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METASET: Exploring Shape and
Property Spaces for Data-Driven
Metamaterials Design
Data-driven design of mechanical metamaterials is an increasingly popular method to
combat costly physical simulations and immense, often intractable, geometrical design
spaces. Using a precomputed dataset of unit cells, a multiscale structure can be quickly
filled via combinatorial search algorithms, and machine learning models can be trained
to accelerate the process. However, the dependence on data induces a unique challenge:
an imbalanced dataset containing more of certain shapes or physical properties can be det-
rimental to the efficacy of data-driven approaches. In answer, we posit that a smaller yet
diverse set of unit cells leads to scalable search and unbiased learning. To select such
subsets, we propose METASET, a methodology that (1) uses similarity metrics and positive
semi-definite kernels to jointly measure the closeness of unit cells in both shape and prop-
erty spaces and (2) incorporates Determinantal Point Processes for efficient subset selec-
tion. Moreover, METASET allows the trade-off between shape and property diversity so
that subsets can be tuned for various applications. Through the design of 2D metamaterials
with target displacement profiles, we demonstrate that smaller, diverse subsets can indeed
improve the search process as well as structural performance. By eliminating inherent over-
laps in a dataset of 3D unit cells created with symmetry rules, we also illustrate that our
flexible method can distill unique subsets regardless of the metric employed. Our diverse
subsets are provided publicly for use by any designer. [DOI: 10.1115/1.4048629]

Keywords: design automation, data-driven design, design metrics, diversity, computational
geometry, design representation, design of multiscale systems

1 Introduction
Metamaterials are drawing increased attention for their ability to

achieve a variety of non-intuitive properties that stem from their
intentionally hierarchical structures [1]. While they traditionally
consist of one unit cell that is repeated everywhere, multiple unit
cells can also be assembled to create aperiodicmechanical metama-
terials with, e.g., spatially varying or functionally gradient proper-
ties [1,2]. Over the past few years, conventional computational
methods have been adapted to design these complex structures,
including topology optimization (TO) of the microscale unit cells
within a fixed macroscale structure [3,4], and hierarchical and con-
current multiscale TO that design both the macrostructure and a pre-
specified number of unique unit cells [5–7]. However, as the desire
to attain even more intricate behaviors grows, so too does the com-
plexity of the design process, which must account for the expensive
physical simulations and, in aperiodic structures, the vast combina-
torial design space and disconnected neighboring unit cells [1,8].
Capitalizing on advances in computing power, data-driven meta-

materials design can be a more efficient and therefore enticing solu-
tion to these challenges. Its success hinges on precomputed unit cell
libraries or datasets, which can avoid costly on-the-fly physical
simulations and multiscale TO in huge design spaces, as well as
provide candidate unit cells that are better connected to their neigh-
bors. Figure 1 shows an overview of two common approaches in
data-driven design: global optimization methods and machine
learning (ML)-based methods. In the first case, combinatorial opti-
mization algorithms can be used to directly search for the set of unit
cells that realize a target macroscale behavior while minimizing or
constraining the boundary mismatch between neighboring cells

[1,8,9]. From another perspective, data-driven methods can use
the dataset to train ML models that further accelerate design. For
example, they have been used to rapidly predict homogenized phys-
ical properties as part of the optimization loop [10–13]. Addition-
ally, deep generative models inspired by the computer vision field
can learn embedded geometric descriptors that act as reduced
dimensional design variables and construct new designs, e.g.,
optical 2D metamaterials [14,15], almost instantaneously. Acceler-
ated by data-driven techniques, challenging designs such as spa-
tially varying displacement profiles and nonlinear behavior that
are prohibitively expensive via conventional methods are now
tangible.
The efficacy of data-driven methods, however, relies highly on

the size and coverage of the datasets. The search space of global
optimization methods can quickly explode when the number of
unit cells increases. Meanwhile, imbalanced datasets with skewed

Fig. 1 A high-level overview of data-driven metamaterials
design, and how our proposed method, METASET, fits in. As
an example, we show CH, the homogenized elastic tensor, as
the unit cell properties.
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data distributions can reduce the chance of meeting certain property
or compatibility requirements, and hobble the performance of ML
models since they may not learn a less frequent property or shape
as well [16]. Therefore, due to the importance of the data on down-
stream tasks, in this work, we focus on the first step of data-driven
design: dataset selection.
In existing literature, metamaterial datasets are often built using

heuristics or the designer’s intuition, with the assumption that the
unit cells will offer sufficient coverage for the desired application.
Many employ TO to inversely design unit cells that meet pre-
specified target properties [1,9,10], and some expand the dataset
by morphing the shapes [1,10] or randomly flipping pixels or
voxels [9]. Alternatively, Panetta et al. developed graph-based
rules to create truss-like unit cells [17]. Although these are more fea-
sible than enumerating over all possibilities, bias toward particular
properties or shapes can be unintentionally introduced, deteriorating
the performance of the design algorithm or the design itself.
Moreover, the point at which to stop generating new unit cells has

thus far been heuristic with the same goal in mind: to cover a broad
property space. The range of this space is sometimes restricted for
specific applications [3] or strict symmetry and manufacturability
constraints are implemented to limit the possible shapes [17].
More often, the property space is allowed to grow at will, e.g.,
TO and shape perturbation are repeated until the change in the
density of the property space is less than a given tolerance [9,10].
While efficient, all of the works to date have only considered cov-
erage in the property space alone, which can produce similar shapes
or overlook those that might benefit the design with regards to
boundary connectivity. In contrast, our work explores coverage in
both property and shape spaces.
Improving imbalance arising from data with multiple classes has

been extensively researched in computer science. The most rele-
vant to our application are the data preprocessing strategies such
as undersampling to remove data from majority classes, oversam-
pling to replicate data from minority classes or combinations
thereof [16]. However, the former can accidentally remove
samples with important features, i.e., decrease the diversity, and
the latter can lead to model overfitting and increased training over-
head [18]. Nor are they made to consider the diversity of data with
features that have drastically different representations, like shape
and property. The issue of downsampling a metamaterial database
was addressed by Chen et al. [13], who compressed the size of
their database by selecting the samples that are farthest from
each other with respect to properties (not shape), allowing them
to more efficiently fit a property prediction model. As far as we
know, there is currently no method to assess or select a diverse
set of unit cells that can simultaneously cover the shape and prop-
erty spaces.
Despite the dearth in the metamaterials field, measuring and

ranking items based on their quality as well as their contribution
to the diversity of a whole set or subset is an ongoing research
area. In computer science, for example, recommender systems
rank diverse items such as online products to match users’ prefer-
ences. These are based on the concept of diminishing marginal
utility [19], wherein lower ranking items bestow less additional
value onto the users. In design, too, researchers have developed
methods to help designers sift through large sets of ideas by
ranking them. In particular, to balance diversity against quality of
designs, Ahmed et al. introduced the idea of clustering items into
groups for subset selection [20] by employing submodular func-
tions that follow the property of diminishing marginal utility. Addi-
tionally, Ahmed and Fuge [21] showed the application of
Determinantal Point Processes (DPPs) [22], which model the like-
lihood of selecting a subset of diverse items as the determinant of
a kernel matrix, to the diverse ranking task. The latter, in particular,
are elegant probabilistic models that capture the trade-off between
competing ideas like quality and diversity. While the goal of max-
imizing the determinant is similar to the optimality criterion used in
generating D-optimal designs [23] in design of experiments, DPPs
are not restricted to linear kernels, and have advantages in that

calculating marginals, computing certain conditional probabilities
and sampling can all be done in polynomial time. This paper
shows that DPPs can also be used for coverage in multiple spaces
defined over the shapes and properties of unit cells.
Our contributions: We propose METASET, an automated

methodology that simultaneously considers the diversity of shape
and property to select subsets of unit cells from existing datasets.
By doing so, we can achieve scalable data-driven design of metama-
terials using smaller yet diverse subsets and eliminate bias in imbal-
anced datasets to improve any downstream task in the data-driven
framework. As a part of METASET, we introduce similarity
metrics to efficiently assess the diversity of the shapes and proper-
ties of 2D and 3D metamaterials. We also propose that a weighted
sum of Determinantal Point Process (DPP) kernels based on the
shape and property similarities can measure and allow the maximi-
zation of the joint diversity of both spaces. For the first time in data-
driven metamaterials design—to our knowledge—we reveal
through 2D case studies that diverse subsets can expedite and
even enhance the design performance and connectivity of aperiodic
metamaterials. Finally, applying METASET to 3D unit cells, we
identify diverse families of isosurface unit cells and discover that
these extend beyond the ones commonly considered in the design
of functionally graded structures [2,24].
The components of our methodology are detailed in Sec. 2. In our

2D case studies (Sec. 3), we explore the effects of diversity and
subset size on 2D metamaterial designs with non-intuitive target
displacement profiles. In a 3D example (Sec. 4), we compare the
impact of different shape similarity metrics on diverse unit cell fam-
ilies and demonstrate that METASET can diversify datasets regard-
less of the chosen metric.

2 METASET: Assessing and Optimizing Diversity
The inner workings of METASET consist of three main steps:

(1) defining similarity metrics for metamaterials that quantify the
difference between pairs of 2D or 3D shapes and mechanical prop-
erties (Sec. 2.1); (2) using a DPP-based submodular objective func-
tion to measure the joint coverage of a set of unit cells in shape and
property spaces via pairwise similarity kernel matrices (Sec. 2.2);
and (3) maximizing the joint diversity with an efficient greedy algo-
rithm while allowing trade-off in the two spaces to be tuned to suit
the desired application (Sec. 2.3). In this section, we describe these
components and summarize the methodology with Algorithm 1.

2.1 Similarity Metrics for Metamaterials. A diverse meta-
material dataset should ideally contain unit cells that are sufficiently
different, i.e., dissimilar, such that they cover the shape and prop-
erty spaces. To measure the diversity of a set, then, the similarities
between the shapes and properties of unit cells first need to be quan-
tified. We do so by defining metrics independently in each space,
based on the observation that a set of unit cells dissimilar in
shape space is not necessarily also dissimilar in property space,
and vice versa. This can be illustrated by a simple example. Say
we wish to distill diverse values from x and y, which we assume
to be sets of integers: x= {0, 1, 2, 4, 5} and y= {0, 2, 10, 20,
10}. We assume that y= x * k, where k= {3, 2, 5, 5, 2} is a trans-
formation function. If we were to select three diverse values of x,
i.e., the values that most cover its space, we would select {0, 2,
5}. For y, however, we would choose {0, 10, 20} rather than {0,
10, 10}, the ones corresponding to the diverse x values. Hence,
though some relationship between two spaces may exist, e.g., an
intrinsic function between shape and property, there is a need to
model their coverage separately. This observation is validated in
our later design experiments (Sec. 3.2), where the correlation coef-
ficient between shape and property coverage shows that no link
exists between the two.

2.1.1 Property Similarity. Since mechanical properties are
generally scalar values that can be expressed as a vector, e.g., by
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flattening the elastic tensor, we can use any similarity metric
between vectors. In this work, we use the Euclidean distance.
We note that the properties do not need to be the tensor components;
rather, they can be other values of interest such as elastic or shear
moduli, or Poisson’s ratios. Neither do they need to be limited to
scalar mechanical properties. For instance, dynamic acoustic disper-
sion curves or bandgaps could be considered if the pairwise similar-
ity can be quantified.

2.1.2 Shape Similarity. Shape similarity metrics are key in
many computer vision and graphics applications, e.g., facial recog-
nition and object retrieval from databases. In these methods, the
shapes are usually first represented by structural descriptors
extracted from individual shapes [25] or by embedded features
learned via data-driven methods such as clustering or deep learning
[26,27]. The distances between features can then be measured in
Euclidean [25] or Riemmanian space [28,29]. Since Riemannian
metrics are based on geodesic distances, they are suitable if one
needs invariance to deformation, i.e., if one considers a shape to
be the same after bending.
For metamaterials, however, we must rule out deformation and

rotation invariant metrics since any transformation of a unit cell
impacts its properties. Additionally, we seek techniques that are
efficient but still able to discriminate fine details and form positive
semi-definite similarity matrices for the next step involving DPPs.
Thus, we introduce the following Euclidean metrics based on struc-
tural features: a descriptor-based distance for 2D, and two point
cloud-based metrics for 3D, namely, the Hausdorff distance and
embedded cosine similarity utilizing deep learning. While we
elected for separate metrics in 2D and 3D by bearing in mind
their respective computational efficiencies, shape analysis is a
wide and ever-growing topic of research in computer science;
many other metrics are available. As we later show in Sec. 4.2,
METASET selects diverse subsets regardless of the metric used,
as long as the requirements for DPPs are met.
2D Descriptor-Based Euclidean Distance: For 2D unit cells,

which are typically binary images resulting from TO, we propose
using a descriptor-based approach by first extracting division-
point-based descriptors [30] to reduce the images into vectors that
capture salient features at different levels of granularity. This has
been applied to the field of optical character recognition [31,32].
The binary image of a unit cell is recursively divided into sub-
regions that contain an equal number of solid pixels. The coordi-
nates of all division points, i.e., points at the intersection of two
division lines between each sub-region, are then obtained as
descriptors of the unit cell. This process is repeated until the
desired level of detail is captured, constructing a k-d tree of the dis-
tribution of solid materials. In our 2D case study (Sec. 3), we obtain
a sufficient amount of detail by performing the division seven times
for each unit cell, resulting in 62 division points that constitute a
124-dimensional shape descriptor.
Using the above method, we can represent each 2D unit cell as a

vector, then use the Euclidean norm to find the distance between
any pair. However, the input for a DPP is a positive semi-definite
similarity matrix, L, so we transform the distance to a similarity
metric through a radial basis function kernel with unit bandwidth,
i.e., Li,j= exp(−0.5 d(i, j)2), where d(i, j) is the distance between
ith and jth unit cells. In practice, the choice of an appropriate trans-
formation is equivalent to choosing the right distance metric
between items. Our empirical study on other common transforma-
tions showed that different choices mainly affect the distribution
of similarity values but do not significantly affect the final
outcome or the key findings of our work.
3D Hausdorff Distance: As for 3D unit cells, mesh formats such

as STL are commonly used so that the metamaterials can be manu-
factured through additive manufacturing. However, since perform-
ing analysis on 3D shapes is undoubtedly more computationally
intense due to the curse of dimensionality, we suggest representing
each unit cell as points on the surface of the original mesh, i.e., point
clouds, which are more efficient for extracting and processing 3D

features [33]. This extra conversion can take little computation
with well-established sampling methods, e.g., randomly sampling
the surface of a mesh with the probability of choosing a point
weighted by the area of the triangular faces.
We then use a distance metric commonly utilized to measure the

distance between sets of points, the Hausdorff distance. In essence,
it computes the difference between two clouds as the maximum of
the nearest neighbor distances of each point. This is expressed as the
following in Ref. [34]:

h(A, B) =max
a∈A

[
min
b∈B

·‖ ‖] (1)

where a is a point within cloud A and b is a point in the second cloud
B. The notation ·‖ ‖ indicates that any distance can be used; for
example, we can use the Euclidean norm or the cosine distance
between two points. In our implementation, we computed the
nearest neighbor Euclidean norms using a GPU-enabled code by
Fan et al. [35]. Then, to obtain a symmetric distance, we take the
maximum as follows:

dH(A, B) = dH(B, A) =max
[
h(A, B), h(B, A)

]
(2)

Finally, we convert the pairwise distances into a DPP similarity
kernel, L, using the following transformation: Lij = 1

1+d(i, j).
3D Embedded Cosine Similarity: Alternatively, the embedded

features of the unit cells in a given dataset can be extracted using
deep learning models as simple as an autoencoder, a dimension
reduction technique that compresses, i.e., encodes, complex
shapes into vectors. Once such a model has been trained, an
embedding-based shape similarity metric can be defined as the simi-
larity between the vector representations of unit cells, much like the
2D descriptor-based distance earlier.
Here, we also leverage point clouds, which are growing as a scal-

able and powerful representation for 3D deep learning [36]. We
utilize a point cloud autoencoder provided by Achlioptas et al.
[27] with the Earth Mover’s distance as the reconstruction loss.
Our 3D dataset (described in Sec. 4.1) is split into training, test,
and validation sets by 70%, 15%, and 15%, respectively, and a
grid search is performed to decide the hyperparameters:
64-dimensional embedded vectors for each unit cell, a learning
rate of 0.0005 and batch size of 32. After training the model for
120 epochs, we can then take the cosine similarity between the
embedded vector representations of any two unit cells as the
shape metric. In our 3D experiment (Sec. 4.2), we compare the
diverse subsets obtained using this embedded feature approach
against those using the Hausdorff distance.

2.2 Determinantal Point Processes for Joint Diversity in
Two Spaces. With a similarity kernel matrix L, we can now
measure the diversity of a dataset using Determinantal Point Pro-
cesses (DPPs), which are models of the likelihood of choosing a
diverse set of items. They have been used for set selection in ML,
e.g., diverse pose detection and information retrieval [22,37], and
recently in ranking design ideas based on diversity and quality
[21]. Viewed as joint distributions over the binary variables that
indicate item selection, DPPs capture negative correlations. This
means that, intuitively, the determinant of L is related to the
volume that the set covers in a continuous space. In other words,
the larger the determinant, the more diverse the set.
To model our data, we construct DPPs through L-ensembles [38],

using a positive semi-definite matrix L to define a DPP. Hence,
given the full unit cells dataset of size N, which we denote as
ground set G, DPPs allow us to find the probability of selecting
any possible subset M of unit cells as:

P(M) =
det(LM)
det(L + I)

(3)

where LM≡ [Lij]ij∈M is the submatrix of L with entries indexed by
elements of the subset M and I is a N×N identity matrix. The
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probability of a set containing two items increases as the similarity
between them decreases. Therefore, the most diverse subset of any
size has the maximum likelihoodP(M), i.e., the largest determinant.
For a fixed subset size, the denominator can be ignored when max-
imizing the diversity via an algorithm such as the one described in
Sec. 2.3.
Unlike submodular clustering approaches, DPPs only require the

similarity kernel matrix L as an input and do not explicitly need the
data to be clustered or a function that models diversity to be defined.
This also makes them more flexible, since we only need to provide a
valid similarity kernel, rather than an underlying Euclidean space or
clusters.
For METASET, we calculate two different similarity values—

one in shape space and another in property space—between any
two unit cells. Hence, for all the unit cells combined, we have
one kernel matrix corresponding to each of the two spaces. In
order to measure the joint coverage in both spaces, we take a
weighted sum of the two matrices, thus also allowing the trade-off
between diversifying in shape or property space:

L = (1 − w) · LP + w · LS (4)

where L, LP, and LS are, respectively, the joint, property, and shape
similarity kernels, and w is a weight parameter can be varied
between 0 and 1. By adding the two kernels, we assume that the
total similarity between two unit cells is the weighted average of
how similar they are in the shape and property spaces.
While it is possible to combine two kernel matrices in many

ways, we choose this formulation for two reasons. First, the
weighted sum of two positive semi-definite matrices is also positive
semi-definite, which is a pre-requisite for a DPP kernel. Second, it
allows us to control the amount of diversity in both spaces, as well
as to frame the later subset selection problem as multi-objective one,
using a single tuning parameter w. We conducted multiple experi-
ments on simulated data with easy-to-verify coverage metrics and
found that this approach is effective in capturing diversity in both
spaces. For brevity, we have not included these experiments here
but directly report and discuss the results using joint kernels for
metamaterials in Secs. 3.2 and 4.2.

2.3 Algorithm for Optimizing Diversity. Optimizing the
diversity of a subset M in two spaces is an inherently multi-
objective problem that can be accomplished by maximizing the
log determinant of the joint similarity kernel, f= log[det(LM)].
Note that the log determinant of a positive semi-definite matrix is
monotonically non-decreasing and submodular. In general,
finding the set of items that maximizes a submodular diversity func-
tion is NP-Hard. When solving such problems, a well-known limit
due to Feige et al. [39] is that any polynomial-time algorithm can
only approximate the solution up to 1− (1/e)≈ 67% of the optimal.
However, this is where choosing a submodular function f as the

objective comes in handy. It turns out that greedily maximizing this
function is guaranteed to achieve the optimality bound [39]. We use
this property to substantially accelerate diversity optimization using
a scalable greedy algorithm [40], which has theoretical

approximation guarantees and is widely used in practice. At each
step, the algorithm picks an item, i.e., a unit cell, that provides
the maximum marginal gain in the objective function (lines 5–8
in Algorithm 1). This makes greedy maximization of diversity the
best possible polynomial-time approximation to an otherwise
NP-Hard problem.

Algorithm 1 METASET algorithm. After calculating the simi-
larity kernels, a polynomial-time greedy maximization of the gain
on the weighted combination of diversity in shape and property
spaces is performed. The output is a subset of unit cells such that
the joint diversity is maximized.

Data: Ground set G of size N of all unit cells
Result: Subset M of size NM

1 Calculate shape and property similarity kernels, LS and LP;
2 Calculate joint similarity kernel L;
3 Find subset M;
4 M ← ∅;
5 while |M| ≠ NM do
6 Pick an item Gi that maximizes δf (M ∪ i);
7 M =M ∪ {Gi};
8 G = G − Gi;
9 return M;

10 Use M as input to downstream task such as data-driven design or
machine learning;

3 METASET in Data-Driven Two-Dimensional
Metamaterials Design
Selecting a diverse and economical dataset prior to design can

augment the performance and results of any data-driven algorithm.
In this section, we demonstrate that this improvement can be
achieved by adding METASET to existing data-driven frameworks
with little extra cost (Fig. 1) by designing 2D aperiodic mechanical
metamaterials that meet desired displacement profiles and con-
straints on the connectivity of neighboring unit cells. Given a 2D
dataset of unit cells from our previous work (briefly described in
Sec. 3.1), we use METASET to select several subsets with differing
sizes and diversity scores (Sec. 3.2). By employing these subsets to
assemble full structures, we study the effects of subset size and
diversity on the search process and final designs (Sec. 3.3). To
emphasize that our diverse selection methodology is an advanta-
geous addendum to any data-driven method, we perform the
designs with two existing approaches—genetic algorithm for an
illustrative example, and a two-stage method for a more complex
design motivated by practical applications (Sec. 3.4).
The design settings, a classic MBB beam and a cantilever, along

with the boundary conditions and target displacement profiles are
shown in Fig. 2. The design objective for both is to minimize the
mean-squared error (MSE) between the target and achieved displa-
cement profiles. These types of structures, which require spatially

Fig. 2 Problem settings of the 2D examples, whose horizontal centerlines should achieve the target displacement profiles
shown as curves: (a) classic MBB beam (Sec. 3.3) and (b) cantilever (Sec. 3.4) (Color version online.)
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varying elastic behavior and therefore benefit from aperiodic con-
figurations and data-driven methods, have been a growing focus
in recent research, with applications such as soft robotic grippers
and biomedical devices [1,41]. We deliberately choose these
since spatially varying properties are difficult to obtain using con-
ventional methods, particularly when the objective is dependent
on the relative spatial distribution of properties rather than an abso-
lute performance value like compliance.
To support this claim, we attempted to benchmark the perfor-

mance of a conventional TO approach based on the Solid Isotropic
Material with Penalization (SIMP) scheme [42] for the MBB
problem (Eq. (5)), whose sensitivities can be derived using
adjoint analysis. Each unit cell is discretized into 50 × 50 quadrilat-
eral finite elements, and the density of each element is treated as a
design variable, ρe∈ [0, 1], where the goal is to converge as close to
0 (void) or 1 (solid) as possible. To eliminate mesh dependency, a
sensitivity filter with a radius of 2 is applied. For combinations of
different penalty factors, p∈ {1, 3}, and volume fraction con-
straints, V∈ {0.50, 0.75, 1.0}, we minimize the MSE using the
Method of Moving Asymptotes (MMA) [43] and the same stopping
criteria. All results are infeasible, however, with high MSE ranging
from 4.69 to 6137.08 and numerous intermediate densities (more
than 95% of the elements). This underscores the need for more
advanced approaches like data-driven design, which have success-
fully achieved target spatially varying behavior [1,8–10]. We will
leverage two such approaches in the following sections, since the
goal of this paper is not to propose new design methods but to
select diverse subsets which provide salient advantages to any exist-
ing data-driven design framework.

3.1 Generation of Two-Dimensional Unit Cells Via
Topology Optimization and Perturbation. In Refs. [10,11], we
previously proposed using a combination of TO and stochastic
shape perturbation to generate a large dataset of 2D unit cells. To
initialize the dataset, we ran density-based TO for each uniformly
sampled target property, the components of homogenized elastic
tensors, and then iteratively perturbed the shape of the unit cells
with the most extreme or uncommon properties. By doing so, we
created a dataset of 88,000 unit cells that covered a relatively
large property space within reasonable computational cost. Note
that we did not build this dataset with geometry in mind, leading
to many similar shapes. Also, even though we aimed to fill the
less populated regions of the property space by perturbing unit

cells in those locations, there is a higher concentration of final
unit cells with lower property values (the lower left corners in
Fig. 4), indicating that the dataset is somewhat imbalanced. For
details, please see Ref. [10].
Before applying METASET, we preprocess the data by randomly

sampling unit cells from the original dataset that have a volume
fraction greater than 0.70, resulting in 17,380 unit cells. This frac-
tion was chosen so that the chosen unit cells are less likely to
have very thin features, which makes them more feasible for man-
ufacturing. Additionally, when computing shape diversity, if unit
cells occupy very different volume fractions, a diverse subset is
more likely to be dominated by flimsy, low density structures,
whose shapes have the least probability of overlap with other unit
cells. However, as we will show with the design examples, this pre-
processing does not impede the chances of designing well-
connected structures that met the targets quite well.

3.2 Diverse Two-Dimensional Unit Cells. For the dataset of
17,380 2D unit cells, which we now refer to as the full or ground
set G, we calculate the property and shape similarity matrices, LP
and LS, respectively, as described in Sec. 2.1. Taking their weighted
sum forms the joint DPP kernel matrix L (Sec. 2.2), whose determi-
nant, det(LM), scores the diversity in both spaces. To explore this,
we rank several subsets using the greedy algorithm from Sec. 2.3
by varying their sizes, NM, and kernel weights, w. From the
results, we can make three observations:

(1) By increasing w, we shift from ranking a subset based on
diversity in the property space alone, to a mixture of both
spaces, and to the shape space only. In essence, the trade-off
between shape and property diversity can be easily
controlled.

(2) The correlation coefficient between the shape and property
diversity scores of 1000 random subsets of size five is
0.0047. Similar near-zero correlation is found for other set
sizes too. In addition, the correlation between the shape
and property similarity values of 100,000 random pairs of
unit cells is −0.0024. Therefore, our assumption that the
joint similarity can be modeled as a weighted sum is
appropriate.

(3) By observing the joint diversity score of the subsets as
more items, i.e., unit cells, are added, we find that the
gains in shape and property diversities saturate at

Fig. 3 Examples of 2D unit cells from the diverse subsets used in the cantilever and MBB design problems, where rows corre-
spond to subsets diverse in: (a) property space (w=0), (b) shape and property spaces (w=0.5), and (c) shape space (w=1)

Journal of Mechanical Design MARCH 2021, Vol. 143 / 031707-5

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/m

echanicaldesign/article-pdf/143/3/031707/6633010/m
d_143_3_031707.pdf by N

orthw
estern U

niversity user on 23 July 2021



approximately NM= 20. Thus, a very small number of unit
cells are sufficient to cover both spaces.

Ten example unit cells from the subsets with w∈ {0, 0.5, 1} are
shown in Fig. 3, where the subset optimized for only shape diversity
(Fig. 3(c)) displays the most variety of topologies compared to the
subset diverse in only properties (Fig. 3(a)). Meanwhile, the
balanced subset contains a mixture of unit cells akin to both
extreme sets (Fig. 3(b)). This may be counter-intuitive since
similar shapes should have similar mechanical properties.
However, note that upon close inspection, the property diverse
unit cells exhibit tiny features that lead to low effective elastic prop-
erty values. Such small details in the shape may lead to a larger
change according to the physical simulations and the property simi-
larity metric, i.e., the Euclidean norm.
Comparing the properties of the unit cells in diverse subsets to the

ground and randomly sampled sets (Fig. 4), we can confirm that the
property diverse subsets cover all regions of the original property
space, even the sparsely populated areas. As expected, the shape
diverse subset does not do as well, and the random subset contains
tight clusters in certain areas. Along with the observation that the
diversity scores as well as the similarity values in the shape and
property spaces are essentially uncorrelated, these findings
confirm that the formulation of the joint kernel LM as a weighted
linear sum (Eq. (4)) is effective for controlling the amount of diver-
sity in either space.

Finally, the result that only 20 unit cells is needed to cover the
shape and property spaces is quite interesting since a main tenet
of data-driven design thus far is that ”more is better”—larger data-
sets provide more candidates from which we can choose compatible
unit cells. So, to explore the impact of the subset size on the data-
driven approach, we selected the top 20 as well as top 100
ranking unit cells from each subset to move on to the next step:
full structure assembly.

3.3 Illustrative Study on the Effects of Size and Diversity.
We begin by designing a relatively simple classical example from
the TO field, the MBB beam, such that its horizontal centerline con-
forms to the target red curve when loaded with a vertical force F
(Fig. 2(a)). Due to the structural symmetry, we only need to
design the right half of the beam with 4 × 4 unit cells, outlined by
the solid black lines. The full structure can then be obtained by
reflecting over the vertical centerline. Using subsets of unit cells
with varying sizes and levels of diversity for metamaterials
design using global optimization, we can elucidate (1) the effect
of subset size on the search algorithm’s efficiency and (2) the
impact of diversity on the final design performance as well as the
compatibility of neighboring unit cells. We choose the following
diverse subsets using METASET:

• P20: Property diverse subset of size 20
• SP20: Shape and property diverse subset of size 20
• S20: Shape diverse subset of size 20 diverse
• P100: Property diverse subset of size 100
• SP100: Shape and property diverse subset of size 100
• S100: Shape diverse subset of size 100.

In addition, we utilize these sets, which are not diverse and are
not selected by our method, as baselines:

• R20: Random subset of size 20
• R100: Random subset of size 100
• G: Full dataset of size 17,380.

To design the MBB beam, we pass each of the datasets to a global
optimization method, which for this example is a single objective
genetic algorithm. Although the approach is simple, we chose it
to focus on illustrating the effects of subset size and diversity on
the final results. It also allows us to restrict our design to the discrete
choice of unit cells in our subsets, whereas most gradient-based
algorithms for data-driven metamaterials design map continuous
design variables to the nearest existing, or interpolated, unit cell
in dense databases [1,9].
Specifically, the genetic algorithm is used to select the combina-

tion of unit cells from each given dataset that minimizes the MSE
between the achieved and target displacement profiles. In addition,

(a) (b) (c)

Fig. 4 The property space of the 2D unit cell subsets optimized for diversity in (a) property and (b) shape, as well as (c) a randomly
sampled set, plotted against the full dataset. We observe that property diverse subsets cover the space well and is hence more
likely to have unit cells near any target property combination.

Fig. 5 The final objective values (MSE) and ratios of disconnec-
tivity (rdc) of 10 runs per subset. Lower values are better. The best
overall MSE is obtained by SP20 and S20, and the best rdc by S20
and SP20.
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since detached neighbors are not desirable, we add a compatibility
constraint by requiring that the number of disconnected unit cells,
Ndc, in the full structure be equal to zero. The optimization
problem is formulated as follows:

minimize
l

1
n

u(l) − ut‖ ‖22
subject to K(l)U = F,

Ndc(l) = 0,

li ∈ {1, 2, . . . , NM}, i = 1, 2, . . . , Nf

(5)

where u is the displacement of n nodes located on the centerline of
the structure, ut is the discretized target displacements, K is the
global stiffness matrix, and U and F are global displacement and
loading vectors, respectively. The number of unit cells in the
given dataset is NM while the number in the full structure is Nf,
and l = [l1, l2, . . . , lNf ]

T is a vector of the indices of the chosen
unit cells.
Due to the stochasticity of genetic algorithms, we run the optimi-

zation 10 times for each dataset and report the MSE of the final
topologies in Fig. 5. In addition, we show a measure of the connec-
tivity of the final structure: the mean ratio of disconnected pixels on
the boundaries of touching unit cells, rdc. Similar to Ndc in the con-
straint (Eq. (5)), a fully compatible structure should have rdc as zero.
The averages of these results are also disclosed in Table 1.
When given the baseline full dataset, G, the genetic algorithm is

overwhelmed and not able to find any designs with satisfactory
MSE (see the high values in Table 1), even failing to meet the com-
patibility constraint in one run. This can be attributed to a vast
search space since the number of possible unit cell combinations
grows exponentially as the size of the dataset increases. A larger
set may also contain more redundant shapes or properties that con-
tribute little to diversity, exacerbating the search challenge and pos-
sibility of local optima. Conversely, every run using the 20- and
100-item subsets satisfies the design requirements (Fig. 5 and
Table 1). These include the baseline random subsets selected
without our method, which obtain reasonable performance and con-
nectivity due to the reduced search space. The values of MSE and
rdc using random subsets, however, vary widely. In fact, our
results highlight that smaller yet diverse subsets more consistently
outperform all other sets under the same search algorithm and termi-
nation criteria. Notably, the lowest mean MSE is reached by the
small SP20 and S20 sets. Moreover, the best connected structures,
i.e., those with lowest rdc, result from the diverse subsets that con-
sider shape, i.e., S20 and SP20. We remark that our optimization
problem only constrains the number of disconnected unit cells
and does not explicitly minimize rdc. Therefore, the shape diverse
results naturally attain higher connectivity.
Figure 6 shows the final topologies and optimal displacement

profiles of the runs that achieve the minimumMSE for two datasets.
As expected from the worse performance and compatibility, the
designs using the full dataset G (not pictured) contain disconnected
and oddly matched unit cells. In a similar vein, the high rdc for prop-
erty diverse sets correspond to mediocre connectivity, as shown by
the P20 result in Fig. 6(a), where neighbors are linked by tiny fea-
tures. This can be associated with the observation in Sec. 3.2 that
METASET tends to include unit cells with small features as it max-
imizes property diversity, leading to subsets with less compatible
unit cells. With shape diverse subsets, however, the final designs

possess excellent compatibility, such as in Fig. 6(b), further enforc-
ing the advantages of shape diversity.
Although our constrained genetic algorithm provides satisfactory

designs, we must point out that our goal is not to introduce new
design methods; this global method was implemented to showcase
the impact of subset size and diversity. While more elegant optimi-
zation techniques would be better suited for practical applications,
we nevertheless believe that the insights gained from this study—
that selecting diverse subsets can accelerate and benefit metamater-
ial design—can be generalized to other data-driven methods, such
as the one in the next section.

3.4 Additional Study With a Complex Metamaterial
Structure. In the previous section, a simple example using
genetic algorithm demonstrated that data-driven metamaterials
design can benefit from small and diverse subsets of unit cells.
To validate that this is also true for more sophisticated algorithms
and designs, we now test the same hypothesis by combining our
diverse subsets with an advanced optimization method we proposed
in Ref. [10], which is described briefly below. Here we design a can-
tilever composed of 4 × 30 unit cells to achieve a sine-wave shape
when a prescribed displacement boundary condition is imposed
(Fig. 2(b)). As opposed to the MBB beam, the spatially varying
behavior of the cantilever is designed to deform in opposite direc-
tions in the left and right halves, and we expect that different
regions in the structure will require distinctly contrasting properties.
The prescribed boundary instead of a point load poses an additional
challenge. The closest problem to this that has been addressed by
traditional TO methods is the compliant mechanism design,
which aims to control the ratios between output and input displace-
ments or forces by minimizing the displacement at a particular node.
To obtain feasible mechanism designs, however, Deepak et al.
found in Ref. [44] that it is necessary to assume a force-
displacement relationship, i.e., a spring, at that output node. In con-
trast, our problem minimizes the MSE over all nodes along the cen-
terline. Since adding a spring at each of those would significantly

Table 1 Means of the final results for the MBB example, with the lowest values in bold

G R100 S100 SP100 P100 R20 S20 SP20 P20

MSE 1.3E + 18 1.5341 0.4278 0.6454 1.6648 1.2395 0.2865 0.2017 0.4926
rdc 0.5184 0.4770 0.3406 0.3347 0.4653 0.4836 0.2488 0.2578 0.3996

(a)

(b)

Fig. 6 Final topologies and displacement profiles of the classic
MBB beam example with the lowest MSE out of 10 runs using
20-item diverse sets. The full structure after symmetry is
shown. (a) Using the property diverse subset of size 20 (P20),
the unit cells are connected but by small features, whereas (b)
using the shape diverse subset of size 20 (S20), we observe supe-
rior connectivity between neighboring unit cells.
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deviate from our problem setting, conventional design methods are
not plausible.
Due to the difficulty of this problem, or indeed any realistic meta-

materials design, searching over larger datasets to locate compatible
unit cells while meeting the desired performance is also expensive
or even intractable. In our case, we are only able to use the smaller
diverse subsets S20, SP20, and P20 introduced earlier, as well as
baseline random subsets R20. Since there are 120 macro-elements
in the cantilever, this still means that there are 12020 possible com-
binations of unit cells for each subset.
For this example, we follow our two-stage optimization frame-

work [10], wherein inverse TO is utilized in the first stage to deter-
mine the macroscale property distribution, and combinatorial
optimization based on weighted graphs is used in the second
stage to assemble unit cells that meet the target properties with com-
patible boundaries. Specifically, we define the following optimiza-
tion problem for the first stage:

minimize
Ce

1
n

u(l) − ut‖ ‖22
subject to K(Ce)U = F,

− ϕ(Ce) ≤ 0

(6)

Compared to the problem solved via genetic algorithm in the previ-
ous section (Eq. (5)), this inverse property design directly uses the
element stiffness matrix Ce as design variables, which are con-
strained by the signed L2 distance field ϕ of the property space of
the full subset G. This inverse problem can be efficiently solved
with MMA [43].
After obtaining the optimized macro-property distribution, we

construct a grid-like weighted graph with each node representing
an element in the macrostructure and with edges connecting neigh-
boring unit cells. We can then view the assembly problem as select-
ing an index from the given subset to label each node in the graph.
The Euclidean distance to the target property is assigned as the
nodal weight during this process, and the ratio of disconnectivity,
rdc defined in the last section, is assigned as the edge weight for
each pair of neighboring nodes. With this graph, we can use a dual
decompositionMarkov random field (DD-MRF)method [45] to effi-
ciently find the optimal labels of the graph with the lowest sum of
nodal and edge weights, thereby designing a full structure that
meets the target properties and is well-connected.
Since the labelingproblemfor thegraph isacomplexcombinatorial

optimization process where a large candidate set of unit cells equates
toan immense search space, a small subset is required for ahigher effi-
ciency. As aforementioned, we use three diverse subsets, S20, SP20,
P20, and five subsets randomly selected without METASET, R20,
each with 20 unit cells as the candidate sets for the second stage.

The resulting full structures and their respectiveMSE values and dis-
placement profiles are shown in Fig. 7. We repeat the design using
random subsets five times, then plot the mean displacement profile
and depict the fluctuation of the results with the shaded area.
By virtue of our weighted graph method, all optimized designs

have compatible boundaries. However, the subsets which account
for shape diversity, i.e., S20 and SP20, include a wider variety of
unit cells in the full structure. This can be credited to an observation
we made in the previous MBB beam example, that a shape diverse
set can provide more compatible pairs, rendering a larger feasible
design space for the assembly problem. In addition, we note that
although some random subsets can achieve relatively low MSE,
this performance is not guaranteed; the mean MSE is still the
worst overall. In contrast, the shape and property diverse subset
SP20 has the lowest MSE value. The reason is that, even with
small subsets, shape diversity provides better compatibility while
property diversity helps to achieve the target property distribution.
This is again in line with our findings that a small yet diverse subset
considering shape and properties is a boon for data-driven metama-
terials design and has exciting implications for future works.

4 METASET for Discovery of Diverse
Three-Dimensional Unit Cell Families
Beyond selecting diverse subsets for direct use in design, another

advantage of METASET is eliminating inherent bias by optimizing
the diversity of a dataset. We demonstrate this with a 3D study, first
introducing a new method based on periodic functions to generate
families of unit cells with the same underlying structure but
varying densities, which although fast creates a great number of
overlapping shapes. Our goal in applying METASET to this 3D
data is to sift through the overlaps to discover diverse sets of
unique isosurface families, which can subsequently be leveraged
for data-driven design or ML of, e.g., property prediction or gener-
ative models (Fig. 1).
Triply periodic isosurface unit cells, whose symmetries follow

those of crystal structures [46], are often used in 3D mechanical
metamaterials design due to excellent surface area-to-performance
ratios and manufacturability [2]. In addition, their representation
as level-set functions allows the density of the unit cells to be
easily manipulated for functionally graded structures [2,24] and tai-
lorable acoustic bandgaps [47]. A level-set function f (x, y, z)= t is
an implicit representation of geometry where the t-isocontour, i.e.,
the points where f= t, describes the surface of the structure, while
the locations where f≤ t are solid material, and void where f> t.
Thus, by varying the isovalue t, an entire family of isosurface
unit cells with graded densities can be extracted from one level-set
function.

Fig. 7 Optimized structures using different subsets, and their associated displacement profiles,
for the cantilever example
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The most prevalent type of isosurfaces used in metamaterials
design is a special subset known as triply periodic minimal surfaces
(TPMS). However, only a few TPMS families have been used since
their functions are complex to derive [46]. For example, Maskery
et al. use six families in their design work [2], while Li et al. use
four [24]. Moreover, it has not been investigated whether these
few families cover the gamut of shapes and properties needed for
design applications. Suppose a researcher wishes to design a new
functionally graded 3D metamaterial by tuning the densities of iso-
surface functions, but does not know beforehand which families
would best suit their application. Due to the computational
expense of design in 3D, they may desire to select a smaller set
of families that can then be used in their optimization method. In
this section, we present METASET as a procedure to choose
those families such that the resultant subset has large coverage
over different properties and shapes. In doing so, we also demon-
strate that METASET removes bias in datasets by maximizing
diversity.

4.1 Generation Three-Dimensional Unit Cell Families
Using Level-Set Functions. Before selecting diverse families,
we must first generate an initial pool to choose from. Thus, to
build a large 3D dataset, we propose a new method to create isosur-
face families based on the level-set functions of crystallographic
structure factors, which describe how particles are arranged in a
crystal unit cell [48]. In contrast to most unit cell generation
methods, our approach here does not set targets in the property
space or use TO, and different from TPMS functions, a larger
variety of shapes can be found without complex derivations.
In crystallography, structures that are invariant under the same

symmetry operations belong to the same space group, of which
there are 230 for 3D structures. For the purposes of our work, we
will focus on the 36 cubic groups, No. 195 through 230, to obtain
our level-set functions. Experimentally, the space group of a
crystal can be determined through, e.g., X-ray techniques, by scat-
tering radiation off a lattice plane denoted by (hkl), and then observ-
ing the diffraction pattern. These symmetric patterns have been
analytically modeled as structure factors, which are periodic func-
tions of the form:

fgroup,(hkl)(X, Y , Z) = A + iB (7)

where A = cos
(
hX + kY + lZ

)
, B = sin

(
hX + kY + lZ

)
, X= 2πx,

Y = 2πy, and Z= 2πz. The equations of these structure factors are
listed in Ref. [48] for all space groups and their allowable (hkl).
We can split each structure factor into six isosurface families by

separating A and B in Eq. (7) (inspired by Ref. [46]), and converting
them into level-set functions as follows:

Agroup,(hkl)(X, Y , Z) ≤ t,

Agroup,(hkl)(X, Y , Z) ≥ t,

A2
group,(hkl)(X, Y , Z) ≤ t2

(8)

and similarly for Bgroup,(hkl). These, respectively, correspond to
setting as solid material the function values that are less than t
(Fig. 8(a)), greater than t (Fig. 8(b)), and in between −t and t
(leading to a ”thin-walled” structure; Fig. 8(c)).
Thus, instead of using the limited TPMS functions, we can use

the structure factors of all 36 cubic space groups and their corre-
sponding (hkl) to generate a greater number of isosurface families
for data-driven design. To ensure manufacturability, we also iden-
tify the feasible density range of each family by prohibiting internal
voids and disconnected features, and eliminate families whose fea-
sible range is ρmax− ρmin < 0.2. In this way, we quickly created 294
families without performing property-driven optimization.
Although efficient, this method also causes an imbalance in geom-
etry, since several structure factors differ only by a coefficient and
lead to overlapping families. For example, the equations for
space groups No. 195 and 196 listed in Ref. [48] are related as

A195,(hkl)= 4 ·A196,(hkl) and therefore generate the same structures.
Next, we demonstrate the prowess of METASET in systematically
removing such overlaps when selecting diverse subsets.

4.2 Diverse Three-Dimensional Families and Comparison
of Shape Similarity Metrics. While applying METASET to dis-
cover unique isosurface families, we also test the impact of the
two proposed 3D shape similarity metrics (Sec. 2.1.2): the Haus-
dorff distance and the cosine similarity between deep learning-
based embeddings. As the families are composed of a range of
densities and thus shapes and properties, we need to capture the
similarities of individual unit cells while assessing the similarities
between families. Therefore, we generate 100 samples from each
family covering the feasible range identified in the previous
section, giving 29,400 unit cells total. Each unit cell is represented
as a 4096-dimensional point cloud by first converting its level-set
field into a triangle mesh [49] and then sampling on the triangular
faces [50]. We also remove any small disconnected features
during post-processing and find the homogenized elastic tensors
of each unit cell using a code modified from Ref. [51].
To quantify the similarity between two families, we assume each

family is a collection of points, where each point corresponds to a
unit cell. This reduces the problem of finding similarity between
two families to one between two point sets using the Hausdorff dis-
tance (Eq. (1)). We calculate the similarity between families C and
D in two steps: first using one of the 3D metrics to calculate the
distance between individual unit cells c∈C and d∈D, and then
substituting this into the Hausdorff distance to obtain the inter-
familial distance, h(C, D). Intuitively, this means that the shape
similarity between two families is the maximum of the similarities
between closest-in-shape pairs of unit cells. In property space, the
similarity between families is related to the maximum of the pair-
wise Euclidean distances between each unit cell’s properties. There-
fore, rather than simply averaging the features of each family, the
inter-familial similarities also consider the diversity of individuals
within each family. In short, we apply METASET to our 3D
dataset using two approaches to measure shape similarity:

• H-H: Hausdorff distance between unit cells, followed by
Hausdorff distance between families

• E-H: embedded cosine similarity between unit cells, followed
by Hausdorff distance between families.

Utilizing both of our shape similarity metrics, along with the
property metric, we find diverse subsets of 10 isosurface families.

Fig. 8 Examples of unit cells from isosurface families generated
by the structure factor for space group No. 229 and (hkl)= (001).
The effect of increasing t to create a family is shown from left to
right for: (a) Family A229,(001)(X, Y, Z )≤ t, (b) Family A229,(001)(X, Y,
Z )≥ t, and (c) Family A2

229,(001)(X, Y, Z) ≤ t2.
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In addition, we vary the joint diversity weight w between 0 and 1
(Eq. (4)). Some example subsets of diverse families are shown in
Figs. 9 and 10, where the median sample from each family are pic-
tured. Like the 2D diverse subsets (Sec. 3.2), the property-only and
shape-only sets (Figs. 9(a) and 9(c), respectively) share very few of
the same families. Intriguingly, the shape diverse sets obtained from
either metric contain families generated from the same space group
and (hkl), but different level-set forms (Eq. (7)). For example, with
the H-H approach, the fourth and fifth items in Fig. 9(c) have the
equations A213,(011)≥ t and A213,(011)≤ t. The same families appear
with the E-H approach as the eighth and sixth items. One could
think of these as completely different shapes with almost no over-
laps, which is further validation of the shape diversity chosen by
METASET.
Comparing the subsets obtained via either similarity metric

(Figs. 9(c) and 10), we observe that 6 out of 10 shape diverse fam-
ilies overlap, indicating that the choice of metric does not drastically
impact diversification. This is supported by a correlation coefficient
of 0.836 between the H-H and E-H shape similarity kernels, LS, of
the shape diverse families. Additionally, we cross-examine these

results by applying the E-H approach to score (det(LS)) the shape
diverse subset chosen using H-H, and vice versa. As a baseline,
we also randomly sample 10,000 sets of 10 families without
METASET and measure their diversity with respect to each
metric. The results are reported in Table 2, where the greatest
(most diverse) scores across each row reveal that the greedy algo-
rithm will maximize the diversity score regardless of the similarity
metric employed. Moreover, the subsets chosen by METASET
have higher diversity than the random ones no matter which
metric is used to evaluate the score.
The high diversity of our subsets can also be seen in Fig. 11,

where their property and shape scores using H-H are plotted
against those of the 10,000 random subsets. Here, 99.74% of the
random sets (which are representative of the distribution of pairwise
similarity values for our dataset) still fall short of the optimized
subset with the lowest shape diversity score. This is compelling evi-
dence that 1) the original dataset was severely imbalanced, and 2)
METASET is able to combat such bias and select more diverse
subsets.
Figure 11 additionally visualizes the trade-off between diversity

in the shape and property spaces. Although our greedy algorithm
maximizes the joint diversity score, the independent shape and
property scores illustrate that, in general, the diversity in one
space drops as we select sets that are more diverse in the other.
This trade-off might raise a question as to whether a set of families
that are quite diverse in property space can have low diversity in
shapes, even though similar shapes are expected to possess
similar properties. Our previous observation emerges as an
answer: the sets of families with higher diversity in property
space and seemingly “low” diversity in shape space actually have
larger shape scores than the majority of the random sets. Therefore,
the highest diversity in property space is achieved by a set of fam-
ilies which are also very diverse in shape.
Finally, we note that our diversified sets include isosurface fam-

ilies beyond the common TPMS used in existing metamaterials

Fig. 9 Examples of subsets of 3D isosurface families selected byMETASET using the H-H shapemetric, with rows corresponding
to families diverse in: (a) property space (w=0), (b) shape and property spaces (w=0.5), and (c) shape space (w=1)

Fig. 10 Shape diverse subset (w=1) selected by METASET using the embedding-based E-H shape metric

Table 2 Shape diversity scores of subsets of 10 isosurface
families, evaluated using either the Hausdorff (H-H) or
embedded (E-H) shape metrics

METASET (H-H) METASET (E-H) Random sampling

Score (H-H) 1.0554E−04 6.3690E−05 2.8504E−05
Score (E-H) 1.6250E−13 6.4271E−12 5.4262E−14

Note: The first two columns are for shape diverse subsets selected by
METASET; the last shows the maximum of 10,000 random sets. The
highest scores of each row in bold indicate that METASET always
maximizes the diversity score with respect to the metric used during
selection.
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design, such as the Primitive, Gyroid, and Diamond (see
Refs. [2,24]). We provide the data of the METASET results pub-
licly so that our diverse families can be employed by any designer
in their work as well. For example, these can be directly utilized in
existing functionally-graded design methods such as Ref. [24].
Data-driven design with diverse isosurface families will be investi-
gated in future works.

5 Discussion
Although we illustrated the benefits of METASET with several

case studies, there are nevertheless some topics worthy of examining
in the future. From our design of 2D aperiodic structures, we saw that
shape diverse subsets may increase the chance to find compatible
neighboring unit cells, while property diverse sets might enhance
problems that require a wider range of target properties at the cost
of connectivity. This dependence on shape versus property diversity
extends to ML tasks in the data-driven design framework (Fig. 1) as
well. To train property prediction models, one may need a property
diverse dataset, while for a deep generativemodel that learns geomet-
ric features, a shape diverse set might be more appropriate. Along
these lines, it would be interesting to further validate the improved
performance of design and ML tasks using our subsets of diverse
3D unit cell families in a future work.
In the 2D examples, we also observed that smaller subsets led to

designs with performance closer to the targets; in fact, we found
using METASET that only 20 unit cells were enough to form a
diverse subset. In most cases, the benefits of reducing the search
space, model training time, or storage requirement of the dataset
could outweigh any loss of data. However, certain applications
such as ML may need large datasets. A key benefit of using a
METASET, even for large subset sizes, is that it reduces bias by
rank ordering all items in the dataset. The items with the highest
redundancy in shape or property (like duplicates) are pushed
toward the end of the rank-ordered list, so that ML algorithms
trained on any subset will be less biased. While it is not difficult to
increase the size of the set, determining how much data is enough
is more challenging since this too is contingent on the application
and any limits on computational cost. The effectiveness of size and
diversity on specific tasks in metamaterials design is an important
question for future studies. Fortunately, the ease at which a
subset’s size as well as the weight of shape and property diversity
can be explored is yet another advantage of METASET.
Lastly, we remark that the capability ofMETASETdepends on the

choice of similarity metrics as well as the definition of the joint

similarity kernel, both of which are avenues of further research.
Our 3D study demonstrated that METASETwill maximize diversity
regardless of the metric adopted. Although the results indicated that
different shape similarity metrics can be highly correlated and
slightly change the diverse subsets, there are a wealth of other
choices that may provide different results. Extending METASET
to more complex properties, like dynamic ones, may necessitate
new metrics. For the joint DPP kernel, we chose a simple weighted
sum to join the shape and property matrices, thereby casting the
greedy selection as a multi-objective problem. We found in Sec.
3.2 that this was a valid assumption, but other methods to combine
kernels while preserving submodularity are also possible.
However, swapping these to best suit the application is easily done
since the input of the DPPs-based greedy algorithm in METASET
is a positive semi-definite similarity kernel that can be obtained
from any appropriate metric or definition.

6 Conclusion
In this paper, we proposed a methodology, METASET, that

incorporates joint diversity in the shape and property spaces into
data selection to improve the downstream tasks in data-driven
design. As an enhancement to any existing data-driven framework,
METASET is efficient and flexible, allowing the emphasis on either
shape or property to be easily traded by measuring and maximizing
the joint diversity of subsets through a weighted DPP similarity
kernel. To calculate this kernel matrix, we introduced similarity
metrics that cater specifically to 2D and 3D metamaterials.
By way of our 2D aperiodic metamaterial design examples, we

demonstrated that small yet diverse subsets of unit cells can boost
the scalability of search algorithms while leading to designs with
greater performance and enhanced boundary compatibility. This
revelation shakes a common belief in the field of data-driven
mechanical metamaterials design that a larger and denser dataset
is required to design well-connected structures while still meeting
the target behavior. To our knowledge, this is the first time that
such a result has been studied and presented.
In our 3D case study, we not only proposed a new method to gen-

erate triply periodic isosurface unit cells using crystallographic
structure factors, but also verified that METASET can effectively
discover unique unit cell families in order to build diverse, unbiased
and economical datasets for design regardless of the shape similar-
ity metric employed. Different from well-known TPMS unit cells,
our dataset of families are optimized for shape and property diver-
sity rather than arbitrarily chosen. In future works, we will explore
the use of these diverse families for data-driven metamaterials
design and ML.
Although this paper focused on showcasing METASET through

the design of mechanical metamaterials, the methods we proposed
are broadly applicable to other metamaterial domains, or indeed
any other design problems that need to balance design space
against some performance or quality space. In design ideation,
our method can be used to select ideas that are functionally different
from each other while achieving different performance goals. It can
also be integrated with existing multi-objective optimization algo-
rithms as a niching method. To contribute to the growth and capa-
bility of data-driven methods in metamaterials design and other
fields, we have shared our diversified subsets of 2D and 3D unit
cells, as well as the corresponding equations of isosurface families.
These unit cells can be directly plugged into the application of any
metamaterials designer.
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