use for program redesigns, student advising, and resource allocation.

Our analysis took only the spring semesters of 2018 and 2019 into account as 
the MSLC data set was unfortunately not available for the fall semester of 2018 and 
incomplete for the fall semester of 2019. Our future analyses will consider whether 
fall semesters, with their differently structured student body of usually more first-
time-freshmen than in spring semesters, heavily impact the OTR.

Future research could bring our analysis to the next level by including the stu-
dents’ performance in, for instance, homeworks throughout the semester as demon-
strated by Meier et al. (2016) in the context of grade prediction. This would eventu-
ally lead to the estimation of a dynamic treatment regime which would, for example, 
allow one to change the treatment recommendation weekly according to the ongoing 
performance of a student throughout a semester. For instance, the university could 
recommend a student to attend an SI session in week 5 after a poor performance on 
an assessment in week 4. A possible approach for the purity measure PTao is laid out 
in Tao et al. (2018).
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In addition, future research could take societal values and legal restrictions 
regarding the variable choice into account. On one hand, including sensitive vari-
ables such as underrepresented minority status or gender in the estimation proce-
dure might induce discrimination, although they do not appear in our trees. On 
the other hand, omitting those variables might still lead to decisions which are 
counterfactually unfair as Kusner et  al. (2017) argues. The approach of Kusner 
et al. (2019) to impose constraints on counterfactual privilege to reduce the dis-
criminatory impact of sensitive variables is promising in this regard.

Finally, the application of OTRs in educational data mining is not limited 
merely to recommendations regarding the student’s optimal course choice. In 
fact, the method may be applied to any set of treatments and any student success 
outcome such as student retention, student probation rates, or graduation rates. 
Like this, OTRs might become relevant for college-prep programs or even schol-
arship programs under the condition that the mentioned Assumptions 1 to 4 are 
met. Note that Assumption 4—demanding access to each treatment for every stu-
dent—may prove to be restrictive in this context.

Proofs

Lemma 1  1 If Assumptions 1 through 4 hold, we have

Proof  Recall the definition of the OTR in Eq. (1)

Hence, it is sufficient to show that

We begin using the law of iterated expectation to get

Now, we leverage Assumption  3, stating that—conditioned on the characteristics 
X—all potential outcomes Y∗(a) are independent of the treatment A to add the con-
dition in (13) that we assign treatment according to a treatment regime �(X) which 
gives us

�opt(X) = arg max�∈��

[
Y1{A=�(X)}

P{A = �(X)|X}
]
.

�opt = arg max�∈��[Y∗{�(X)}].

�[Y∗{�(X)}] = �

[
Y1{A=�(X)}

P{A = �(X)|X}
]
.

(13)

�[Y∗{�(X)}] = �[�{Y∗{�(X)}|X]]

= �

[
�

[∑
a∈A

Y∗(a)1{�(X)=a}

||||X
]]

.
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where we used in the last step the definition of the conditional expectation. 
Note that the expression in Eq. (14) is well defined as Assumption  4 guarantees 
P{A = 𝜋(X)|X} > 0 . As

we can rewrite Eq. (14) as

where we used Assumption 2 in Eq. (16) and that P{A = �(X)|X} is a �(X)-measur-
able function, where �(X) is the �-algebra generated by X. This ends our proof. 	�  ◻

Lemma 2  If Assumptions 1 through 4 hold, we have

(14)

�[Y∗{�(X)}] = �

�
�

��
a∈A

Y∗(a)1{�(X)=a}�X,A = �(X)

��

= �

�
�
�∑

a∈A Y∗(a)1{�(X)=a}1{A=�(X)}�X
�

P{A = �(X)�X}

�
,

(15)

1{�(X)=a}1{A=�(X)} =

{
1 if�(X) = a andA = �(X)

0 otherwise

=

{
1 if�(X) = a = A

0 otherwise

=

{
1 ifA = a andA = �(X)

0 otherwise

= 1{A=a}1{A=�(X)},

(16)

�[Y∗{�(X)}] = �

�
�
�∑

a∈A Y∗(a)1{A=a}1{A=�(X)}�X
�

P{A = �(X)�X}

�

= �

�
�
��∑

a∈A Y∗(a)1{A=a}

�
1{A=�(X)}�X

�
P{A = �(X)�X}

�

= �

�
�
�
Y1{A=�(X)}�X

�
P{A = �(X)�X}

�

= �

�
�

�
Y1{A=�(X)}

P{A = �(X)�X}
����X
��

= �

�
Y1{A=�(X)}

P{A = �(X)�X}
�
,

�opt(X) = arg max�∈��

[
{Y − g(X)}1{A=�(X)}

P{A = �(X)|X}
]
.
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for any arbitrary function g ∶ ℝ
p
↦ ℝ (Laber and Zhao 2015).

Proof  Let g ∶ ℝ
p
↦ ℝ be an arbitrary function to define

Then, it holds that

and therefore

	�  ◻

(17)Lg{�(X)} =
{Y − g(X)}1{A=�(X)}

P{A = �(X)|X} .

�[Lg{�(X)}] = �

[
{Y − g(X)}1{A=�(X)}

P{A = �(X)|X}
]

= �

[
Y1{A=�(X)}

P{A = �(X)|X}
]
− �

[
g(X)1{A=�(X)}

P{A = �(X)|X}
]

= �

[
Y1{A=�(X)}

P{A = �(X)|X}
]
− �

[
�

[
g(X)1{A=�(X)}

P{A = �(X)|X}
||||X
]]

= �

[
Y1{A=�(X)}

P{A = �(X)|X}
]
− �

[
g(X)

P{A = �(X)|X}�[1{A=�(X)}|X]
]

= �

[
Y1{A=�(X)}

P{A = �(X)|X}
]
− �

[
g(X)

P{A = �(X)|X}P{A = �(X)|X}
]

= �

[
Y1{A=�(X)}

P{A = �(X)|X}
]
− �

[
g(X)

]
,

arg max�∈��[Lg{�(X)}] = arg max�∈��

[
Y1{A=�(X)}

P{A = �(X)|X}
]
− �

[
g(X)

]

= arg max�∈��

[
Y1{A=�(X)}

P{A = �(X)|X}
]

= �opt(X).
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Adjusted R code of Tao et al. (2018)

Function DTRtree to grow tree with PTao
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Function LZtree to grow tree with PLZ
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Example

This subsection provides the R-code of the file 03 Example Application 
to demonstrate how to deploy the developed methods. The functions DTRtree 
and LZtree are available in the file 01 TRL Functions—along with other 
functions.

The example considers simulated data in the file 02 Example Data which 
presents a similar structure to the student success data, but is not based on actual 
student data. For each student, an SAT Math Score, HSGPA, Age, Gender, and 
URM were simulated along with an overall grade. Three treatments were assumed 
to be available to every student: no program (encoded with 1), MSLC (encoded 
with 2), and SI (encoded with 3).
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To estimate an OTR for the given data either using PTao or PLZ , we need to 
choose at first a maximal tree depth, a minimal purity gain � , and a minimal node 
size � following our algorithm in Sect. 2.3.

The remaining steps of the algorithm are then performed by the functions 
DTRtree for PTao and LZtree for PLZ.

The output taotree is given as a matrix:

For example, the first node is split with the help of the third covariate—which 
is age—at a value of 18. The purity PTao associated with this split is 608. No treat-
ment is assigned as node 1 is not a terminal node. All students who are at most 18 
are sent to node 2 which assigns treatment 2 (MSLC) to each student. All students 
who are older than 18 are differentiated according to their SAT Math score—which 
is the first covariate in the dataset. If they achieved an SAT Math Score of at most 
580, they are recommended to attend SI (encoded as 3); otherwise, they should not 
attend any program (encoded as 1). Figure 5 displays the graphical representation of 
the output taotree.
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