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A B S T R A C T   

This study tests whether individuals vocally align toward emotionally expressive prosody produced by two types 
of interlocutors: a human and a voice-activated artificially intelligent (voice-AI) assistant. Participants completed 
a word shadowing experiment of interjections (e.g., “Awesome”) produced in emotionally neutral and expressive 
prosodies by both a human voice and a voice generated by a voice-AI system (Amazon’s Alexa). Results show 
increases in participants’ word duration, mean f0, and f0 variation in response to emotional expressiveness, 
consistent with increased alignment toward a general ‘positive-emotional’ speech style. Small differences in 
emotional alignment by talker category (human vs. voice-AI) parallel the acoustic differences in the model 
talkers’ productions, suggesting that participants are mirroring the acoustics they hear. The similar responses to 
emotion in both a human and voice-AI talker support accounts of unmediated emotional alignment, as well as 
computer personification: people apply emotionally-mediated behaviors to both types of interlocutors. While 
there were small differences in magnitude by participant gender, the overall patterns were similar for women and 
men, supporting a nuanced picture of emotional vocal alignment.   

1. Introduction 

Speakers can readily convey their inner mental states and emotions 
to an interlocutor via acoustic-phonetic properties of their voice, such as 
using pitch and temporal variation. For example, happy speakers pro
duce higher pitch and longer durations (Abadjieva et al., 1993; Murray 
& Arnott, 1993; Viscovich et al., 2003; Yildirim et al., 2004). While 
understudied, how listeners respond to this emotion subsequently in 
their own speech can reveal the mechanisms of speech and emotional 
alignment. When humans interact, there is a tendency for them to 
vocally align, subconsciously mirroring each others’ (non-emotional) 
speech patterns (Babel, 2012; Nielsen, 2011; Pardo, 2006; Pardo et al., 
2010; Zając, 2013), including prosodic features associated with emotion, 
such as speaking rate (Pardo et al., 2010), average pitch (Babel & 
Bulatov, 2012), and pitch range (Smith, 2007). 

There is some evidence for alignment of emotional expressiveness: 
happiness or sadness conveyed in the prosodic patterns of an interloc
utor appear to shape talkers’ speech patterns (Arimoto & Okanoya, 
2014; Vaughan et al., 2018; Xiao et al., 2015, 2013), though nearly all 
prior studies on this topic have been conducted in non-controlled set
tings (e.g., spontaneous speech while participants completed an 

interactive task in Arimoto & Okanoya, 2014; during a counseling ses
sion in Xiao et al., 2015). For example, Vaughan et al. (2018) observed 
that a female psychiatrist aligned in pitch, speaking rate, and 
vowel-spectral features toward six of her patients during clinical in
terviews. In particular, they found that during interactions with 
depressed speakers, the therapist adopted the more contracted vowel 
space of her patients, which is a characteristic of depressed speech 
(Scherer et al., 2016). Similarly, Yang et al. (2013) observed that in
terviewers aligned toward the lower pitch of depressed individuals when 
engaging with them. Together, alignment of features that signal 
emotional state has been proposed to convey empathy toward the 
emotional state of the interlocutor (Scherer et al., 2014; Vaughan et al., 
2018; Xiao et al., 2015, 2013). 

The present study compares vocal alignment toward words produced 
in emotionally expressive and neutral speech styles in a controlled lab
oratory setting with two types of talkers: a human voice and a voice- 
activated artificially intelligent (voice-AI) assistant voice. Voice-AI as
sistants (e.g., Apple’s Siri, Amazon’s Alexa, and Google Assistant) are 
increasingly prevalent in households in the United States (Ammari et al., 
2019; Bentley et al., 2018). Unlike computer systems in the past, these 
systems display more apparent human characteristics. For example, 
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Amazon’s Alexa voice is capable of producing emotionally expressive 
interjections. The Amazon Alexa Skills Kit (ASK), a system generated for 
‘voice app’ developers, includes over 100 emotionally expressive words 
(e.g., “Awesome!”) and phrases (e.g., “Whoops a daisy!”) pre-recorded 
by the US-English female Alexa voice, which can be implemented with 
speech output tags (known as ‘Speechcons’: Amazon, 2018). Cohn & 
Zellou (2019) found that speakers showed significantly greater vocal 
alignment toward emotionally expressive Alexa interjections than 
neutral productions generated with the default Alexa voice. Beyond 
vocal alignment, there is other evidence that people treat computer 
systems with similar emotional/affective responses as they do for other 
humans (Brave et al., 2005; Nass et al., 1999; Bucci et al., 2018; Cohn 
et al., 2019; Nass et al., 1995). For example, in a study of interactions 
with a car navigation system, participants had fewer accidents, were less 
distracted, spoke more, and reported greater satisfaction with the system 
when the emotional speech patterns in the text-to-speech (TTS) voice 
matched their own mood (either happy or sad) (but note that these 
voices did not contain ‘neutral’, non-emotional productions for com
parison) (Nass et al., 2005). Together, finding similar responses toward 
computer/voice-AI agents and toward humans supports computer 
personification theories; for example, the ‘Computers are Social Actors’ 
(CASA) theoretical framework (Nass et al., 1997, 1994) proposes that if 
a cue of humanity is detected in a computer system, people subcon
sciously apply the social norms from human-human interactions, even if 
it is clear that the system is non-human. Yet, critically, the vast majority 
of prior studies examining the effect of emotional expressiveness by a 
computer or voice-AI system have not contained a direct comparison to a 
human (Brave et al., 2005; Bucci et al., 2018; Cohn & Zellou, 2019; Liu & 
Sundar, 2018; Nass et al., 1999; Nass et al., 1995). 

Indeed, work examining (non-emotional) vocal alignment has 
demonstrated differences in how individuals align toward device and 
human voices when direct comparisons are made (Cohn et al., 2019; 
Raveh et al., 2019; Snyder et al., 2019). In a study comparing alignment 
toward a voice-AI (Amazon’s Alexa) and a human interlocutor, Raveh 
and colleagues (2019) found that people do align toward voice-AI; but, 
when a human confederate was present, participants aligned less toward 
the Alexa voice. Similarly, in two studies examining single-word shad
owing of voice-AI and human interlocutors, participants displayed 
greater alignment toward human voices, relative to Apple’s Siri voices 
(Cohn et al., 2019; Snyder et al., 2019). With respect to emotion, a 
recent study (Cohn et al., 2020) found that listeners perceived synthe
sized ‘happiness’ in a human and Alexa voice (from ‘emotionally-neu
tral’ productions) similarly in some respects (e.g., increased perceived 
arousal with ‘happiness’ manipulations) but differently for others: lis
teners did not hear the same increase in valence with the ‘happiness’ 
manipulation in the Alexa voice. Taken together, the alignment and 
emotion perception findings suggest that voice-AI systems might be a 
separate social category from humans, and thus serves as a relevant 
interlocutor comparison for vocal alignment toward emotional 
expressiveness. 

In the current study, examining emotionally expressive (and neutral) 
speech by Amazon’s Alexa and a human interlocutor can serve as a test 
of our scientific understanding of emotional mimicry, teasing apart 
theories that it is ‘unmediated’ or ‘socially-mediated’, such as by the 
characteristics of the speaker (as human or voice-AI). 

1.1. Unmediated, matched motor accounts 

On the one hand, unmediated, matched motor accounts propose that 
the mechanism underlying emotional alignment is embodied cognition, 
or a matched motor response (De Waal, 2007; Decety & Jackson, 2006; 
Preston, 2007). For example, Arias and colleagues (Arias et al., 2018) 
found that participants listening to a ‘smiling’ voice produced more 
micro-activations of the zygomatic muscle (used to pull the mouth 
widthwise in smiling) than when they heard a ‘frowning’ voice. Further, 
individuals align to smiles produced by both in-group and out-group 

members (Van Der Schalk et al., 2011) and smile or laugh along with 
laugh tracks (Fuller & Sheehy-Skeffington, 1974), supporting an unme
diated motor mechanism (i.e., without a social mediator). There are 
multiple proposed mechanisms for this interpersonal alignment, 
including mirror neurons, which are thought to fire when a person either 
completes an action or sees another person complete an action (Decety 
& Jackson, 2006). Other proposed mechanisms include spreading acti
vation of exemplars, where an experience (e.g., hearing a word pro
duced in a certain way) updates the listener’s own mental 
representations. In the domain of speech, the updating of exemplars has 
been one proposed mechanism for vocal alignment more generally 
(Goldinger, 1996, 1998). While the aim of the current investigation is 
not to tease apart views about the neural underpinnings of emotional 
alignment, as based in spreading activation or mirror neurons, these 
types of accounts make a similar prediction for the present study: that 
motor and/or linguistic representations are equally ‘activated’ upon 
hearing emotional speech from different interlocutors (here, human vs. 
voice-AI). Furthermore, emotional speech (relative to non-emotional 
speech) often contains more exaggerated acoustic-phonetic features: 
longer duration and higher f0 for ‘happy’ speech, relative to ‘neutral’ 
speech (Abadjieva et al., 1993; Murray & Arnott, 1993; Viscovich et al., 
2003; Yildirim et al., 2004). If participants are merely ‘mirroring’ the 
input, consistent with unmediated accounts, then we might expect them 
to display greater alignment for these features as a function of their 
acoustic distance (e.g., greater alignment toward longer segments in 
emotionally expressive speech). Such a prediction would apply regard
less of whether the speaker is a human versus AI system, which is 
consistent with recent work. For example, Gazzola and colleagues 
(2007) found identical engagement of regions associated with 
motor-action perception for household movements produced by both 
human and robot agents. Thus, in the present study we might predict no 
overall difference in alignment toward emotionally expressive speech 
produced by human voices and voice-AI TTS, reflecting a general 
motor-perception mechanism. 

1.2. Socially mediated accounts 

On the other hand, socially mediated accounts propose that the social 
relationship between interacting humans mediates patterns of 
emotional alignment (Fischer et al., 2019; Hess & Fischer, 2013, 2014). 
Work in linguistic alignment more generally (i.e., not necessarily 
emotional) has demonstrated that the social dynamics of an interaction 
shape convergence and divergence between interlocutors (Abrego-Col
lier et al., 2011; Babel, 2012; Yu et al., 2013). Speech coordination is 
often examined through the framework of ‘Communication Accommo
dation Theory’, or CAT (Giles et al., 1991; Giles & Baker, 2008; Shepard, 
2001). CAT proposes that speakers demonstrate their social closeness 
via increased alignment, or that they increase social distance via 
divergence. For example, individuals display greater (non-emotional) 
alignment toward interlocutors they are socially close to: over the course 
of a year, college roommates who reported stronger feelings of closeness 
also displayed greater vocal alignment (Pardo et al., 2012). In the 
emotion alignment literature, there is some evidence for differences 
based on the social dynamics between individuals. For instance, there is 
greater reported emotional alignment toward in-group versus out-group 
members (Matsumoto, 2002; Thibault et al., 2006; Weisbuch & 
Ambady, 2008). Group-mediated alignment is also observed even within 
a lab setting, where participants are arbitrarily assigned to ‘teams’ 
(Lakin et al., 2003). In the current study, socially-mediated alignment 
patterns might be realized as greater emotional vocal alignment toward 
the ‘in-group’ human voice, relative to the voice-AI talker, which rep
resents a distinct social category. This would be consistent with prior 
findings for (non-emotional) alignment where greater alignment toward 
human, compared to voice-AI, interlocutors was observed (Cohn et al., 
2019; Raveh et al., 2019; Snyder et al., 2019). Alternatively, participants 
might find emotionally expressive productions by voice-AI to be 
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‘uncanny’ (Mori, 1970; Mori et al., 2012), and subsequently diverge 
from those productions only. In either scenario, socially-mediated ac
counts would predict categorical differences in emotional vocal align
ment towards humans and voice-AI. 

Another social factor that has received more attention in the 
emotional alignment literature is the role of gender (Arimoto & Oka
noya, 2014; Cohn, Ferenc Segedin, et al., 2019; Cohn & Zellou, 2019; 
Doherty et al., 1995). On the one hand, some have proposed that 
‘emotional contagion’ is stronger for women, relative to men, based on 
differences in socialization (Doherty et al., 1995; Sonnby-Borgström 
et al., 2008). This is in line with findings reporting that women showed 
greater vocal alignment toward emotion in a competitive dialog game 
(Arimoto & Okanoya, 2014) and with (non-emotional) vocal alignment 
of single-word shadowing (Namy et al., 2002). In the present study, one 
prediction is that female participants will show greater (emotional) 
alignment than male participants. However, there is some evidence of 
the opposite pattern: greater speech alignment by males. For example, 
Cohn & Zellou (2019) found that male participants displayed more 
alignment toward emotionally expressive Alexa productions in a single 
word shadowing study. Broadly, greater alignment by males is also 
consistent with studies of (non-emotional) vocal alignment demon
strating similar asymmetries (Dijksterhuis & Bargh, 2001; Pardo, 2006). 
Therefore, an alternative prediction for the present study is that men will 
show greater alignment toward emotionally expressive speech, relative 
to women. 

1.3. Current Study 

The current study examines vocal alignment toward neutral and 
emotionally expressive interjections. In particular, participants 
completed a word shadowing task (Goldinger, 1998) where they 
repeated isolated words (presented over headphones). We measured 
three prosodic properties associated with vocal emotional expression: 
word duration, mean fundamental frequency (f0; perceived pitch), and 
f0 variation (Abadjieva et al., 1993; Murray & Arnott, 1993; Viscovich 
et al., 2003; Yildirim et al., 2004). Specifically, we test whether acoustic 
alignment toward emotional expressiveness differs based on interloc
utor (human vs. voice-AI) and speaker gender (male or female), which 
can speak to theories of emotional alignment (as an unmediated, matched 
motor response or socially-mediated). We compare two types of in
terlocutors: a human voice (naturally produced) and an Amazon Alexa 
voice (generated from the US-English TTS voice). As mentioned, the 
Alexa voice is capable of producing hyper-expressive interjections (e.g., 
“Wow!”) (‘Speechcons’, Amazon, 2018). 

For each acoustic feature, we assess change from the speaker’s 
baseline (elicited during a pre-exposure phase). Specifically, we 
centered each participant’s shadowed production to their baseline pro
duction (Cohn et al., 2021). In doing so, we test whether, relative to their 
baseline speech characteristics, speakers increase their word duration, 
mean f0, and f0 variation when shadowing emotionally expressive 
speech. While prior studies have frequently used difference-in-distance 
(DID) measures to quantify alignment (Babel, 2012; Snyder et al., 
2019; Zellou & Cohn, 2020), recent work suggests that DID can be 
biased to find larger differences for participants with larger baseline 
distances from the model talkers and can also result in apparent diver
gence for speakers who are more similar to the model talkers at baseline 
(Cohen Priva & Sanker, 2019; MacLeod, 2021). Using a 
baseline-centered approach allows us to test if speakers make general 
prosodic adjustments (relative to their pre-exposure productions) in 
response to a particular interlocutor and in response to emotional 
expressiveness which might otherwise obscure (or spuriously enhance) 
alignment effects if assessed using DID. For example, there is work 
showing that people produce a higher mean f0 in Alexa-directed speech, 
in a direct comparison with human-directed speech (Raveh et al., 2019; 
Siegert and Krüger, 2021), and smaller f0 range and shorter productions 
(Siegert et al., 2019). These prosodic differences are argued to be, in 

part, driven by differences in perceptions of the voice-AI/computer as 
being less communicatively competent (compared to the human) (Bra
nigan et al., 2011; Oviatt et al., 1998), which can be triggered by hearing 
a TTS voice (Cowan et al., 2015). Here, we might similarly predict 
interlocutor-based effects (shorter words, higher mean f0, and smaller f0 
range toward Alexa). 

2. Methods 

2.1. Participants 

A total of 66 native English speakers were recruited from the UC 
Davis Psychology subjects pool (30 females, 36 males; mean age = 20.64 
± 2.43 years). Table 1 provides a summary of the demographic char
acteristics of the participants. Nearly all participants had experience 
with a voice-AI system (e.g., Apple’s Siri, Google Assistant, etc.). 

2.2. Stimuli 

The words were selected from the available set of Alexa ‘Speechcons’ 
(Amazon, 2018), consisting of interjections and phrases spoken by the 
Amazon Alexa voice actor in an emotionally expressive way1. In
terjections can be used to express the speaker’s mental or emotional 
state (Ameka, 1992) and to convey the disposition or attitude of the 
speaker (Goffman, 1981). Following Cohn & Zellou (2019), stimuli 
consisted of 18 interjections generated in neutral and emotionally 
expressive manners (awesome, bravo, cheers, cool, ditto, dynamite, eureka, 
great, howdy, hurray, jinx, roger, splash, super, wow, wowzer, yum, zing). 
All the items can be classified as having a positive emotional valence 
based on the words’ lexical and/or prosodic qualities. An additional six 
interjections with negative valence were presented in the experiment (e. 
g., “darn”; see Cohn & Zellou, 2019 for full list), but not included in the 
final analysis which aimed to examine imitation of tokens with a 
consistent emotional valence. Using the Alexa Skills Kit (ASK), the 
‘neutral’ Alexa productions of the words were generated with the default 
prosody, while the ‘emotionally expressive’ Alexa productions were 
generated using the Speech Synthesis Markup Language (SSML) tags (e. 
g., <say-as interpret-as= “interjection” > awesome! </say-as>). For the 
human model talker condition, a 24 year-old white, female native En
glish speaker of American English (from California) was recorded pro
ducing the same set of words with neutral and emotionally expressive 
prosody. The recording took place in a sound attenuated booth, where 
the speaker wore a head-mounted microphone (Shure WH20 XLR). The 
human speaker naturally produced the words in her own neutral and 
emotionally expressive manners; she did not imitate the productions by 
the Alexa voice. Both the Alexa and human productions were amplitude 
normalized in Praat (70 dB). The stimuli are available for audio illus
tration at Open Science Foundation (OSF)2. 

Acoustic analyses of the Alexa and human productions in Praat are 

Table 1 
Subject demographics.  

Gender n Mean age (sd) Experience with Alexa Used voice-AI (#) 

Females 30 20.66 yrs (1.67) 24 Yes; 6 No 28 Yes; 2 No 
Malesa 36 20.63 yrs (2.95) 27 Yes; 9 No 36 Yes 
Total 66 27.17 yrs (4.96) 51 Yes; 15 No 64 Yes; 2 No  

a Including 1 trans-male. 

1 At the time of the study, the only digital assistant voice capable of 
producing both a ‘neutral’ and an ‘emotionally expressive’ production 
was the US-English female Amazon Alexa voice. Due to this constraint, we 
used one human speaker, also producing neutral and emotionally 
expressive productions.  

2 https://doi.org/10.17605/OSF.IO/GDWPR 
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provided in Table 2. These measurements confirm that, relative to 
neutral productions, expressive productions for both Alexa and human 
speakers are longer [t(53.18)=3.85, p<0.001], have higher mean f0 [t 
(51.54)=4.55, p<0.001], and have greater f0 variation [t(66.66)=4.30, 
p<0.001], consistent with acoustic features of happy speech (Abadjieva 
et al., 1993; Murray & Arnott, 1993; Viscovich et al., 2003; Yildirim 
et al., 2004). Two-sample t-tests for each acoustic property revealed that 
the human and Alexa stimulus items did not significantly differ in their 
overall word duration [t(59.69)=-1.12, p=0.27] or mean f0 [t 
(60.86)=-0.80, p=0.43], but did for f0 variation [t(67.97)=2.95, 
p<0.01], with more variation produced overall by the Alexa voice. 

Comparisons of emotionally expressive productions by the Alexa and 
human revealed no difference for word duration [t(27.24)=0.11, 
p=0.92] or f0 variation [t(33.68)=0.60, p=0.56], but a lower mean f0 
for the emotionally expressive Alexa [t(33.92)=-3.11, p<0.01]. 

Comparisons of neutral productions also showed differences across 
talkers: shorter word duration for Alexa [t(31.24)=-3.17, p<0.01], a 
lower mean f0 for the human [t(27.71)=4.34, p<0.001], and a larger f0 
variation for the Alexa neutral voice [t(22.53)=6.06, p<0.001]. 

2.3. Procedure 

Participants began with a pre-exposure word production block, 
where they saw and read aloud each of the target words (randomly 
presented, one at a time, in three repetition blocks). Next, they 
completed the word shadowing blocks. First, participants were intro
duced to the model talkers: either the voice-AI system (‘Alexa’) or a 
human (‘Melissa’), accompanied by a corresponding image of an Echo 
device or a female human stock photo to strengthen the guise, as clearly 
a human or a voice-AI interlocutor (shown in Fig. 1). On each trial, 
participants were told to “repeat the word” produced by each talker (ISI 
= 1000ms). All items across both expressiveness conditions (Emotion
ally Expressive or Neutral) and Model Talker were randomly presented 
within each repetition block. In total, participants completed two 
repetition blocks. 

2.4. Analysis 

2.4.1. Acoustic Analysis 
Participants’ baseline and shadowed productions were force-aligned 

with FAVE (Rosenfelder et al., 2011) and hand-corrected, focusing on 
the start and end of the word, by the second and third author. For each 
word, the mean f03 and f0 variation4 (standard deviation over the word) 
values were taken using a Praat script adapted from DiCanio (2007) in 

semitones5 (ST, relative to 100 Hz), with plausible maxima and minima 
f0 for each gender (78-150 Hz for males, 150-350 Hz for females). Model 
talkers’ productions (i.e., Alexa and human) were also FAVE aligned, 
hand-corrected, and measured with the same methods. Table 3 provides 
the pre-exposure means for the three acoustic properties of interest, 
separately for female and male participants. 

For each acoustic feature (word duration, mean f0, and f0 variation), 
we centered each subject’s production in the shadowing experiment, 
relative to their pre-exposure productions. The third repetition of each 
word in the pre-exposure phase were selected as participants’ ‘baseline’ 
productions, as the participants would be familiar with the words by 
that point and differences in production due to initial word novelty 
would be reduced. For the shadowed productions, the second repetition 
of the word for that given interlocutor was selected, following the same 
reasoning. For each feature, we calculated the mean ‘baseline’ value for 
each participant (capturing their baseline speech characteristics), which 
we subtracted from each ‘shadowed’ production. These centered values 
were used as the dependent variables in the linear mixed effects models. 

2.4.2. Statistical Analyses 
We modeled each (centered) shadowed acoustic property in separate 

linear mixed effects models with the lme4 R package (Bates et al., 2015). 
Fixed effects included Expressiveness Condition (2 levels: neutral, 
expressive), Model Talker (2 levels: Alexa, human), Gender (2 levels: 
male, female), and all possible interactions. Random effects included 
by-Subject and by-Word random intercepts, as well as by-Subject 
random slopes for Expressiveness Condition (more complex random 
effects structure resulted in a singularity error, indicating overfit for all 
three models). Contrasts were sum coded. (Lmer syntax: Shadowed.c6 ~ 
Emotion Condition*Interlocutor*Gender + (1+Condition|Subject) + (1| 
Word).) 

3. Results 

The word duration model output is shown in Table 4 and the values 
are plotted in Fig. 2.A. The model revealed a significant intercept: 
relative to baseline productions (in the pre-exposure), participants 
produced longer word durations on average. We also observe an effect of 
Expressiveness Condition: participants produce longer words in 
response to emotionally expressive productions. A main effect of Model 
Talker reveals that participants produce less of an increase in word 
duration toward Alexa. Furthermore, there is an interaction between 
Expressiveness Condition and Model Talker: speakers’ word duration 
(on average) increases more when shadowing Alexa emotionally 
expressive productions. No other effects or interactions were significant 
in the model7. 

The mean f0 model is provided in Table 5 and values are plotted in 
Fig. 2.B. First, there is a significant intercept, indicating that participants 
increase their mean f0 in the shadowing experiment (relative to their 
baseline productions). There is also an effect of Expressiveness Condi
tion indicating that speakers increase their mean f0 when shadowing 
emotionally expressive productions. While there is no main effect of 
Model Talker, it interacted with Expressiveness Condition: participants 
produce less of a mean f0 increase when shadowing Alexa Expressive 
productions. Additionally, while there is no main effect of Gender, it 
interacts with Expressiveness Condition: female participants show a 
larger mean f0 increase when shadowing the expressive productions. No 
other effects or interactions were significant in the model. 

The summary of the model run on f0 variation is provided in Table 6 

Table 2 
Acoustic properties of regular and expressive tokens.  

Model 
talker 

Expressiveness 
condition 

Word duration 
(sd) 

Mean f0 F0 
Variation 

Human Neutral 595.7 ms 
(120.9) 

195.5 
Hz 

1.5 ST 

Expressive 699.0 ms 
(161.7) 

244.9 
Hz 

3.1 ST 

Alexa Neutral 483.6 ms (89.0) 212.4 
Hz 

2.8 ST 

Expressive 707.3 ms 
(279.3) 

215.0 
Hz 

3.3 ST  

3 Total of 144 excluded mean f0 observations due to creak (10 females: 
n¼78, 9 males: n¼66).  

4 Total of 152 excluded f0 variation observations due to creak (10 females: 
n=78; 10 males: n=74). 

5 Semitones (ST) are used so that f0 values are on the same scale (across 
speakers/genders). We use ST in t-tests and in the full analysis.  

6 “.c” is used to indicate that this continuous value has been centered.  
7 Note that the effects are still present even if the model does not include the 

fixed effect of Gender. 
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and values are plotted in Fig. 2.C. The model revealed a main effect of 
Expressiveness Condition indicating that relative to their baseline pro
ductions, speakers increase f0 variation when shadowing Expressive 
productions. There is also an effect of Model Talker revealing that par
ticipants produce a larger increase in f0 variation when shadowing the 
Alexa voice. Furthermore, there is an interaction between Expressive
ness Condition and Model Talker wherein participants produce less of an 

increase in f0 variation in response to emotional expressiveness by the 
Alexa voice. Finally, there is an interaction between Expressiveness 
Condition, Model Talker, and Gender: female participants produce a 
larger f0 variation increase for the Alexa Expressive condition. No other 
effects or interactions were significant. 

4. Interim Discussion 

This study revealed that speakers adapt their speech toward an 
emotional speech style — with longer durations, higher f0, and larger f0 
variation (Abadjieva et al., 1993) — when shadowing isolated words 
produced by human and Alexa talkers. Yet, how speakers ‘emotionally 
align’ differs by the model talker. Specifically, we see a larger increase in 
word duration when speakers shadow emotionally expressive Alexa 
productions, but a smaller increase in mean f0 and f0 variation. At first 
glance, this appears to be socially-mediated emotional alignment (Fischer 
et al., 2019; Hess & Fischer, 2013, 2014), with differences based on the 
social category of talker. 

Yet, an alternative explanation is that differences for voice-AI versus 
human model talkers could be explained by magnitude of acoustic dis
tance across the voices, which would support unmediated, matched motor 
accounts (De Waal, 2007; Decety & Jackson, 2006; Preston, 2007). As 
summarized in Section 2.2. and Table 2, the acoustic properties of the 
model talkers’ productions varied. For example, the (mean) word 
duration difference from neutral-to-expressive was larger for Alexa 
talker (Δ = 223.7 ms) than for the human talker (Δ = 103.3 ms), the 
condition where we greater more lengthening during emotional align
ment toward Alexa. Similarly, there are larger differences from 
neutral-to-expressive for the human talker for both f0 properties, 
consistent with the emotional alignment effects: larger alignment to
ward the human (Δmean f0 = 3.9 ST; Δf0 var = 1.6 ST) than Alexa (Δmean f0 
= 0.2 ST; Δf0 var = 0.5 ST). Together, these observations suggest that 
differences in emotional alignment by model talker category (voice-AI 
vs. human) might be driven by the magnitude of acoustic distance be
tween their neutral-to-expressive productions. 

This leads to a related question: do the two Model Talker main effects 
— words are shorter and have a larger f0 variation when shadowing the 
Alexa voice — simply reflect mirroring the acoustics, rather than 
interlocutor-specific adaptations (e.g., human- vs. computer-directed 
speech: Burnham et al., 2010; (Raveh et al., 2019)? Here, the much 

Fig. 1. Introduction of model talkers and general shadowing trial design. (Color online.)  

Table 3 
Acoustic properties of participants’ pre-exposure productions.   

Duration (sd) F0 mean (sd) F0 variation (sd) 

Females 540.6 ms 
(134.5) 

205.2 Hz 1.25 ST 

Males 525.8 ms 
(144.5) 

106.7 Hz 1.26 ST 

Pairwise 
comparison of F 
vs. M 

t(2306.7)=2.57, 
p=0.10 

t(2206.4)=
120.94, p<0.001 

t(2300.90)=-0.52, 
p=0.61  

Table 4 
Word duration. Summary statistics for the linear mixed effects model.   

Coef SE df t p 

(Intercept) 54.83 24.47 24.02 2.24 0.03 * 
Expressiveness 

Condition 
(Expressive) 

25.53 3.59 63.98 7.1 <0.001 *** 

Model (Alexa) -13.74 1.45 4600.03 -9.46 <0.001 *** 
Gender (F) 3.32 9.99 64 0.33 0.74  
Condition (Expressive) * 

Model (Alexa) 
9.17 1.45 4600.03 6.31 <0.001 *** 

Condition (Expressive) 
*Gender (F) 

1.68 3.59 63.98 0.47 0.64  

Model (Alexa)*Gender 
(F) 

-0.85 1.45 4600.03 -0.58 0.56  

Condition (Expressive) 
*Model (Alexa) 
*Gender (F) 

-1.37 1.45 4600.03 -0.94 0.35  

Num. observations = 4,753, Num. subjects = 66, Num. words = 18 
Duration.c ~Condition*ModelTalker*Gender + (1+Condition|Subject) + (1| 
Word) 
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Fig. 2. Prosodic changes by Emotional Expressiveness Condition (neutral vs. expressive), Participant Gender (female vs. male), and Model Talker (Alexa vs. Human) 
for word-level acoustic measurements: (A) duration (milliseconds, ms), (B) mean f0 (semitones, st), and (C) f0 variation (st). Values are centered to the participants’ 
mean in the pre-exposure phrase. Values higher than 0.0 indicate a relative increase, while values lower than 0.0 indicate a relative decrease, during shadowing. 

Table 5 
Mean f0. Summary statistics for the linear mixed effects model.   

Coef SE df t p 

(Intercept) 0.53 0.14 74.29 3.76 <0.001 *** 
Expressiveness Condition 

(Expressive) 
0.20 0.04 64.13 4.63 <0.001 *** 

Model (Alexa) 4.4e- 
03 

0.02 4536.57 0.22 0.83  

Gender (F) 0.11 0.12 64.04 0.89 0.38  
Condition (Expressive) * 

Model (Alexa) 
-0.11 0.02 4536.53 -5.65 <0.001 *** 

Condition (Expressive) 
*Gender (F) 

0.13 0.04 64.13 2.93 <0.001 *** 

Model (Alexa)*Gender (F) 0.01 0.02 4536.61 0.61 0.54  
Model (Alexa)*Condition 

(Expressive)*Gender 
(F) 

-0.01 0.02 4536.53 -0.61 0.54  

Num. observations = 4,689, Num. subjects = 66, Num. words = 18 
Meanf0.c ~Condition*ModelTalker*Gender + (1+Condition|Subject) + (1| 
Word) 

Table 6 
F0 variation. Summary statistics for the linear mixed effects model.   

Coef SE df t p 

(Intercept) 0.14 0.08 68.63 1.68 0.10  
Expressiveness Condition 

(Expressive) 
0.13 0.02 64.26 5.38 <0.001 *** 

Model (Alexa) 0.05 0.01 4533.42 4.52 <0.001 *** 
Gender (F) -0.03 0.07 63.99 -0.45 0.65  
Condition (Expressive) * 

Model (Alexa) 
-0.05 0.01 4533.39 -4.41 <0.001 *** 

Condition (Expressive) 
*Gender (F) 

0.01 0.02 64.26 0.58 0.56  

Model (Alexa)*Gender (F) 0.01 0.01 4533.45 0.50 0.62  
Model (Alexa)*Condition 

(Expressive)*Gender (F) 
0.03 0.01 4533.39 2.53 0.01 * 

Num. observations = 4,686, Num. subjects = 66, Num. words = 18 
F0var.c ~Condition*ModelTalker*Gender + (1+Condition|Subject) + (1|Word) 
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shorter word durations in the Alexa Neutral production (averaging 
483.6 ms vs. Human Neutral: 595.7 ms; see Table 2) might bias the 
Model Talker effects. Likewise, the Alexa voice has larger f0 variation 
overall (2.8 ST in Neutral, 3.3 ST in Expressive), compared to the Human 
voice (1.5 ST in Neutral, 3.1 ST in Expressive), suggesting this might be 
driving the overall larger f0 variation produced towards the Alexa model 
talker. 

5. Post hoc analyses 

To test whether model talker main effects are consistent across both 
emotional expressiveness conditions, we analyzed ‘neutral’ and 
‘emotionally expressive’ productions in separate post hoc models for 
word duration and f0 variation. As in the main models, the dependent 
variables were the participants’ shadowed value (centered). (Lmer 
syntax: Shadowed ~ Model Talker + (1|Subject)+ (1|Word).) 

The post hoc duration models revealed that speakers’ decrease in 
word duration for Alexa was consistent across the expressiveness con
ditions. When shadowing Alexa productions, participants produce 
shorter words in both the Neutral [Coef=-22.92, t=-13.64, p<0.001] and 
Expressive conditions [Coef=-4.56, t=-2.00, p<0.05]. The f0 variation 
post hoc models showed differences by Model Talker only when shad
owing neutral productions: participants produce more f0 variation after 
hearing Alexa Neutral [Coef=0.10, t=6.84, p<0.001]. No difference for 
Model Talker was observed for f0 variation in the expressive condition 
dataset [Coef=1.09, t=0.07, p=0.95]. 

Together, these post hoc analyses reveal that the shorter word du
rations when shadowing the Alexa talker were stable across both 
expressive and neutral conditions. On the other hand, the Model Talker 
effects in the main f0 variation model — with larger f0 variation when 
shadowing Alexa — appears to be driven by the Alexa Neutral condi
tions (which has a larger f0 variation than the Human Neutral 
condition). 

6. General Discussion 

The present study is the first, to our knowledge, to examine vocal 
alignment patterns toward emotionally expressive and neutral pro
ductions in a controlled laboratory setting, and toward two types of 
interlocutors in the same study: human and voice-AI. We observed that 
participants converged more toward the prosodic features (word dura
tion, mean f0, and f0 variation) of emotionally expressive productions. 
In particular, when shadowing, participants shift their pronunciations 
toward the longer duration, higher f0, and larger f0 variation in the 
emotionally expressive productions, which are characteristics of ‘happy’ 
speech (Abadjieva et al., 1993; Murray & Arnott, 1993; Viscovich et al., 
2003; Yildirim et al., 2004). This result extends prior findings of 
emotional alignment in spontaneous, dyadic interactions (e.g., thera
pists’ office in Vaughan et al., 2018) and in-lab approaches examining 
physiological responses to emotional speech (e.g., zygomatic, ‘smile’, 
muscle activation in Arias et al., 2018) to speech shadowing of isolated 
words. A summary of the effects of the main and post hoc analyses is 
provided in Table 7. 

We additionally compared speech behavior toward two types of 
model talkers: a naturally produced human voice and an Amazon Alexa 
TTS voice. Here, we found that speakers produce shorter words when 
shadowing Alexa. Post hoc analyses confirmed that speakers’ decrease 
in word duration for Alexa was reliable across the emotion conditions. 
While shorter durations contrast with prior work on computer-directed 
speech more generally (e.g., Burnham et al., 2010), it does align with a 
recent finding of a direct comparison of a human and modern voice-AI 
system (Siegert et al., 2019). One possible explanation is that this 
finding is driven by ‘convergence-to-expectation’. Wade (2020) found 
that imitators adopt expected, but not heard, features of an in
terlocutor’s speech. For instance, they observed monophthongization of 
/aɪ/ after exposure to a model talker with a Southern American English 
accent, a feature that was not directly heard in that model talker’s 
speech. In the current study, speakers might have perceived the Amazon 
Alexa TTS voice as ‘sounding’ shorter overall, as part of their expecta
tions about the voice. Indeed, prior work has shown that people hear 
differences in duration for more robotic-sounding speech (i.e., utter
ances modified to contain audible prosodic disfluencies) relative to 
smooth-sounding synthetic speech (Boril et al., 2017). While we did not 
see a lengthening effect for TTS voices here, future work systematically 
varying the voice — as well as assessing listener’s perception of the 
segments (as sounding ‘longer’ or ‘shorter’) — can tease apart these 
possibilities. 

In addition to word duration, the main model also revealed differ
ences in f0 variation overall when participants were shadowing the 
Alexa voice, relative to the human voice. While at first glance these 
differences appear to reflect systematic differences in Alexa-directed 
speech (as seen for overall word duration), post hoc analyses provide 
evidence that these changes reflect acoustically driven alignment since f0 
variation only varied by model talker in the Neutral subset (not 
Expressive). This aligns with the acoustic differences in the stimuli 
wherein the Alexa voice had greater f0 variation in neutral conditions 
(2.8 ST), compared to the human (1.5 ST). 

To examine sources of a possible socially-mediated emotional align
ment response (human vs. device social categories), we compared 
speakers’ adjustments for the two interlocutors’ emotional expressive 
productions. In response to emotional expressiveness, we find that 
speakers adapt their speech in similar directions for the human and 
voice-AI interlocutors, with small differences in magnitude. While it is 
possible these differences could be a socially-mediated effect (as argued 
in related work; e.g., Cohn et al., 2019; Snyder et al., 2019), as 
mentioned in the Interim Discussion (Section 4), the degree of difference 
can be explained by acoustic differences between ‘neutral’ and 
‘expressive’ productions by the Alexa and human model talkers. In cases 
where the Alexa model talker has a larger difference from 
neutral-to-expressive (e.g., word duration), participants show larger 
increases toward Alexa Expressive productions. The converse was also 
true: when acoustic differences are smaller for the Alexa voice from 
neutral-to-expressive (e.g., mean f0, f0 variation), participants show 
weaker increases toward Alexa Expressive productions. Thus, we inter
pret these model talker-based differences in emotionality as driven by 
the acoustics (rather than a difference in social category). This is 

Table 7 
Summary of findings.   

Expressiveness Condition Model Talker Category 

Duration Increases for Expressive 
● larger increase toward Alexa 

Shorter for Alexa 
(post hoc: shorter in both Neural and Expressive) 

Mean f0 Increases for Expressive 
● smaller increase toward Alexa 
● larger increase by Female participants 

No difference  

F0 variation Increases for Expressive 
● smaller increase toward Alexa 
● larger increase toward Alexa by Female participants 
(post hoc: larger toward Alexa Expressive by Female participants) 

Larger toward Alexa 
(post hoc: larger toward Alexa Neutral)  
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consistent with unmediated alignment accounts of emotional alignment (e. 
g., De Waal, 2007; Decety & Jackson, 2006; Preston, 2007), wherein 
participants are simply aligning toward changes in acoustic features as 
they are realized in the stimuli. 

More generally, observing overall increases in prosodic features 
associated with ‘positive-emotional’ speech for both human and Alexa 
voices supports computer personification theories (CASA: Nass et al., 
1997, 1994). Here, people appear to apply human-human speech be
haviors in response to emotional expressiveness by a non-human entity: 
voice-AI. These results are in line with prior work that described similar 
responses for emotional/affective behaviors in human-human and 
human-computer interaction (Brave et al., 2005; Bucci et al., 2018; Nass 
et al., 1999, 1995; Vaughan et al., 2018; Xiao et al., 2013). It also sup
ports prior work that participants’ alignment toward virtual in
terlocutors is, in part, an automatic behavior (Staum Casasanto et al., 
2010). While one possibility we raised was that participants might find 
the emotionally expressive Alexa voice to be ‘uncanny’ (Mori, 1970; 
Mori et al., 2012) and diverge from it, we did not find evidence to 
support that. 

At the same time, we observed several differences by speaker gender 
in emotional alignment: women show larger increases in mean f0 toward 
expressiveness (overall) and in f0 variation (toward Alexa). These in
creases might reflect differences in socialization, where women display 
stronger ‘emotional contagion’ (Doherty et al., 1995; Sonnby-Borgström 
et al., 2008), consistent with socially-mediated accounts of emotional 
alignment (Hess and Fischer, 2013, 2014; Fischer et al., 2019). Broadly, 
observing greater alignment by female participants (whether due to 
socialization and/or acoustic tracking) is in line with prior work in the 
(non-emotional) vocal alignment literature (Arimoto & Okanoya, 2014; 
Namy et al., 2002). At the same time, it contrasts with recent work 
reporting greater alignment by male speakers (than female speakers) 
toward emotionally expressive Alexa productions (Cohn & Zellou, 
2019). Why might this be the case? One possibility is that women might 
produce more pitch-based adjustments (here, mean f0 and f0 variation) 
to align to an interlocutor. Furthermore, it is possible that listener’s 
perception of alignment (e.g., using AXB in Cohn & Zellou, 2019) might 
differ for speaker gender (Babel & Bulatov, 2012); raters might perceive 
‘more’ alignment by interlocutors whose baseline differences start 
farther away (here, males with lower f0 converging toward female f0), 
parallel to arguments in vocal alignment that speakers with larger 
baseline distances have more ‘room’ to converge (Babel, 2010; Walker & 
Campbell-Kibler, 2015; but see Cohen Priva & Sanker, 2019; MacLeod, 
2021). 

Taken together, our results suggest a nuanced picture of emotional 
alignment. In general, we find support for unmediated, motor accounts (e. 
g., De Waal, 2007; Decety & Jackson, 2006; Preston, 2007), where 
speakers ‘match’ the acoustic input, in responses to emotionally 
expressive model talkers. At the same time, we see some possible sup
port for socially-mediated accounts of emotional alignment (Hess and 
Fischer, 2013, 2014; Fischer et al., 2019) in the domain of speaker 
gender. The present examination of emotional vocal alignment, while 
novel, has a number of limitations that can set up many directions for 
future research. While one of the innovations of the present study is the 
comparison of emotional alignment across human and voice-AI in
terlocutors, this focus limited the number of model talkers. At the time of 
the study, only the Amazon Alexa default female voice was capable of 
producing both neutral and emotionally expressive productions in US 
English. This default TTS voice was likely to be familiar to participants, 
as most (51/66) had prior experience with Amazon’s Alexa specifically. 
Familiarity may mediate alignment toward emotion and also perhaps 
why we find that it is largely comparable toward the human and the 
Alexa across acoustic features. Future work examining more model 
talkers (e.g., varying in gender, ‘recognizability’, etc.) can uncover the 
extent to which these effects generalize to more voices. In particular, 
recent work has pointed to a large degree of idiosyncratic variation 
across speakers, some of which would also likely be present among 

different TTS voices (Lee et al., 2019). 
Additionally, the present study used both audio and visual cues to 

cue the model talker categories. While the aim was to provide clear guise 
information (such that it was unambiguous that the talker was a human 
or device), there is a body of work showing visual cues shape auditory 
perception (Babel & Russell, 2015; D’Onofrio, 2019; Hay et al., 2006; 
Zellou et al., 2020). Recently, there is also work showing differences in 
vocal alignment based on physical form: speakers show stronger vocal 
alignment toward TTS voices when they are presented with a more 
human-like form (e.g., Furhat or Nao robot) relative to a form that lacks 
human features (e.g., Amazon Echo) (Cohn, Jonell, et al., 2020). In the 
current study, the visual information for the human (a smiling female) 
might have provided stronger emotion-congruent information with the 
positive-valence stimuli (e.g., “Awesome!”). There is related work 
showing processing costs when cues of emotion conflict: for example, 
Nygaard & Queen (2008) found word-naming latencies when the word’s 
meaning and how it was spoken conflicted (e.g., ‘happy’ word produced 
with ‘sad’ prosody). The extent to which emotional mismatch might 
shape vocal alignment — and vary for different types of interlocutors 
(human vs. device) — remain avenues for future work. 

Another direction for future work is to examine additional sources of 
socially-mediated variation, including language background and cul
tural attitudes toward voice-AI systems that might influence emotional 
vocal alignment. There is some work, for example, demonstrating that 
emotional expressiveness varies cross-linguistically and cross-culturally 
(Abelin & Allwood, 2000; Batliner et al., 2004). Furthermore, future 
work examining individual differences in response to emotion — such as 
in vocal alignment — can further probe the cognitive and social dy
namics of human-computer interaction (HCI). Broadly, understanding 
individual variation in HCI is important for developing comprehensive 
models of human behavior toward AI, and addressing a gap in the HCI 
literature, where fewer studies have examined individual differences in 
participants’ vocal interactions with technology (for a review, see 
Snyder et al., 2019), as well as for possible practical applications. There 
is already some work suggesting that depressed patients’ speech with 
interactive voice response (IVR) technology can track their recovery 
(Mundt et al., 2007); this suggests that biomarkers in speech toward 
voice-AI might be useful in clinical applications. 

7. Conclusion 

Overall, this study sheds light on the underlying mechanisms of 
emotional vocal alignment: even in a laboratory setting, people align 
toward the positive-emotional speech style they hear. Here, the social 
category of the talker — as a human or device — did not serve as a social 
factor guiding emotional alignment. Rather, we see that magnitude of 
acoustic difference (from neutral-to-expressive) can explain the small 
differences in alignment toward the Alexa and human model talkers. 
Observing a similar response for these categories further supports 
computer personification accounts: people appear to apply similar 
emotional behaviors from human-human interactions to speech in
teractions with voice-AI. While more work is needed to test the extent of 
this overlap, this raises many important scientific questions as to the 
nature of anthropomorphization, and can serve practical applications in 
voice user interface design. 
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Bates, D., Mächler, M., Bolker, B., Walker, S., 2015. Fitting Linear Mixed-Effects Models 
Using lme4. Journal of Statistical Software 67 (1), 1–48. https://doi.org/10.18637/ 
jss.v067.i01. 
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of a Second Human on Vocal Accommodation with a Voice Assistant. Proc. 
Interspeech 4005–4009. https://doi.org/10.21437/Interspeech.2019-1825, 2019.  

Raveh, E., Steiner, I., Siegert, I., Gessinger, I., & Möbius, B. (2019). Comparing phonetic 
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