

1 **Testing the multiple stressor hypothesis: Chlorothalonil exposure alters transmission**  
2 **potential of a bumblebee pathogen but not individual host health**

3

4 Austin C. Calhoun<sup>1\*</sup>, Audrey E. Harrod<sup>1</sup>, Toby A. Bassingthwaite<sup>1</sup>, Ben M. Sadd<sup>1</sup>

5 1. School of Biological Sciences, Illinois State University, Normal IL 61790, USA

6

7 \*Corresponding author. Email: [accalh1@ilstu.edu](mailto:accalh1@ilstu.edu)

8

9 Keywords: bumblebees, *Nosema bombi*, chlorothalonil, multiple stressor, pollinator

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25 **ABSTRACT**

26 Numerous threats are putting pollinator health and essential ecosystem pollination services in  
27 jeopardy. Although individual threats are widely studied, their co-occurrence may exacerbate  
28 negative effects, as posited by the multiple stressor hypothesis. A prominent branch of this  
29 hypothesis concerns pesticide-pathogen co-exposure. A landscape analysis demonstrated a  
30 positive association between local chlorothalonil fungicide use and microsporidian pathogen  
31 (*Nosema bombi*) prevalence in declining bumble bee species (*Bombus spp.*), suggesting an  
32 interaction deserving further investigation. We tested the multiple stressor hypothesis with field-  
33 realistic chlorothalonil and *N. bombi* exposures in worker-produced *B. impatiens* microcolonies.  
34 Chlorothalonil was not avoided in preference assays, setting the stage for pesticide-pathogen co-  
35 exposure. However, contrary to the multiple stressor hypothesis, co-exposure did not affect  
36 survival. Bees showed surprising tolerance to *Nosema* infection, which was also unaffected by  
37 chlorothalonil exposure. However, previously fungicide-exposed infected bees carried more  
38 transmission-ready spores. Our use of a non-declining bumblebee and potential higher  
39 chlorothalonil exposures under some scenarios, could mean stronger individual or interactive  
40 effects in certain field settings. Yet, our results alone suggest consequences of pesticide co-  
41 exposure for pathogen dynamics in host communities. This underlies the importance of  
42 considering both within- and between-host processes when addressing the multiple stressor  
43 hypothesis in relation to pathogens.

44

45

46

47

48 **INTRODUCTION**

49 The ecological and economic contributions of wild native bee communities [1] make  
50 conserving their diversity and understanding the threats they face of paramount importance. The  
51 abundance and distribution of populations of several native bumblebee species have been  
52 significantly reduced over recent decades, including in Europe [2], the Americas [3,4], and  
53 Eastern Asia [5]. In North America, population reductions have been noted by global and federal  
54 agencies, and, based on International Union for Conservation of Nature (IUCN) listings, 26% of  
55 evaluated North American species are threatened [6].

56 Declines of bumblebees and other insect pollinators may be precipitated by a suite of  
57 environmental stressors that threaten population health and thus essential ecosystem services  
58 [6,7]. Suggested major stressors include climate change [8], habitat degradation and  
59 fragmentation [9,10], pesticides [11–15], and pathogen infection [7,16,17]. Undoubtedly, such  
60 factors will not only act in isolation, but stressor combinations may present a greater threat to bee  
61 health if effects of co-exposure are additive or worse [6,7].

62 Recently, the combined effects of pathogen infection and pesticide exposure have gained  
63 attention in relation to bumblebee declines [12,14,18]. Co-exposure of pathogens and pesticides  
64 may exacerbate the individual negative effects of each stressor alone, for example through  
65 interactions between pesticides and immunity [19–21]. Negative effects may also be amplified  
66 by co-exposure if each stressor contributes independently or synergistically to a reduction in  
67 individual or colony condition. The concept that stressors, such as pesticides and pathogens,  
68 interact to amplify the detrimental effects to a host has been termed the “multiple stressor  
69 hypothesis” [6,22]. Thus far, tests of this hypothesis in bumblebees have been carried out  
70 predominantly in a single host species and have been largely focused on model pathogen systems

71 [e.g., 12,14]. Relevant threats potentially associated with population declines should be  
72 empirically tested under this framework to aid in our understanding of declines and inform  
73 remediation.

74 In North America, a microsporidian pathogen of bumblebees, *Nosema bombi*, has been  
75 linked with declines over recent decades, with a higher infection prevalence in declining species  
76 relative to stable species [16,23]. Evidence suggests that increased prevalence in declining  
77 species have occurred recently [23]. Studies on the European *B. terrestris* demonstrate severe  
78 reductions in individual and colony level traits associated with fitness upon infection [24–26].  
79 Infected bees shed transmission-ready extracellular spores, which eject a polar filament into  
80 epithelial cells to initiate infection in a new suitable host, followed by further within-host  
81 replication of these activated intracellular stages [27,28]. Due to its documented virulence, *N.*  
82 *bombi* is considered to be an important emerging or re-emerging infectious disease in  
83 bumblebees [29]. The touted association between this microsporidian and bumblebee declines  
84 make it an important pathogen with which to test the multiple stressor hypothesis.

85 Bumblebee immunity will be critical to resist and tolerate pathogen infection, as  
86 demonstrated for other *Nosema spp.* in honeybees [30,31]. Thus, any co-occurring stressors that  
87 weaken immunity, such as sublethal exposure to pesticides [19,20], should be incorporated  
88 empirically into the multiple stressor framework. Much recent work has focused on systemic  
89 neonicotinoids [e.g., 12,20,21], however, a largely overlooked pesticide in experimental studies,  
90 but one that may influence bumblebee health, especially in relation to pathogen interactions, is  
91 the non-systemic fungicide chlorothalonil. This fungicide, intended to inhibit enzymatic  
92 processes involved with cellular respiration of fungal cells [32,33], has large-scale agricultural  
93 application, with many target crops being bumblebee pollinated [34]. It is currently not approved

94 for use in the European Union, but no such restrictions exist in the United States of America  
95 [35]. Interestingly, a follow up to the demonstration of higher *N. bombi* prevalence in declining  
96 North American bumblebee species [16] linked chlorothalonil to natural pathogen prevalence  
97 [36]. Landscape use of chlorothalonil was the strongest predictor of *N. bombi* prevalence in  
98 declining bumblebee species [36]. This study is suggestive of an interaction, but there has been  
99 no experimental verification that would support a causative link between chlorothalonil and *N.*  
100 *bombi* infection, and the consequences of co-exposure for bumblebee health.

101 The fungicide chlorothalonil and the microsporidian *N. bombi* are stressors that may have  
102 the potential to act together to the detriment of bumblebee health. A preference of honeybees for  
103 chlorothalonil-laced sugar water [37] indicates that bees may not avoid chlorothalonil-  
104 contaminated resources, and hence any effects of its exposure. Few studies have investigated  
105 chlorothalonil's influence on bee health, but interference of larval and pupal development, and  
106 altered nutrition and social immunity are demonstrated negative consequences of sublethal  
107 exposure [38–40]. Furthermore, chlorothalonil may interact with invertebrate immunity, with  
108 studies in bivalves showing effects on cellular immunity [41]. Thus, chlorothalonil exposure may  
109 have direct or indirect interactions with immunity, with subsequent consequences for host  
110 defense against infection. However, experiments incorporating the combined stressors of  
111 chlorothalonil and *N. bombi* are needed in order to offer a mechanistic explanation for the  
112 correlative relationships seen in nature [36] and bumblebee declines [16].

113 In line with the multiple stressor hypothesis, we hypothesize that, due to direct or indirect  
114 interactions with bumblebee immunity, exposure to sub-lethal doses of the fungicide  
115 chlorothalonil will reduce resistance and tolerance to *N. bombi* infection, thus exacerbating  
116 detrimental effects on bee health. We predict that: (1) like honeybees [37], bumblebee workers

117 will not avoid field realistic chlorothalonil doses; (2) exposure to chlorothalonil alone will result  
118 in decreased survival and condition, as measured by survival and a protein biochemical assay;  
119 (3) *Nosema bombi* infection will have previously described detrimental effects; and (4)  
120 concurrent *Nosema* and chlorothalonil exposure will result in increased susceptibility to  
121 infection, higher infection loads, and reduced tolerance to infection. We use worker-produced  
122 microcolonies of the bumblebee *B. impatiens*, with the caveat that this is a non-declining species  
123 [16], but it is used in this initial study due to feasibility of working with declining species in the  
124 laboratory at this scale.

125

## 126 METHODS

### 127 Overall study design

128 Preference assays were carried out to assess if individual adult worker bumblebees differ  
129 in consumption of chlorothalonil-spiked or control sugar water when given one or the other (no  
130 choice assay) or presented with both (choice assay). To assess individual and combined effects  
131 of chlorothalonil and *N. bombi*, worker produced microcolonies established from eight source  
132 colonies were used to administer four treatment combinations: 1) chlorothalonil exposure (n=19  
133 microcolonies); 2) *N. bombi* exposure (n=20); 3) chlorothalonil and *N. bombi* co-exposure  
134 (n=24); 4) control (n=19) (Figure S1). After separation from the queen, a dominant worker  
135 develops ovaries, laying haploid eggs that develop as males [42]. Such microcolonies allow for  
136 exposure treatments at a specific larval stage, greater replication of a simulated colony setting,  
137 and administration of treatment combinations across the same colony genetic background.  
138 Microcolony development and production was recorded, and produced males were assessed for

139 body size, protein amounts, total infection intensity, extracellular spore loads, and survival  
140 (Figure S1).

141

## 142 **Bumblebee source colonies**

143 For the preference assays, individual *B. impatiens* workers were acquired from five lab-  
144 reared colonies from field-caught queens, and one commercial colony (Koppert Biological  
145 Systems, Howell, Michigan, USA). For the microcolony experiment, eight commercial source  
146 colonies were used. Queens of lab-reared colonies were collected with the permission of the  
147 ParkLands Foundation (<http://www.parklandsfoundation.org/>) from the Mackinaw River Study  
148 Area (Lexington, IL., U.S.A.). All established colonies were confirmed free of common  
149 pathogen infections and maintained under standard laboratory conditions (S1 Text).

150

## 151 **Chlorothalonil treatments**

152 Chlorothalonil was provided at 100 ppb in sugar water and pollen. Due to the feasibility  
153 of replicating the individual and co-exposure treatment regimes, we were constrained to a single  
154 concentration. The chosen concentration was deemed a reasonable approximation to levels found  
155 in plant nectar (76ppb) and pollen (265ppb) [35], but it is important to note that while an average  
156 around 100 ppb has been detected in honeybees [43], considerably higher concentrations of  
157 residues have been found in honeybee collected pollen [40,44]. Based on estimated daily  
158 consumption [44], larvae in our exposure regime would be expected to consume 8ng of  
159 chlorothalonil, which again is a reasonable approximation of estimated average dietary exposure  
160 of bumblebee larvae to chlorothalonil (5.84ng), but considerably below the estimated possible  
161 maximum dietary exposure (544ng) [44]. Chlorothalonil (Millipore Sigma, 36791) stock

162 solutions were prepared, and dilution to 100 ppb chlorothalonil was performed immediately prior  
163 to use. Dimethyl sulfoxide (DMSO) was used in stock preparation, and therefore a comparable  
164 amount was used in control exposures (S2 Text).

165

166 ***Nosema bombi* preparation**

167 A *N. bombi* isolate (lab unique ID O17.01) was sourced from an infected *B. occidentalis*  
168 colony, and preliminary studies had verified infection in *B. impatiens* larvae. After a standard  
169 extraction protocol, aliquots of spore solutions were stored at -80°C until experimental  
170 inoculation, when they were suspended in a sugar water and pollen solution at 10,000 spores/µL  
171 (S3 Text).

172

173 **Chlorothalonil preference assays**

174 Isolated individuals in the no-choice assay were provided with a single feeder with 100  
175 ppb chlorothalonil-spiked or control sugar water. Workers were isolated into plastic containers  
176 (10 x 5 x 8 cm) with an upturned 0.65 mL microcentrifuge tube feeder, modified with two 1.6  
177 mm diameter feeding holes in the base. For the choice assay, a separate set of individuals were  
178 isolated into similar containers, but with two feeders providing both chlorothalonil-spiked or  
179 control sugar water to each bee. Consumption was measured over two time periods, zero to two-  
180 and three to six-days post-initiation, with feeders replaced between periods. The change in feeder  
181 mass to the nearest milligram (XA Analytical Balance, Fisher Scientific) relative to the mean of  
182 10 pre-weighed reference standards determined sugar water consumption [45].

183

184 **Microcolony set-up: chlorothalonil and *Nosema* exposures**

185 Microcolonies were generated by isolating four randomly chosen workers from the  
186 queenright colony into a holding container (16.5 x 11.5 x 11.5 cm). Upon a clay-based substrate  
187 (Tidy Cats), three 60 mm diameter petri dishes held either worker-established brood laid upon a  
188 starting pollen pellet (2:1 blend of sugar water and ground pollen), a 15 mL sugar water feeder,  
189 or a second pollen pellet for subsequent treatments/feeding. All microcolonies were housed  
190 under red-light illumination at 26 +/- 1.5°C.

191 At six-days after the first oviposition in each microcolony, when larvae would be in their  
192 first to second instar [46], microcolonies received 5 mL of sugar water and 1 g pollen pellets  
193 with either 100 ppb chlorothalonil or control. Subsequently, at eight-days post-oviposition,  
194 individual larvae received a 2 µL inoculum of either 20,000 *N. bombi* spores suspended in a  
195 sugar water/pollen solution or a comparable control solution without spores (S3 Text).  
196 Additionally, treatment sugar water and pollen pellets were replaced at this time, and again at 10-  
197 days post-oviposition. At 12-days post-oviposition, chlorothalonil treatments ceased, and all  
198 subsequent provisions for the remainder of development were untreated. Sugar water  
199 consumption was measured as volume change over each timepoint. Pollen pellet remnants were  
200 dried at 55°C for two days, then consumption was recorded as the mass change relative to 10  
201 pre-weighed standards. Microcolonies were monitored daily until adult eclosion.

202

203 **Development time and adult size**

204 The number of individual larvae receiving inocula was recorded and compared to the  
205 number that eclosed as adults, allowing us to infer how treatments affected progression through

206 development. Emerging individuals were removed within 24 hours, and isolated into plastic  
207 containers with sugar water provided *ad libitum*. Based on observations of microcolony  
208 development, isolating males from microcolonies concluded at 37 days post-oviposition to  
209 ensure that individuals collected had been exposed to the respective treatments. The days from  
210 oviposition to individual eclosion was taken as development time. Body size was recorded using  
211 the surrogate of the radial cell length of the forewings [47], measured using ImageJ software.

212

### 213 **Protein biochemical assay**

214 Protein is important for immune function and host health [48,49], so amounts per  
215 individual were taken as one measure of host condition. At five-days post-eclosion, abdomens of  
216 isolated individuals were homogenized in 1 mL ringer solution. Using a Pierce<sup>TM</sup> BCA Protein  
217 Assay Kit, 200 µL of the working reagent was added to 25 µL samples in duplicate. Samples  
218 were incubated at 37°C for 30 min in darkness before absorbance was measured at 562 nm.  
219 Following blank subtraction, protein amounts per sample were calculated based on bovine serum  
220 albumin standards.

221

### 222 **Infection prevalence, intensity, and *Nosema* spore production**

223 At five-days post-eclosion, *N. bombi* spore loads (i.e., spores visible under 400x  
224 magnification) and the total infection intensity (quantified by qPCR) were assessed. Sampling at  
225 five-days post-eclosion ensured a fixed timepoint for assessing infection intensity across  
226 individuals. Abdomens were individually homogenized in 1 mL ringer saline solution. 10 µL of  
227 the homogenate was placed onto a FastRead 102 counting chamber and observed under phase  
228 contrast microscopy. Spores were counted and converted to total spores per individual.

229 To quantify total infection, including intracellular stages, DNA was extracted from 200  
230  $\mu$ L of each abdomen homogenate with an IBI Scientific Fecal DNA Kit following the  
231 manufacturer's protocol. For each sample, the DNA quality and concentration (260 and 280  
232 absorbance) was measured using a NanoDrop spectrophotometer. Infection intensity was  
233 measured by qPCR on a QuantStudio<sup>TM</sup> 3 Real-Time qPCR machine. Reactions used the Applied  
234 Biosystems<sup>TM</sup> PowerUp<sup>TM</sup> SYBR<sup>TM</sup> Green Master Mix (300 nM) added to established  
235 BOMBICAR primers (10  $\mu$ M each), specific to *N. bombyci* [50]. Initial denaturation took place for  
236 10 minutes at 95°C, followed by 40 amplification cycles of 15 s denaturation at 95°C and a  
237 simultaneous annealing and extension at 58°C [50,51]. Infection intensities were determined  
238 from a standard curve of known *N. bombyci* pure spore quantities, which had been isolated using a  
239 BD FACSMelody<sup>TM</sup> Cell Sorter and DNA extracted as above. Mean infection intensities were  
240 taken from three technical replicates per sample. Where the QuantStudio<sup>TM</sup> 3 software indicated  
241 unacceptable coefficients of variation across technical replicates and an outlier replicate could be  
242 identified, that outlier was removed. In the case of an unacceptably high coefficient of variation  
243 where the spread of replicates prevented reliable identification of an offending outlier, the  
244 sample was rerun with three new technical replicates.

245

## 246 **Survival**

247 Individuals not sampled at five-days for the prior assays were tracked daily for survival.  
248 Upon death, the date was recorded, and *Nosema* infection was documented by checking for  
249 spores as above.

250

251 **Statistical analyses**

252 Analyses were performed in R version 3.6.3 “Holding the Windsock” for Mac [52].

253 Mixed Effect Cox Proportional Hazard models were fit with the *coxme* package [53] and Linear  
254 and Generalized Linear Mixed Effect models with the *lme4* [54] and glmmTMB [55] packages.

255 For each response variable, potential distributions were assessed for model fit and adherence to  
256 assumptions. Initial models were simplified by sequentially eliminating non-significant terms  
257 based on likelihood ratio tests (LRTs) and nested models were compared and selected using

258 AICc [56]. The statistics for terms not in final models were taken from the step before their  
259 removal. Estimated marginal means and their confidence intervals for levels of model terms and  
260 post hoc Tukey contrasts were performed with the package *emmeans* [57]. For Preference  
261 Assays, linear mixed models were fit with time period, chlorothalonil treatment, and their  
262 interaction. Source colony and individual bee were included as random effects. For consumption  
263 of pollen pellets (log-transformed) and sugar water per microcolony, linear mixed models were  
264 used with fixed effects being *Nosema* and chlorothalonil treatments, and their interaction.

265 Microcolony nested within source colony was included as a random effect to account for non-  
266 independent repeated measures. The analysis of developing larvae making it to adulthood was  
267 performed with a generalized linear mixed model with a binomial distribution and a logit link  
268 function, with the response being the number successfully emerging to adulthood to the number  
269 not. *Nosema*, chlorothalonil treatment, and their interaction were included with source colony as  
270 a random effect.

271 For all analyses on individuals produced from microcolonies, microcolony nested within  
272 original source colony was included as a random effect. For individual development, adult body

273 size, protein level, and survival fixed effects were *Nosema*, chlorothalonil exposure, and their  
274 interaction. Additionally, when it was not the response variable, body size and all two and the  
275 three-way interactions were initially included. In addition, analyses only on *Nosema* exposed  
276 individuals replaced *Nosema* exposure with the status of infected or not infected, based on  
277 evidence from qPCR or spore checks. Linear mixed models were used for development, body  
278 size and protein levels. Survival was analyzed with a Mixed Effect Cox Proportional Hazards  
279 model.

280 Total infection intensity and transmissible spore data were analyzed in *Nosema* exposed  
281 bees with body size, chlorothalonil exposure, and their interaction as fixed effects. Infection  
282 prevalence was analyzed with a generalized linear mixed model with a binomial distribution and  
283 a logit link. To account for overdispersion, a generalized linear mixed model with a negative  
284 binomial distribution with a linear parameterization [58] and a log link function was used for  
285 infection intensity in those individuals identified as infected. In infected individuals, prevalence  
286 of spore production and spore counts were analyzed in the same way.

287

288

289 **RESULTS**

290 **Chlorothalonil preference assays with adult bumblebees: no choice and choice**

291 When provided with either chlorothalonil (n=19) or control (n=17) sugar water,  
292 bumblebee worker daily consumption did not significantly differ between treatments (Figure 1A,  
293  $\chi^2=0.215$ , df=1, p=0.643), nor the interaction involving time ( $\chi^2=1.941$ , df=1, p=0.164).  
294 Similarly, when individuals (n=40) were given a choice of either chlorothalonil or control sugar  
295 water, consumption again was not influenced by chlorothalonil (Figure 1B,  $\chi^2=0.413$ , df=1,

296 p=0.52), nor its interaction with time ( $\chi^2=0.188$ , df=1, p=0.665). There was a significant effect of  
297 time period, with daily consumption decreasing in the second time period for both no choice  
298 ( $\chi^2=36.224$ , df=1, p < 0.001) and choice ( $\chi^2=24.254$ , df=1, p < 0.001) assays.

299

300 **Whole microcolony traits under chlorothalonil and *Nosema* treatments: consumption and**  
301 **progression of treated larvae to adulthood**

302 Consumption within microcolonies was recorded at three successive timepoints (48, 96,  
303 and 144 h post-treatment initiation). Pollen consumption of microcolonies was not influenced by  
304 *Nosema* exposure ( $\chi^2=0.002$ , df=1, p=0.969), chlorothalonil ( $\chi^2=0.0004$ , df=1, p=0.985), their  
305 interaction ( $\chi^2=1.884$ , df=1, p=0.17), nor the three-way interaction with time ( $\chi^2=2.367$ , df=2,  
306 p=0.306). However, pollen consumption was affected significantly by time ( $\chi^2=62.677$ , df=2, p  
307 < 0.001). Pollen consumption increased significantly at each timepoint (Tukey HSD p < 0.05).

308 Microcolony sugar water consumption was also not significantly influenced by *Nosema*  
309 ( $\chi^2=1.08$ , df=1, p=0.298) or chlorothalonil ( $\chi^2=0.353$ , df=1, p=0.553) exposures, their interaction  
310 ( $\chi^2=0.056$ , df=1, p=0.814), nor the three-way interaction with time ( $\chi^2=0.97$ , df=2, p=0.616).  
311 However, as with pollen, time significantly affected sugar water consumption ( $\chi^2=10.562$ , df=2,  
312 p=0.005), which was driven by reduced consumption at 144h relative to 48h (Tukey HSD  
313 p=0.063) and 96h (Tukey HSD p=0.005) post-treatment initiation.

314 The probability of progression of individuals within microcolonies from early instar  
315 larvae at treatment initiation to adulthood was not significantly affected by *Nosema* ( $\chi^2=2.492$ ,  
316 df=1, p=0.114) or chlorothalonil ( $\chi^2=0.219$ , df=1, p=0.640) treatments, nor their interaction  
317 ( $\chi^2=1.733$ , df=1, p=0.188).

318

319 **Individual traits of development time, adult body size, and protein**

320 Across all treatments, individuals (n=481) reached adult eclosion on average 31.36 days

321 post-oviposition. There was no effect of *Nosema* exposure ( $\chi^2=0.026$ , df=1, p=0.871),

322 chlorothalonil ( $\chi^2=0.092$ , df=1, p=0.761), nor their interaction ( $\chi^2=2.408$ , df=1, p=0.121) (Figure

323 S2). However, analyzing those bees exposed to *Nosema*, based on their status of infected

324 (n=155) or not infected (n=109), infection significantly affected development time ( $\chi^2=5.707$ ,

325 df=1, p=0.017). On average, *Nosema* infected bees emerged as adults 16.27 hours sooner than

326 those exposed but uninfected (Figure S3). In this subset, there was also no significant effect of

327 chlorothalonil treatment ( $\chi^2=0.646$ , df=1, p=0.422), nor the interaction of chlorothalonil

328 treatment and *Nosema* status ( $\chi^2=0.175$ , df=1, p=0.675).

329 Individual adult body size was not affected by *Nosema* ( $\chi^2=0.625$ , df=1, p=0.429),

330 chlorothalonil ( $\chi^2=0.017$ , df=1, p=0.895), nor their interaction ( $\chi^2=1.751$ , df=1, p=0.186) (Figure

331 S4). However, again analyzing only *Nosema* exposed bees based on infection status, there was a

332 significant effect of infection on body size ( $\chi^2=4.751$ , df=1, p=0.029). Infected bees (forewing

333 radial cell=2.82 mm) were on average 1.81% larger than those uninfected (2.77 mm). In this

334 subset there was again no significant effect on body size of chlorothalonil ( $\chi^2=0.71$ , df=1,

335 p=0.399), nor the *Nosema* status by chlorothalonil interaction ( $\chi^2=2.005$ , df=1, p=0.157) on body

336 size.

337 Protein amounts in bees (n=113) did not differ based on exposure to *Nosema*,

338 chlorothalonil, nor their interaction (Table S1; Figure S5). Unsurprisingly, protein amount was

339 positively affected by body size. These results were consistent when considering infection status

340 in only *N. bombi* exposed bees (n=57) (Table S2).

341

342 **Infection outcomes: total infection intensity and spore production**

343 Of *Nosema* exposed bees assayed by qPCR at five days post-eclosion (n=161), 58.75%  
344 showed evidence of infection. Infection data were therefore analyzed as the prevalence based on  
345 binary presence or absence of infection and also the total infection intensity in infected  
346 individuals. Neither chlorothalonil treatment ( $\chi^2=1.413$ , df=1, p=0.235) nor the interaction of  
347 body size and chlorothalonil treatment ( $\chi^2=0.094$ , df=1, p=0.759) affected the likelihood of a bee  
348 being infected. However, there was a significant effect of body size ( $\chi^2=4.508$ , df=1, p=0.034),  
349 with larger bees being more likely to be infected (Figure S6). This mirrors the prior detected  
350 difference in size between infected and uninfected individuals. In infected bees (n=94), the total  
351 *Nosema* infection intensity was not influenced by chlorothalonil treatment ( $\chi^2=1.377$ , df=1,  
352 p=0.242, Figure 2A), body size ( $\chi^2=0.693$ , df=1, p=0.405), nor their interaction ( $\chi^2=0.133$ , df=1,  
353 p=0.715).

354 Considering transmission potential, 69% of infected individuals had spores present at  
355 five-days post-eclosion. Spore presence was not influenced by chlorothalonil ( $\chi^2=0.941$ , df=1,  
356 p=0.332), body size ( $\chi^2=0.877$ , df=1, p=0.468), nor their interaction ( $\chi^2=0.045$ , df=1, p=0.832).  
357 Where spores were present (n=65), there was an overall positive relationship between the  
358 quantified infection intensity and spore number ( $F_{1,63}=187.5$ , p < 0.001,  $R^2=0.745$ ). However, the  
359 number of spores present was significantly affected by chlorothalonil treatment ( $\chi^2=7.311$ , df=1,  
360 p=0.006). Those bees exposed to chlorothalonil during development had a greater number of  
361 extracellular *N. bomby* spores than those bees not exposed to chlorothalonil (Figure 2B). There  
362 was no effect of body size ( $\chi^2=0.976$ , df=1, p=0.323) or the chlorothalonil treatment and body  
363 size interaction ( $\chi^2=1.155$ , df=1, p=0.283). Further, the percentage of the total quantified

364 infection represented by transmission ready spores was significantly greater in chlorothalonil  
365 exposed bees (estimated marginal mean 4.71% [95% C.I.s: 3.98-5.43%]) versus unexposed  
366 (2.77% [1.90-3.63%]) ( $\chi^2=12.197$ , df=1, p < 0.001). Body size did not significantly affect this  
367 proportion ( $\chi^2=0.204$ , df=1, p=0.651), nor did its interaction with chlorothalonil ( $\chi^2=0.124$ , df=1,  
368 p=0.724).

369

### 370 **Adult survival**

371 For individuals tracked for survival (n=253), there was no effect of exposure to *Nosema*,  
372 chlorothalonil, body size, nor all two- and three-way interactions on survival (Table S3A, Figure  
373 S7). In *Nosema* exposed individuals (n=101), survival hazards were higher in infected versus  
374 non-infected individuals, but this difference was not significant (Figure 3, Table S3B).  
375 Furthermore, neither chlorothalonil exposure nor any interactions involving body size  
376 significantly affected survival (Table S3B), but body size had a borderline-significant effect on  
377 survival ( $\chi^2=3.834$ , df=1, p=0.050).

378

### 379 **DISCUSSION**

380 Pesticide and pathogen co-exposure has gained increasing attention in the literature  
381 regarding threats to native bee pollinators [6]. A main focus has been on neonicotinoid  
382 insecticides, but a landscape analysis identified chlorothalonil fungicide use to be associated with  
383 prevalence of the microsporidian *N. bombi* in declining North American *Bombus spp.* [36]. We  
384 demonstrate that *B. impatiens* workers do not avoid chlorothalonil-laced sugar water, and pollen  
385 and sugar water consumption in worker produced microcolonies does not change when  
386 provisions are spiked with field-realistic chlorothalonil doses (100 ppb). We did not see a

387 preference, as reported for 50 ppb chlorothalonil in honeybees [37], but a lack of avoidance  
388 suggests that foraging bumblebee workers are unable to detect or avoid sublethal chlorothalonil  
389 concentrations. This sets the stage for co-exposure to the potential multiple stressors of this  
390 fungicide and pathogens such as *N. bombi* and emphasizes the importance of studies  
391 investigating the effects of their co-exposure.

392 Testing the multiple stressor hypothesis in worker produced *B. impatiens* microcolonies  
393 exposed to chlorothalonil or *N. bombi* early in development, we found no strong evidence for the  
394 hypothesis in relation to tolerance or resistance of individual hosts to infection. Development,  
395 size, survival, and protein amounts of males from microcolonies were not significantly  
396 negatively affected by *Nosema* exposure or infection, chlorothalonil exposure, nor their  
397 interaction. Additionally, the prevalence and infection intensities at five-days post-eclosion did  
398 not differ. This suggests that, under our experimental set up and measured traits, chlorothalonil  
399 co-exposure does not affect individual resistance to infection or health outcomes, as has been  
400 demonstrated in other pathogen-pesticide experiments on bees [e.g., 12]. As highlighted earlier,  
401 it is important to note that our study species is considered stable [16], and thus is not one of the  
402 declining species in which prevalence of *N. bombi* has been associated with local chlorothalonil  
403 use [36]. However, despite this caveat, we show that an infection outcome relating to subsequent  
404 transmission potential of the pathogen is affected. Although total infection intensities did not  
405 differ, total spore production from established infections was altered by chlorothalonil treatment.  
406 Bees from microcolonies exposed to chlorothalonil exhibited increased spore loads, with spores  
407 representing a greater proportion of the total infection intensity. This indicates that in  
408 bumblebees, chlorothalonil exposure can interact with *N. bombi* infection to influence a  
409 parameter important for transmission dynamics that could affect colony, population, or

410 community health. This could, in part, explain elevated infections, or at least facilitation of  
411 infection, in declining species [16,36].

412 We did not document any individual negative effects of chlorothalonil exposure or *N.*  
413 *bombi* exposure or infection. This contrasts with other studies, where dietary exposure of  
414 bumblebees to other pesticides frequently reduces traits associated with individual or colony  
415 fitness [11–15,60–62]. Chlorothalonil has not been as widely studied as neonicotinoids, but  
416 negative effects have been found in honeybees [40], including effects of treatment concentrations  
417 10-fold lower than used for our microcolony experiment [39]. Another study in *B. impatiens*  
418 showed that colonies produce fewer workers, less biomass, and have smaller queens following  
419 chlorothalonil exposure [38]. The exact consumed doses cannot be compared, due to the mode of  
420 application, but the dose was likely higher in this earlier study. Thus dose, exposure time,  
421 microcolony conditions, or caste differences could all be explanations for a lack of similar  
422 negative effects in our study. Although the concentration of chlorothalonil we used in exposures  
423 likely represents a reasonable approximation of an average dietary field exposure [35,44],  
424 exposures could be much higher [44]. Subsequent studies are required to test if such high field  
425 realistic doses could have stronger negative individual or pathogen-associated interactive effects.

426 The absence of negative *N. bombi* effects are perhaps more surprising than for  
427 chlorothalonil, given the documented detrimental effects of infection [25,26]. Although survival  
428 hazards suggested that *Nosema* infected bees had a greater risk of death, this was not significant,  
429 nor were there any other apparent reductions in individual health measures. In fact, exposed and  
430 infected bees developed slightly faster and were slightly larger than exposed uninfected bees.  
431 The relevance for host or pathogen and the cause of these effects is not clear, but they could  
432 potentially stem from a cost of successfully resisting infection [63]. An alternative to resistance

433 of pathogen infection is tolerance, the withstanding of negative effects of a particular infection  
434 level [64]. No previous studies of the effects of *N. bombi* have been carried out in *B. impatiens*,  
435 but a lack of detrimental effects, even when individuals were carrying high infections, suggests  
436 that *B. impatiens* is either better able to tolerate infection or virulence outcomes are context  
437 dependent, as with other bumblebee pathogens [59,65]. Investigating context dependence and  
438 particularly species differences in resistance and tolerance, including in declining species, is an  
439 important future research avenue [6].

440 Between-host dynamics of pathogens and contributing factors, such as transmission  
441 potential, are key determinants in the epidemiological spread and the impact on host populations  
442 and communities [66–69]. While within- and between-host dynamics of infection are  
443 unavoidably interrelated [66], the presence of specific transmission stages, such as the  
444 extracellular spores of *N. bombi*, can decouple them to some extent. We show that chlorothalonil  
445 exposure did not alter total infection intensities but did result in greater spore loads. Spore  
446 production can be equated to transmission potential, indicating that chlorothalonil exposure has  
447 the potential to alter the association between within- and between-host dynamics. Subsequent  
448 increased disease spread in colonies, and host populations or communities, through  
449 contamination of floral resources [70], would be predicted to result in higher overall pathogen  
450 prevalence and loads at these ecological scales under basic epidemiological models [71]. Even if  
451 some hosts exhibit high infection tolerance, as we see in this study, there will be an increased  
452 likelihood of transmission to more susceptible individuals or species, where *Nosema* alone may  
453 exhibit its documented high virulence [25,26] or chlorothalonil co-exposure may affect within-  
454 host total infection levels or their consequences. These represent plausible links between the  
455 demonstrated effect of chlorothalonil on *N. bombi* infection outcomes and the landscape-level

456 association reported by [36]. This should prompt further studies under the multiple stressor  
457 framework into this pesticide-pathogen interaction, including between-host dynamics.

458 Potential mechanistic explanations for the effect of chlorothalonil on *N. bombi* spore  
459 production may be through a disruption of host physiology and immunity, alterations to the host  
460 gut microbiota, or potentially terminal investment strategies of the microsporidian. In honeybees,  
461 chlorothalonil exposure significantly enhanced glucose oxidase activity [39], a marker for social  
462 immunity. Although, resistance to infection was not obviously compromised in our study, host  
463 immune or other physiological changes could alter spore production dynamics. Furthermore,  
464 honeybees and bumblebees have gut microbiota that can determine infection outcomes [72], and  
465 chlorothalonil has been shown to change honeybee gut microbiota structural and functional  
466 properties [73]. Chlorothalonil could indirectly enhance spore production by disturbing the  
467 bumblebee gut microbe community. Finally, increased spore production may result from a  
468 pathogen terminal investment strategy under stress [74]. When host conditions are unfavorable,  
469 pathogens are predicted to switch strategies from within-host replication to transmission stages  
470 [75], including in response to anti-pathogen treatments [e.g., 76]. Molecular phylogenetic data  
471 suggest that microsporidia are either a basal branch of the Fungi or a sister group [77]. Thus,  
472 fungicide exposure could precipitate such a strategy shift in *Nosema*. However, we do not see  
473 reductions in prevalence and infection loads that we would expect if chlorothalonil negatively  
474 affected *N. bombi*, making direct or indirect effects on the host more plausible.

475 Understanding and preventing diseases outbreaks that threaten biodiversity and  
476 ecosystem services requires investigations of patterns and causation. Our study builds on prior  
477 demonstrations of an association between chlorothalonil use and prevalence of *N. bombi* in  
478 declining North American bumblebees [36]. Using experimental exposures in worker produced

479 microcolonies of the non-declining *B. impatiens*, we demonstrate that co-exposure to field-  
480 realistic concentrations of chlorothalonil can increase *N. bombi* spore production and thus  
481 transmission potential. This demonstrates the need to consider factors relating to both within-  
482 and between-host dynamics of infection when considering pathogens under the multiple stressor  
483 hypothesis framework.

484

#### 485 **ACKNOWLEDGEMENTS**

486 The authors thank Sadd lab members for colony maintenance.

487

#### 488 **FUNDING**

489 This work was supported by a US Department of Agriculture NIFA (2017-67013-26536) and  
490 NIH (R15 GM129681-01) grants to B.M.S., two Phi Sigma Weigel Grants, one Mockford-  
491 Thompson Fellowship, and one Sigma Xi Grant-in-aid of research to A.C.C. Instrumentation  
492 used in this project was funded by an NSF MRI grant (1725199) with B.M.S. as a co-PI.

493

#### 494 **COMPETING INTERESTS**

495 The authors declare no competing interests.

496

#### 497 **AUTHOR CONTRIBUTIONS**

498 A.C.C. conducted the experimental work and data collection, participated in data analysis, wrote  
499 the first draft of the manuscript, and collaborated on experimental design; B.M.S. collaborated  
500 on experimental design, performed data analysis, and revised the manuscript; A.E.H. assisted in  
501 experimental set-up; A.E.H. and T.A.B. assisted in data collection and manuscript review.

502

503 **ETHICS, CODE AND MATERIALS**

504 Data and scripts available from the Dryad Digital Repository:

505 <https://doi.org/10.5061/dryad.w3r2280pg>.

506

507

508 **REFERENCES**

- 509 1. Losey JE, Vaughan M. 2006 The economic value of ecological services provided by  
510 insects. *BioScience* **56**, 311–323.
- 511 2. Bommarco R, Lundin O, Smith HG, Rundlöf M. 2012 Drastic historic shifts in bumble-  
512 bee community composition in Sweden. *Proc. R. Soc. B* **279**, 309–315.  
513 (doi:10.1098/rspb.2011.0647)
- 514 3. Colla SR, Packer L. 2008 Evidence for decline in eastern North American bumblebees  
515 (Hymenoptera: Apidae), with special focus on *Bombus affinis* Cresson. *Biodivers.*  
516 *Conserv.* **17**, 1379–1391. (doi:10.1007/s10531-008-9340-5)
- 517 4. Aizen MA *et al.* 2019 Coordinated species importation policies are needed to reduce  
518 serious invasions globally: The case of alien bumblebees in South America. *J. Appl. Ecol.*  
519 **56**, 100–106. (doi:10.1111/1365-2664.13121)
- 520 5. An J, Huang J, Shao Y, Zhang S, Wang B, Liu X, Wu J, Williams PH. 2014 The  
521 bumblebees of North China (Apidae, *Bombus* Latreille). *Zootaxa*. **3830**, 1–89.  
522 (doi:10.11646/zootaxa.3830.1.1)
- 523 6. Cameron SA, Sadd BM. 2020 Global trends in bumble bee health. *Annu. Rev. Entomol.*  
524 **65**, 209–232. (doi:10.1146/annurev-ento-011118-111847)

525 7. Goulson D, Nicholls E, Botías C, Rotheray EL. 2015 Bee declines driven by combined  
526 stress from parasites, pesticides, and lack of flowers. *Science*. **347**, 1255957.  
527 (doi:10.1126/science.1255957)

528 8. Soroye P, Newbold T, Kerr J. 2020 Climate change contributes to widespread declines  
529 among bumble bees across continents. *Science*. **367**, 685–688.

530 9. Hatfield RG, LeBuhn G. 2007 Patch and landscape factors shape community assemblage  
531 of bumble bees, *Bombus* spp. (Hymenoptera: Apidae), in montane meadows. *Biol.*  
532 *Conserv.* **139**, 150–158. (doi:10.1016/j.biocon.2007.06.019)

533 10. Hines HM, Hendrix SD. 2005 Bumble bee (Hymenoptera: Apidae) diversity and  
534 abundance in tallgrass prairie patches: Effects of local and landscape floral resources.  
535 *Environ. Entomol.* **34**, 1477–1484. (doi:10.1603/0046-225x-34.6.1477)

536 11. Gill RJ, Ramos-Rodriguez O, Raine NE. 2012 Combined pesticide exposure severely  
537 affects individual- and colony-level traits in bees. *Nature* **491**, 105–109.  
538 (doi:10.1038/nature11585)

539 12. Fauser-Misslin A, Sadd BM, Neumann P, Sandrock C. 2014 Influence of combined  
540 pesticide and parasite exposure on bumblebee colony traits in the laboratory. *J. Appl.*  
541 *Ecol.* **51**, 450–459. (doi:10.1111/1365-2664.12188)

542 13. Stanley DA, Smith KE, Raine NE. 2015 Bumblebee learning and memory is impaired by  
543 chronic exposure to a neonicotinoid pesticide. *Sci. Rep.* **5**, 16508. (doi:10.1038/srep16508)

544 14. Fauser A, Sandrock C, Neumann P, Sadd BM. 2017 Neonicotinoids override a parasite  
545 exposure impact on hibernation success of a key bumblebee pollinator. *Ecol. Entomol.* **42**,  
546 306–314. (doi:10.1111/een.12385)

547 15. Stanley DA, Garratt MPD, Wickens JB, Wickens VJ, Potts SG, Raine NE. 2015

548           Neonicotinoid pesticide exposure impairs crop pollination services provided by  
549           bumblebees. *Nature* **528**, 548–550. (doi:10.1038/nature16167)

550   16. Cameron SA, Lozier JD, Strange JP, Koch JB, Cordes N, Solter LF, Griswold TL. 2011  
551           Patterns of widespread decline in North American bumble bees. *PNAS* **108**, 662–667.  
552           (doi:10.1073/pnas.1014743108)

553   17. Colla SR, Otterstatter MC, Gegeare RJ, Thomson JD. 2006 Plight of the bumble bee:  
554           Pathogen spillover from commercial to wild populations. *Biol. Conserv.* **129**, 461–467.  
555           (doi:10.1016/j.biocon.2005.11.013)

556   18. Baron GL, Raine NE, Brown MJF. 2017 General and species-specific impacts of a  
557           neonicotinoid insecticide on the ovary development and feeding of wild bumblebee  
558           queens. *Proc. R. Soc. B* **284**, 20170123. (doi:10.1098/rspb.2017.0123)

559   19. James RR, Xu J. 2012 Mechanisms by which pesticides affect insect immunity. *J.*  
560           *Invertebr. Pathol.* **109**, 175–182. (doi:10.1016/j.jip.2011.12.005)

561   20. Czerwinski MA, Sadd BM. 2017 Detrimental interactions of neonicotinoid pesticide  
562           exposure and bumblebee immunity. *J. Exp. Zool.* **00**, 1–11. (doi:10.1002/jez.2087)

563   21. Pamminger T, Botías C, Goulson D, Hughes WOH. 2018 A mechanistic framework to  
564           explain the immunosuppressive effects of neurotoxic pesticides on bees. *Funct. Ecol.* **32**,  
565           1921–1930. (doi:10.1111/1365-2435.13119)

566   22. Bårdesen BJ, Hanssen SA, Bustnes JO. 2018 Multiple stressors: modeling the effect of  
567           pollution, climate, and predation on viability of a sub-arctic marine bird. *Ecosphere* **9**,  
568           e02342. (doi:10.1002/ecs2.2342)

569   23. Cameron SA, Lim HC, Lozier JD, Duennes MA, Thorp R. 2016 Test of the invasive  
570           pathogen hypothesis of bumble bee decline in North America. *PNAS* **113**, 4386–4391.

571 (doi:10.1073/pnas.1525266113)

572 24. van Der Steen JJM. 2008 Infection and transmission of *Nosema bombi* in *Bombus*  
573 *terrestris* colonies and its effect on hibernation, mating and colony founding. *Apidologie*  
574 **39**, 273–282. (doi:10.1051/apido:2008006)

575 25. Otti O, Schmid-Hempel P. 2008 A field experiment on the effect of *Nosema bombi* in  
576 colonies of the bumblebee *Bombus terresteris*. *Ecol. Entomol.* **33**, 577–582.  
577 (doi:10.1111/j.1365-2311.2008.00998.x)

578 26. Otti O, Schmid-Hempel P. 2007 *Nosema bombi*: A pollinator parasite with detrimental  
579 fitness effects. *J. Invertebr. Pathol.* **96**, 118–124. (doi:10.1016/j.jip.2007.03.016)

580 27. Keeling PJ, Fast NM. 2002 Microsporidia: Biology and evolution of highly reduced  
581 intracellular parasites. *Annu. Rev. Microbiol.* **56**, 93–116.  
582 (doi:10.1146/annurev.micro.56.012302.160854)

583 28. Franzen C. 2004 Microsporidia: How can they invade other cells? *Trends Parasitol.* **20**,  
584 275–279. (doi:10.1016/j.pt.2004.04.009)

585 29. Brown MJF. 2017 Microsporidia: An emerging threat to bumblebees? *Trends Parasitol.*  
586 **33**, 754–762. (doi:10.1016/j.pt.2017.06.001)

587 30. Huang Q, Kryger P, Le Conte Y, Moritz RFA. 2012 Survival and immune response of  
588 drones of a *Nosemosis* tolerant honey bee strain towards *N. ceranae* infections. *J.*  
589 *Invertebr. Pathol.* **109**, 297–302. (doi:10.1016/j.jip.2012.01.004)

590 31. Li W *et al.* 2016 Silencing the honey bee (*Apis mellifera*) naked cuticle gene (*nkd*)  
591 improves host immune function and reduces *Nosema ceranae* infections. *Appl. Environ.*  
592 *Microbiol.* **82**, 6779–6787. (doi:10.1128/AEM.02105-16)

593 32. Shi X-Z, Guo R-J, Takagi K, Miao Z-Q, Li S-D. 2011 Chlorothalonil degradation by

594 *Ochrobactrum lupini* strain TP-D1 and identification of its metabolites. *World J.*  
595 *Microbiol. Biotechnol.* **27**, 1755–1764. (doi:10.1007/s11274-010-0631-0)

596 33. Baćmaga M, Wyszkowska J, Kucharski J. 2018 The influence of chlorothalonil on the  
597 activity of soil microorganisms and enzymes. *Ecotoxicology* **27**, 1188–1202.  
598 (doi:10.1007/s10646-018-1968-7)

599 34. Valverde-Garcia A, Gonzalez-Pradas E, Aguilera-Del Real A, Ureña-Amate MD,  
600 Camacho-Ferre F. 1993 Determination and degradation study of chlorothalonil residues in  
601 cucumbers, peppers and cherry tomatoes. *Anal. Chim. Acta* **276**, 15–23.

602 35. Zioga E, Kelly R, White B, Stout JC. 2020 Plant protection product residues in plant  
603 pollen and nectar: A review of current knowledge. *Environ. Res.* **189**, 1–16.  
604 (doi:10.1016/j.envres.2020.109873)

605 36. McArt SH, Urbanowicz C, McCoshum S, Irwin RE, Adler LS. 2017 Landscape predictors  
606 of pathogen prevalence and range contractions in US bumblebees. *Proc. R. Soc. B* **284**,  
607 20172181.

608 37. Liao L-H, Wu W-Y, Berenbaum MR. 2017 Behavioral responses of honey bees (*Apis*  
609 *mellifera*) to natural and synthetic xenobiotics in food. *Sci. Rep.* **7**, 15924.  
610 (doi:10.1038/s41598-017-15066-5)

611 38. Bernauer OM, Gaines-Day HR, Steffan SA. 2015 Colonies of bumble bees (*Bombus*  
612 *impatiens*) produce fewer workers, less bee biomass, and have smaller mother queens  
613 following fungicide exposure. *Insects* **6**, 478–488. (doi:10.3390/insects6020478)

614 39. O’Neal ST, Reeves AM, Fell RD, Brewster CC, Anderson TD. 2019 Chlorothalonil  
615 exposure alters virus susceptibility and markers of immunity, nutrition, and development  
616 in honey bees. *J. Insect Sci.* **19**, 1–8. (doi:10.1093/jisesa/iez051)

617 40. VanEngelsdorp D, Evans JD, Donovall L, Mullin C, Frazier M, Frazier J, Tarpy DR,  
618 Hayes Jr. J, Pettis J. 2009 “Entombed Pollen”: A new condition in honey bee colonies  
619 associated with increased risk of colony mortality. *J. Invertebr. Pathol.* **101**, 147–149.

620 41. da Silveira Guerreiro A, Rola RC, Rovani MT, da Costa SR, Sandrini JZ. 2017  
621 Antifouling biocides: Impairment of bivalve immune system by chlorothalonil. *Aquat.*  
622 *Toxicol.* **189**, 194–199. (doi:10.1016/j.aquatox.2017.06.012)

623 42. Tasei JN, Lerin J, Ripault G. 2000 Sub-lethal effects of imidacloprid on bumblebees,  
624 *Bombus terrestris* (Hymenoptera: Apidae), during a laboratory feeding test. *Pest Manag.*  
625 *Sci.* **56**, 784–788.

626 43. Mullin CA, Frazier M, Frazier JL, Ashcraft S, Simonds R, vanEngelsdorp D, Pettis JS.  
627 2010 High levels of miticides and agrochemicals in North American apiaries: Implications  
628 for honey bee health. *PLoS ONE* **5**, e9754. (doi:10.1371/journal.pone.0009754)

629 44. Sanchez-Bayo F, Goka K. 2014 Pesticide residues and bees – A risk assessment. *PLoS*  
630 *ONE* **9**, e94482. (doi:10.1371/journal.pone.0094482)

631 45. Palmer-Young EC, Calhoun AC, Mirzayeva A, Sadd BM. 2018 Effects of the floral  
632 phytochemical eugenol on parasite evolution and bumble bee infection and preference.  
633 *Sci. Rep.* **8**, 20174. (doi:10.1038/s41598-018-20369-2)

634 46. Cnaani J, Borst DW, Huang ZY, Robinson GE, Hefetz A. 1997 Caste determination in  
635 *Bombus terrestris*: Differences in development and rates of JH biosynthesis between  
636 queen and worker larvae. *J. Insect Physiol.* **43**, 373–381. (doi:10.1016/S0022-  
637 1910(96)00106-0)

638 47. Muller CB, Blackburn TM, Schmid-Hempel P. 1996 Field evidence that host selection by  
639 conopid parasitoids is related to host body size. *Insectes Soc.* **43**, 227–233.

640 48. Woodard SH, Duennes MA, Watrous KM, Jha S. 2019 Diet and nutritional status during  
641 early adult life have immediate and persistent effects on queen bumble bees. *Conserv.*  
642 *Physiol.* **00**, 1–10. (doi:10.1093/conphys/coz048)

643 49. Di Pasquale G, Salignon M, Le Conte Y, Belzunces LP, Decourtey A, Kretzschmar A,  
644 Suchail S, Brunet JL, Alaux C. 2013 Influence of pollen nutrition on honey bee health: Do  
645 pollen quality and diversity matter? *PLoS ONE* **8**, e72016.  
646 (doi:10.1371/journal.pone.0072016)

647 50. Plischuk S, Martín-Hernández R, Prieto L, Lucía M, Botías C, Meana A, Abrahamovich  
648 AH, Lange C, Higes M. 2009 South American native bumblebees (Hymenoptera: Apidae)  
649 infected by *Nosema ceranae* (Microsporidia), an emerging pathogen of honeybees (*Apis*  
650 *mellifera*). *Environ. Microbiol. Rep.* **1**, 131–135. (doi:10.1111/j.1758-2229.2009.00018.x)

651 51. Chu C-C, Cameron SA. 2017 A scientific note on *Nosema bombi* infection intensity  
652 among different castes within a *Bombus auricomus* nest. *Apidologie* **48**, 141–143.

653 52. Team RC. 2020 R: A language and environment for statistical computing. Vienna,  
654 Austria: R Foundation for Statistical Computing.

655 53. Therneau T. 2020 Mixed effects Cox models in R. Release 2.2-16, <https://CRAN.R-project.org/package=coxme>.

656 54. Bates D, Mächler M, Bolker BM, Walker SC. 2015 Fitting linear mixed-effects models  
657 using lme4. *J. Stat. Softw.* **67**, 1–48. (doi:10.18637/jss.v067.i01)

658 55. Brooks ME, Kristensen K, van Benthem KJ, Magnusson A, Berg CW, Nielson A, Skaug  
659 HJ, Mächler M, Bolker BM. 2017 glmmTMB Balances Speed and Flexibility Among  
660 Packages for Zero-inflated Generalized Linear Mixed Modeling. *R J.* **9**, 378–400.  
661 (doi:10.32614/RJ-2017-066)

663 56. Burnham KP, Anderson DR, Huyvaert KP. 2011 AIC model selection and multimodel  
664 inference in behavioral ecology: Some background, observations, and comparisons.  
665 *Behav. Ecol. Sociobiol.* **65**, 23–35. (doi:10.1007/s00265-010-1029-6)

666 57. Lenth R, Singmann H, Love J, Buerkner P, Herve M. 2020 Package ‘emmeans’. *R*  
667 *Packag. version 1.4.6.* **34**, 216–221. (doi:10.1080/00031305.1980.10483031>.License)

668 58. Hardin JW, Hilbe JM. 2018 Generalized Linear Models and Extensions, Fourth Edition. ,  
669 598.

670 59. Brown MJF, Schmid-Hempel R, Schmid-Hempel P. 2003 Strong context-dependent  
671 virulence in a host-parasite system: Reconciling genetic evidence with theory. *J. Anim.*  
672 *Ecol.* **72**, 994–1002. (doi:10.1046/j.1365-2656.2003.00770.x)

673 60. Leza M, Watrous KM, Bratu J, Woodard SH. 2018 Effects of neonicotinoid insecticide  
674 exposure and monofloral diet on nest-founding bumblebee queens. *Proc. R. Soc. B* **285**,  
675 20180761. (doi:10.1098/RSPB.2018.0761)

676 61. Siviter H, Brown MJF, Leadbeater E. 2018 Sulfoxaflor exposure reduces bumblebee  
677 reproductive success. *Nature* **561**, 109–112.

678 62. Rundlöf M *et al.* 2015 Seed coating with a neonicotinoid insecticide negatively affects  
679 wild bees. *Nature* **521**, 77–80. (doi:10.1038/nature14420)

680 63. Sadd BM, Schmid-Hempel P. 2009 Principles of ecological immunology. *Evol. Appl.* **2**,  
681 113–121. (doi:10.1111/j.1752-4571.2008.00057.x)

682 64. Schneider DS, Ayres JS. 2008 Two ways to survive infection: what resistance and  
683 tolerance can teach us about treating infectious diseases. *Nat. Rev. Immunol.* **8**, 889–895.  
684 (doi:10.1038/nri2432)

685 65. Brown MJF, Loosli R, Schmid-Hempel P. 2000 Condition-dependent expression of

686 virulence in a trypanosome infecting bumblebees. *Oikos* **91**, 421–427.  
687 (doi:10.1034/j.1600-0706.2000.910302.x)

688 66. Mideo N, Alizon S, Day T. 2008 Linking within- and between-host dynamics in the  
689 evolutionary epidemiology of infectious diseases. *Trends Ecol. Evol.* **23**, 511–517.

690 67. Johnson PTJ, Hartson RB, Larson DJ, Sutherland DR. 2008 Diversity and disease:  
691 Community structure drives parasite transmission and host fitness. *Ecol. Lett.* **11**, 1017–  
692 1026. (doi:10.1111/j.1461-0248.2008.01212.x)

693 68. Handel A, Rohani P. 2015 Crossing the scale from within-host infection dynamics to  
694 between-host transmission fitness: A discussion of current assumptions and knowledge.  
695 *Phil. Trans. R. Soc. B* **370**, 20140302. (doi:10.1098/rstb.2014.0302)

696 69. Elderd BD, Reilly JR. 2014 Warmer temperatures increase disease transmission and  
697 outbreak intensity in a host-pathogen system. *J. Anim. Ecol.* **83**, 838–849.  
698 (doi:10.1111/1365-2656.12180)

699 70. Koch H, Brown MJ, Stevenson PC. 2017 The role of disease in bee foraging ecology.  
700 *Curr. Opin. Insect.* **21**, 60–67. (doi:10.1016/j.cois.2017.05.008)

701 71. Anderson RM, May RM. 1979 Population Biology of Infectious Diseases: Part I. *Nature*  
702 **280**, 361–367. (doi:10.1038/280361a0)

703 72. Engel P *et al.* 2016 The bee microbiome: Impact on bee health and model for evolution  
704 and ecology of host-microbe interactions. *MBio* **7**, e02164-15. (doi:10.1128/mBio.02164-  
705 15)

706 73. Kakumanu ML, Reeves AM, Anderson TD, Rodrigues RR, Williams MA. 2016 Honey  
707 bee gut microbiome is altered by in-hive pesticide exposures. *Front. Microbiol.* **7**, 1255.  
708 (doi:10.3389/fmicb.2016.01255)

709 74. Duffield KR, Bowers KE, Sakaluk SK, Sadd BM. 2017 A dynamic threshold model for  
710 terminal investment. *Behav. Ecol. Sociobiol.* **71**, 185. (doi:10.1007/s00265-017-2416-z)

711 75. Schneider P, Greischar MA, Birget PLG, Repton C, Mideo N, Reece SE. 2018 Adaptive  
712 plasticity in the gametocyte conversion rate of malaria parasites. *PLoS Pathog.* **14**,  
713 e1007371. (doi:10.1371/journal.ppat.1007371)

714 76. Bousema JT, Drakeley CJ, Mens PF, Arens T, Houben R, Omar SA, Gouagna LC,  
715 Schallig H, Sauerwein RW. 2008 Increased *Plasmodium falciparum* gametocyte  
716 production in mixed infections with *P. malariae*. *Am. J. Trop. Med. Hyg.* **78**, 442–448.  
717 (doi:10.4269/ajtmh.2008.78.442)

718 77. Han B, Weiss LM. 2017 Microsporidia: Obligate intracellular pathogens within the fungal  
719 kingdom. *Microbiol. Spectr.* **5**, 97–113. (doi:10.1128/9781555819583.ch5)

720

721

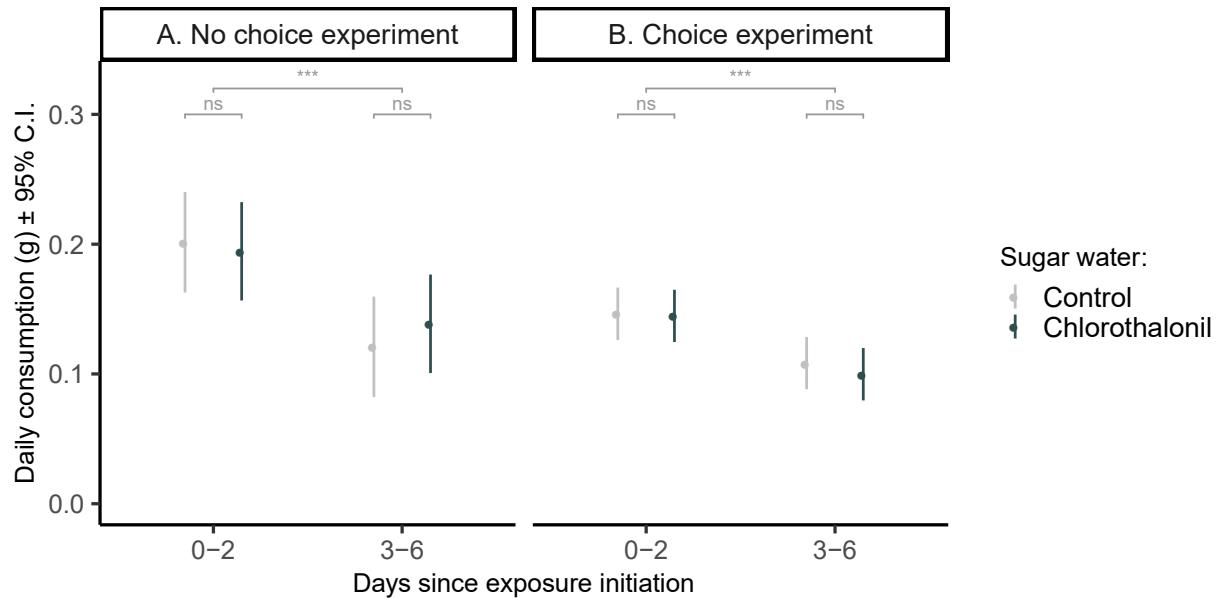
722

723

724

725

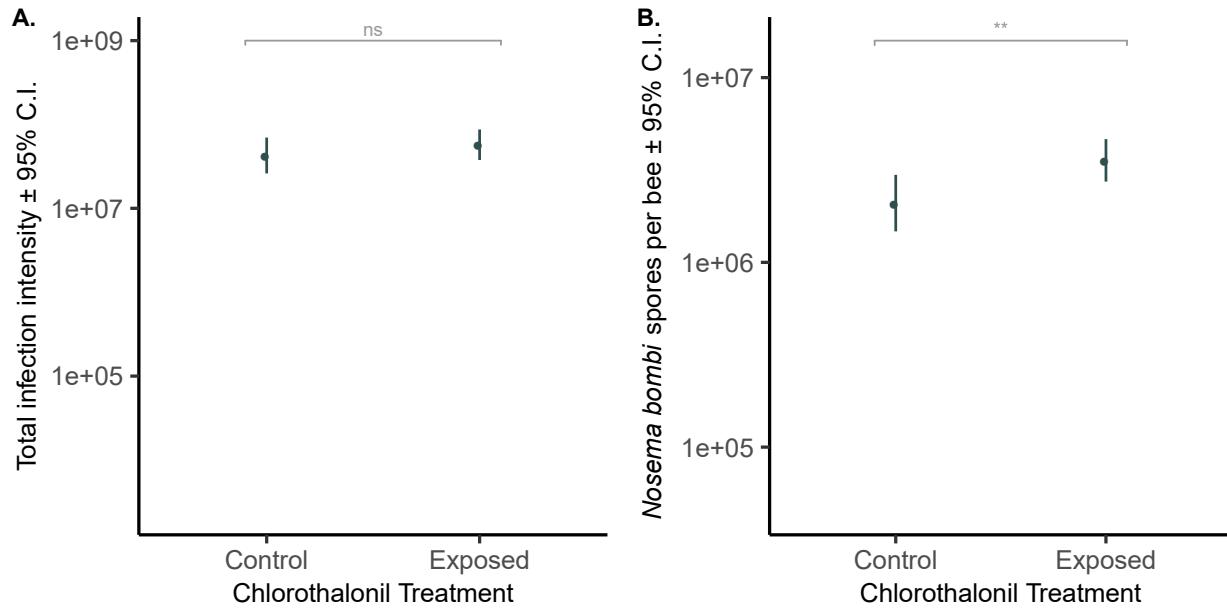
726


727

728

729

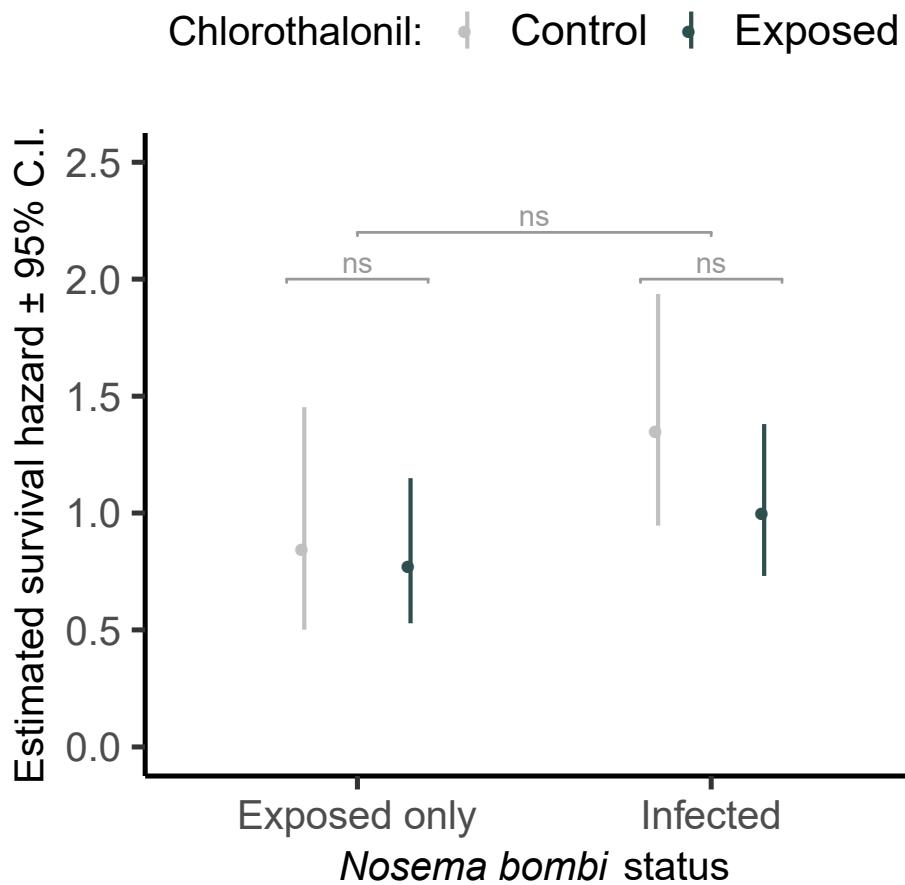
730 **FIGURE LEGENDS**


731



732

733 **Figure 1.** Daily consumption (g) of treated sugar water by adult bumblebee workers in a no  
 734 choice preference assay (A) and in a choice preference assay experiment (B) during the periods  
 735 of zero to two days and three to six days after treatment initiation. Individual bees are  
 736 represented by small points around the estimated marginal mean, bars represent 95% confidence  
 737 intervals. Brackets indicate nonsignificant (ns) or significant pairwise comparisons  
 738 (\*\*\*(p<0.001)).


739



740

741 **Figure 2.** The effect of chlorothalonil treatment on (A) total infection intensity and (B) *N. bombi*  
 742 transmission-ready spores counts. Total *N. bombi* infection intensity is based on qPCR and  
 743 spores from counts at five days post adult eclosion, for bees exposed to chlorothalonil or not  
 744 during development. Y-axes log<sub>10</sub>-transformed. Individual bees are represented by small points  
 745 around the estimated marginal mean, bars represent 95% confidence intervals. Brackets indicate  
 746 nonsignificant (ns) or significant pairwise comparisons (\*\*p<0.01).

747



748

749 **Figure 3.** Estimated survival hazard of bees based on *N. bombi* status and chlorothalonil  
750 exposure. Points represent model estimated survival hazard values and error bars represent 95%  
751 confidence intervals. Brackets indicate nonsignificant (ns) pairwise comparisons.

752

753

754

755

756