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ABSTRACT

Data-driven design of mechanical metamaterials is an in-
creasingly popular method to combat costly physical simulations
and immense, often intractable, geometrical design spaces. Us-
ing a precomputed dataset of unit cells, a multiscale structure
can be quickly filled via combinatorial search algorithms, and
machine learning models can be trained to accelerate the pro-
cess. However, the dependence on data induces a unique chal-
lenge: An imbalanced dataset containing more of certain shapes
or physical properties than others can be detrimental to the ef-
ficacy of the approaches and any models built on those sets. In
answer, we posit that a smaller yet diverse set of unit cells leads
to scalable search and unbiased learning. To select such sub-
sets, we propose METASET, a methodology that 1) uses similar-
ity metrics and positive semi-definite kernels to jointly measure
the closeness of unit cells in both shape and property space, and
2) incorporates Determinantal Point Processes for efficient sub-
set selection. Moreover, METASET allows the trade-off between
shape and property diversity so that subsets can be tuned for
various applications. Through the design of 2D metamaterials
with target displacement profiles, we demonstrate that smaller,
diverse subsets can indeed improve the search process as well as
structural performance. We also apply METASET to eliminate
inherent overlaps in a dataset of 3D unit cells created with sym-
metry rules, distilling it down to the most unique families. Our
diverse subsets are provided publicly for use by any designer.

*Address all correspondence to this author. Email: we-
ichen@northwestern.edu

1 Introduction

Metamaterials are drawing increased attention for their abil-
ity to achieve a variety of non-intuitive properties that stem from
their intentionally hierarchical structures [1]. While they tradi-
tionally consist of one unit cell that is repeated everywhere, mul-
tiple unit cells can also be assembled to create aperiodic mechan-
ical metamaterials with, e.g., spatially-varying or functionally-
gradient properties [1, 2]. Over the past few years, conventional
computational methods have been adapted to design these com-
plex structures, including topology optimization (TO) of the mi-
croscale unit cells within a fixed macroscale structure [3, 4], and
hierarchical and concurrent multiscale TO that design both the
unit cell and macro-structure [5-7]. However, as the desire to
attain even more intricate behaviors grows, so too does the com-
plexity of the design process, which must account for the expen-
sive physical simulations and, in aperiodic structures, the vast
combinatorial design space and disconnected neighboring unit
cells [1, 8].

Capitalizing on advances in computing power, data-driven
metamaterials design can be a more efficient and therefore en-
ticing solution to those challenges. Its success hinges on pre-
computed unit cell libraries or datasets, which can avoid costly
on-the-fly physical simulations and multiscale TO in huge de-
sign spaces, as well as provide candidate unit cells that are bet-
ter connected to their neighbors. Fig. 1 shows an overview
of two common approaches in data-driven design: global opti-
mization methods, and machine learning (ML) based methods.
In the first case, combinatorial optimization algorithms can be
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FIGURE 1: A high-level overview of data-driven metamaterials
design, and how our proposed method, METASET, fits in. As
an example, we show CH  the homogenized elastic tensor, as the
unit cell properties.

used to directly search for the set of unit cells that realize a tar-
get macroscale behavior while minimizing or constraining the
boundary mismatch between neighboring cells [1, 8-10]. From
another perspective, data-driven methods can use the dataset to
train ML models that further accelerate design. For example,
they have been used to rapidly predict homogenized physical
properties as part of the optimization loop [11-14]. Additionally,
deep generative models inspired by the computer vision field can
learn embedded geometric descriptors that act as reduced dimen-
sional design variables, and construct new designs, e.g., optical
2D metamaterials [15, 16], almost instantaneously.

The efficacy of data-driven methods, however, relies highly
on the size and coverage of the datasets. The search space of
global optimization methods can quickly explode when the num-
ber of unit cells increases. Meanwhile, imbalanced datasets with
skewed data distributions can reduce the chance of meeting cer-
tain property or compatibility requirements, and hobble the per-
formance of ML models since they may not learn a less frequent
property or shape as well [17]. Therefore, due to the importance
of the data on downstream tasks, in this work we focus on the
first step of data-driven design: dataset selection.

In existing literature, metamaterial datasets are often built
using heuristics or the designer’s intuition, with the assumption
that the unit cells will offer sufficient coverage for the desired
application. Many employ TO to inversely design unit cells that
meet pre-specified target properties [1, 9, 11], and some expand
the dataset by morphing the shapes [1, 11] or randomly flipping
pixels or voxels [9]. Alternatively, Panetta et al. developed
graph-based rules to create truss-like unit cells [18]. Although
these are more feasible than enumerating over all possibilities,
bias towards particular properties or shapes can be unintention-
ally introduced, deteriorating the performance of the design al-
gorithm or the design itself.

Moreover, the point at which to stop generating new unit

cells has thus far been heuristic with the same goal in mind: to
cover a broad property space. The range of this space is some-
times restricted for specific applications [3], or strict symmetry
and manufacturability constraints are implemented to limit the
possible shapes [18]. More often, the property space is allowed
to grow at will, e.g., TO and shape perturbation are repeated until
the change in the density of the property space is less than a given
tolerance [9, 11]. While efficient, all of the works to date have
only considered coverage in the property space alone, which can
produce similar shapes or overlook those that might benefit the
design with regards to boundary connectivity. In contrast, our
work explores coverage in both property and shape space.

Improving imbalance arising from data with multiple classes
has been extensively researched in computer science. The most
relevant to our application are the data-preprocessing strategies
such as undersampling to remove data from majority classes,
oversampling to replicate data from minority classes, or com-
binations thereof [17]. However, the former can accidentally re-
move samples with important features, i.e., decrease the diver-
sity, and the latter can lead to model overfitting and increased
training overhead [19]. Nor are they made to consider the diver-
sity of data with features that have drastically different represen-
tations, like shape and property. The issue of downsampling a
metamaterial database was addressed by Chen et al. [14], who
compressed the size of their database by selecting the samples
that are farthest from each other with respect to properties (not
shape), allowing them to more efficiently fit a property predic-
tion model. As far as we know, there is currently no method to
assess or select a diverse set of unit cells that can simultaneously
cover the shape and property spaces.

Despite the dearth in the metamaterials field, measuring and
ranking items based on their quality as well as their contribution
to the diversity of a whole set or subset is an ongoing research
area. In computer science, for example, recommender systems
rank diverse items such as online products to match users’ pref-
erences. These are based on the concept of diminishing marginal
utility [20], wherein lower ranking items bestow less additional
value onto the users. In design, too, researchers have developed
methods to help designers sift through large sets of ideas by rank-
ing them. In particular, to balance diversity against quality of
designs, Ahmed et al. introduced the idea of clustering items
into groups for subset selection [21], which employed submod-
ular functions that follow the property of diminishing marginal
utility. Ahmed er al. [22] also showed the application of De-
terminantal Point Processes [23], which model the likelihood of
selecting a subset of diverse items as the determinant of a kernel
matrix, to the diverse ranking task. The latter, in particular, are
elegant probabilistic models that capture the trade-off between
competing ideas like quality and diversity. While the goal of
maximizing the determinant is similar to the optimality criterion
used in generating D-optimal designs [24] in design of experi-
ments, Determinantal Point Processes are not restricted to linear
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kernels and have advantages in that calculating marginals, com-
puting certain conditional probabilities, and sampling can all be
done in polynomial time. This paper shows that it can also be
used for coverage in multiple spaces defined over the shapes and
properties of unit cells.

Our contributions: We propose METASET, an automated
methodology that simultaneously considers the diversity of shape
and property to select subsets of unit cells from an existing
dataset. By doing so, we can achieve scalable data-driven de-
sign of metamaterials by using smaller yet diverse subsets. In
addition, we can eliminate bias in imbalanced datasets through
diversification to improve any ML model trained on these sets.
As a part of METASET, we also introduce using similarity met-
rics to efficiently assess the diversity of the shapes and properties
of 2D and 3D metamaterials. We propose that a weighted sum of
Determinantal Point Process (DPP) kernels based on the shape
and property similarities can measure and allow the maximiza-
tion of the joint diversity with respect to both shape and property
spaces. For the first time in data-driven metamaterials design —
to our knowledge — using 2D design as example, we reveal that
diverse subsets can expedite and even enhance the design perfor-
mance and compatibility of aperiodic mechanical metamaterials
compared to using the full dataset. Finally, applying METASET
to the generation of 3D unit cells, we identify diverse families
of isosurface unit cells and discover that these extend beyond the
ones commonly considered in the design of functionally-graded
structures [2, 25]. The diverse subsets are available publicly.!

Organization of the paper: Our methods are detailed in
Sec. 2. As case studies and validation, we apply METASET to
diversify large datasets of 2D and 3D unit cells. We use diverse
2D subsets to design metamaterials with non-intuitive target dis-
placement profiles (Sec. 3.1). In the 3D case, we use METASET
to provide unique and diverse families of isosurface unit cells
(Sec. 3.2).

2 METASET: Assessing and Optimizing Diversity

The inner workings of METASET consist of three main
steps: 1) Defining similarity metrics for metamaterials that quan-
tify the difference between pairs of 2D or 3D shapes as well as
their properties (Sec. 2.1); 2) Using a DPP-based submodular
objective function to measure the joint coverage of a set of unit
cells in shape and property spaces using pairwise similarity ker-
nel matrices (Sec. 2.2); 3) Maximizing the joint diversity with
an efficient greedy algorithm while allowing trade-off in the two
spaces to be tuned to suit the desired application (Sec. 2.3). In
this section, we describe these components and summarize the
METASET methodology with Algorithm 1.

"https://github.com/lychanll10/metaset

2.1 Similarity Metrics for Metamaterials

A diverse metamaterials dataset should ideally contain unit
cells that are sufficiently different, i.e., not similar, such that they
cover the shape and property spaces. To measure the diversity of
a set, then, we first need to quantify the similarity between the
properties and shapes of unit cells.

Property Similarity Since mechanical properties are
generally scalar values that can be formatted as a vector, e.g.,
by flattening the elastic tensor, we can use any similarity metric
between vectors. In this work, we use the Euclidean distance.
We note that the properties do not need to be the tensor compo-
nents; rather, they can be other values of interest such as elastic
or shear moduli, or Poisson’s ratios. Neither do they need to be
limited to scalar mechanical properties. For instance, acoustic
bandgap that are dynamic properties could be considered as long
as the similarity between two of them can be quantified.

Shape Similarity Shape similarity metrics are key in
many computer vision and graphics applications, e.g., object re-
trieval from databases and facial recognition. In these methods,
the shapes are usually first represented by structural descriptors
extracted from individual shapes [26], or by embedded features
learned via data-driven methods such as clustering or ML [27].
The distances between features are then measured in either Eu-
clidean [26] or Riemmanian space [28, 29]. Since Riemannian
metrics are based on geodesic distances, they are suitable if one
needs invariance to deformation, i.e., if one considers a shape to
be the same after bending.

For metamaterials, however, we must rule out deforma-
tion and rotation invariant metrics since any transformation of
a unit cell impacts its properties. Additionally, to ensure that
METASET is compatible with small or imbalanced datasets, we
avoid using embedded features. We also seek metrics that are
efficient — particularly in 3D — but still detailed enough to
discriminate fine details, as well as able to form positive semi-
definite similarity matrices for the later step involving DPPs.
Hence, in the next sections, we introduce Euclidean metrics
based on structural features, namely, division-point-based de-
scriptors for 2D and Hausdorff distance for 3D.

2D Shape Similarity Metric = For 2D unit cells, which
are usually binary images resulting from TO, there are multi-
ple methods to compute similarities between them. We propose
using a descriptor-based approach by first extracting a division-
point-based descriptor [30] to reduce the dimension of the image
into a vector that extracts salient features at different levels of
granularity. This has been applied to the field of optical charac-
ter recognition [31, 32]. The binary image of a unit cell is first
recursively divided into sub-regions that contain an equal number
of solid pixels. The coordinates of all division points, i.e., points
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at the intersection of two division lines between each sub-region,
are then obtained as descriptors of the unit cell. This process is
repeated until the desired level of detail is captured, constructing
a k-d tree of the distribution of solid materials. In the later 2D
case study (Sec. 3.1), we perform the division seven times for
each unit cell, which in our case extracts a sufficient amount of
detail without needing a very high-dimensional descriptor. This
results in the coordinates of 62 division points that constitute a
124-dimensional vector as the shape descriptor.

Using the above method, we can represent each 2D unit cell
with a vector, then use the Euclidean norm to find the distance
between any pair. However, the input for a DPP is a positive
semi-definite similarity matrix, L, so we transform the distance
to a similarity metric by selecting from a wide variety of transfor-
mations. For the 2D case, we use a radial basis function (RBF)
kernel with unit bandwidth, i.e., L; j = exp(—0.5 d(i, j)?), where
d(i,j) is the distance between i-th and j-th unit cells. In prac-
tice, the choice of an appropriate transformation is equivalent to
choosing the right distance metric between items. Our empirical
study showed that different standard choices (like the ones we
used) mainly affect the distribution of similarity values but do
not significantly affect the final outcome or the key findings of
our work.

3D Shape Similarity Metric  As for 3D unit cells, mesh
formats such as STL are commonly used so that researchers can
manufacture the metamaterials through additive manufacturing.
However, since performing analysis on 3D shapes is undoubt-
edly more computationally intense, we suggest representing each
unit cell as points on the surface of the original mesh, i.e., point
clouds, which are more efficient for extracting and processing
3D features [33]. This extra conversion can take little compu-
tation with well-established sampling methods, e.g., randomly
sampling the surface of a mesh with the probability of choosing
a point weighted by the area of the triangular faces.

We then use a distance metric commonly utilized to measure
the distance between sets of points, the Hausdorff distance. In
essence, it computes the difference between two clouds as the
maximum of the nearest neighbor distances of each point. This
is expressed as [34]:

h(A, B) = max [min |-|], (1)

where a is a point (x,y,z) within cloud A and b is a point in the
second cloud B. The notation ||-|| indicates that any distance can
be used; for metamaterials, we use the Euclidean norm, |la —
b||2. In our implementation, we computed the nearest neighbor
norms using a GPU-enabled code by Fan et al. [35]. To obtain a
symmetric distance, we can take the maximum as follows:

du(A,B) = dy(B,A) = max [h(A,B),h(B,A)], )

Finally, we convert the distances into a DPP similarity kernel, L,

using the following transformation: L;; = m

2.2 Determinantal Point Processes for Joint Diversity
in Two Spaces

Given a similarity kernel matrix L, we can now measure
the diversity of a dataset using Determinantal Point Processes
(DPPs), which are models of the likelihood of choosing a di-
verse set of items. They have been used for set selection in ML,
e.g., diverse pose detection and information retrieval [23, 36],
and recently in ranking design ideas based on diversity and qual-
ity [22]. Viewed as joint distributions over the binary variables
that indicate item selection, DPPs capture negative correlations.
This means that, intuitively, the determinant of L is related to the
volume that the set covers in a continuous space. In other words,
the larger the determinant, the more diverse the set.

To model our data, we construct DPPs through L-
ensembles [37], using a positive semi-definite matrix, L, to define
a DPP. Hence, given the full unit cells dataset of size N, which
we denote as ground set G, DPPs allow us to find the probability
of selecting any possible subset of unit cells. For any subset M,
it assigns the following probability:

det (LM)

P(M) = det(L+1)’ )
where Ly = [L;j]ijem is the submatrix of L with entries indexed
by elements of the subset M, and I is a N x N identity matrix.
The probability of a set containing two items increases as the
similarity between them decreases. Therefore, the most diverse
subset of any size has the maximum likelihood P(M), i.e., the
largest determinant.

Unlike submodular clustering approaches, DPPs only re-
quire the similarity kernel matrix, L, as an input and do not ex-
plicitly need the data to be clustered or to define a function to
model diversity. This also makes them more flexible, since we
only need to provide a valid similarity kernel, rather than an un-
derlying Euclidean space or clusters.

For METASET, we calculate two different similarity val-
ues — one in shape space and another in property space — be-
tween any two unit cells. Hence, for all the unit cells combined,
we have one kernel matrix corresponding to each of the two
spaces. In order to measure the joint coverage in both spaces,
we take a weighted sum of the two matrices, thus allowing the
trade-off between diversifying in shape or property space:

L=(1—-w)-Lp+w-Lg, @)

where L, Lp and Lg are the joint, property and shape similarity
kernels, respectively, and w is a weight parameter than can be
varied between 0 and 1. It is possible to combine two kernel
matrices in many ways. However, we choose this formulation
due to two reasons. First, the weighted sum of two positive semi-
definite matrices is also positive semi-definite, which is a pre-
requisite for a DPP kernel. Second, it allows us to control the
amount of diversity in both spaces using a single knob, w. We
conducted multiple experiments on simulated data with easy-to-
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verify coverage metrics and found that this approach is effective
in capturing diversity in both spaces. In the interest of space, we
have not included these experiments and directly report results
on using joint kernels for more complex 2D and 3D metamaterial
unit cells.

2.3 Algorithm for Optimizing Diversity

To optimize the diversity of a subset M, we maximize the log
determinant of its joint similarity kernel, i.e., f = log[det(Ly)].
Note that the log determinant of a positive semi-definite matrix is
monotonically non-decreasing and submodular. In general, find-
ing the set of items that maximizes a submodular diversity func-
tion is NP-Hard. When solving such problems, a well-known
limit due to Feige [38] is that any polynomial-time algorithm can
only approximate the solutionup to 1 — % ~ 67% of the optimal.

However, this is where choosing a submodular function f as
the objective comes in handy. It turns out that greedily maximiz-
ing this function is guaranteed to achieve the optimality bound.
We use this property to substantially accelerate diversity opti-
mization using a scalable greedy algorithm [39], which has theo-
retical approximation guarantees and is widely used in practice.
At each step, the algorithm picks an element, i.e., a unit cell, that
provides the maximum gain in the objective function (lines 5-
8 in Algorithm 1). This makes greedy maximization of diversity
the best possible polynomial-time approximation to an otherwise
NP-Hard problem.

Algorithm 1: METASET algorithm. After calculat-
ing the similarity kernels, a polynomial-time greedy
maximization of the gain on the weighted combina-
tion between diversity in shape and property space is
performed. The output is a subset of all unit cells such
that the joint diversity is maximized.

Data: Ground set G of size N of all unit cells

Result: Subset M of size Ny
1 Calculate shape and property similarity kernels, Lg and

Lp;

2 Calculate joint similarity kernel L;
3 Find subset M,
4 M + 0;
5 while |M| # Ny do
6
7
8

Pick an item G; that maximizes 6 f (M U1i);
M =MU{G;};
G=G-G;
9 return M,
10 Use M as input to downstream task such as data-driven
design or machine learning;

13 «—
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FIGURE 2: Problem settings of the 2D design examples, (a) the
cantilever, and (b) the MBB beam, both of which should achieve
the target displacement profiles shown in red.

3 METASET in Data-Driven Metamaterials Design

Now that we have set the stage for METASET, we demon-
strate through 2D and 3D mechanical metamaterials case studies
the advantages of selecting diverse subsets of metamaterial unit
cells based on their shape and properties. The most salient of
these are the abilities to accelerate search algorithms while en-
hancing the final design performance (Sec. 3.1), and discover
unique unit cell families in order to build an economical and di-
verse dataset for design (Sec. 3.2).

3.1 Application to 2D Aperiodic Mechanical Metama-
terials

Inserting METASET prior to the assembly stage in the gen-
eral data-driven design flow (Fig. 1) can augment the perfor-
mance and results of global search algorithms. In this section,
we show this improvement through 2D data-driven design ex-
amples featuring mechanical metamaterials that are given tar-
get displacement profiles and constraints on the connectivity of
neighboring unit cells. First, to emphasize that METASET can
be added with little extra cost to any existing data-driven frame-
work, we utilize a 2D dataset of unit cells from our previous work
in [11, 12] (which we will briefly describe in Sec. 3.1.1). Next,
we use METASET to select several subsets that illustrate the ef-
fect of size and diversity on the search and final designs (Sec.
3.1.2). Finally, we employ genetic algorithm to assemble the full
structures to meet our design requirements (Sec. 3.1.3).

The first design example is a cantilever discretized into 2 x 4
unit cells, as shown in Fig. 2a. Here the design objective is to
optimize the combination of unit cells so that the horizontal cen-
terline of the cantilever achieves a bridge-like shape (red curve)
when a prescribed displacement, ug, is applied to its right end.
In the second example, we design a classical example from the
TO field, the MBB beam, such that its horizontal centerline con-
forms to the red curve when loaded with a vertical force F (Fig.
2b). Due to the structural symmetry, we only need to design the
right half of the beam with 4 x 4 unit cells, outlined by the solid
black lines. The full structure can then be obtained by symmetry,
i.e., reflecting over the vertical centerline.

Copyright (©) 2020 by ASME



3.1.1 2D Unit Cells via Topology Optimization and
Perturbation 1In [11, 12], we previously proposed using a
combination of TO and stochastic shape perturbation to generate
a large dataset of 2D unit cells. To initialize the dataset, we ran
TO for each uniformly sampled target properties, the components
of homogenized elastic tensors, and then iteratively perturbed the
shape of the unit cells with the most extreme or uncommon prop-
erties. By doing so, we created a dataset of 88,000 unit cells
that covered a relatively large property space within reasonable
computational cost. Note that we did not build this dataset with
geometry in mind, leading to many similar shapes. Also, even
though we aimed to fill the less populated regions of the property
space by perturbing unit cells in those locations, there is a higher
concentration of final unit cells with lower property values (the
lower left corners in Fig. 4). For details, please see [11].

Before applying METASET, we preprocess the data by ran-
domly sampling unit cells from the original dataset of size
88,000. We select 17,380 unit cells that have a volume fraction
greater than 0.70. This fraction was chosen so that the resultant
unit cells are less likely to have very thin features, which makes
them more feasible for manufacturing. Additionally, when com-
puting shape diversity, if unit cells occupy very different vol-
ume fractions, a diverse subset is more likely to be dominated by
flimsy low volume structures, which have the least probability of
overlap with other unit cells (high volume fraction unit cells are
more probable to have some overlap with each other). However,
as we will show in Sec. 3.1.3, this preprocessing does not impede
the chances of designing well-connected structures that met the
targets quite well.

3.1.2 METASET Results For the dataset of 17,380 2D
unit cells, which we now refer to as the full or ground set G, we
calculate the property and shape similarity matrices, Lp and Lg,
respectively, as described in Sec. 2.1. Taking their weighted sum
forms the joint DPP kernel matrix L (Eq. 4), whose determinant
scores the diversity in terms of both shape and property (Sec.
2.2). To explore this, we rank several subsets using the greedy
algorithm from Sec. 2.3 by varying their sizes, Ny, and kernel
weights, w. From the results, we can make two observations:

1. By increasing w, we shift from ranking a subset based on
diversity in the property space alone, to a mixture of both
spaces, and to the shape space only. In essence, trade-off be-
tween shape and property diversity can be easily controlled.

2. By observing det(Lyy) of the subsets as more items, i.e. unit
cells, are added, we find that the gains in shape and property
diversity saturate at approximately Nj; = 20. Thus, a very
small number of unit cells are sufficient to cover both spaces.

Ten example unit cells from the subsets with w € {0,0.5,1}
are shown in Fig. 3, where the subset optimized for only shape
diversity (Fig. 3c) displays the most variety of topologies com-

(a) Subset diverse in property space (w = 0)

BHOX O Hm &t

(b) Subset diverse in shape and property space (w = 0.5)

EMHOX$EHI 0

(c) Subset diverse in shape space (w = 1)

FIGURE 3: Examples of 2D unit cells from the diverse subsets
used in the cantilever and MBB design problems.

pared to the subset diverse in only properties (Fig. 3a). Mean-
while, the balanced subset contains a mixture of unit cells akin to
both extreme sets (Fig. 3b). This may be counter-intuitive since
similar shapes should have similar mechanical properties. How-
ever, note that upon close inspection, the property diverse unit
cells exhibit tiny features that lead to low elastic property val-
ues. Such small details in the shape may lead to a larger change
according to the physical simulations and the property similarity
metric, i.e., the Euclidean norm.

Comparing the properties of the unit cells in diverse sub-
sets to the ground and randomly sampled sets (Fig. 4), we can
confirm that the property diverse subsets cover all regions of the
original property space, even the sparsely populated areas. As
expected, the shape diverse subset does not do as well, and the
random subset contains tight clusters in certain areas.

The result that only 20 unit cells is needed to cover the shape
and property spaces is quite interesting since a main tenet of data-
driven design thus far is that ”more is better” — larger datasets
provide more candidates from which we can choose compatible
unit cells. So, to explore the impact of the subset size on the
data-driven approach, we selected the top 20 as well as top 100
ranking unit cells from each subset to move on to the next step:
full structure assembly.

3.1.3 Design Results: A Study on the Effect of
Size and Diversity Using subsets of unit cells with vary-
ing sizes and levels of diversity for metamaterials design using
global optimization, we can elucidate 1) the effect of subset size
on the search algorithm’s efficiency, and 2) the impact of diver-
sity on the final design performance as well as the compatibility
of neighboring unit cells. We choose the following nine datasets:

Pyo: Property diverse subset of size 20

SP>o: Shape and property diverse subset of size 20
S20: Shape diverse subset of size 20 diverse

R>o: Random subset of size 20

Pyoo: Property diverse subset of size 100
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FIGURE 4: The property space of the 2D unit cell subsets optimized for property and shape diversity, and a randomly sampled set,
plotted against the full dataset. We observe that property DPPs cover the space well, hence it is more likely to have unit cells near any

target property combination.

SPjoo: Shape and property diverse subset of size 100
S100: Shape diverse subset of size 100

Ri00: Random subset of size 100

G: Full dataset of size 17,380

To design the cantilever and MBB beam described earlier
(Fig. 2), we pass each of the datasets to a global optimization
method, which in these examples is a a single objective genetic
algorithm to better illustrate the effect of size and diversity on the
final results. Although this approach is simple, we chose it to re-
strict our design to the discrete choice of unit cells in our subsets,
whereas most gradient-based algorithms for data-driven metama-
terials design map continuous design variables to the nearest ex-
isting, or interpolated, unit cell in dense databases [1, 9].

Specifically, the genetic algorithm is used to choose the
combination of unit cells from each given dataset that minimizes
the mean squared error (MSE) between the achieved and target
displacement profiles. Also, since detached neighbours are not
desirable, we add a compatibility constraint by requiring that the
number of disconnected unit cells, Ny, in the full structure be
equal to zero. The optimization problem is formulated as:

minimize 1||u(l) —u|3
1 n
subjectto K(I)U =F, &)
Nye(1) =0,

liE{l,Z,“',NM}, i:1727"'7Nfa
where u is the displacement of n nodes located on the centerline
of the structure, u; is the discretized target displacements, K is
the global stiffness matrix, and U and F are global displacement
and loading vectors, respectively. The number of unit cells in the
given dataset is Ny while the number in the full structure is Ny,
and I = [I1,0,,.. .,lN/]T is a vector of the indices of the chosen

unit cells.

Due to the stochasticity of genetic algorithms, we run the
optimization ten times for each dataset and report the MSE of the
final topologies in Fig. 5. In addition, we show a measure of the
connectivity of the final structure: the mean ratio of disconnected
pixels on the boundaries of touching unit cells, rgz.. Similar to
Ny, in the constraint (Eq. 5), a fully compatible structure should
have r,,. as zero.

When given the full dataset, G, the search algorithm is over-
whelmed and not able to find any designs with satisfactory MSE
for either example (Table 1). In two runs for the cantilever and
one for the MBB beam, it also fails to meet the compatibility
constraint. This can be attributed to a vast search space since
the number of possible unit cell combinations grows exponen-
tially as the size of the dataset increases. A larger set may also
contain more redundant shapes or properties that contribute little
to diversity, exacerbating the search challenge and possibility of
local optima.

Conversely, every run using the 20- and 100-item subsets
satisfy the constraint. In fact, our results (Fig. 5) show that
smaller, diverse subsets can perform better than all other sets
under the same search algorithm and termination criteria. In
the cantilever example, the smallest property diverse subset Py
achieves the lowest mean MSE, followed by S»9 and SPyy. For
the MBB beam, it is the SP>o and S»p sets. Another interest-
ing result we highlight is that the best connected, i.e., lowest rg4,
structures result from the diverse subsets that consider shape. For
cantilever, this is the Sy set, although P is close, and for MBB
it is Spo and SPy. The slightly different results between the two
examples illustrate that the effectiveness of property or shape di-
versity is problem-dependent. Still, small yet diverse subsets can
outperform random or full datasets regardless of the problem.
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(a) Cantilever results using subsets. P»g, S29 and SP»q achieve the best
MSE overall while S>g and P perform best for 7.

(b) MBB beam results using subsets. The best overall MSE is obtained
by SPyy and Sy, and the best r4. by Sy and SPy.

FIGURE 5: The final objective values (MSE) and ratios of disconnectivity (r,4.) of 10 runs per subset. Lower values are better. Overall,

the shape diverse subsets achieve the best connectivity, and small yet diverse subsets attain lower MSE.

TABLE 1: Mean of the final results for the 2D examples, with the lowest values in bold.

G Rioo S100 SPioo Pioo Ry $20 SPy Py
Bridge MSE ~ 58.2626 1.2385 03530 0.5040 0.6215 0.4264 03104 03399  0.1266
Bridge rg4. 0.4943 0.4105 0.3151 0.3618 0.3287 0.4121 0.2566 0.3126 0.2786
MBB MSE 1.3E+18 1.5341 0.4278  0.6454 1.6648 1.2395 0.2865 0.2017 0.4926
MBB ry, 0.5184 0.4770 0.3406 0.3347 04653 04836 0.2488 0.2578  0.3996

In Fig. 6, we show the final topologies of the runs that
achieve the minimum MSE for some of the datasets. As expected
from the low performance and compatibility using the full G, the
designs in Fig. 6¢ contain disconnected and oddly matched unit
cells. Following from the worse r;. for property diverse sets,
the topologies for Pyg are visually less compatible (Fig. 6a) than
those of shape diverse sets (Fig. 6b), with neighbors connected
by small features. This can be associated with the observation
in Sec. 3.1.2 that METASET tends to include unit cells with
small features as it maximizes property diversity, leading to sub-
sets with less compatible unit cells. These final designs further
enforce our findings that shape diversity can improve boundary
compatibility.

Although our constrained genetic algorithm provides satis-
factory designs, we must point out that this global method was
implemented to showcase the impact of subset size and diver-
sity. While more elegant optimization techniques would be better
suited for practical applications, we nevertheless believe that the
insights gained from this study — that selecting diverse subsets
can accelerate and benefit metamaterial design — can be gener-
alized to other data-driven methods. This is an exciting direction
for future works.

3.2 Discovery of Diverse 3D Unit Cell Families

In the 3D study, we demonstrate another benefit of
METASET: eliminating inherent bias in datasets by optimizing
the diversity of a subset, which can subsequently be leveraged
for data-driven design or ML of, e.g., property prediction or gen-
erative models (Fig. 1). We first introduce a new method based
on periodic functions to generate 3D families of unit cells with
the same underlying structure but varying densities, which al-
though fast creates a great number of overlapping shapes. Our
goal in applying METASET to this 3D data is to sift through the
overlaps to discover diverse sets of unique isosurface families.

3.2.1 3D Unit Cell Generation using Families of
Level-Set Functions Triply periodic isosurface unit cells,
whose symmetries follow those of crystal structures [40], are of-
ten used in 3D mechanical metamaterials design due to excellent
surface area-to-performance ratios and manufacturability [2]. In
addition, their representation as level-set functions allows the
density of the unit cells to be easily manipulated for functionally-
graded structures [2, 25] and tailorable acoustic bandgaps [41].
A level-set function f(x,y,z) =t is an implicit representation of
geometry where the f-isocontour, i.e., the points where f =1,
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(a) Using property diverse subset of size 20 (Pq), the unit cells
are connected, but by small features.

(b) Using shape diverse subset of size 20 (S»(), we observe supe-
rior connectivity between neighboring unit cells.

(c) Using the full dataset G of size 17,380, we find the final
topologies are critically disconnected.

FIGURE 6: Final topologies with the lowest MSE out of 10 runs
using 20-item diverse sets (a,b), which are more well-connected
than the one using the full dataset (c). Left: cantilever example;
right: classical MBB beam example showing the full structure
after symmetry.

describes the surface of the structure, while the locations where
f <t are solid material, and void where f > ¢. Thus, by vary-
ing the isovalue ¢, an entire family of isosurface unit cells can be
extracted from one level-set function.

The most prevalent type of isosurfaces used in metamaterials
design is a special subset known as Triply Periodic Minimal Sur-
faces (TPMS). However, only a few TPMS families have been
used since their functions are complex to derive [40]. For ex-
ample, Maskery et al. use six families in their design work [2],
while Li et al. use four [25]. Moreover, it has not been investi-
gated whether these few families cover the gamut of shapes and
properties needed for design applications. Suppose a researcher
wishes to design a new functionally-graded 3D metamaterial by
tuning the densities of isosurface functions, but does not know
beforehand which families would best suit their application. Due
to the computational expense of design in 3D, they may desire
to select a smaller set of families that can then be used in their
optimization method. In this section, we present METASET as a
procedure to choose those families such that the resultant subset
has large coverage over different properties and shapes. In doing
so, we also demonstrate that METASET removes bias in datasets
by maximizing diversity.

Creation of New Isosurface Families = Before selecting
diverse families, we must first generate an initial pool to choose

0000

(a) Famlly A229 001 X Y Z

@%“

(b) Famlly A229 001 X Y Z

2
(c) Family A229 001 (X,Y,2) <t

FIGURE 7: Examples of unit cells from isosurface families gen-
erated by the structure factor for space group No. 229 and
(hkl) = (001). The effect of increasing  to create a family is
shown from left to right.

from. Thus, to build a large 3D dataset, we propose a new
method to create isosurface families based on the level-set func-
tions of crystallographic structure factors, which describe how
particles are arranged in a crystal unit cell [42]. In contrast to
most unit cell generation methods, our approach here does not
set targets in the property space or use TO, and different from
TPMS functions, a larger variety of shapes can be found without
complex derivations.

In crystallography, structures that are invariant under the
same symmetry operations belong to the same space group, of
which there are a total of 230 for 3D structures. For the pur-
poses of our work, we will focus on the 36 cubic groups, No.
195 through 230, to obtain our level-set functions. Experimen-
tally, the space group of a crystal can be determined through, e.g.,
X-ray techniques, by scattering radiation off a lattice plane de-
noted by (hkl), and then observing the diffraction pattern. These
symmetric patterns have been analytically modeled as structure
factors, which are periodic functions of the form:

fgroup,(hkl)(Xayvz) =A+IB, (6)
where A = cos (hX +kY +1Z), B = sin (hX +kY +1Z), X =
2nx, Y = 2wy, and Z = 2nz. The equations of these structure
factors are listed in [42] for all space groups and their allowable
(hkl).

We can split each structure factor into six isosurface families
by separating A and B in Eq. 6 (inspired by [40]), and converting
them into level-set functions as follows:

Agmup,(hkl) (X,Y,Z) <t,
Agroup.(hkl) (X,Y,Z) >t @)
2 2
Agroup,(hkl) (X7Y7Z) <t
and similarly for By,,,, ). These, respectively, correspond to
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FIGURE 8: Trade-off between diversity in property vs. shape
space. The minimum diversity in shape space for optimized sets
has a diversity score greater than 98.9% of random samples.

setting as solid material the function values that are less than ¢
(Fig. 7a), greater than ¢ (Fig. 7b), and in between —¢ and ¢
(leading to a “’thin-walled” structure; Fig. 7¢).

Thus, instead of using the limited TPMS functions, we can
use the structure factors of all 36 cubic space groups and their
corresponding (hkl) to generate a greater number of isosurface
families for data-driven design. In this way, we quickly created
483 families without performing property-driven optimization.
Although efficient, this method also causes an imbalance in ge-
ometry, since several structure factors differ only by a coefficient
and lead to overlapping families. For example, space groups No.
195 and 196 are related as A5 (1) = 4 - A196,(nk1)> and therefore
generate the same structures. Next, we demonstrate the prowess
of METASET in systematically removing such overlaps when
selecting diverse subsets.

3.2.2 METASET Results As the families are com-
prised of a range of densities and therefore shapes and properties,
we need to capture the similarities of individual unit cells while
assessing the similarities between families. Hence, we gener-
ate 100 samples from each family covering all densities between
0.01 and 0.99, giving 48,300 unit cells total. Each unit cell is rep-
resented as a 4096-dimensional point cloud by first converting its
level-set field into a triangle mesh [43], and then sampling uni-
formly on the triangular faces [44]. We also remove any small
disconnected features during post-processing, and find the ho-
mogenized elastic tensors of each unit cell using a code modified
from [45].

To quantify the similarity between two families, we assume
each family is a collection of points, where each point corre-
sponds to a unit cell. This reduces the problem of finding simi-
larity between two families to one between two point sets, which

10
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(c) Families diverse in shape space

FIGURE 9: Examples of subsets of 3D isosurface families se-
lected by METASET.

we calculate using the Hausdorff distance (Sec. 2.1). In property
space, the similarity between two families is related to the max-
imum of the pairwise Euclidean distances between the effective
elastic tensor components of each unit cell. For shape similar-
ity between families C and D, we take the Hausdorff distance
twice: first using Eq. 2 to calculate dy(c,d) between individ-
ual unit cells ¢ € C and d € D, and then substituting this into
Eq. 1 to obtain the inter-familial distance, h(C,D). Intuitively,
this means that the shape similarity between two families is the
maximum of the similarities between closest-in-shape pairs of
unit cells. Therefore, rather than simply averaging the features
of each family, the inter-familial similarities also consider the di-
versity of unit cell members within each family.

Our goal is to find a small subset of 10 families out of 483
that are diverse in both shape and property space. Using Eq. 4,
we vary the weight w between O and 1, and run the greedy al-
gorithm (Sec. 2.3) for each weight to find the optimal subsets.
Next, we calculate the diversity of each subset in both property
space (determinant of Lp) and shape space (determinant of Lg).
As a baseline, we also randomly sample 1000 sets of families
and measure their diversity in each space as well. Fig. 8 shows
these diversity scores. Despite drawing several random subsets
(which are representative of the distribution of the similarity val-
ues between pairs of unit cells), 98.9% of them still fall short
of the optimized subset with the lowest shape diversity score.
This is compelling evidence that 1) the original randomly gener-
ated dataset was severely imbalanced, and 2) METASET is able
to combat such bias and select more diverse subsets. Addition-
ally, the optimized scores (our method) in Fig. 8 illustrate the
trade-off between the shape and property similarity metrics: the
diversity in property space drops as we select sets that are more
diverse in shapes, and vice versa. This can be leveraged to tune
the dataset to specific applications, e.g., finding optimal designs
or ML.

We point out that the trade-off might raise this question:
How can a set of families which are quite diverse in property
space have low diversity in shapes, even though similar shapes
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are expected to possess similar properties? On careful inspection
of the left side of Fig. 8, one can notice that the sets of families
with higher diversity in property space and seemingly “low” di-
versity in shape space actually have larger shape diversity scores
than the majority of the random sets. This shows that the high-
est diversity in property space is achieved by a set of families
which are also very diverse in shape. An interesting avenue of
future research is whether the Hausdorff distance can affect this
trade-off front. Using Hausdorff, we observed that even if two
families have near complete overlap, with just one outlier, they
can still have a large distance between them. While this prop-
erty is mathematically desirable, and widely used in measuring
similarity between point clouds, further research is needed to un-
derstand if this metric is the most appropriate choice for design
applications.

Some example subsets of diverse isosurface families are
shown in Fig. 9, where the 50’" (median) sample from each fam-
ily are pictured. Intriguingly, we note that in the shape diverse
set (Fig. 9c), families generated from the same space group and
(hkl), but different level-set forms (Eq. 6) appear. For example,
the second and third to last items in Fig. 9c have the equations
Az03,(111) =t and A3 (111) <. One could think of these as com-
pletely different shapes with almost no overlaps—which is fur-
ther validation of the shape diversity chosen by METASET.

Moreover, the property-only and shape-only diverse sets
(Figs. 9c and 9a, respectively) share very few of the same fami-
lies, while the set that is equally shape and property diverse (Fig.
9b) contains a mixture of the former two. Common TPMS used
for metamaterials design, such as the Primitive, Gyroid and Dia-
mond (see [2, 25]) are also included among our diversified fami-
lies. In future works, we will explore the use of these families for
data-driven metamaterials design and ML. We provide the data
of the METASET results publicly so that the diverse families can
be employed by any designer in their work as well.

4 Discussion

Although we illustrated the benefits of METASET in Sec.
3, there are nevertheless some topics worthy of examining in the
future. From our design of 2D aperiodic structures, we saw that
whether one subset leads to better design performance is prob-
lem dependent. Shape diverse subsets may increase the chance
to find compatible neighboring unit cells, while property diverse
sets might enhance problems that require a wider range of tar-
get properties at the cost of connectivity. This dependence ex-
tends to ML tasks in the data-driven design framework (Fig. 1)
as well. To train property prediction models, one may need a
property diverse dataset, while for a deep generative model that
learns geometric features, a shape diverse set might be more ap-
propriate. Along these lines, it would be interesting to further
validate the improved performance of diverse datasets for design
and ML tasks using our subsets of diverse 3D unit cell families
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in a future work.

In the 2D examples, we also observed that smaller subsets
led to designs with performance closer to the targets; in fact, we
found using METASET that only 20 unit cells were enough to
form a diverse subset. In most cases, the benefits of reducing the
search space, model training time, or storage space of the dataset
could outweigh any loss of data. However, certain applications
such as ML may need large datasets. A key benefit of using a
METASET, even for large subset sizes, is that it reduces bias by
rank ordering all items in the dataset. The items with the high-
est redundancy in shape or property (like duplicates) are pushed
towards the end of the rank-ordered list, so that ML algorithms
trained on any subset will be less biased. While it is not diffi-
cult to increase the size of the set, determining how much data
is enough is more challenging since this too is contingent on the
application. The effectiveness of subset size and property versus
shape diversity on specific tasks in metamaterials design is an
important question for future studies.

Finally, we remark that the capability of METASET depends
on the choice of similarity metrics as well as the definition of the
joint similarity kernel, both of which are avenues of further re-
search. In this work, the 2D descriptors and Hausdorff distance
worked well in measuring shape similarity, but there are a wealth
of other choices that may provide different results. Extending
METASET to more complex properties, like dynamic ones, may
necessitate a metric other than the Euclidean norm. For the
joint DPP kernel, we chose a simple weighted sum to join the
shape and property matrices, but other methods to combine ker-
nels while preserving submodularity, are also possible. However,
swapping these to best suit the application is easily done since
the input of the DPPs-based greedy algorithm in METASET is a
positive semi-definite similarity kernel that can be obtained from
any appropriate metric or definition.

5 Conclusion

In this paper, we propose a methodology, METASET, that
incorporates diversity of both shape and property space into data
selection to improve the downstream tasks in data-driven design.
It is efficient and flexible, allowing the emphasis on either shape
or property to be easily traded by measuring and maximizing
the joint diversity of subsets through a weighted DPP similarity
kernel. To calculate this kernel matrix, we introduced similar-
ity metrics that cater specifically to 2D and 3D metamaterials.
Although in this work we focused on the design of mechani-
cal metamaterials, we note that METASET can be transferred
to other metamaterial domains, or indeed any other design prob-
lems that need to balance design space against some performance
or quality space.

By way of our 2D aperiodic metamaterial design examples,
we demonstrated that small yet diverse subsets of unit cells can
boost the scalability of the global search algorithm, and lead to
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designs that better achieve target properties with greater bound-
ary compatibility. This revelation shakes a common belief in the
field of data-driven mechanical metamaterials design that a larger
and denser dataset is required to design well-connected struc-
tures while still meeting the target performance. To our knowl-
edge, this is the first time that such a result has been studied
and presented. In the 2D examples, we also found that different
problems may require a different weight of shape and property
diversity based on the design goals. The ease at which a subset’s
size as well as the weight of shape and property diversity can be
explored is yet another advantage of METASET.

In our 3D case study, we not only proposed a new method
to generate triply periodic isosurface families using crystallo-
graphic structure factors, but also verified that METASET can
effectively reduce imbalance in metamaterial datasets. Similar to
well-known TPMS unit cells, each of our 3D families are rep-
resented as level-set functions whose density parameter can be
easily manipulated to design functionally-gradient metamateri-
als, or to tune an individual unit cell for greater compatibility
with its neighbors. Different from established works, however,
our dataset of families are optimized for shape and property di-
versity using METASET rather than arbitrarily chosen.

The methods proposed in this paper to achieve diversity for
shape and property space is broadly applicable to domains out-
side data-driven metamaterials design too. In design ideation,
our method can be used to select ideas to show to a designer
that are functionally different from each other while achiev-
ing different performance goals. It can also be integrated with
existing multi-objective optimization algorithms as a niching
method. To contribute to the growth and capability of data-
driven metamaterials design methods and other fields, we have
shared diversified subsets of 2D and 3D unit cells, as well as
the corresponding equations of isosurface families at https:
//github.com/lychanl110/metaset. These unit cells
can be directly plugged by any metamaterials designer in their
application.
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