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This study tests whether individuals vocally align toward emotionally expressive prosody produced by two types
of interlocutors: a human and a voice-activated artificially intelligent (voice-Al) assistant. Participants completed
a word shadowing experiment of interjections (e.g., “Awesome”) produced in emotionally neutral and expressive
prosodies by both a human voice and a voice generated by a voice-Al system (Amazon’s Alexa). Results show
increases in participants’ word duration, mean f0, and fO variation in response to emotional expressiveness,
consistent with increased alignment toward a general ‘positive-emotional’ speech style. Small differences in
emotional alignment by talker category (human vs. voice-Al) parallel the acoustic differences in the model
talkers’ productions, suggesting that participants are mirroring the acoustics they hear. The similar responses to
emotion in both a human and voice-Al talker support accounts of unmediated emotional alignment, as well as
computer personification: people apply emotionally-mediated behaviors to both types of interlocutors. While
there were small differences in magnitude by participant gender, the overall patterns were similar for women and

men, supporting a nuanced picture of emotional vocal alignment.

1. Introduction

Speakers can readily convey their inner mental states and emotions
to an interlocutor via acoustic-phonetic properties of their voice, such as
using pitch and temporal variation. For example, happy speakers pro-
duce higher pitch and longer durations (Abadjieva et al., 1993; Murray
& Arnott, 1993; Viscovich et al., 2003; Yildirim et al., 2004). While
understudied, how listeners respond to this emotion subsequently in
their own speech can reveal the mechanisms of speech and emotional
alignment. When humans interact, there is a tendency for them to
vocally align, subconsciously mirroring each others’ (non-emotional)
speech patterns (Babel, 2012; Nielsen, 2011; Pardo, 2006; Pardo et al.,
20105 Zajac, 2013), including prosodic features associated with emotion,
such as speaking rate (Pardo et al., 2010), average pitch (Babel &
Bulatov, 2012), and pitch range (Smith, 2007).

There is some evidence for alignment of emotional expressiveness:
happiness or sadness conveyed in the prosodic patterns of an interloc-
utor appear to shape talkers’ speech patterns (Arimoto & Okanoya,
2014; Vaughan et al., 2018; Xiao et al., 2015, 2013), though nearly all
prior studies on this topic have been conducted in non-controlled set-
tings (e.g., spontaneous speech while participants completed an
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interactive task in Arimoto & Okanoya, 2014; during a counseling ses-
sion in Xiao et al., 2015). For example, Vaughan et al. (2018) observed
that a female psychiatrist aligned in pitch, speaking rate, and
vowel-spectral features toward six of her patients during clinical in-
terviews. In particular, they found that during interactions with
depressed speakers, the therapist adopted the more contracted vowel
space of her patients, which is a characteristic of depressed speech
(Scherer et al., 2016). Similarly, Yang et al. (2013) observed that in-
terviewers aligned toward the lower pitch of depressed individuals when
engaging with them. Together, alignment of features that signal
emotional state has been proposed to convey empathy toward the
emotional state of the interlocutor (Scherer et al., 2014; Vaughan et al.,
2018; Xiao et al., 2015, 2013).

The present study compares vocal alignment toward words produced
in emotionally expressive and neutral speech styles in a controlled lab-
oratory setting with two types of talkers: a human voice and a voice-
activated artificially intelligent (voice-AI) assistant voice. Voice-Al as-
sistants (e.g., Apple’s Siri, Amazon’s Alexa, and Google Assistant) are
increasingly prevalent in households in the United States (Ammari et al.,
2019; Bentley et al., 2018). Unlike computer systems in the past, these
systems display more apparent human characteristics. For example,
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Amazon’s Alexa voice is capable of producing emotionally expressive
interjections. The Amazon Alexa Skills Kit (ASK), a system generated for
‘voice app’ developers, includes over 100 emotionally expressive words
(e.g., “Awesome!”) and phrases (e.g., “Whoops a daisy!”) pre-recorded
by the US-English female Alexa voice, which can be implemented with
speech output tags (known as ‘Speechcons’: Amazon, 2018). Cohn &
Zellou (2019) found that speakers showed significantly greater vocal
alignment toward emotionally expressive Alexa interjections than
neutral productions generated with the default Alexa voice. Beyond
vocal alignment, there is other evidence that people treat computer
systems with similar emotional/affective responses as they do for other
humans (Brave et al., 2005; Nass et al., 1999; Bucci et al., 2018; Cohn
et al., 2019; Nass et al., 1995). For example, in a study of interactions
with a car navigation system, participants had fewer accidents, were less
distracted, spoke more, and reported greater satisfaction with the system
when the emotional speech patterns in the text-to-speech (TTS) voice
matched their own mood (either happy or sad) (but note that these
voices did not contain ‘neutral’, non-emotional productions for com-
parison) (Nass et al., 2005). Together, finding similar responses toward
computer/voice-Al agents and toward humans supports computer
personification theories; for example, the ‘Computers are Social Actors’
(CASA) theoretical framework (Nass et al., 1997, 1994) proposes that if
a cue of humanity is detected in a computer system, people subcon-
sciously apply the social norms from human-human interactions, even if
it is clear that the system is non-human. Yet, critically, the vast majority
of prior studies examining the effect of emotional expressiveness by a
computer or voice-Al system have not contained a direct comparison to a
human (Brave et al., 2005; Bucci et al., 2018; Cohn & Zellou, 2019; Liu &
Sundar, 2018; Nass et al., 1999; Nass et al., 1995).

Indeed, work examining (non-emotional) vocal alignment has
demonstrated differences in how individuals align toward device and
human voices when direct comparisons are made (Cohn et al., 2019;
Raveh et al., 2019; Snyder et al., 2019). In a study comparing alignment
toward a voice-Al (Amazon’s Alexa) and a human interlocutor, Raveh
and colleagues (2019) found that people do align toward voice-Al; but,
when a human confederate was present, participants aligned less toward
the Alexa voice. Similarly, in two studies examining single-word shad-
owing of voice-Al and human interlocutors, participants displayed
greater alignment toward human voices, relative to Apple’s Siri voices
(Cohn et al., 2019; Snyder et al., 2019). With respect to emotion, a
recent study (Cohn et al., 2020) found that listeners perceived synthe-
sized ‘happiness’ in a human and Alexa voice (from ‘emotionally-neu-
tral” productions) similarly in some respects (e.g., increased perceived
arousal with ‘happiness’ manipulations) but differently for others: lis-
teners did not hear the same increase in valence with the ‘happiness’
manipulation in the Alexa voice. Taken together, the alignment and
emotion perception findings suggest that voice-Al systems might be a
separate social category from humans, and thus serves as a relevant
interlocutor comparison for vocal alignment toward emotional
expressiveness.

In the current study, examining emotionally expressive (and neutral)
speech by Amazon’s Alexa and a human interlocutor can serve as a test
of our scientific understanding of emotional mimicry, teasing apart
theories that it is ‘unmediated’ or ‘socially-mediated’, such as by the
characteristics of the speaker (as human or voice-Al).

1.1. Unmediated, matched motor accounts

On the one hand, unmediated, matched motor accounts propose that
the mechanism underlying emotional alignment is embodied cognition,
or a matched motor response (De Waal, 2007; Decety & Jackson, 2006;
Preston, 2007). For example, Arias and colleagues (Arias et al., 2018)
found that participants listening to a ‘smiling’ voice produced more
micro-activations of the zygomatic muscle (used to pull the mouth
widthwise in smiling) than when they heard a ‘frowning’ voice. Further,
individuals align to smiles produced by both in-group and out-group
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members (Van Der Schalk et al., 2011) and smile or laugh along with
laugh tracks (Fuller & Sheehy-Skeffington, 1974), supporting an unme-
diated motor mechanism (i.e., without a social mediator). There are
multiple proposed mechanisms for this interpersonal alignment,
including mirror neurons, which are thought to fire when a person either
completes an action or sees another person complete an action (Decety
& Jackson, 2006). Other proposed mechanisms include spreading acti-
vation of exemplars, where an experience (e.g., hearing a word pro-
duced in a certain way) updates the listener’s own mental
representations. In the domain of speech, the updating of exemplars has
been one proposed mechanism for vocal alignment more generally
(Goldinger, 1996, 1998). While the aim of the current investigation is
not to tease apart views about the neural underpinnings of emotional
alignment, as based in spreading activation or mirror neurons, these
types of accounts make a similar prediction for the present study: that
motor and/or linguistic representations are equally ‘activated’ upon
hearing emotional speech from different interlocutors (here, human vs.
voice-Al). Furthermore, emotional speech (relative to non-emotional
speech) often contains more exaggerated acoustic-phonetic features:
longer duration and higher fO for ‘happy’ speech, relative to ‘neutral’
speech (Abadjieva et al., 1993; Murray & Arnott, 1993; Viscovich et al.,
2003; Yildirim et al., 2004). If participants are merely ‘mirroring’ the
input, consistent with unmediated accounts, then we might expect them
to display greater alignment for these features as a function of their
acoustic distance (e.g., greater alignment toward longer segments in
emotionally expressive speech). Such a prediction would apply regard-
less of whether the speaker is a human versus Al system, which is
consistent with recent work. For example, Gazzola and colleagues
(2007) found identical engagement of regions associated with
motor-action perception for household movements produced by both
human and robot agents. Thus, in the present study we might predict no
overall difference in alignment toward emotionally expressive speech
produced by human voices and voice-Al TTS, reflecting a general
motor-perception mechanism.

1.2. Socially mediated accounts

On the other hand, socially mediated accounts propose that the social
relationship between interacting humans mediates patterns of
emotional alignment (Fischer et al., 2019; Hess & Fischer, 2013, 2014).
Work in linguistic alignment more generally (i.e., not necessarily
emotional) has demonstrated that the social dynamics of an interaction
shape convergence and divergence between interlocutors (Abrego-Col-
lier et al., 2011; Babel, 2012; Yu et al., 2013). Speech coordination is
often examined through the framework of ‘Communication Accommo-
dation Theory’, or CAT (Giles et al., 1991; Giles & Baker, 2008; Shepard,
2001). CAT proposes that speakers demonstrate their social closeness
via increased alignment, or that they increase social distance via
divergence. For example, individuals display greater (non-emotional)
alignment toward interlocutors they are socially close to: over the course
of a year, college roommates who reported stronger feelings of closeness
also displayed greater vocal alignment (Pardo et al., 2012). In the
emotion alignment literature, there is some evidence for differences
based on the social dynamics between individuals. For instance, there is
greater reported emotional alignment toward in-group versus out-group
members (Matsumoto, 2002; Thibault et al.,, 2006; Weisbuch &
Ambady, 2008). Group-mediated alignment is also observed even within
a lab setting, where participants are arbitrarily assigned to ‘teams’
(Lakin et al., 2003). In the current study, socially-mediated alignment
patterns might be realized as greater emotional vocal alignment toward
the ‘in-group’ human voice, relative to the voice-Al talker, which rep-
resents a distinct social category. This would be consistent with prior
findings for (non-emotional) alignment where greater alignment toward
human, compared to voice-Al, interlocutors was observed (Cohn et al.,
2019; Raveh et al., 2019; Snyder et al., 2019). Alternatively, participants
might find emotionally expressive productions by voice-AI to be
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‘uncanny’ (Mori, 1970; Mori et al., 2012), and subsequently diverge
from those productions only. In either scenario, socially-mediated ac-
counts would predict categorical differences in emotional vocal align-
ment towards humans and voice-Al

Another social factor that has received more attention in the
emotional alignment literature is the role of gender (Arimoto & Oka-
noya, 2014; Cohn, Ferenc Segedin, et al., 2019; Cohn & Zellou, 2019;
Doherty et al., 1995). On the one hand, some have proposed that
‘emotional contagion’ is stronger for women, relative to men, based on
differences in socialization (Doherty et al., 1995; Sonnby-Borgstrom
et al., 2008). This is in line with findings reporting that women showed
greater vocal alignment toward emotion in a competitive dialog game
(Arimoto & Okanoya, 2014) and with (non-emotional) vocal alignment
of single-word shadowing (Namy et al., 2002). In the present study, one
prediction is that female participants will show greater (emotional)
alignment than male participants. However, there is some evidence of
the opposite pattern: greater speech alignment by males. For example,
Cohn & Zellou (2019) found that male participants displayed more
alignment toward emotionally expressive Alexa productions in a single
word shadowing study. Broadly, greater alignment by males is also
consistent with studies of (non-emotional) vocal alignment demon-
strating similar asymmetries (Dijksterhuis & Bargh, 2001; Pardo, 2006).
Therefore, an alternative prediction for the present study is that men will
show greater alignment toward emotionally expressive speech, relative
to women.

1.3. Current Study

The current study examines vocal alignment toward neutral and
emotionally expressive interjections. In particular, participants
completed a word shadowing task (Goldinger, 1998) where they
repeated isolated words (presented over headphones). We measured
three prosodic properties associated with vocal emotional expression:
word duration, mean fundamental frequency (fO; perceived pitch), and
f0 variation (Abadjieva et al., 1993; Murray & Arnott, 1993; Viscovich
et al., 2003; Yildirim et al., 2004). Specifically, we test whether acoustic
alignment toward emotional expressiveness differs based on interloc-
utor (human vs. voice-Al) and speaker gender (male or female), which
can speak to theories of emotional alignment (as an unmediated, matched
motor response or socially-mediated). We compare two types of in-
terlocutors: a human voice (naturally produced) and an Amazon Alexa
voice (generated from the US-English TTS voice). As mentioned, the
Alexa voice is capable of producing hyper-expressive interjections (e.g.,
“Wow!”) (‘Speechcons’, Amazon, 2018).

For each acoustic feature, we assess change from the speaker’s
baseline (elicited during a pre-exposure phase). Specifically, we
centered each participant’s shadowed production to their baseline pro-
duction (Cohn et al., 2021). In doing so, we test whether, relative to their
baseline speech characteristics, speakers increase their word duration,
mean f0, and fO variation when shadowing emotionally expressive
speech. While prior studies have frequently used difference-in-distance
(DID) measures to quantify alignment (Babel, 2012; Snyder et al.,
2019; Zellou & Cohn, 2020), recent work suggests that DID can be
biased to find larger differences for participants with larger baseline
distances from the model talkers and can also result in apparent diver-
gence for speakers who are more similar to the model talkers at baseline
(Cohen Priva & Sanker, 2019; MacLeod, 2021). Using a
baseline-centered approach allows us to test if speakers make general
prosodic adjustments (relative to their pre-exposure productions) in
response to a particular interlocutor and in response to emotional
expressiveness which might otherwise obscure (or spuriously enhance)
alignment effects if assessed using DID. For example, there is work
showing that people produce a higher mean f0 in Alexa-directed speech,
in a direct comparison with human-directed speech (Raveh et al., 2019;
Siegert and Kriiger, 2021), and smaller fO range and shorter productions
(Siegert et al., 2019). These prosodic differences are argued to be, in
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part, driven by differences in perceptions of the voice-Al/computer as
being less communicatively competent (compared to the human) (Bra-
nigan et al., 2011; Oviatt et al., 1998), which can be triggered by hearing
a TTS voice (Cowan et al., 2015). Here, we might similarly predict
interlocutor-based effects (shorter words, higher mean f0, and smaller fO
range toward Alexa).

2. Methods
2.1. Participants

A total of 66 native English speakers were recruited from the UC
Davis Psychology subjects pool (30 females, 36 males; mean age = 20.64
+ 2.43 years). Table 1 provides a summary of the demographic char-
acteristics of the participants. Nearly all participants had experience
with a voice-Al system (e.g., Apple’s Siri, Google Assistant, etc.).

2.2, Stimuli

The words were selected from the available set of Alexa ‘Speechcons’
(Amazon, 2018), consisting of interjections and phrases spoken by the
Amazon Alexa voice actor in an emotionally expressive wayl. In-
terjections can be used to express the speaker’s mental or emotional
state (Ameka, 1992) and to convey the disposition or attitude of the
speaker (Goffman, 1981). Following Cohn & Zellou (2019), stimuli
consisted of 18 interjections generated in neutral and emotionally
expressive manners (awesome, bravo, cheers, cool, ditto, dynamite, eureka,
great, howdy, hurray, jinx, roger, splash, super, wow, wowzer, yum, zing).
All the items can be classified as having a positive emotional valence
based on the words’ lexical and/or prosodic qualities. An additional six
interjections with negative valence were presented in the experiment (e.
g., “darn”; see Cohn & Zellou, 2019 for full list), but not included in the
final analysis which aimed to examine imitation of tokens with a
consistent emotional valence. Using the Alexa Skills Kit (ASK), the
‘neutral’ Alexa productions of the words were generated with the default
prosody, while the ‘emotionally expressive’ Alexa productions were
generated using the Speech Synthesis Markup Language (SSML) tags (e.
g., <say-as interpret-as= “interjection” > awesome! </say-as>). For the
human model talker condition, a 24 year-old white, female native En-
glish speaker of American English (from California) was recorded pro-
ducing the same set of words with neutral and emotionally expressive
prosody. The recording took place in a sound attenuated booth, where
the speaker wore a head-mounted microphone (Shure WH20 XLR). The
human speaker naturally produced the words in her own neutral and
emotionally expressive manners; she did not imitate the productions by
the Alexa voice. Both the Alexa and human productions were amplitude
normalized in Praat (70 dB). The stimuli are available for audio illus-
tration at Open Science Foundation (OSF)?.

Acoustic analyses of the Alexa and human productions in Praat are

Table 1
Subject demographics.

Gender n Mean age (sd) Experience with Alexa Used voice-Al (#)
Females 30 20.66 yrs (1.67) 24 Yes; 6 No 28 Yes; 2 No
Males” 36 20.63 yrs (2.95) 27 Yes; 9 No 36 Yes

Total 66 27.17 yrs (4.96) 51 Yes; 15 No 64 Yes; 2 No

? Including 1 trans-male.

1 At the time of the study, the only digital assistant voice capable of
producing both a ‘neutral’ and an ‘emotionally expressive’ production
was the US-English female Amazon Alexa voice. Due to this constraint, we
used one human speaker, also producing neutral and emotionally
expressive productions.

2 https://doi.org/10.17605/0SF.I0/GDWPR



M. Cohn et al.

provided in Table 2. These measurements confirm that, relative to
neutral productions, expressive productions for both Alexa and human
speakers are longer [t(53.18)=3.85, p<0.001], have higher mean f0 [t
(51.54)=4.55, p<0.001], and have greater fO variation [t(66.66)=4.30,
Pp<0.001], consistent with acoustic features of happy speech (Abadjieva
et al., 1993; Murray & Arnott, 1993; Viscovich et al., 2003; Yildirim
etal., 2004). Two-sample t-tests for each acoustic property revealed that
the human and Alexa stimulus items did not significantly differ in their
overall word duration [t(59.69)=-1.12, p=0.27] or mean f0 [t
(60.86)=-0.80, p=0.43], but did for fO variation [t(67.97)=2.95,
p<0.01], with more variation produced overall by the Alexa voice.
Comparisons of emotionally expressive productions by the Alexa and
human revealed no difference for word duration [t(27.24)=0.11,
p=0.92] or f0 variation [t(33.68)=0.60, p=0.56], but a lower mean fO
for the emotionally expressive Alexa [t(33.92)=-3.11, p<0.01].
Comparisons of neutral productions also showed differences across
talkers: shorter word duration for Alexa [t(31.24)=-3.17, p<0.01], a
lower mean fO for the human [t(27.71)=4.34, p<0.001], and a larger fO
variation for the Alexa neutral voice [t(22.53)=6.06, p<0.001].

2.3. Procedure

Participants began with a pre-exposure word production block,
where they saw and read aloud each of the target words (randomly
presented, one at a time, in three repetition blocks). Next, they
completed the word shadowing blocks. First, participants were intro-
duced to the model talkers: either the voice-Al system (‘Alexa’) or a
human (‘Melissa’), accompanied by a corresponding image of an Echo
device or a female human stock photo to strengthen the guise, as clearly
a human or a voice-Al interlocutor (shown in Fig. 1). On each trial,
participants were told to “repeat the word” produced by each talker (ISI
= 1000ms). All items across both expressiveness conditions (Emotion-
ally Expressive or Neutral) and Model Talker were randomly presented
within each repetition block. In total, participants completed two
repetition blocks.

2.4. Analysis

2.4.1. Acoustic Analysis

Participants’ baseline and shadowed productions were force-aligned
with FAVE (Rosenfelder et al., 2011) and hand-corrected, focusing on
the start and end of the word, by the second and third author. For each
word, the mean f0° and f0 variation” (standard deviation over the word)
values were taken using a Praat script adapted from DiCanio (2007) in

Table 2
Acoustic properties of regular and expressive tokens.
Model Expressiveness Word duration Mean f0  FO
talker condition (sd) Variation
Human Neutral 595.7 ms 195.5 1.5ST
(120.9) Hz
Expressive 699.0 ms 244.9 3.1ST
(161.7) Hz
Alexa Neutral 483.6 ms (89.0) 212.4 2.8 ST
Hz
Expressive 707.3 ms 215.0 3.3ST
(279.3) Hz

3 Total of 144 excluded mean f0 observations due to creak (10 females:
n=78, 9 males: n=66).

4 Total of 152 excluded f0 variation observations due to creak (10 females:
n=78; 10 males: n=74).
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semitones® (ST, relative to 100 Hz), with plausible maxima and minima
fO for each gender (78-150 Hz for males, 150-350 Hz for females). Model
talkers’ productions (i.e., Alexa and human) were also FAVE aligned,
hand-corrected, and measured with the same methods. Table 3 provides
the pre-exposure means for the three acoustic properties of interest,
separately for female and male participants.

For each acoustic feature (word duration, mean f0, and fO variation),
we centered each subject’s production in the shadowing experiment,
relative to their pre-exposure productions. The third repetition of each
word in the pre-exposure phase were selected as participants’ ‘baseline’
productions, as the participants would be familiar with the words by
that point and differences in production due to initial word novelty
would be reduced. For the shadowed productions, the second repetition
of the word for that given interlocutor was selected, following the same
reasoning. For each feature, we calculated the mean ‘baseline’ value for
each participant (capturing their baseline speech characteristics), which
we subtracted from each ‘shadowed’ production. These centered values
were used as the dependent variables in the linear mixed effects models.

2.4.2. Statistical Analyses

We modeled each (centered) shadowed acoustic property in separate
linear mixed effects models with the Ime4 R package (Bates et al., 2015).
Fixed effects included Expressiveness Condition (2 levels: neutral,
expressive), Model Talker (2 levels: Alexa, human), Gender (2 levels:
male, female), and all possible interactions. Random effects included
by-Subject and by-Word random intercepts, as well as by-Subject
random slopes for Expressiveness Condition (more complex random
effects structure resulted in a singularity error, indicating overfit for all
three models). Contrasts were sum coded. (Lmer syntax: Shadowed.c® ~
Emotion Condition*Interlocutor*Gender + (1+Condition|Subject) + (1|
Word).)

3. Results

The word duration model output is shown in Table 4 and the values
are plotted in Fig. 2.A. The model revealed a significant intercept:
relative to baseline productions (in the pre-exposure), participants
produced longer word durations on average. We also observe an effect of
Expressiveness Condition: participants produce longer words in
response to emotionally expressive productions. A main effect of Model
Talker reveals that participants produce less of an increase in word
duration toward Alexa. Furthermore, there is an interaction between
Expressiveness Condition and Model Talker: speakers’ word duration
(on average) increases more when shadowing Alexa emotionally
expressive productions. No other effects or interactions were significant
in the model’.

The mean f0 model is provided in Table 5 and values are plotted in
Fig. 2.B. First, there is a significant intercept, indicating that participants
increase their mean fO in the shadowing experiment (relative to their
baseline productions). There is also an effect of Expressiveness Condi-
tion indicating that speakers increase their mean fO when shadowing
emotionally expressive productions. While there is no main effect of
Model Talker, it interacted with Expressiveness Condition: participants
produce less of a mean fO increase when shadowing Alexa Expressive
productions. Additionally, while there is no main effect of Gender, it
interacts with Expressiveness Condition: female participants show a
larger mean f0 increase when shadowing the expressive productions. No
other effects or interactions were significant in the model.

The summary of the model run on f0 variation is provided in Table 6

5 Semitones (ST) are used so that fO values are on the same scale (across
speakers/genders). We use ST in t-tests and in the full analysis.

6 « ¢ is used to indicate that this continuous value has been centered.

7 Note that the effects are still present even if the model does not include the
fixed effect of Gender.
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Fig. 1. Introduction of model talkers and general shadowing trial design. (Color online.)

Table 3
Acoustic properties of participants’ pre-exposure productions.

Duration (sd) FO mean (sd) FO variation (sd)

Females 540.6 ms 205.2 Hz 1.25 ST
(134.5)
Males 525.8 ms 106.7 Hz 1.26 ST
(144.5)
Pairwise t(2306.7)=2.57,  1(2206.4)= (2300.90)=-0.52,
comparison of F p=0.10 120.94, p<0.001 p=0.61
vs. M
Table 4
Word duration. Summary statistics for the linear mixed effects model.
Coef SE df t p
(Intercept) 54.83 24.47 24.02 2.24 0.03
Expressiveness 25.53 3.59 63.98 7.1 <0.001
Condition
(Expressive)
Model (Alexa) -13.74 145 4600.03 -9.46  <0.001  ***
Gender (F) 3.32 9.99 64 0.33 0.74
Condition (Expressive) * 9.17 1.45 4600.03 6.31 <0.001 e
Model (Alexa)
Condition (Expressive) 1.68 3.59 63.98 0.47 0.64
*Gender (F)
Model (Alexa)*Gender -0.85 1.45 4600.03 -0.58 0.56
(F)
Condition (Expressive) -1.37 1.45 4600.03 -0.94 0.35

*Model (Alexa)
*Gender (F)

Num. observations = 4,753, Num. subjects = 66, Num. words = 18
Duration.c ~Condition*ModelTalker*Gender + (1-Condition|Subject) + (1]
Word)

and values are plotted in Fig. 2.C. The model revealed a main effect of
Expressiveness Condition indicating that relative to their baseline pro-
ductions, speakers increase fO variation when shadowing Expressive
productions. There is also an effect of Model Talker revealing that par-
ticipants produce a larger increase in fO variation when shadowing the
Alexa voice. Furthermore, there is an interaction between Expressive-
ness Condition and Model Talker wherein participants produce less of an
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increase in f0 variation in response to emotional expressiveness by the
Alexa voice. Finally, there is an interaction between Expressiveness
Condition, Model Talker, and Gender: female participants produce a
larger fO variation increase for the Alexa Expressive condition. No other
effects or interactions were significant.

4. Interim Discussion

This study revealed that speakers adapt their speech toward an
emotional speech style — with longer durations, higher f0, and larger fO
variation (Abadjieva et al., 1993) — when shadowing isolated words
produced by human and Alexa talkers. Yet, how speakers ‘emotionally
align’ differs by the model talker. Specifically, we see a larger increase in
word duration when speakers shadow emotionally expressive Alexa
productions, but a smaller increase in mean f0 and f0 variation. At first
glance, this appears to be socially-mediated emotional alignment (Fischer
et al., 2019; Hess & Fischer, 2013, 2014), with differences based on the
social category of talker.

Yet, an alternative explanation is that differences for voice-Al versus
human model talkers could be explained by magnitude of acoustic dis-
tance across the voices, which would support unmediated, matched motor
accounts (De Waal, 2007; Decety & Jackson, 2006; Preston, 2007). As
summarized in Section 2.2. and Table 2, the acoustic properties of the
model talkers’ productions varied. For example, the (mean) word
duration difference from neutral-to-expressive was larger for Alexa
talker (A = 223.7 ms) than for the human talker (A = 103.3 ms), the
condition where we greater more lengthening during emotional align-
ment toward Alexa. Similarly, there are larger differences from
neutral-to-expressive for the human talker for both fO properties,
consistent with the emotional alignment effects: larger alignment to-
ward the human (Apean fo = 3.9 ST; Agg yar = 1.6 ST) than Alexa (Apean fo
= 0.2 ST; Agg var = 0.5 ST). Together, these observations suggest that
differences in emotional alignment by model talker category (voice-Al
vs. human) might be driven by the magnitude of acoustic distance be-
tween their neutral-to-expressive productions.

This leads to a related question: do the two Model Talker main effects
— words are shorter and have a larger fO variation when shadowing the
Alexa voice — simply reflect mirroring the acoustics, rather than
interlocutor-specific adaptations (e.g., human- vs. computer-directed
speech: Burnham et al., 2010; (Raveh et al., 2019)? Here, the much
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Effects of Shadowing Emotional Expressiveness
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Fig. 2. Prosodic changes by Emotional Expressiveness Condition (neutral vs. expressive), Participant Gender (female vs. male), and Model Talker (Alexa vs. Human)
for word-level acoustic measurements: (A) duration (milliseconds, ms), (B) mean fO (semitones, st), and (C) fO variation (st). Values are centered to the participants’
mean in the pre-exposure phrase. Values higher than 0.0 indicate a relative increase, while values lower than 0.0 indicate a relative decrease, during shadowing.

Table 5 Table 6
Mean f0. Summary statistics for the linear mixed effects model. FO variation. Summary statistics for the linear mixed effects model.
Coef SE df t P Coef SE df t p
(Intercept) 0.53 0.14 74.29 3.76 <0.001 i (Intercept) 0.14 0.08 68.63 1.68 0.10
Expressiveness Condition 0.20 0.04 64.13 4.63 <0.001 s Expressiveness Condition 0.13 0.02  64.26 5.38 <0.001  **¥
(Expressive) (Expressive)
Model (Alexa) 4.4e- 0.02 4536.57 0.22 0.83 Model (Alexa) 0.05 0.01 4533.42 4.52 <0.001 HxE
03 Gender (F) -0.03 0.07 63.99 -0.45 0.65
Gender (F) 0.11 0.12 64.04 0.89 0.38 Condition (Expressive) * -0.05 0.01 4533.39 -4.41 <0.001 i
Condition (Expressive) * -0.11 0.02 4536.53 -5.65 <0.001 ok Model (Alexa)
Model (Alexa) Condition (Expressive) 0.01 0.02 64.26 0.58 0.56
Condition (Expressive) 0.13 0.04 64.13 2.93 <0.001 o *Gender (F)
*Gender (F) Model (Alexa)*Gender (F) 0.01 0.01 4533.45  0.50 0.62
Model (Alexa)*Gender (F) 0.01 0.02 4536.61 0.61 0.54 Model (Alexa)*Condition 0.03 0.01 4533.39 2.53 0.01 *
Model (Alexa)*Condition -0.01 0.02 4536.53 -0.61 0.54 (Expressive)*Gender (F)

(Expressive)*Gender
(F)

Num. observations = 4,689, Num. subjects = 66, Num. words = 18
Meanf0.c ~Condition*ModelTalker*Gender + (1-+Condition|Subject) + (1]

Word)
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Num. observations = 4,686, Num. subjects = 66, Num. words = 18
FOvar.c ~Condition*ModelTalker*Gender + (1+Condition|Subject) + (1|Word)
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shorter word durations in the Alexa Neutral production (averaging
483.6 ms vs. Human Neutral: 595.7 ms; see Table 2) might bias the
Model Talker effects. Likewise, the Alexa voice has larger fO variation
overall (2.8 ST in Neutral, 3.3 ST in Expressive), compared to the Human
voice (1.5 ST in Neutral, 3.1 ST in Expressive), suggesting this might be
driving the overall larger fO variation produced towards the Alexa model
talker.

5. Post hoc analyses

To test whether model talker main effects are consistent across both
emotional expressiveness conditions, we analyzed ‘neutral’ and
‘emotionally expressive’ productions in separate post hoc models for
word duration and f0 variation. As in the main models, the dependent
variables were the participants’ shadowed value (centered). (Lmer
syntax: Shadowed ~ Model Talker + (1|Subject)+ (1|Word).)

The post hoc duration models revealed that speakers’ decrease in
word duration for Alexa was consistent across the expressiveness con-
ditions. When shadowing Alexa productions, participants produce
shorter words in both the Neutral [Coef=-22.92, t=-13.64, p<0.001] and
Expressive conditions [Coef=-4.56, t=-2.00, p<0.05]. The f0O variation
post hoc models showed differences by Model Talker only when shad-
owing neutral productions: participants produce more f0 variation after
hearing Alexa Neutral [Coef=0.10, t=6.84, p<0.001]. No difference for
Model Talker was observed for fO variation in the expressive condition
dataset [Coef=1.09, t=0.07, p=0.95].

Together, these post hoc analyses reveal that the shorter word du-
rations when shadowing the Alexa talker were stable across both
expressive and neutral conditions. On the other hand, the Model Talker
effects in the main fO variation model — with larger fO variation when
shadowing Alexa — appears to be driven by the Alexa Neutral condi-
tions (which has a larger fO variation than the Human Neutral
condition).

6. General Discussion

The present study is the first, to our knowledge, to examine vocal
alignment patterns toward emotionally expressive and neutral pro-
ductions in a controlled laboratory setting, and toward two types of
interlocutors in the same study: human and voice-Al. We observed that
participants converged more toward the prosodic features (word dura-
tion, mean f0, and fO variation) of emotionally expressive productions.
In particular, when shadowing, participants shift their pronunciations
toward the longer duration, higher f0, and larger fO variation in the
emotionally expressive productions, which are characteristics of ‘happy’
speech (Abadjieva et al., 1993; Murray & Arnott, 1993; Viscovich et al.,
2003; Yildirim et al., 2004). This result extends prior findings of
emotional alignment in spontaneous, dyadic interactions (e.g., thera-
pists’ office in Vaughan et al., 2018) and in-lab approaches examining
physiological responses to emotional speech (e.g., zygomatic, ‘smile’,
muscle activation in Arias et al., 2018) to speech shadowing of isolated
words. A summary of the effects of the main and post hoc analyses is
provided in Table 7.

Table 7
Summary of findings.
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We additionally compared speech behavior toward two types of
model talkers: a naturally produced human voice and an Amazon Alexa
TTS voice. Here, we found that speakers produce shorter words when
shadowing Alexa. Post hoc analyses confirmed that speakers’ decrease
in word duration for Alexa was reliable across the emotion conditions.
While shorter durations contrast with prior work on computer-directed
speech more generally (e.g., Burnham et al., 2010), it does align with a
recent finding of a direct comparison of a human and modern voice-Al
system (Siegert et al., 2019). One possible explanation is that this
finding is driven by ‘convergence-to-expectation’. Wade (2020) found
that imitators adopt expected, but not heard, features of an in-
terlocutor’s speech. For instance, they observed monophthongization of
/a1/ after exposure to a model talker with a Southern American English
accent, a feature that was not directly heard in that model talker’s
speech. In the current study, speakers might have perceived the Amazon
Alexa TTS voice as ‘sounding’ shorter overall, as part of their expecta-
tions about the voice. Indeed, prior work has shown that people hear
differences in duration for more robotic-sounding speech (i.e., utter-
ances modified to contain audible prosodic disfluencies) relative to
smooth-sounding synthetic speech (Boril et al., 2017). While we did not
see a lengthening effect for TTS voices here, future work systematically
varying the voice — as well as assessing listener’s perception of the
segments (as sounding ‘longer’ or ‘shorter’) — can tease apart these
possibilities.

In addition to word duration, the main model also revealed differ-
ences in fO variation overall when participants were shadowing the
Alexa voice, relative to the human voice. While at first glance these
differences appear to reflect systematic differences in Alexa-directed
speech (as seen for overall word duration), post hoc analyses provide
evidence that these changes reflect acoustically driven alignment since {0
variation only varied by model talker in the Neutral subset (not
Expressive). This aligns with the acoustic differences in the stimuli
wherein the Alexa voice had greater fO variation in neutral conditions
(2.8 ST), compared to the human (1.5 ST).

To examine sources of a possible socially-mediated emotional align-
ment response (human vs. device social categories), we compared
speakers’ adjustments for the two interlocutors’ emotional expressive
productions. In response to emotional expressiveness, we find that
speakers adapt their speech in similar directions for the human and
voice-Al interlocutors, with small differences in magnitude. While it is
possible these differences could be a socially-mediated effect (as argued
in related work; e.g., Cohn et al., 2019; Snyder et al., 2019), as
mentioned in the Interim Discussion (Section 4), the degree of difference
can be explained by acoustic differences between ‘neutral’ and
‘expressive’ productions by the Alexa and human model talkers. In cases
where the Alexa model talker has a larger difference from
neutral-to-expressive (e.g., word duration), participants show larger
increases toward Alexa Expressive productions. The converse was also
true: when acoustic differences are smaller for the Alexa voice from
neutral-to-expressive (e.g., mean f0, fO variation), participants show
weaker increases toward Alexa Expressive productions. Thus, we inter-
pret these model talker-based differences in emotionality as driven by
the acoustics (rather than a difference in social category). This is

Expressiveness Condition

Model Talker Category

Duration Increases for Expressive
@ larger increase toward Alexa
Mean fO Increases for Expressive

@ smaller increase toward Alexa

@ larger increase by Female participants
Increases for Expressive

@ smaller increase toward Alexa

FO variation

Shorter for Alexa
(post hoc: shorter in both Neural and Expressive)
No difference

Larger toward Alexa
(post hoc: larger toward Alexa Neutral)

@ larger increase toward Alexa by Female participants
(post hoc: larger toward Alexa Expressive by Female participants)
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consistent with unmediated alignment accounts of emotional alignment (e.
g., De Waal, 2007; Decety & Jackson, 2006; Preston, 2007), wherein
participants are simply aligning toward changes in acoustic features as
they are realized in the stimuli.

More generally, observing overall increases in prosodic features
associated with ‘positive-emotional’ speech for both human and Alexa
voices supports computer personification theories (CASA: Nass et al.,
1997, 1994). Here, people appear to apply human-human speech be-
haviors in response to emotional expressiveness by a non-human entity:
voice-Al These results are in line with prior work that described similar
responses for emotional/affective behaviors in human-human and
human-computer interaction (Brave et al., 2005; Bucci et al., 2018; Nass
et al., 1999, 1995; Vaughan et al., 2018; Xiao et al., 2013). It also sup-
ports prior work that participants’ alignment toward virtual in-
terlocutors is, in part, an automatic behavior (Staum Casasanto et al.,
2010). While one possibility we raised was that participants might find
the emotionally expressive Alexa voice to be ‘uncanny’ (Mori, 1970;
Mori et al., 2012) and diverge from it, we did not find evidence to
support that.

At the same time, we observed several differences by speaker gender
in emotional alignment: women show larger increases in mean fO toward
expressiveness (overall) and in fO variation (toward Alexa). These in-
creases might reflect differences in socialization, where women display
stronger ‘emotional contagion’ (Doherty et al., 1995; Sonnby-Borgstrom
et al., 2008), consistent with socially-mediated accounts of emotional
alignment (Hess and Fischer, 2013, 2014; Fischer et al., 2019). Broadly,
observing greater alignment by female participants (whether due to
socialization and/or acoustic tracking) is in line with prior work in the
(non-emotional) vocal alignment literature (Arimoto & Okanoya, 2014;
Namy et al., 2002). At the same time, it contrasts with recent work
reporting greater alignment by male speakers (than female speakers)
toward emotionally expressive Alexa productions (Cohn & Zellou,
2019). Why might this be the case? One possibility is that women might
produce more pitch-based adjustments (here, mean fO and fO variation)
to align to an interlocutor. Furthermore, it is possible that listener’s
perception of alignment (e.g., using AXB in Cohn & Zellou, 2019) might
differ for speaker gender (Babel & Bulatov, 2012); raters might perceive
‘more’ alignment by interlocutors whose baseline differences start
farther away (here, males with lower fO converging toward female f0),
parallel to arguments in vocal alignment that speakers with larger
baseline distances have more ‘room’ to converge (Babel, 2010; Walker &
Campbell-Kibler, 2015; but see Cohen Priva & Sanker, 2019; MacLeod,
2021).

Taken together, our results suggest a nuanced picture of emotional
alignment. In general, we find support for unmediated, motor accounts (e.
g., De Waal, 2007; Decety & Jackson, 2006; Preston, 2007), where
speakers ‘match’ the acoustic input, in responses to emotionally
expressive model talkers. At the same time, we see some possible sup-
port for socially-mediated accounts of emotional alignment (Hess and
Fischer, 2013, 2014; Fischer et al., 2019) in the domain of speaker
gender. The present examination of emotional vocal alignment, while
novel, has a number of limitations that can set up many directions for
future research. While one of the innovations of the present study is the
comparison of emotional alignment across human and voice-Al in-
terlocutors, this focus limited the number of model talkers. At the time of
the study, only the Amazon Alexa default female voice was capable of
producing both neutral and emotionally expressive productions in US
English. This default TTS voice was likely to be familiar to participants,
as most (51/66) had prior experience with Amazon’s Alexa specifically.
Familiarity may mediate alignment toward emotion and also perhaps
why we find that it is largely comparable toward the human and the
Alexa across acoustic features. Future work examining more model
talkers (e.g., varying in gender, ‘recognizability’, etc.) can uncover the
extent to which these effects generalize to more voices. In particular,
recent work has pointed to a large degree of idiosyncratic variation
across speakers, some of which would also likely be present among
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different TTS voices (Lee et al., 2019).

Additionally, the present study used both audio and visual cues to
cue the model talker categories. While the aim was to provide clear guise
information (such that it was unambiguous that the talker was a human
or device), there is a body of work showing visual cues shape auditory
perception (Babel & Russell, 2015; D’Onofrio, 2019; Hay et al., 2006;
Zellou et al., 2020). Recently, there is also work showing differences in
vocal alignment based on physical form: speakers show stronger vocal
alignment toward TTS voices when they are presented with a more
human-like form (e.g., Furhat or Nao robot) relative to a form that lacks
human features (e.g., Amazon Echo) (Cohn, Jonell, et al., 2020). In the
current study, the visual information for the human (a smiling female)
might have provided stronger emotion-congruent information with the
positive-valence stimuli (e.g., “Awesome!”). There is related work
showing processing costs when cues of emotion conflict: for example,
Nygaard & Queen (2008) found word-naming latencies when the word’s
meaning and how it was spoken conflicted (e.g., ‘happy’ word produced
with ‘sad’ prosody). The extent to which emotional mismatch might
shape vocal alignment — and vary for different types of interlocutors
(human vs. device) — remain avenues for future work.

Another direction for future work is to examine additional sources of
socially-mediated variation, including language background and cul-
tural attitudes toward voice-Al systems that might influence emotional
vocal alignment. There is some work, for example, demonstrating that
emotional expressiveness varies cross-linguistically and cross-culturally
(Abelin & Allwood, 2000; Batliner et al., 2004). Furthermore, future
work examining individual differences in response to emotion — such as
in vocal alignment — can further probe the cognitive and social dy-
namics of human-computer interaction (HCI). Broadly, understanding
individual variation in HCI is important for developing comprehensive
models of human behavior toward Al, and addressing a gap in the HCI
literature, where fewer studies have examined individual differences in
participants’ vocal interactions with technology (for a review, see
Snyder et al., 2019), as well as for possible practical applications. There
is already some work suggesting that depressed patients’ speech with
interactive voice response (IVR) technology can track their recovery
(Mundt et al., 2007); this suggests that biomarkers in speech toward
voice-AI might be useful in clinical applications.

7. Conclusion

Overall, this study sheds light on the underlying mechanisms of
emotional vocal alignment: even in a laboratory setting, people align
toward the positive-emotional speech style they hear. Here, the social
category of the talker — as a human or device — did not serve as a social
factor guiding emotional alignment. Rather, we see that magnitude of
acoustic difference (from neutral-to-expressive) can explain the small
differences in alignment toward the Alexa and human model talkers.
Observing a similar response for these categories further supports
computer personification accounts: people appear to apply similar
emotional behaviors from human-human interactions to speech in-
teractions with voice-Al. While more work is needed to test the extent of
this overlap, this raises many important scientific questions as to the
nature of anthropomorphization, and can serve practical applications in
voice user interface design.
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