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BOUNDED SEMIGROUP WELLPOSEDNESS FOR A LINEARIZED
COMPRESSIBLE FLOW STRUCTURE PDE INTERACTION WITH

MATERIAL DERIVATIVE\ast 

PELIN G. GEREDELI\dagger 

Abstract. We consider a compressible flow-structure interaction (FSI) PDE system which is
linearized about some reference rest state. The deformable interface is under the effect of an ambient
field generated by the underlying and unbounded material derivative term which further contributes
to the nondissipativity of the FSI system with respect to the standard energy inner product. In this
work we show that, on an appropriate subspace, only one dimension less than the entire finite energy
space, the FSI system is wellposed and is moreover associated with a continuous semigroup which is
uniformly bounded in time. Our approach involves establishing maximal dissipativity with respect to
a special inner product which is equivalent to the standard inner product for the given finite energy
space. Among other technical features, the necessary PDE estimates require the invocation of a
multiplier which is intrinsic to the given compressible FSI system.
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1. Introduction. Compressible flow phenomena arise in fluid mechanics, par-
ticularly in the modeling of gas dynamics. The motion of such flows is typically
described via the Navier--Stokes equations by way of providing qualitative informa-
tion on the three basic physical variables: the pressure of the fluid p = p(x, t), the
mass density \rho = \rho (x, t), and the fluid velocity field u = u(x, t). Unlike the case
of incompressible flows wherein density \rho is a constant, the pressure associated with
compressible flow has a nonlocal character and is an unknown function determined
(implicitly) by the fluid motion. Moreover, in compressible flow dynamics the density
of the fluid is considered to be an additional variable component, the resolution of
which represents substantial difficulties in the associated mathematical analysis.

In this work, we consider the linearization of a coupled flow-structure interaction
(FSI) PDE system, with compressible fluid flow PDE component. In the context of
real-world applications, this FSI finds its key application in aeroelasticity: this PDE
system involves the strong coupling between a dynamically deforming structure (e.g.,
the wing) and the air flow which streams past it. In short, this system describes the
interaction between plate and flow dynamics through a deformable interface.

The description of our FSI PDE model is given as follows: Let the flow domain
\scrO \subset \BbbR 3 with Lipschitz boundary \partial \scrO . We assume that \partial \scrO = S \cup \Omega , with S \cap \Omega = \emptyset ,
and the (structure) domain \Omega \subset \BbbR 3 is a flat portion of \partial \scrO with C2 - boundary. In
particular, \partial \scrO has the following specific configuration:

(1) \Omega \subset \{ x = (x1,x2, 0)\} and surface S \subset \{ x = (x1,x2, x3) : x3 \leq 0\} .

Let n(x) be the unit outward normal vector to \partial \scrO , and n| \Omega = [0, 0, 1]. Also,
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1712 PELIN G. GEREDELI

\Omega 

S\scrO 

Fig. 1. Polyhedral flow-structure geometries.

we denote the unit outward normal vector to \partial \Omega by \nu (x). In addition to the above
properties given for the fluid domain \scrO , we impose the following conditions which
will be necessary for the application of some elliptic regularity results for solutions of
second order boundary value problems (BVPs) on corner domains [22, 24].

Condition 1. Flow domain \scrO should be a curvilinear polyhedral domain which
satisfies the following condition:

\bullet Each corner of the boundary \partial \scrO ---if any---is diffeomorphic to a convex cone,

\bullet Each point on an edge of the boundary \partial \scrO is diffeomorphic to a wedge with
opening < \pi .

Some examples of geometries can be seen in Figure 1.
We assume that the pressure is a linear function of the density; p(x, t) = C\rho (x, t)

as mostly done in the compressible fluid literature and it is chosen as a primary
variable to solve. This assumption can be arrived at in two ways, which we now
briefly describe (see [9] for further detailed explanation): For barotropic flows, the
relationship between pressure and density is (see, e.g., [21, 35])

(2) \~p = C[\~\rho ]\gamma ,

where C is a constant evaluated for the pressure and density in the far field and
\gamma > 0---for air, \gamma = 1.4. (We note that so-called isentropic flows [25, pp. 169--200] are
barotropic.) This equation can be linearized by the above perturbation convention,
taking p\ast and \rho \ast to be the far field pressure and density. This gives the linear relation

(3) p = C
\bigl( 
\gamma , \rho \ast , p\ast 

\bigr) 
\rho .

On the other hand, if one considers isothermal flow, the ideal gas law reads \~p = \~\rho RT ,
where T is the temperature and R is a fluid-dependent constant. This equation also
presents a linear relation between pressure and density if T is a constant. Isothermal
flows are used in low speed situations, i.e., with velocities much less than the speed
of sound. Isentropic flow is used for compressible flows with small viscosity, and the
ideal gas law is used for compressible viscous flows. We do note that T is typically
taken as an unknown for compressible viscous flows; if this consideration is made, an
energy balance equation is required.

With respect to some equilibrium point of the form \{ p\ast ,U, \varrho \ast \} where the pressure
and density components p\ast , \varrho \ast are assumed to be scalars (for simplicity assuming
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BOUNDED SEMIGROUP WELLPOSEDNESS 1713

p\ast = \varrho \ast = 1), and the arbitrary ambient field U : \scrO \rightarrow \BbbR 3,

U(x1, x2, x3) = [U1(x1, x2, x3), U2(x1, x2, x3), U3(x1, x2, x3)],

is given, the small perturbations give the following physical equations by generalizing
the forcing functions:

(\partial t +U \cdot \nabla )p+ div(u) + (div U)p = f(x) in \scrO \times \BbbR +,

(\partial t+U \cdot \nabla )u - \nu \Delta u - (\nu +\lambda )\nabla divu+\nabla p+\nabla U \cdot u+(U \cdot \nabla U)p = F(x) in \scrO \times \BbbR +.

(For further discussion, see also [9, 19].) When we delete some of the noncritical lower
order and the benign inhomogeneous terms in the above equations, this lineariza-
tion produces the following system of equations, in solution variables u(x1, x2, x3, t)
(flow velocity), p(x1, x2, x3, t) (pressure), w1(x1, x2, t) (elastic plate displacement),
and w2(x1, x2, t) (elastic plate velocity):\left\{           

pt +U \cdot \nabla p+ div u+div(U)p = 0 in \scrO \times (0,\infty ),
ut +U \cdot \nabla u - div\sigma (u) + \eta u+\nabla p = 0 in \scrO \times (0,\infty ),
(\sigma (u)n - pn) \cdot \bfittau = 0 on \partial \scrO \times (0,\infty ),
u \cdot n = 0 on S \times (0,\infty ),
u \cdot n = w2 +U \cdot \nabla w1 on \Omega \times (0,\infty ),

(4)

\left\{   
w1t  - w2  - U \cdot \nabla w1 = 0 on \Omega \times (0,\infty ),
w2t +\Delta 2w1 + [2\nu \partial x3

(u)3 + \lambda div(u) - p]\Omega = 0 on \Omega \times (0,\infty ),

w1 = \partial w1

\partial \nu = 0 on \partial \Omega \times (0,\infty ),
(5)

[p(0), u(0), w1(0), w2(0)] = [p, u, w1, w2] \in H\bot 
N ,(6)

where HN is the null space of the generator of the above problem (see (18)) and the
space H\bot 

N is characterized (see (1)) as follows:

H\bot 
N =

\biggl\{ 
[p0, u0, w1, w2] \in \scrH :

\int 
\scrO 
p0d\scrO +

\int 
\Omega 

w1d\Omega = 0

\biggr\} 
,

where

(7) \scrH \equiv L2(\scrO )\times L2(\scrO )\times H2
0 (\Omega )\times L2(\Omega )

is the associated finite energy (Hilbert) space, topologized by the standard inner
product

(8) (y1,y2)\scrH = (p1, p2)L2(\scrO ) + (u1, u2)\bfL 2(\scrO ) + (\Delta w1,\Delta w2)L2(\Omega ) + (v1, v2)L2(\Omega )

for any yi = (pi, ui, wi, vi) \in \scrH , i = 1, 2.
The quantity \eta > 0 represents a drag force of the domain on the viscous flow. In

addition, the quantity \tau in (4) is in the space TH1/2(\partial \scrO ) of tangential vector fields
of Sobolev index 1/2; that is,

(9) \tau \in TH1/2(\partial \scrO ) =\{ v \in H
1
2 (\partial \scrO ) : v| \partial \scrO \cdot n = 0 on \partial \scrO \} .

(See e.g., page 846 of [15].) In addition, we take ambient field U \in V0 \cap W where

(10) V0 = \{ v \in H1(\scrO ) : v| \partial \scrO \cdot n = 0 on \partial \scrO \} ,
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1714 PELIN G. GEREDELI

(11) W = \{ v \in H1(\scrO ) : v \in L\infty (\scrO ), div(v) \in L\infty (\scrO ), and v| \Omega \in C2(\Omega )\} 

and define

(12) \| U\| \ast = \| U\| L\infty (\scrO ) + \| div(U)\| L\infty (\scrO ) + \| U| \Omega \| C2(\Omega ) .

(The vanishing of the boundary for ambient fields is a standard assumption in com-
pressible flow literature; see [1, 21, 28, 35].) Moreover, the stress and strain tensors
in the flow PDE component of (4)--(6) are defined, respectively, as

\sigma (\mu ) = 2\nu \epsilon (\mu ) + \lambda [I3 \cdot \epsilon (\mu )]I3; \epsilon ij(\mu ) =
1

2

\biggl( 
\partial \mu j
\partial xi

+
\partial \mu i
\partial xj

\biggr) 
, 1 \leq i, j \leq 3,

where Lam\'e coefficients \lambda \geq 0 and \nu > 0.

Remark 2. As will be seen below, the appearance of the term  - w2  - U \cdot \nabla w1, in
the mechanical displacement equation (5), will induce an invariance with respect to
the space H\bot 

N defined in (1). We will ultimately establish that solutions of (4)--(6),
with initial data in H\bot 

N , are associated with a bounded semigroup for U sufficiently
small with respect to an appropriate measurement (see (12)). In addition, if we set
w(t) = w1(t), wt = w2 +U \cdot \nabla w1, then we have that [p, u, w,wt] solves\left\{           

pt +U \cdot \nabla p+ div u+div(U)p = 0 in \scrO \times (0,\infty ),
ut +U \cdot \nabla u - div\sigma (u) + \eta u+\nabla p = 0 in \scrO \times (0,\infty ),
(\sigma (u)n - pn) \cdot \bfittau = 0 on \partial \scrO \times (0,\infty ),
u \cdot n = 0 on S \times (0,\infty ),
u \cdot n = wt on \Omega \times (0,\infty ),\biggl\{ 
wtt +\Delta 2w  - U \cdot \nabla wt + [2\nu \partial x3

(u)3 + \lambda div(u) - p]\Omega = 0 on \Omega \times (0,\infty ),
w = \partial w

\partial \nu = 0 on \partial \Omega \times (0,\infty ),

[p(0), u(0), w(0), wt(0)] = [p, u, w1, w2 +U \cdot \nabla w1] \in H\bot 
N ,

where w(0) = w1(0) = w1 and wt(0) = w2(0) +U \cdot \nabla w1(0) = w2 +U \cdot \nabla w1.

Here, as is usually done for viscous fluids, we impose the so-called impermeability
condition on \Omega ; namely, we assume that no fluid passes through the elastic portion
of the boundary during deflection [14, 25]. At this point, we emphasize that the
FSI problem under consideration has a material derivative term on the deflected
interaction surface. This material derivative computes the time rate of change of any
quantity such as temperature or velocity (and hence also acceleration) for a portion
of a material in motion. Since our material is a fluid, the movement is simply the
flow field, and any particle of fluid speeds up and slows down as it flows along the
specified spatial domain. With respect to the change of the speed of the said fluid,
the material derivative effectively gives a true rate of change of the velocity. Hence,
we describe the interface \Omega in Lagrangian coordinates in \BbbR 3 with S(a1, a2, a3) = 0;
also let x = \langle x1, x2, x3\rangle be the Eulerian position inside \scrO . Then, letting w(x1, x2, t)
represent the transverse (x3) displacement of the plate on \Omega , we have that

S
\bigl( 
x1, x2, x3  - w(x1, x2; t)

\bigr) 
\equiv \scrS (x1, x2, x3; t) = 0

describes the time-evolution of the boundary. The impermeability condition requires
that the material derivative (\partial t + \~u \cdot \nabla \bfx ) vanish on the deflected surface [14, 16, 25]:\bigl( 

\partial t+\~u \cdot \nabla \bfx 

\bigr) 
\scrS = 0, \~u = u+U.
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BOUNDED SEMIGROUP WELLPOSEDNESS 1715

Applying the chain rule and rearranging, we obtain
(13)
\nabla \bfx S \cdot \langle 0, 0, - wt\rangle +\bfU \cdot [\nabla \bfx S+\langle  - Sx3wx1 , - Sx3wx2 , 0\rangle ] =  - u \cdot [\nabla \bfx S+\langle  - Sx3wx1 , - Sx3wx2 , 0\rangle ].

We identify \nabla \bfx S as the normal to the deflected surface; assuming small deflections
and restricting to (x1, x2) \in \Omega , we can identify \nabla \bfx S

\bigm| \bigm| 
\Omega 
with n

\bigm| \bigm| 
\Omega 
= \langle 0, 0, 1\rangle . Making

use of (13), imposing that U \cdot n = 0 on \partial \scrO (see (10) and discussion), and discarding
quadratic terms, this relation allows us to write for (x1, x2) \in \Omega 

n \cdot \langle 0, 0, wt\rangle +U \cdot \langle wx1
, wx2

, 0\rangle = u \cdot n.

This yields the desired flow boundary condition

(14) u \cdot n
\bigm| \bigm| 
\Omega 
= wt +U \cdot \nabla w

in (4)5 via the material derivative of the deflected elastic interaction surface.
We note that the flow linearization is taken with respect to a general inhomoge-

neous compressible Navier--Stokes system. However, unlike the papers [7, 9], where
some forcing and energy level terms in the pressure and flow equations have been
neglected due to their relative unimportance therein, in the present study the par-
ticular energy level term div(U)p in (4)1 cannot be neglected, inasmuch as it plays
a part in establishing that the associated FSI semigroup is uniformly bounded (and
invariant) with respect to the subspace H\bot 

N . Accordingly, the term div(U)p is one of
the ingredients in the ``feedback"" operator B defined in (17).

1.1. Notation. Throughout, for a given domain D, the norm of corresponding
space L2(D) will be denoted as | | \cdot | | D (or simply | | \cdot | | when the context is clear).
Inner products in L2(\scrO ) or L2(\scrO ) will be denoted by (\cdot , \cdot )\scrO , whereas inner products
L2(\partial \scrO ) will be written as \langle \cdot , \cdot \rangle \partial \scrO . We will also denote pertinent duality pairings as
\langle \cdot , \cdot \rangle X\times X\prime for a given Hilbert space X. The space Hs(D) will denote the Sobolev space
of order s, defined on a domain D; Hs

0(D) will denote the closure of C\infty 
0 (D) in the

Hs(D)-norm \| \cdot \| Hs(D). We make use of the standard notation for the boundary trace
of functions defined on \scrO , which are sufficiently smooth: i.e., for a scalar function
\phi \in Hs(\scrO ), 1

2 < s < 3
2 , \gamma (\phi ) = \phi 

\bigm| \bigm| 
\partial \scrO , which is a well-defined and surjective mapping

on this range of s, owing to the Sobolev trace theorem on Lipschitz domains (see,
e.g., [33], or Theorem 3.38 of [31]).

1.2. Functional setting. With respect to the above setting, the PDE sys-
tem given in (4)--(6) can be written as an ODE in Hilbert space \scrH . That is, if
\Phi (t) = [p, u, w1, w2] \in C([0, T ];\scrH ) solves the problem (4)--(6), then there is a modeling
operator \scrA +B : D(\scrA +B) \subset \scrH \rightarrow \scrH such that \Phi (\cdot ) satisfies

d

dt
\Phi (t) = (\scrA +B)\Phi (t),

\Phi (0) = \Phi 0(15)

as follows:

(16) \scrA =

\left[    
 - U\cdot \nabla (\cdot )  - div(\cdot ) 0 0
 - \nabla (\cdot ) div\sigma (\cdot ) - \eta I  - U\cdot \nabla (\cdot ) 0 0

0 0 0 I
[\cdot ]| \Omega  - [2\nu \partial x3(\cdot )3 + \lambda div(\cdot )]\Omega  - \Delta 2 0

\right]    ;
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1716 PELIN G. GEREDELI

and

(17) B =

\left[    
 - div(U)(\cdot ) 0 0 0

0 0 0 0
0 0 U\cdot \nabla (\cdot ) 0
0 0 0 0

\right]    .
Then, D(\scrA +B) \subset \scrH is given by

D(\scrA +B) = \{ (p0, u0, w1, w2) \in L2(\scrO )\times \bfH 1(\scrO )\times H2
0 (\Omega )\times L2(\Omega ) : properties (A.i)--(A.vi) hold\} ,

where the following hold:
(A.i) U \cdot \nabla p0 \in L2(\scrO ).

(A.ii) div \sigma (u0) - \nabla p0 \in L2(\scrO ). (So, [\sigma (u0)n - p0n]\partial \scrO \in H - 1
2 (\partial \scrO ).)

(A.iii)  - \Delta 2w1 - [2\nu \partial x3(u0)3 + \lambda div(u0)]\Omega +p0| \Omega \in L2(\Omega ) (by elliptic regularity the-
ory w1 \in H3(\Omega )).

(A.iv) (\sigma (u0)n - p0n)\bot TH1/2(\partial \scrO ). That is,

\langle \sigma (u0)n - p0n, \tau \rangle 
\bfH  - 1

2 (\partial \scrO )\times \bfH 
1
2 (\partial \scrO )

= 0 in \scrD \prime (\scrO ) for every \tau \in TH1/2(\partial \scrO ).

(A.v) w2 +U \cdot \nabla w1 \in H2
0 (\Omega ) (and so w2 \in H1

0 (\Omega )).

(A.vi) The flow velocity component u0 = f0 + \widetilde f0, where f0 \in V0 and \widetilde f0 \in H1(\scrO )
satisfies1

\widetilde f0 =

\Biggl\{ 
0 on S.

(w2 +U \cdot \nabla w1)n on \Omega 

(and so f0| \partial \scrO \in TH1/2(\partial \scrO )).
Moreover, we denote

(18) HN = Span

\left\{       
\left[    

1
0

\r A - 1(1)
0

\right]    
\right\}       ,

where \r A : L2(\Omega ) \rightarrow L2(\Omega ) is the elliptic operator

\r A\varpi = \Delta 2\varpi , with D(\r A) = \{ w \in H2
0 (\Omega ) : \Delta 

2w \in L2(\Omega )\} ,

and

(19) H\bot 
N =

\biggl\{ 
[p0, u0, w1, w2] \in \scrH :

\int 
\scrO 
p0d\scrO +

\int 
\Omega 

w1d\Omega = 0

\biggr\} 
(see [26, Lemma 6]).

Remark 3. We note that having U \in V0 and the pressure term p0 \in L2(\scrO )
implies a priori that U\nabla p0 \in [H1(\scrO )]\prime . In fact, for \phi \in H1(\scrO )\int 

\scrO 
(U\nabla p0)\phi d\scrO =

\int 
\partial \scrO 

(U \cdot n)p0\phi d\partial \scrO  - 
\int 
\scrO 
p0div(\phi U)d\scrO .

1The existence of an H1(\scrO )-function \widetilde f0 with such a boundary trace on Lipschitz domain \scrO is
ensured; see e.g., Theorem 3.33 of [31].
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So, the domain requirement U\nabla p0 \in L2(\scrO ) given in (A.i) means that U\nabla p0 is ``one
unit higher"" in regularity, i.e., in L2(\scrO ).

Moreover, for the reader's convenience, in defining the domain of the flow-structure
generator, in order to justify the existence of the trace values and the ``integration by
parts"" to be performed in what follows, we provide the following fact.

Proposition 4. Let \scrO \subset \BbbR 3 be a Lipschitz domain. Also, assume that (f, q) \in 
H1(\scrO )\times L2(\scrO ) satisfies [ - div \sigma (f) +\nabla q] \in [H1(\scrO )]\prime . Then

[\sigma (f)n - qn] \in H - 1
2 (\partial \scrO ),

and

| | \sigma (f)n - qn| | 
\bfH  - 1

2 (\partial \scrO )
\leq C

\Bigl[ 
| | f | | \bfH 1(\scrO ) + | | q| | L2(\scrO ) + | |  - div \sigma (f) +\nabla q| | [\bfH 1(\scrO )]\prime 

\Bigr] 
.

Proof. Since the domain \scrO is Lipschitz, with respect to the Sobolev trace map
\gamma 0 \in \scrL (H1(\scrO ),H

1
2 (\partial \scrO )), there exists \gamma +0 \in \scrL (H 1

2 (\partial \scrO ),H1(\scrO )) such that

\gamma 0\gamma 
+
0 (g0) = g0 for all g0 \in H

1
2 (\partial \scrO ).

(See, e.g., Theorem 3.38 of [31].) Therewith, let g0 \in H
1
2 (\partial \scrO ). Then

\langle g0, \sigma (f)n - qn\rangle \partial \scrO =
\bigl\langle 
\gamma 0\gamma 

+
0 (g0), \sigma (f)n - qn

\bigr\rangle 
\partial \scrO 

= (\epsilon (\gamma +0 (g0)), \sigma (f))\scrO + (\gamma +0 (g0),div \sigma (f))\scrO 

 - (div \gamma +0 (g0), g0)\scrO  - (\gamma +0 (g0),\nabla g0)\scrO .

Estimating the right-hand side (RHS), using the continuity of right inverse \gamma +0 (\cdot ), we
obtain

| \langle g0, \sigma (f)\bfn  - q\bfn \rangle \partial \scrO | \leq C| | g0| | 
\bfH 

1
2 (\partial \scrO )

\Bigl[ 
| | f | | \bfH 1(\scrO ) + | | q| | L2(\scrO ) + | | div \sigma (f) - \nabla q| | [\bfH 1(\scrO )]\prime 

\Bigr] 
.

Dividing and taking the supremum with respect to g0 \in H
1
2 (\partial \scrO ) completes the proof.

1.3. Literature. The PDEs which describe FSIs have been considered from a
variety of viewpoints and with different objectives in mind [2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 17, 18, 19, 20, 26, 32]. Analysis of FSI generally constitutes a broad area
of research with applications in aeroelasticity, biomechanics, biomedicine, etc. In par-
ticular, the study of wellposedness of various linearized incompressible/compressible
FSI models which manifest parabolic-hyperbolic coupling has a large presence in the
literature; see, e.g., [2, 7, 8, 9, 10, 11, 13, 19, 32], wherein the Navier--Stokes equations
are coupled with the wave/plate equation along a fixed interface. The parabolic-
hyperbolic nature of the system generally results in major mathematical difficulties,
principally because the coupling mechanisms between the fluid and the solid PDE
components inevitably involve boundary terms which are strictly above the level of
finite energy. In the case of a compressible flow component in the FSI system, the
analysis is further complicated: whereas for incompressible flows the density of the
fluid is assumed to be a constant and pressure an unknown function determined by the
fluid motion, for compressible flows the main difficulty in the analysis of the density
or pressure term arises from the fact that the density variable is no longer constant.
Although in most of the works in the literature, the motion of an isentropic compress-
ible fluid---i.e., the density is a linear function of pressure---is solely considered, having
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1718 PELIN G. GEREDELI

to contend with this additional density (pressure) variable presents a mathematical
challenge, even at the level of wellposedness.

In contrast to the growing literature on incompressible fluids, the knowledge about
compressible fluids interacting with elastic solids is relatively limited. In fact, the very
first contribution to this problem is the pioneering paper [19], where both wellposed-
ness and the existence of global attractors were shown. In [19], the author addresses
the simple case that the ambient vector field U = 0; i.e., the linearization takes place
about the trivial flow steady state. For this canonical situation, he used Galerkin
approximations to prove the wellposedness result. However, the author duly noted
that the case U \not = 0 cannot be handled in a similar fashion due to the existence of
the troublesome, i.e., unbounded, term U\cdot \nabla p in the pressure equation (4)1.

Subsequently, the linearized model in [19] with U \not = 0 was considered in [7]. The
linearization in [7], about an arbitrary nonzero state, gives rise to terms which induce
a nondissipativity of the resulting FSI system. For this nondissipative FSI in [7], a
pure velocity matching condition is imposed at the interface (i.e., no material deriv-
ative is present in this boundary condition). In contrast to the Galerkin approach
applied in [19], the authors in [7] invoke a certain Lumer--Phillips methodology, with
a view of associating solutions of the fluid-structure dynamics with a continuous semi-
group which is not uniformly bounded. Subsequently, a more convoluted FSI model
was considered in [9], where, in addition to the aforementioned nondissipative and un-
bounded terms brought about by ambient field U \not = 0, the associated flow-structure
interface is also under the effect of this ambient field U \not = 0. In particular, the flow
and structure velocity matching boundary condition also contains the material de-
rivative of the structure, which again refers to the rate of change of the velocity on
the deflected interaction surface. In [9] semigroup wellposedness is established by an
appropriate invocation of the Lumer--Phillips theorem; this semigroup generation is
posed with respect to the entire phase space \scrH , as defined in (7) above.

However, this wellposedness result in [9] is not totally satisfactory from the stand-
point of future studies into the long-time behavior of FSI solutions: while [9] does pro-
vided existence and uniqueness of solutions to the FSI system in the entire finite energy
space \scrH , the resulting semigroup is not uniformly bounded. In particular, the semi-
group estimate obtained in [9] is \scrO 

\bigl( 
eC(\bfU )t

\bigr) 
for t > 0, where C(U) = 1

2 \| div(U)\| \infty +\epsilon .
This lack of FSI semigroup boundedness in [9] will therefore forestall any subsequent
discussion of FSI stability. Accordingly, keeping in mind future investigations of the
asymptotic behavior of FSI solutions, we are led to the following question: Is it pos-
sible to obtain a semigroup wellposedness result, with the semigroup being bounded
uniformly in time, at least in some (inherently invariant) subspace of the finite energy
space?

Motivated by this question, in the present work we consider the linearized com-
pressible FSI model (4)--(6), where U \not = 0 and the material derivative term U \cdot \nabla w1

is in place in the matching velocity boundary condition. Since our main objective
here is to obtain a uniformly bounded semigroup, our departure point is to find an
appropriate subspace for the analysis. In order to have semigroup generation on this
sought-after subspace, the prospective generator of the PDE system (4)--(6) should be
invariant with respect to it. In this connection, it was shown in [26] that if operator
\scrA 0 : \scrH \rightarrow \scrH is the FSI generator in [7], which models the ``material derivative"" free
FSI PDE interaction, then zero is an eigenvalue of \scrA 0. (In particular, the action of \scrA 0

is given by \scrA of (16), with the appropriate domain of definition, which includes the
pure matching velocity boundary condition; see [26] and [7]). In fact, the null space
of \scrA 0 is one dimensional, denoted here by HN , and is given explicitly in (18) below.
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The point of our mentioning \scrA 0 in the present problem is that, by way of obtaining
a uniformly bounded semigroup, we will take our candidate space of wellposedness to
be the orthogonal complement H\bot 

N , which is characterized by (1) below.
The necessity of finding an appropriate invariant subspace for uniformly bounded

FSI semigroup analysis motivates the presence of the additional (and unbounded) term
w2+U \cdot \nabla w1 in (4)--(6). Let \scrA 1 : \scrH \rightarrow \scrH be the FSI generator which gives rise to the
wellposedness result in [9]; the action of \scrA 1 is given by \scrA of (16) with the appropriate
domain of definition, which includes the material derivative term matching velocity
boundary condition; see page 342 of [9]. As thus constituted, H\bot 

N is not invariant
with respect to \scrA 1. However, if we define an operator B which abstractly models the
unbounded term w2 +U \cdot \nabla w1 in (4)--(6), as well as the energy level term div(U)p ,
then with the appropriate domain of definition, H\bot 

N is invariant with respect to the
modeling operator (\scrA +B) of (4)--(6). (This is Lemma 5 below.)

Having established said invariance, we will subsequently proceed to show that,
with respect to a certain inner product which is equivalent to the standard \scrH -inner
product, (\scrA +B) generates a contraction semigroup on H\bot 

N for ambient field U small
enough in norm (and so the semigroup will be uniformly bounded with respect to the
standard \scrH -norm). In consequence, the PDE system (4)--(6) is wellposed for initial
data [p0, u0, wa, wb] taken from H\bot 

N .

1.4. Challenges encountered and novelty. In the present work, we establish
a result of semigroup wellposedness so as to ascertain the existence and uniqueness of
solutions to (4)--(6) for Cauchy data inH\bot 

N . Moreover, we find that this FSI semigroup
is uniformly bounded in time. This boundedness will have implications in our future
analysis of long-time behavior of the solutions to the PDE system (4)--(6). The main
challenging points and improvements in our treatment are as follows.

(a) Uniformly bounded semigroup in H\bot 
N \subset \scrH . By way of fulfilling our objective

of obtaining a uniformly bounded semigroup, we adopt a Lumer--Phillips approach
in an appropriate inner product. To wit, to establish dissipativity we topologize
the (\scrA + B)-invariant space H\bot 

N with an inner product which is equivalent to the
standard \scrH -inner product. In this construction, we make use of a multiplier \nabla \psi 
introduced in [19] (defined in (22) below) and previously used in [26]; the multiplier
exploits the characterization of H\bot 

N in (1). In addition, inasmuch as we are after an
FSI solution semigroup which is uniformly bounded in time, we give a proof for the
maximality (or the range condition) of the operator (\scrA +B) which is quite different
from that in [9]. Unlike [9], where the theory of linear perturbations is used to yield a
semigroup whose bound is of said exponential order, in the present paper we totally
eschew the Lax--Milgram approach of [9] and instead invoke functional analytical and
PDE methods to show that [\lambda I  - (\scrA + B)] is invertible for any \lambda > 0. This entails
showing that [\lambda I  - (\scrA + B)] is a closed linear operator that has a dense range in
H\bot 
N and enjoys the inverse estimate (100) below. By these means we establish that

(\scrA +B) is maximal dissipative with respect to said appropriate inner product, and so
then a uniformly bounded semigroup on the standard\scrH -inner product. Our uniformly
bounded semigroup result is valid under the assumption that ambient vector field U is
small enough with respect to an appropriate measurement; see (12) below. However,
one should bear in mind that the presence of U \not = 0 gives rise to terms---namely,
U \cdot \nabla p and U \cdot \nabla w1 (as it appears twice)---which are unbounded with respect to the
underlying finite energy of the FSI system. Thus, our method of proof does not at all
involve some bounded perturbation result which exploits the smallness of U.

(b) H\bot 
N - invariant generator. Subsequent to our work [9], our original immediate
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1720 PELIN G. GEREDELI

objective was to analyze the stability properties of the material derivative FSI system
in [9]. However, because of the presence of the zero eigenvalue, as mentioned above, it
is problematic to consider the strong or exponential decay problem in the entire phase
space \scrH . Accordingly, we are led here to consider wellposedness (and future stability)
analysis on H\bot 

N as given in (1) below. (Since HN of (18) is only one dimensional---
see [26, Lemma 6]---we would not lose too much.) However, as we said above, H\bot 

N

is not invariant with respect to the material derivative FSI generator \scrA 1 : \scrH \rightarrow \scrH 
in [9]. (The unbounded material derivative term in particular contributes to the
noninvariance.) However, the presence of the terms  - w2  - U \cdot \nabla w1 and div(U)p in
the respective structural displacement and pressure equations in (4)--(6) gives rise to
an invariance on H\bot 

N . (Actually, the term div(U)p was blithely discarded during the
linearization process in [9], since it is a benign energy level term.) Thus, these two
terms are captured abstractly by the ``feedback"" operator B in (17) below. We say
``feedback"" since B is incorporated so as to beneficently provide the prerequisite that
H\bot 
N is (\scrA + B)-invariant. We note that the presence of B does not at all give rise

to a fortuitous cancellation of terms so as to have dissipativity with respect to the
standard \scrH -inner product. The operator B allows only for said invariance property,
so that our wellposedness and uniform bounded semigroup problem can be considered
on the slightly smaller subspace H\bot 

N . As we said, our finding that the FSI semigroup
is uniformly bounded in time in H\bot 

N will constitute a departure point in our future
work on stability properties of the FSI PDE model.

(c) Less regularity required on the ambient vector field U. The presence of the
nontrivial ambient flow field U causes substantial difficulties in the wellposedness
analysis. In this case U \not = 0, the desired result for an FSI system---with material
derivative present in the matching velocities BC---on the entire phase space \scrH was
obtained in the earlier work [9] (with recall, the semigroup estimate \scrO 

\bigl( 
eC(\bfU )t

\bigr) 
, for

t > 0, where C(U) = 1
2 \| div(U)\| \infty + \epsilon ). In the course of applying the Lax--Milgram

theorem in [9], there is the need to deal with the pressure PDE component of an
associated static compressible FSI system. In this regard, a methodology, based
upon a treatment of (uncoupled) transport equations in [21], was applied to solve for
the pressure and fluid velocity components of said static FSI system. However this
approach compelled the authors in [9] to impose thatU \in H3(\scrO ). In the present work,
we require that the small enough ambient field U \in H1(\scrO ) obey the less stringent
regularity assumptions in (11).

1.5. Plan of the paper. The paper is organized as follows: In section 2, we first
provide the framework which will be required for our proof of semigroup wellposedness.
In particular, we carefully describe the FSI generator (\scrA +B) and its domain, as well
as the equivalent inner product which will be used for our proof of wellposedness
on subspace H\bot 

N of (1) below. Moreover, we show that H\bot 
N is (\scrA + B)-invariant. In

section 3, we establish the maximal dissipativity of (\scrA +B) with respect to said special
inner product, thereby allowing for an appeal to the Lumer--Phillips theorem. In the
course of our work, we will have need of a classic lemma of functional analysis, as well
as the adjoint of (\scrA +B). These ingredients are given in section 4, the appendix.

2. Preliminaries. As stated before, in order to be able to obtain a uniformly
bounded (contraction) semigroup, we analyze the wellposedness of problem (4)--(6) in
the reduced space H\bot 

N defined in (1). This will require us to retopologize the phase
space \scrH with a new inner product which will be used in H\bot 

N and is equivalent to
the natural inner product given in (7). Now, with the above notation let us take
\varphi = [p0, u0, w1, w2] \in H\bot 

N , \widetilde \varphi = [\widetilde p0, \widetilde u0, \widetilde w1, \widetilde w2] \in H\bot 
N . Then the new inner product is
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given as

((\varphi , \widetilde \varphi ))H\bot 
N

= (p0, \widetilde p0)\scrO +(u0 - \alpha D(g\cdot \nabla w1)e3+\xi \nabla \psi (p0, w1), \widetilde u0 - \alpha D(g\cdot \nabla \widetilde w1)e3+\xi \nabla \psi (\widetilde p0, \widetilde w1))\scrO 

(20) + (\Delta w1,\Delta \widetilde w1)\Omega + (w2 + h\alpha \cdot \nabla w1 + \xi w1, \widetilde w2 + h\alpha \cdot \nabla \widetilde w1 + \xi \widetilde w1)\Omega ,

and in turn the norm

\| | \varphi | \| 2H\bot 
N
= ((\varphi ,\varphi ))H\bot 

N

(21)

= \| p0\| 2\scrO +\| u0  - \alpha D(g \cdot \nabla w1)e3 + \xi \nabla \psi (p0, w1)\| 2\scrO +\| \Delta w1\| 2\Omega +\| w2 + h\alpha \cdot \nabla w1 + \xi w1\| 2\Omega 

for every \varphi = [p0, u0, w1, w2] \in H\bot 
N . Here, the following hold.

(i) The function \psi = \psi (f, \chi ) \in H1(\scrO ) is considered to solve the following BVP
for data f \in L2(\scrO ) and \chi \in L2(\Omega ):

(22)

\left\{   
 - \Delta \psi = f in \scrO ,
\partial \psi 
\partial n = 0 on S,
\partial \psi 
\partial n = \chi on \Omega ,

with the compatibility condition

(23)

\int 
\scrO 
fd\scrO +

\int 
\Omega 

\chi d\Omega = 0.

We should note that by known elliptic regularity results for the Neumann problem on
Lipschitz domains (see, e.g, [27]) we have

(24) \| \psi (f, \chi )\| 
H

3
2 (\scrO )

\leq [\| f\| \scrO + \| \chi \| \partial \scrO ] .

(ii) The map D(\cdot ) is the Dirichlet map that extends boundary data \varphi defined on
\Omega to a harmonic function in \scrO satisfying

D\varphi = f \leftrightarrow 
\biggl\{ 

\Delta f = 0 in \scrO ,
f | \partial \scrO = \varphi | ext on \partial \scrO ,

where

\varphi | ext =

\Biggl\{ 
0 on S,

\phi on \Omega .

Then by, e.g., [31, Theorem 3.3.8] and the Lax--Milgram theorem, we deduce that

(25) D \in \scrL 
\bigl( 
H

1/2+\epsilon 
0 (\Omega );H1(\scrO )

\bigr) 
.

(iii) The vector field h\alpha (\cdot ) is defined as h\alpha (\cdot ) = U| \Omega  - \alpha g, where g(\cdot ) is a C2

extension of the normal vector \nu (x) (recall, with respect to \Omega ) and we specify the
parameter \alpha to be

(26) \alpha = 2 \| U\| \ast ,
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where \| U\| \ast is defined as in (12). Also, \xi is eventually specified in (63). Since the
main goal of this paper is to have the semigroup wellposedness in the subspace H\bot 

N ,
in what follows, for the sake of simplicity, we will use the notation

(\scrA +B)| H\bot 
N
= (\scrA +B).

Before beginning our wellposedness analysis, we first need to justify that the semigroup
generator is indeed H\bot 

N -invariant. This is given in the following lemma.

Lemma 5. The operator (\scrA +B) is H\bot 
N -invariant; that is, (\scrA +B) : D(\scrA +B)\cap 

H\bot 
N \subset H\bot 

N \rightarrow H\bot 
N .

Proof. Let \varphi = [p0, u0, w1, w2] \in H\bot 
N , \widetilde \varphi = [\widetilde p0, \widetilde u0, \widetilde w1, \widetilde w2] \in HN . Recalling the

adjoint operator \scrA \ast in (109), we have

(\scrA \varphi , \widetilde \varphi )\scrH = (\varphi ,\scrA \ast \widetilde \varphi )\scrH = (\varphi ,L1 \widetilde \varphi )\scrH + (\varphi ,L2 \widetilde \varphi )\scrH = 0 + (\varphi ,L2 \widetilde \varphi )\scrH 
=

\int 
\scrO 
p0div(U)1d\scrO +

\int 
\Omega 

\Delta w1\Delta \r A - 1 \{ div[U1, U2]\} 1d\Omega 

=

\int 
\scrO 
p0div(U)1d\scrO +

\int 
\Omega 

w1div[U1, U2]1d\Omega 

=

\int 
\scrO 
div(U)p01d\scrO  - 

\int 
\Omega 

(\nabla w1 \cdot U)1d\Omega 

=

\int 
\scrO 
div(U)p01d\scrO  - 

\int 
\Omega 

\Delta (\nabla w1 \cdot U)\Delta \r A - 1(1)d\Omega 

=

\left(    
\left[    

div(U)p0
0

 - \nabla w1 \cdot U
0

\right]    ,
\left[    

1
0

\r A - 1(1)
0

\right]    
\right)    

\scrH 

=  - (B\varphi , \widetilde \varphi )\scrH ,

which yields that

(\scrA \varphi , \widetilde \varphi )\scrH =  - (B\varphi , \widetilde \varphi )\scrH or ((\scrA +B)\varphi , \widetilde \varphi )\scrH = 0

for every \varphi = [p0, u0, w1, w2] \in H\bot 
N . Hence, (\scrA +B) is H\bot 

N -invariant.

3. Wellposedness. This section is devoted to showing the semigroup wellposed-
ness of the PDE system (4)--(6). The main result of this paper is given as follows.

Theorem 6. With reference to problem (4)--(6), let Condition 1 hold. Moreover,
assume that U \in V0\cap W with \| U\| \ast = \| U\| L\infty (\scrO )+\| div(U)\| L\infty (\scrO )+\| U| \Omega \| C2(\Omega ) suf-

ficiently small (see also (12)). Then the operator (\scrA +B) : D(\scrA +B)\cap H\bot 
N \rightarrow H\bot 

N , as
defined via (16) and (17), generates a strongly continuous semigroup \{ e(\scrA +B)t\} t\geq 0 on
H\bot 
N . Hence, for every initial datum [p, u, w1, w2] \in H\bot 

N , the solution [p(t), u(t), w1(t),
w2(t)] of problem (4)--(6) is given continuously by

(27)

\left[    
p(t)
u(t)
w1(t)
w2(t)

\right]    = e(\scrA +B)t

\left[    
p
u
w1

w2

\right]    \in C([0, T ];H\bot 
N ).
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Moreover, this semigroup is uniformly bounded in time with respect to the standard
\scrH -inner product. (With respect to the special norm in (21), the semigroup is in fact
a contraction.)

Remark 7. In point of fact, for ambient field U smooth enough, the operator
(\scrA +B) generates a continuous semigroup in the entire phase space \scrH . This conclu-
sion can be straightforwardly obtained by invoking the machinery of [9]. However, this
wellposedness on all of \scrH has its downsides: (i) The ambient field requires the stronger
regularity H3(\scrO ). (ii) The argumentation in [7, 9], which partly involves linear per-
turbation theory, will culminate in the semigroup of (\scrA + B) not having a uniform
bound; in fact, the semigroup estimate on all of \scrH will be of exponential order.

To prove Theorem 6, we will appeal to the Lumer--Phillips theorem, which requires
the analysis of the dissipativity and maximality properties of the semigroup generator
(\scrA + B). We start with the dissipativity, for which our main tool will be the use of
the inner product defined in (20).

3.1. Dissipativity of the generator (\bfscrA + \bfitB ). We show the dissipativity
property of the generator operator (\scrA +B) in the following lemma.

Lemma 8. With reference to problem (4)--(6), the semigroup generator (\scrA +B) :
D(\scrA + B) \cap H\bot 

N \subset H\bot 
N \rightarrow H\bot 

N is dissipative with respect to inner product ((\cdot , \cdot ))H\bot 
N

for \| U\| \ast (defined in (12)) small enough. In particular, for \varphi = [p0, u0, w1, w2] \in 
D(\scrA +B) \cap H\bot 

N ,

(28) Re(([\scrA +B]\varphi ,\varphi ))H\bot 
N
\leq  - (\sigma (u0), \epsilon (u0))\scrO 

4
 - 
\eta \| u0\| 2\scrO 

4
 - 
\xi \| p0\| 2\scrO 

2
 - 
\xi \| \Delta w1\| 2\Omega 

2
,

where \xi is as specified in (63).

Proof. Given \varphi = [p0, u0, w1, w2] \in D(\scrA +B) \cap H\bot 
N , we have

(([\scrA +B]\varphi ,\varphi ))H\bot 
N
= ( - U\nabla p0  - div(u0) - div(U)p0, p0)\scrO 

+( - \nabla p0 + div\sigma (u0) - \eta u0  - U\nabla u0, u0  - \alpha D(g \cdot \nabla w1)e3)\scrO 

+( - \nabla p0 + div\sigma (u0) - \eta u0  - U\nabla u0, \xi \nabla \psi (p0, w1))\scrO 

 - \alpha (D(g \cdot \nabla [w2 +U\nabla w1])e3, u0  - \alpha D(g \cdot \nabla w1)e3 + \xi \nabla \psi (p0, w1))\scrO 

+\xi (\nabla \psi ( - U\nabla p0  - div(u0) - div(U)p0, w2 +U\nabla w1), u0  - \alpha D(g \cdot \nabla w1)e3)\scrO 

+\xi 2(\nabla \psi ( - U\nabla p0  - div(u0) - div(U)p0, w2 +U\nabla w1),\nabla \psi (p0, w1))\scrO 

+(\Delta w2,\Delta w1)\Omega + (\Delta (U\nabla w1),\Delta w1)\Omega 

+(p0| \Omega  - [2\nu \partial x3
(u0)3 + \lambda div(u0)] | \Omega , w2 + h\alpha \cdot \nabla w1 + \xi w1)\Omega 
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1724 PELIN G. GEREDELI

+(h\alpha \cdot \nabla [w2 +U\nabla w1], w2 + h\alpha \cdot \nabla w1 + \xi w1)\Omega 

 - (\Delta 2w1, w2 + h\alpha \cdot \nabla w1 + \xi w1)\Omega 

+\xi (w2 +U\nabla w1, w2 + h\alpha \cdot \nabla w1 + \xi w1)\Omega .

After integration by parts we then arrive at

(([\scrA +B]\varphi ,\varphi ))H\bot 
N
=  - (\sigma (u0), \epsilon (u0))\scrO  - \eta \| u0\| 2\scrO +

1

2

\int 
\scrO 
div(U)[| u0| 2  - | p0| 2]d\scrO 

+2iIm[(p0,div(u0))\scrO + (\Delta w2,\Delta w1)\Omega ] - iIm[(U\nabla p0, p0)\scrO + (U\nabla u0, u0)\scrO ]

(29) +

8\sum 
j=1

Ij ,

where the Ij are given by

I1 = (\nabla p0  - div\sigma (u0) + \eta u0 +U\nabla u0, \alpha D(g \cdot \nabla w1)e3)\scrO 

(30)  - \alpha (p0| \Omega  - [2\nu \partial x3
(u0)3 + \lambda div(u0)] | \Omega , g \cdot \nabla w1)\Omega ,

I2 = ( - \nabla p0 + div\sigma (u0) - \eta u0  - U\nabla u0, \xi \nabla \psi (p0, w1))\scrO  - \xi (\Delta 2w1, w1)\Omega 

(31) + (p0| \Omega  - [2\nu \partial x3(u0)3 + \lambda div(u0)] | \Omega , \xi w1)\Omega ,

(32) I3 =  - \alpha (D(g \cdot \nabla [w2 +U\nabla w1])e3, u0  - \alpha D(g \cdot \nabla w1)e3 + \xi \nabla \psi (p0, w1))\scrO ,

(33) I4 = \xi (\nabla \psi ( - U\nabla p0  - div(u0) - div(U)p0, w2 +U\nabla w1), u0  - \alpha D(g \cdot \nabla w1)e3)\scrO ,

(34) I5 = \xi 2(\nabla \psi ( - U\nabla p0  - div(u0) - div(U)p0, w2 +U\nabla w1),\nabla \psi (p0, w1))\scrO ,

(35) I6 = (\Delta (U\nabla w1),\Delta w1)\Omega  - (\Delta 2w1, h\alpha \cdot \nabla w1)\Omega ,

(36) I7 = (h\alpha \cdot \nabla [w2 +U\nabla w1], w2)\Omega ,

I8 = (h\alpha \cdot \nabla [w2 +U\nabla w1], h\alpha \cdot \nabla w1 + \xi w1)\Omega 

(37) + \xi (w2 +U\nabla w1, w2 + h\alpha \cdot \nabla w1 + \xi w1)\Omega ,
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BOUNDED SEMIGROUP WELLPOSEDNESS 1725

where we also recall the definition h\alpha = U| \Omega  - \alpha g. In the course of estimating the
terms (30)--(37) above, we will invoke the polynomial

(38) r(a) = a+ a2 + a3,

and for simplicity we set

(39) r\bfU = r(\| U\| \ast ).

We start with I1; integrating by parts, we have

I1 =  - \alpha (p0,div[D(g \cdot \nabla w1)e3])\scrO + \alpha \sigma (u0), \epsilon (D(g \cdot \nabla w1)e3)\scrO 

(40) + \alpha \eta (u0, D(g \cdot \nabla w1)e3)\scrO + \alpha (U\nabla u0, D(g \cdot \nabla w1)e3)\scrO .

Using the fact that Dirichlet map D \in L(H
1
2+\epsilon 
0 (\Omega ), H1(\scrO )), we have

(41) I1 \leq r\bfU C
\Bigl\{ 
\| u0\| 2H1(\scrO ) + \| p0\| 2\scrO + \| \Delta w1\| 2\Omega 

\Bigr\} 
.

We continue with I2; using the definition of the map \psi (\cdot , \cdot ) in (22) and integrating by
parts, we get

I2 =  - \xi 
\int 
\scrO 
| p0| 2 d\scrO  - \xi (\sigma (u0), \epsilon (\nabla \psi (p0, w1)))\scrO 

+\xi \langle \sigma (u0)n - p0n, (\nabla \psi (p0, w1), n)n\rangle \partial \scrO  - \eta (u0, \xi \nabla \psi (p0, w1))\scrO 

( - U\nabla u0, \xi \nabla \psi (p0, w1))\scrO  - (\Delta 2w1, \xi w1)\Omega 

+(p0| \Omega  - [2\nu \partial x3(u0)3 + \lambda div(u0)] | \Omega , \xi w1)\Omega ,

whence we obtain

I2 \leq  - \xi \| p0\| 2\scrO  - \xi \| \Delta w1\| 2\Omega + \xi r\bfU C
\Bigl\{ 
\| u0\| 2H1(\scrO ) + \| p0\| 2\scrO + \| \Delta w1\| 2\Omega 

\Bigr\} 

(42) + \xi C
\Bigl\{ 
\| u0\| H1(\scrO ) [\| p0\| \scrO + \| \Delta w1\| \Omega ]

\Bigr\} 
.

For I3, recalling the boundary condition

(u0)3| \Omega = w2 +U\nabla w1,

making use of Lemma 6.1 of [9], and considering the assumptions made on the geom-
etry in Condition 1, we have

I3 \leq \alpha C \| g \cdot \nabla (u0)3\| 
H - 1

2 (\Omega )
\| u0  - \alpha D(g \cdot \nabla w1)e3 + \xi \nabla \psi (p0, w1)\| \scrO 

(43) \leq C
\Bigl[ 
r\bfU 

\Bigl\{ 
\| u0\| 2H1(\scrO ) + \| \Delta w1\| 2\Omega 

\Bigr\} 
+ \xi 2

\Bigl\{ 
\| p0\| 2\scrO + \| \Delta w1\| 2\Omega 

\Bigr\} \Bigr] 
,
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1726 PELIN G. GEREDELI

where we have also implicitly used the Sobolev embedding theorem. To continue with
I4, we have

I4 = \xi (\nabla \psi ( - U\nabla p0  - div(U)p0, 0), u0  - \alpha D(g \cdot \nabla w1)e3)\scrO 

+\xi (\nabla \psi ( - div(u0), u0 \cdot n), u0  - \alpha D(g \cdot \nabla w1)e3)\scrO 

(44) = I4a + I4b.

Since U \cdot n| \partial \scrO = 0, we have that (U\nabla p0+div(U)p0) \in [H1(\scrO )]
\prime 
with

(45) \| U\nabla p0 + div(U)p0\| [H1(\scrO )]\prime \leq C \| U\| \ast \| p0\| \scrO .

By the Lax--Milgram theorem, we then have

I4a \leq C\xi \| \nabla \psi ( - U\nabla p0  - div(U)p0, 0)\| \scrO \| u0  - \alpha D(g \cdot \nabla w1)e3\| \scrO 

(46) \leq C\xi r\bfU 

\Bigl\{ 
\| u0\| 2H1(\scrO ) + \| p0\| 2\scrO + \| \Delta w1\| 2\Omega 

\Bigr\} 
and similarly

(47) I4b \leq C\xi r\bfU 

\Bigl\{ 
\| u0\| 2H1(\scrO ) + \| \Delta w1\| 2\Omega 

\Bigr\} 
.

Now, applying (46)--(47) to (44) gives

(48) I4 \leq C\xi r\bfU 

\Bigl\{ 
\| u0\| 2H1(\scrO ) + \| p0\| 2\scrO + \| \Delta w1\| 2\Omega 

\Bigr\} 
.

Estimating I5, we proceed as we did for I4 and invoke (45), the Lax--Milgram theorem,
and the estimate (24) to obtain

(49) I5 \leq C\xi 2
\Bigl[ 
\| U\| \ast 

\Bigl\{ 
\| p0\| 2\scrO + \| \Delta w1\| 2\Omega 

\Bigr\} 
+ \| u0\| 2H1(\scrO )

\Bigr] 
.

For I6, in order to estimate the second term in (35), we follow the standard calculations
used for the flux multipliers and the commutator symbol given by

(50) [P,Q]f = P (Qf) - Q(Pf)

for the differential operators P and Q. Hence,

 - (\Delta 2w1, h\alpha \cdot \nabla w1)\Omega = (\nabla \Delta w1,\nabla (h\alpha \cdot \nabla w1))\Omega (51)

=  - (\Delta w1,\Delta (h\alpha \cdot \nabla w1))\Omega +

\int 
\partial \Omega 

(h\alpha \cdot \nu )| \Delta w1| 2d\partial \Omega ,(52)

where, in the first identity we have directly invoked the clamped plate boundary
conditions, and in the second we have used the fact that w1 = \partial \nu w1 = 0 on \partial \Omega , which
yields that

\partial 

\partial \nu 
(h\alpha \cdot \nabla w1) = (h\alpha \cdot \nu )\partial 

2w1

\partial \nu 
= (h\alpha \cdot \nu )(\Delta w1

\bigm| \bigm| 
\partial \Omega 

).
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BOUNDED SEMIGROUP WELLPOSEDNESS 1727

(See [29] or [30, p. 305]). Using the commutator bracket [\cdot , \cdot ], we can rewrite the latter
relation as

 - (\Delta 2w1, h\alpha \cdot \nabla w1)\Omega =  - (\Delta w1, [\Delta , h\alpha \cdot \nabla ]w1)\Omega  - (\Delta w1, h\alpha \cdot \nabla (\Delta w1))\Omega +

\int 
\partial \Omega 

(h\alpha \cdot \nu )| \Delta w1| 2d\partial \Omega .

With Green's relations, once more

 - (\Delta 2w1, h\alpha \cdot \nabla w1)\Omega =  - (\Delta w1, [\Delta , h\alpha \cdot \nabla ]w1)\Omega  - 1

2

\int 
\partial \Omega 

(h\alpha \cdot \nu )| \Delta w1| 2d\partial \Omega 

+
1

2

\int 
\Omega 

\bigl[ 
div(h\alpha )

\bigr] 
| \Delta w1| 2d\Omega  - iIm(\Delta w1, h\alpha \cdot \nabla (\Delta w1))\Omega 

+

\int 
\partial \Omega 

(h\alpha \cdot \nu )| \Delta w1| 2d\partial \Omega .(53)

Thus,

 - (\Delta 2w1, h\alpha \cdot \nabla w1)\Omega =  - (\Delta w1, [\Delta , h\alpha \cdot \nabla ]w1)\Omega +
1

2

\int 
\partial \Omega 

(h\alpha \cdot \nu )| \Delta w1| 2d\partial \Omega 

+
1

2

\int 
\Omega 

\bigl[ 
div(h\alpha )

\bigr] 
| \Delta w1| 2d\Omega  - iIm(\Delta w1, h\alpha \cdot \nabla (\Delta w1)).(54)

Since h\alpha = U
\bigm| \bigm| 
\Omega 
 - \alpha g, where g is an extension of \nu (x), we will have then

 - Re(\Delta 2w1, h\alpha \cdot \nabla w1)\Omega =
1

2

\int 
\partial \Omega 

(U \cdot \nu  - \alpha )| \Delta w1| 2d\partial \Omega +
1

2

\int 
\Omega 

div(h\alpha )| \Delta w1| 2d\Omega 

 - Re(\Delta w1, [\Delta , h\alpha \cdot \nabla ]w1)\Omega .(55)

Since we can explicitly compute the commutator

[\Delta , h\alpha \cdot \nabla ]w1 =(\Delta h1)(\partial x1
w1) + 2(\partial x1

h1)(\partial 
2
x1
w1) + 2(\partial x2

h2)(\partial 
2
x2
w1) + (\Delta h2)(\partial x2

w1)

+ 2div(h\alpha )(\partial x1
\partial x2

w1)

and

(56)
\bigm| \bigm| \bigm| \bigm| [\Delta , h\alpha \cdot \nabla ]w1

\bigm| \bigm| \bigm| \bigm| 
L2(\Omega )

\leq r\bfU | | \Delta w1| | L2(\Omega ),

combining (55)--(56) we eventually get

(57)  - Re(\Delta 2w1, h\alpha \cdot \nabla w1)\Omega \leq 1

2

\int 
\partial \Omega 

[U \cdot \nu  - \alpha ] | \Delta w1| 2 d\partial \Omega + Cr\bfU \| \Delta w1\| 2\Omega .

Moreover, for the first term of (35), we have

(\Delta (U\nabla w1),\Delta w1)\Omega = ((U\nabla w1),\Delta w1)\Omega  - ([U\cdot \nabla ,\Delta ]w1,\Delta w1)\Omega 

=

\int 
\partial \Omega 

(U \cdot \nu ) | \Delta w1| 2 d\partial \Omega  - 
\int 
\partial \Omega 

div(U) | \Delta w1| 2 d\partial \Omega 

 - ([U\cdot \nabla ,\Delta ]w1,\Delta w1)\Omega  - 
\int 
\Omega 

\Delta w1U\cdot \nabla (\Delta w1)d\Omega ,
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1728 PELIN G. GEREDELI

where we also use the commutator expression in (50). This gives us

(58) Re(\Delta (U\nabla w1),\Delta w1)\Omega \leq 1

2

\int 
\partial \Omega 

(U \cdot \nu ) | \Delta w1| 2 d\partial \Omega + Cr\bfU \| \Delta w1\| 2\Omega .

Now applying (57)--(58) to (35), we obtain

(F) ReI6 \leq 
\int 
\partial \Omega 

\biggl[ 
U \cdot \nu  - \alpha 

2

\biggr] 
| \Delta w1| 2 d\partial \Omega + Cr\bfU \| \Delta w1\| 2\Omega .

To estimate I7, since w2 \in H1
0 (\Omega ), we have

Re(h\alpha \cdot \nabla w2, w2)\Omega =  - 1

2

\int 
\Omega 

div(h\alpha ) | w2| 2 d\Omega 

=  - 1

2

\int 
\Omega 

div(h\alpha ) | (u0)3  - U\nabla w1| 2 d\Omega 

after using the boundary condition in (A.v). Applying the last relation to the RHS
of (36) and recalling that h\alpha = U| \Omega  - \alpha g, we get

ReI7 = Re(h\alpha \cdot \nabla w2, w2)\Omega +Re(h\alpha \cdot \nabla (U\nabla w1), (u0)3  - U\nabla w1)\scrO 

(59) \leq Cr\bfU 

\Bigl\{ 
\| u0\| 2H1(\scrO ) + \| \Delta w1\| 2\Omega 

\Bigr\} 
,

where we also implicitly use the Sobolev trace theorem. Finally, for the term I8, we
proceed in a manner similar to that adopted for I7, and we have

I8 = (h\alpha \cdot \nabla (u0)3, h\alpha \cdot \nabla w1 + \xi w1)\Omega 

+\xi ((u0)3, (u0)3  - U \cdot \nabla w1 + h\alpha \cdot \nabla w1 + \xi w1)\Omega 

\leq C
\bigl[ 
r\bfU + \xi 2

\bigr] \Bigl\{ 
\| u0\| 2H1(\scrO ) + \| \Delta w1\| 2\Omega 

\Bigr\} 

(60) + C\xi 
\Bigl[ 
\| u0\| 2H1(\scrO ) + r\bfU 

\Bigl\{ 
\| u0\| 2H1(\scrO ) + \| \Delta w1\| 2\Omega 

\Bigr\} \Bigr] 
.

Now, if we apply (41)--(60) to the RHS of (29), we obtain

Re(([\scrA +B]\varphi ,\varphi ))H\bot 
N
\leq  - (\sigma (u0), \epsilon (u0))\scrO  - \eta \| u0\| 2\scrO  - \xi \| p0\| 2\scrO  - \xi \| \Delta w1\| 2\Omega 

+

\int 
\partial \Omega 

\biggl[ 
U \cdot \nu  - \alpha 

2

\biggr] 
| \Delta w1| 2 d\partial \Omega 

+C
\bigl[ 
r\bfU + \xi r\bfU + \xi 2 + \xi 

\bigr] 
\| u0\| 2H1(\scrO )

+C
\bigl[ 
r\bfU + \xi r\bfU + \xi 2 + \xi 2r\bfU 

\bigr] \Bigl\{ 
\| p0\| 2\scrO + \| \Delta w1\| 2\Omega 
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BOUNDED SEMIGROUP WELLPOSEDNESS 1729

(61) + C\xi \| u0\| 2H1(\scrO ) \{ \| p0\| \scrO + \| \Delta w1\| \Omega \} .

We recall now the value of \alpha = 2 \| U\| \ast (see (26)) to get

Re(([\scrA +B]\varphi ,\varphi ))H\bot 
N
\leq  - (\sigma (u0), \epsilon (u0))\scrO  - \eta \| u0\| 2\scrO  - \xi \| p0\| 2\scrO  - \xi \| \Delta w1\| 2\Omega 

+
\bigl[ 
(C1 + C2r\bfU )\xi 2 + C2r\bfU \xi + C2r\bfU 

\bigr] \Bigl\{ 
\| p0\| 2\scrO + \| \Delta w1\| 2\Omega 

\Bigr\} 

(62) +
1

2

\Bigl\{ 
(\sigma (u0), \epsilon (u0))\scrO + \eta \| u0\| 2\scrO 

\Bigr\} 
+ C3

\bigl[ 
r\bfU + \xi r\bfU + \xi 2 + \xi 

\bigr] 
\| u0\| 2H1(\scrO ) ,

where the positive constants C1, C2, and C3 are obtained with the application of
the Holder--Young and Korn inequalities and C2 depends on the constant in Korn's
inequality. We now specify \xi be a zero of the equation

(C1 + C2r\bfU )\xi 2 +

\biggl( 
C2r\bfU  - 1

2

\biggr) 
\xi + C2r\bfU = 0.

Namely,

(63) \xi =
1
2  - C2r\bfU 

2(C1 + C2r\bfU )
 - 

\sqrt{} 
( 12  - C2r\bfU )2  - 4C2(C1 + C2r\bfU )r\bfU 

2(C1 + C2r\bfU )
,

where the radicand is nonnegative for \| U\| \ast sufficiently small. Then (62) becomes

Re(([\scrA +B]\varphi ,\varphi ))H\bot 
N
\leq  - (\sigma (u0), \epsilon (u0))\scrO 

4
 - \eta 

\| u0\| 2\scrO 
4

 - \xi 

2
\| p0\| 2\scrO  - \xi 

2
\| \Delta w1\| 2\Omega 

 - (\sigma (u0), \epsilon (u0))\scrO 
4

 - \eta 
\| u0\| 2\scrO 

4

+CK
\bigl[ 
r\bfU + \xi r\bfU + \xi 2 + \xi 

\bigr] \Bigl\{ 
(\sigma (u0), \epsilon (u0))\scrO + \eta \| u0\| 2\scrO 

\Bigr\} 
.

With \xi as prescribed in (63), we now have the dissipativity estimate (28) for \| U\| \ast 
small enough. (Here we also implicitly reuse Korn's inequality and CK is the constant
there.) This concludes the proof of Lemma 8.

3.2. Maximality of the generator (\bfscrA + \bfitB ). In order to complete the proof
of Theorem 6, we also need to show that the semigroup generator (\scrA + B) : D(\scrA +
B) \cap H\bot 

N \subset H\bot 
N \rightarrow H\bot 

N is maximal dissipative. This is given in the following lemma.

Lemma 9. With reference to problem (4)--(6), the semigroup generator (\scrA +B) :
D(\scrA + B) \cap H\bot 

N \subset H\bot 
N \rightarrow H\bot 

N is maximal dissipative. In other words, the following
range condition holds:

(64) Range[\lambda I  - (\scrA +B)] = H\bot 
N

for some \lambda > 0.
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Proof of Lemma 9. Proof of relation (64) is based on showing that [\lambda I  - (\scrA +
B)] - 1 \in \scrL (H\bot 

N ). For this, we appeal to linear operator theory and exploit Lemma 14
in the appendix as our main tool. So, with respect to Lemma 14, the requirements to
be shown are as follows:
(M - I) Range[\lambda I  - (\scrA +B)] is dense in H\bot 

N .
(M - II) [\lambda I  - (\scrA +B)] is a closed operator.
(M - III) There is an m > 0 such that

\| | [\lambda I  - (\scrA +B)]\varphi | \| H\bot 
N
\geq m \| | \varphi | \| H\bot 

N

for all \varphi \in D([\lambda I  - (\scrA +B)]) \cap H\bot 
N = D(\scrA +B) \cap H\bot 

N .
STEP (M-I). First, to prove that Range[\lambda I  - (\scrA +B)] is dense in H\bot 

N , we use
the fact that

Range[\lambda I  - (\scrA +B)] = Null([\lambda I  - (\scrA +B)]\ast )\bot ,

which is given in the following lemma.

Lemma 10. Let parameter \lambda > 0 be given. Then for \| U\| \ast sufficiently small,

Null[\lambda I  - (\scrA +B)\ast ] = \{ 0\} .

Proof. Suppose that \varphi = [p0, u0, w1, w2] \in D((\scrA +B)\ast ) \cap H\bot 
N satisfies

(65) [\lambda I  - (\scrA +B)\ast ]\varphi = 0.

In PDE terms, this is
(66)\left\{                       

\lambda p0  - U\nabla p0  - div(u0) = 0 in \scrO ,
\lambda u0  - \nabla p0  - div\sigma (u0) + \eta u0  - U\nabla u0 + div(U)u0 = 0 in \scrO ,

u0 \cdot n = 0 on S,
u0 \cdot n = w2 on \Omega ,

\lambda w1 + w2  - \r A - 1 \{ div[U1, U2]+U\cdot \nabla \} 
\bigl[ 
p0 + 2\nu \partial x3(u0)3 + \lambda div(u0) - \Delta 2w1

\bigr] 
\Omega 

 - U\cdot \nabla w1  - \Delta \r A - 1\nabla 
\ast 
(\nabla \cdot (U\cdot \nabla w1)) = 0 in \Omega ,

\lambda w2 + [p0 + 2\nu \partial x3(u0)3 + \lambda div(u0)] | \Omega  - \Delta 2w1 = 0 in \Omega ,

w1| \partial \Omega = \partial w1

\partial \nu | \partial \Omega = 0.

Since we have from (65)

(67) 0 = \lambda \| \varphi \| 2\scrH  - ((\scrA +B)\ast \varphi ,\varphi )\scrH ,

integrating by parts as usual, we get

\lambda \| \varphi \| 2\scrH + (\sigma (u0), \epsilon (u0))\scrO + \eta \| u0\| 2\scrO =  - 1

2

\int 
\scrO 
div(U)[| p0| 2 + 3| u0| 2]d\scrO 

+
\bigl( 
\{ div[U1, U2]+U\cdot \nabla \} 

\bigl[ 
p0 + 2\nu \partial x3

(u0)3 + \lambda div(u0) - \Delta 2w1

\bigr] 
\Omega 
, w1

\bigr) 
\Omega 

(68) + (\Delta [U\cdot \nabla w1],\Delta w1)\Omega + (\nabla \ast (\nabla \cdot (U\cdot \nabla w1)),\Delta w1)\Omega .

To handle the terms on the RHS of (68), we first invoke the map given in (22) and
apply the multiplier \nabla \psi (p0, w1) to the fluid equation (66)2. This gives

\lambda (u0,\nabla \psi (p0, w1))\scrO  - (\nabla p0,\nabla \psi (p0, w1))\scrO  - (div\sigma (u0),\nabla \psi (p0, w1))\scrO 
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(69) + \eta (u0,\nabla \psi (p0, w1))\scrO  - (U\nabla u0,\nabla \psi (p0, w1))\scrO +(div(U)u0,\nabla \psi (p0, w1))\scrO = 0.

Let us look at the terms of (69):

 - (\nabla p0,\nabla \psi (p0, w1))\scrO =  - 
\int 
\partial \scrO 

p0(\nabla \psi (p0, w1) \cdot n)d\partial \scrO +

\int 
\scrO 
p0div(\nabla \psi (p0, w1))d\scrO 

(70) =  - 
\int 
\Omega 

p0w1d\Omega  - 
\int 
\scrO 
| p0| 2d\scrO .

Also,

 - (div\sigma (u0),\nabla \psi (p0, w1))\scrO + \eta (u0,\nabla \psi (p0, w1))\scrO 

= (\sigma (u0), \epsilon (\nabla \psi (p0, w1)))\scrO  - \langle \sigma (u0) \cdot n,\nabla \psi (p0, w1)\rangle \partial \scrO 

(71) + \eta (u0,\nabla \psi (p0, w1))\scrO .

Applying (70)--(71) to (69), we then have\int 
\scrO 
| p0| 2d\scrO =\lambda (u0,\nabla \psi (p0, w1))\scrO  - (U\nabla u0,\nabla \psi (p0, w1))\scrO 

+(div(U)u0,\nabla \psi (p0, w1))\scrO  - ([p0 + 2\nu \partial x3(u0)3 + \lambda div(u0)]\Omega , w1)\Omega 

(72) + (\sigma (u0), \epsilon (\nabla \psi (p0, w1)))\scrO + \eta (u0,\nabla \psi (p0, w1))\scrO .

Subsequently, we apply the multiplier w1 to the structural equation in (66)7 and use
(72) to get \int 

\scrO 
| p0| 2d\scrO +

\bigl( 
\Delta 2w1, w1

\bigr) 
\Omega 
= \lambda (w2, w1)\Omega + \lambda (u0,\nabla \psi (p0, w1))\scrO 

+(\sigma (u0), \epsilon (\nabla \psi (p0, w1)))\scrO + \eta (u0,\nabla \psi (p0, w1))\scrO 

(73)  - (U\nabla u0,\nabla \psi (p0, w1))\scrO + (div(U)u0,\nabla \psi (p0, w1))\scrO .

To estimate the terms on the RHS of (73), we appeal to the elliptic regularity results
for solutions of second order BVPs on corner domains [23]. At this point, using the
geometrical assumptions in Condition 1 and the higher regularity estimate

\| \psi (p, w)\| H2(\scrO ) \leq C
\Bigl[ 
\| p\| \scrO + \| wext\| 

H
1
2
+\varepsilon (\partial \scrO )

\Bigr] 
(74) \leq C[\| p\| \scrO + \| w\| H2

0 (\Omega )],

where

wext(x) =

\biggl\{ 
0, x \in S,

w(x), x \in \Omega ,
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1732 PELIN G. GEREDELI

we obtain

(75)

\int 
\scrO 
| p0| 2d\scrO +

\int 
\Omega 

| \Delta w1| 2d\Omega \leq C\epsilon r\bfU 

\Bigl\{ 
(\sigma (u0), \epsilon (u0))\scrO + \eta \| u0\| 2\scrO + \lambda \| \varphi \| 2\scrH 

\Bigr\} 
.

Here, we also used the Holder--Young inequalities, and r\bfU and \| U\| \ast are given as in
(39) and (12), respectively. Now, to proceed with the second term on the RHS of
(68), \bigl( 

\{ div[U1, U2]+U\cdot \nabla \} 
\bigl[ 
p0 + 2\nu \partial x3

(u0)3 + \lambda div(u0) - \Delta 2w1

\bigr] 
\Omega 
, w1

\bigr) 
\Omega 

= (\{ div[U1, U2]+U\cdot \nabla \} [p0 + 2\nu \partial x3
(u0)3 + \lambda div(u0)]\Omega , w1)\Omega 

 - 
\bigl( 
\{ div[U1, U2]+U\cdot \nabla \} \Delta 2w1, w1

\bigr) 
\Omega 

(76) = K1 +K2.

For K1,

K1 = (\{ div[U1, U2]+U\cdot \nabla \} [p0 + 2\nu \partial x3
(u0)3 + \lambda div(u0)]\Omega , w1)\Omega 

(77) =  - ([p0 + 2\nu \partial x3(u0)3 + \lambda div(u0)]\Omega ,U\cdot \nabla w1)\Omega .

To handle the term on the RHS of (77), let D\Omega : H
1
2+\epsilon 
0 (\Omega ) \rightarrow H1(\scrO ) be defined by

(78) D\Omega g = f \leftrightarrow 

\left\{    - \Delta f = 0 in \scrO ,
f | S = 0 on S,
f | \Omega = g on \Omega .

Therewith,

([p0 + 2\nu \partial x3(u0)3 + \lambda div(u0)]\Omega ,U\cdot \nabla w1)\Omega = (\sigma (u0), \epsilon (D\Omega (U\cdot \nabla w1)))\scrO 

+(\nabla p0, D\Omega (U\cdot \nabla w1))\scrO + (p0,div(D\Omega (U\cdot \nabla w1)))\scrO + (div\sigma (u0), D\Omega (U\cdot \nabla w1))\scrO 

= (\sigma (u0), \epsilon (D\Omega (U\cdot \nabla w1)))\scrO + \eta (u0, D\Omega (U\cdot \nabla w1))\scrO + (p0,div(D\Omega (U\cdot \nabla w1)))\scrO 

(79) +\lambda (u0, D\Omega (U\cdot \nabla w1))\scrO  - (U\cdot \nabla u0, D\Omega (U\cdot \nabla w1))\scrO +(div(U)u0, D\Omega (U\cdot \nabla w1))\scrO .

Now, applying (79) to the RHS of (77) and invoking (75), we then have

| K1| =
\bigm| \bigm| (\{ div[U1, U2]+U\cdot \nabla \} [p0 + 2\nu \partial x3

(u0)3 + \lambda div(u0)]\Omega , w1)\Omega 
\bigm| \bigm| 

(80) \leq Cr\bfU 

\Bigl\{ 
(\sigma (u0), \epsilon (u0))\scrO + \eta \| u0\| 2\scrO + \lambda \| \varphi \| 2\scrH 

\Bigr\} 
,
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where again r\bfU and \| U\| \ast are given as in (39) and (12), respectively. Let us now
continue with K2:

(81) K2 =  - 
\bigl( 
\{ div[U1, U2]+U\cdot \nabla \} \Delta 2w1, w1

\bigr) 
\Omega 
=

\bigl( 
\Delta 2w1,U\cdot \nabla w1

\bigr) 
\Omega 
.

If we argue as in the estimates (53)--(54) by replacing h\alpha with U, we then have\bigl( 
\Delta 2w1,U\cdot \nabla w1

\bigr) 
\Omega 
= (\Delta w1, [\Delta ,U \cdot \nabla ]w1)\Omega 

(82)  - 1

2

\int 
\partial \Omega 

(U \cdot \nu )| \Delta w1| 2d\partial \Omega  - 1

2

\int 
\Omega 

div(U)| \Delta w1| 2d\Omega .

For the second term on the RHS of (82), let \gamma (x) be a C2-extension of the normal
vector \nu (x) to the boundary of \Omega . Applying the multiplier \gamma \cdot \nabla w1 to the structural
equation (66)7, we get
(83)\bigl( 

\Delta 2w1, \gamma \cdot \nabla w1

\bigr) 
\Omega 
= ([p0 + 2\nu \partial x3

(u0)3 + \lambda div(u0)] | \Omega , \gamma \cdot \nabla w1)\Omega + \lambda (w2, \gamma \cdot \nabla w1)\Omega .

Revoking the elliptic map (78), we have

([p0 + 2\nu \partial x3(u0)3 + \lambda div(u0)] | \Omega , \gamma \cdot \nabla w1)\Omega 

= (\sigma (u0), \epsilon (D\Omega (\gamma \cdot \nabla w1)))\scrO + \eta (u0, D\Omega (\gamma \cdot \nabla w1))\scrO + (p0,div(D\Omega (\gamma \cdot \nabla w1)))\scrO 

(84) + \lambda (u0, D\Omega (\gamma \cdot \nabla w1))\scrO  - (U\cdot \nabla u0, D\Omega (\gamma \cdot \nabla w1))\scrO + (div(U)u0, D\Omega (U\cdot \nabla w1))\scrO .

Moreover, proceeding as in (82), we get\bigl( 
\Delta 2w1, \gamma \cdot \nabla w1

\bigr) 
\Omega 
= (\Delta w1, [\Delta , \gamma \cdot \nabla ]w1)\Omega 

(85)  - 1

2

\int 
\partial \Omega 

| \Delta w1| 2d\partial \Omega  - 1

2

\int 
\Omega 

div(\gamma )| \Delta w1| 2d\Omega .

Now, applying (84), (85) to (83), using (56) (replacing h\alpha with \gamma ), and subsequently
reinvoking (75), we obtain

(86)

\int 
\partial \Omega 

| \Delta w1| 2d\partial \Omega \leq Cr\bfU 

\Bigl\{ 
(\sigma (u0), \epsilon (u0))\scrO + \eta \| u0\| 2\scrO + \lambda \| \varphi \| 2\scrH 

\Bigr\} 
.

Combining now (81), (82), (86), and (75), we have

| K2| =
\bigm| \bigm| \bigl( \{ div[U1, U2]+U\cdot \nabla \} \Delta 2w1, w1

\bigr) 
\Omega 

\bigm| \bigm| 
(87) \leq Cr\bfU 

\Bigl\{ 
(\sigma (u0), \epsilon (u0))\scrO + \eta \| u0\| 2\scrO + \lambda \| \varphi \| 2\scrH 

\Bigr\} 
.

Hence, the second term of (68) can be handled by\bigm| \bigm| \bigm| \bigl( \{ div[U1, U2]+U\cdot \nabla \} 
\bigl[ 
p0 + 2\nu \partial x3

(u0)3 + \lambda div(u0) - \Delta 2w1

\bigr] 
\Omega 
, w1

\bigr) 
\Omega 

\bigm| \bigm| \bigm| 
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\leq | K1| + | K2| 

(88) \leq Cr\bfU 

\Bigl\{ 
(\sigma (u0), \epsilon (u0))\scrO + \eta \| u0\| 2\scrO + \lambda \| \varphi \| 2\scrH 

\Bigr\} 
.

Also, for the third and fourth terms of (68),

(\Delta [U\cdot \nabla w1],\Delta w1)\Omega + (\nabla \ast (\nabla \cdot (U\cdot \nabla w1)),\Delta w1)\Omega 

= (U\cdot \nabla (\Delta w1),\Delta w1)\Omega + ([\Delta ,U \cdot \nabla ]w1,\Delta w1)\Omega + (\nabla [U\cdot \nabla w1],\nabla (\Delta w1))\Omega 

=
1

2

\int 
\partial \Omega 

(U \cdot \nu )| \Delta w1| 2d\partial \Omega  - 1

2

\int 
\Omega 

div(U)| \Delta w1| 2d\Omega 

+([\Delta ,U \cdot \nabla ]w1,\Delta w1)\Omega  - 
\bigl( 
U\cdot \nabla w1,\Delta 

2w1

\bigr) 
\Omega 
.

Proceeding as above, we then have

| (\Delta [U\cdot \nabla w1],\Delta w1)\Omega + (\nabla \ast (\nabla \cdot (U\cdot \nabla w1)),\Delta w1)\Omega | 

(89) \leq Cr\bfU 

\Bigl\{ 
(\sigma (u0), \epsilon (u0))\scrO + \eta \| u0\| 2\scrO + \lambda \| \varphi \| 2\scrH 

\Bigr\} 
.

Finally, if we apply the estimates (75), (88), and (89) to the RHS of (68), we arrive
at

\lambda \| \varphi \| 2\scrH + (\sigma (u0), \epsilon (u0))\scrO + \eta \| u0\| 2\scrO 

\leq C \| U\| \ast 
\Bigl\{ 
\lambda \| \varphi \| 2\scrH + (\sigma (u0), \epsilon (u0))\scrO + \eta \| u0\| 2\scrO 

\Bigr\} 
.

For \| U\| \ast (see (12)) small enough, independent of \lambda > 0, we infer that the solution \varphi 
of (65) is zero, which concludes the proof of Lemma 10.

STEP (M-II).We continue with showing that [\lambda I - (\scrA +B)] is a closed operator.
For this, it will be enough to prove the following lemma.

Lemma 11. The operator \scrA +B : D(\scrA +B) \cap H\bot 
N \rightarrow H\bot 

N is closed.

Proof. Let \{ \varphi n\} = \{ [p0n, u0n, w1n, w2n]\} \subseteq D(\scrA +B) \cap H\bot 
N satisfy

\varphi n \rightarrow \varphi in H\bot 
N ,

(\scrA +B)\varphi n \rightarrow \varphi \ast in H\bot 
N .

We must show that \varphi \in D(\scrA +B)\cap H\bot 
N and (\scrA +B)\varphi = \varphi \ast . To start, via the relation

(28) in Lemma 8, we have

(\sigma (u0m  - u0n), \epsilon (u0m  - u0n))\scrO 
4

\leq  - Re([\scrA +B](\varphi m  - \varphi n, \varphi m  - \varphi n))H\bot 
N
,

from which we infer that

(90) u0n \rightarrow u in H1(\scrO ).
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Assume that for \varphi \ast 
n = \{ [p\ast 0n, u\ast 0n, w\ast 

1n, w
\ast 
2n]\} \subseteq H\bot 

N

(91) (\scrA +B)\varphi n = \varphi \ast 
n.

In PDE terms this gives

(92)

\left\{       
 - U\nabla p0n  - div(u0n) - div(U)p0n = p\ast 0n in \scrO ,

 - \nabla p0n + div\sigma (u0n) - \eta u0n  - U\nabla u0n = u\ast 0n in \scrO ,
w2n +U\cdot \nabla w1n = w\ast 

1n in \Omega ,
p0n  - [2\nu \partial x3(u0n)3 + \lambda div(u0n)\} | \Omega  - \Delta 2w1n = w\ast 

2n in \Omega .

If we read off the first equation in (92) to have

U\nabla p0n =  - div(u0n) - div(U)p0n  - p\ast 0n

and take upon the limit when n\rightarrow \infty , we get

(93) U\nabla p0 = [ - div(u0) - div(U)p0  - p\ast 0] \in L2(\scrO ).

Moreover, using the third equation in (92), we have

(94) w2 = lim
n\rightarrow \infty 

w2n = lim
n\rightarrow \infty 

[w\ast 
1n  - U\cdot \nabla w1n] = [w\ast 

1  - U\cdot \nabla w1] \in H1
0 (\Omega ).

In addition, from the domain criteria for (\scrA + B), we have u0n = \mu 0n + \widetilde \mu 0n, where
\mu 0n \in V0 and \widetilde \mu 0n \in H1(\scrO ) satisfies

\widetilde \mu 0n =

\Biggl\{ 
0 on S,

(w2n +U \cdot \nabla w1n)n on \Omega .

Since V0 is closed, then by (90), (94), and the Sobolev trace theorem, we have

(95) u0 = \mu 0 + \widetilde \mu 0,

where \mu 0 \in V0 and \widetilde \mu 0 \in H1(\scrO ) satisfies

\widetilde \mu 0 =

\Biggl\{ 
0 on S,

(w2 +U \cdot \nabla w1)n on \Omega .

Furthermore, we recall the form of the adjoint (\scrA +B)\ast :D(\scrA +B)\ast \cap H\bot 
N \subset H\bot 

N \rightarrow H\bot 
N

in (109) and given arbitrary \Phi \in \scrD (\scrO ) we will have then [0,\Phi , 0, 0] \in D(\scrA +B)\ast \cap H\bot 
N .

Therewith, we have\left(    \varphi , (\scrA +B)\ast 

\left[    
0
\Phi 
0
0

\right]    
\right)    

\scrH 

= lim
n\rightarrow \infty 

\left(    \varphi n, (\scrA +B)\ast 

\left[    
0
\Phi 
0
0

\right]    
\right)    

\scrH 

= lim
n\rightarrow \infty 

\left(    (\scrA +B)\varphi n,

\left[    
0
\Phi 
0
0

\right]    
\right)    

\scrH 

=

\left(    (\varphi \ast ,

\left[    
0
\Phi 
0
0

\right]    
\right)    

\scrH 

,
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or

(p0,div(\Phi ))\scrO + (u0,div\sigma (\Phi ) - \eta \Phi +U \cdot \nabla \Phi + div(U)\Phi )\scrO = (u\ast 0,\Phi )\scrO .

Upon an integration by parts this relation now becomes

 - (\nabla p0,\Phi )\scrO + (div\sigma (u0),\Phi )\scrO  - \eta (u0,\Phi )\scrO  - (U \cdot \nabla u0,\Phi )\scrO = (u\ast 0,\Phi )\scrO \forall \Phi \in \scrD (\scrO ).

Applying a density argument to the above relation gives

(96)  - \nabla p0 + div\sigma (u0) - \eta u0  - U \cdot \nabla u0 = u\ast 0 \in L2(\scrO ).

A further integration by parts assigns a meaning to the trace [\sigma (u0)n - p0n]\partial \scrO in the

H - 1
2 -sense. What is more, if \gamma +0 (\cdot ) \in L(H

1
2 (\partial \scrO ), H1(\scrO )) is the right inverse of the

Sobolev trace map \gamma 0(\cdot ) = (\cdot )| \partial \scrO , then for every g \in H
1
2 (\partial \scrO ) we have

\langle [\sigma (u0)n - p0n]\partial \scrO , g\rangle \partial \scrO = (\sigma (u0), \epsilon (\gamma 
+
0 (g)))\scrO + (div\sigma (u0), \gamma 

+
0 (g))\scrO 

 - (p0,div\gamma 
+
0 (g))\scrO  - (\nabla p0, \gamma +0 (g))\scrO 

= (\sigma (u0), \epsilon (\gamma 
+
0 (g)))\scrO + \eta (u0, \gamma 

+
0 (g))\scrO + (U \cdot \nabla u0, \gamma +0 (g))\scrO 

+(u\ast 0, \gamma 
+
0 (g))\scrO  - (p0,div\gamma 

+
0 (g))\scrO 

= lim
n\rightarrow \infty 

[(\sigma (u0n), \epsilon (\gamma 
+
0 (g)))\scrO + \eta (u0n, \gamma 

+
0 (g))\scrO + (U \cdot \nabla u0n, \gamma +0 (g))\scrO 

+(u\ast 0n, \gamma 
+
0 (g))\scrO  - (p0n,div\gamma 

+
0 (g))\scrO ]

= lim
n\rightarrow \infty 

\langle [\sigma (u0n)n - p0nn]\partial \scrO , g\rangle \partial \scrO .

That is,

(97) [\sigma (u0n)n - p0nn]\partial \scrO \rightarrow [\sigma (u0)n - p0n]\partial \scrO in H
1
2 (\partial \scrO ).

The last relation in turn allows us to pass to limit in (92)4, and we get

(98) [p0  - (2\nu \partial x3(u0)3 + \lambda div(u0))]| \Omega  - \Delta 2w1 = w\ast 
2 \in L2(\Omega ).

Finally, from (95) and (96) and the Lax--Milgram theorem, the flow component u0 =
\mu 0 + \widetilde \mu 0 can be characterized via the solution \mu 0 \in V0 of the following variational
problem for all \chi \in V0:

(\sigma (\mu 0), \epsilon (\chi ))\scrO + \eta (\mu 0, \chi )\scrO =  - (\sigma (\widetilde \mu 0), \epsilon (\chi ))\scrO  - \eta (\widetilde \mu 0, \chi )\scrO 

+(p0,div(\chi ))\scrO  - (U \cdot \nabla u0, \chi )\scrO  - (u\ast 0, \chi )\scrO 
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BOUNDED SEMIGROUP WELLPOSEDNESS 1737

An integration by parts with respect to this relation now gives, for all \chi \in V0,

 - (div\sigma (u0), \chi )\scrO + \eta (u0, \chi )\scrO + \langle \sigma (u0)n,\chi \rangle \partial \scrO 

=  - (\nabla p0, \chi )\scrO + \langle p0n,\chi \rangle \partial \scrO  - (U \cdot \nabla u0, \chi )\scrO  - (u\ast 0, \chi )\scrO 

or, after using (96),

\langle \sigma (u0)n - p0n,\chi \rangle \partial \scrO = 0 for every \chi \in V0,

which gives in the sense of distributions

(99) [\sigma (u0)n - p0n] \cdot \tau = 0 \forall \tau \in TH
1
2 (\partial \scrO ).

Hence, the estimates (90)--(99) now give the desired conclusion and complete the proof
of Lemma 11.

STEP (M-III). Finally, we prove the following fact.

Lemma 12. For given \lambda > 0, we have the existence of a constant \varrho > 0 such that
for all \varphi \in D(\scrA +B) \cap H\bot 

N

(100) \| | [\lambda I  - (\scrA +B)]\varphi | \| H\bot 
N
\geq \varrho \| | \varphi | \| H\bot 

N
,

where the norm \| | \cdot | \| H\bot 
N

is as defined in (21).

Proof. Using the estimate (28) in Lemma 8, we have, for given \lambda > 0,

(([\lambda I  - (\scrA +B)]\varphi ,\varphi ))H\bot 
N

\geq \lambda \| | \varphi | \| 2H\bot 
N
+ C1 \| u0\| 2H1(\scrO ) +

\epsilon 

2

\Bigl[ 
\| p0\| 2\scrO + \| \Delta w1\| 2\Omega 

\Bigr] 

(101) \geq \lambda \| | \varphi | \| 2H\bot 
N
+

\biggl( 
C1  - 

\epsilon 

2

\biggr) 
\| u0\| 2H1(\scrO ) +

\epsilon 

2

\Bigl[ 
\| p0\| 2\scrO + \| u0\| 2\scrO + \| \Delta w1\| 2\Omega 

\Bigr] 
.

With respect to the RHS, we first add and subtract so as to have

\| u0\| 2\scrO = \| [u0  - \alpha D(g \cdot \nabla w1)e3 + \xi \nabla \psi (p0, w1)] + \alpha D(g \cdot \nabla w1)e3  - \xi \nabla \psi (p0, w1)\| 2\scrO 

= \| [u0  - \alpha D(g \cdot \nabla w1)e3 + \xi \nabla \psi (p0, w1)]\| 2\scrO 

+2Re (u0  - \alpha D(g \cdot \nabla w1)e3 + \xi \nabla \psi (p0, w1), \alpha D(g \cdot \nabla w1)e3  - \xi \nabla \psi (p0, w1))\scrO 

(102) + \| \alpha D(g \cdot \nabla w1)e3  - \xi \nabla \psi (p0, w1)\| 2\scrO .

By using the Holder--Young inequalities we get

\| u0\| 2\scrO \geq (1 - \delta ) \| u0  - \alpha D(g \cdot \nabla w1)e3 + \xi \nabla \psi (p0, w1)\| 2\scrO 

D
ow

nl
oa

de
d 

10
/0

4/
21

 to
 1

29
.9

3.
16

1.
22

3 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1738 PELIN G. GEREDELI

(103) + (1 - C\delta ) \| \alpha D(g \cdot \nabla w1)e3  - \xi \nabla \psi (p0, w1)\| 2\scrO .

Using the boundedness of the maps D(\cdot ) and \psi (\cdot , \cdot ) defined in (25) and (24), respec-
tively, we then have

\| u0\| 2\scrO \geq (1 - \delta ) \| u0  - \alpha D(g \cdot \nabla w1)e3 + \xi \nabla \psi (p0, w1)\| 2\scrO 

(104) + C2(1 - C\delta )
\Bigl[ 
\| U\| 2\ast + \xi 2

\Bigr] 
\| \Delta w1\| 2\Omega ,

where \| U\| \ast is defined as in (12). Now, applying (104) to the RHS of (101), we get

(([\lambda I  - (\scrA +B)]\varphi ,\varphi ))H\bot 
N
\geq \lambda \| | \varphi | \| 2H\bot 

N
+

\biggl( 
C1  - 

\epsilon 

2

\biggr) 
\| u0\| 2H1(\scrO )

+
\epsilon 

2

\biggl\{ 
\| p0\| 2\scrO + (1 - \delta ) \| u0  - \alpha D(g \cdot \nabla w1)e3 + \xi \nabla \psi (p0, w1)\| 2\scrO 

(105) +
\Bigl[ 
1 + C2(1 - C\delta )

\Bigl[ 
\| U\| 2\ast + \xi 2

\Bigr] \Bigr] 
\| \Delta w1\| 2\Omega 

\biggr\} 
.

If we take now \| U\| \ast so small such that

\| U\| 2\ast + \xi 2 <
1

2C2(C\delta  - 1)
,

we then have

(([\lambda I  - (\scrA +B)]\varphi ,\varphi ))H\bot 
N
\geq \lambda \| | \varphi | \| 2H\bot 

N
+

\biggl( 
C1  - 

\epsilon 

2

\biggr) 
\| u0\| 2H1(\scrO )

+
\epsilon 

2

\biggl\{ 
\| p0\| 2\scrO + (1 - \delta ) \| u0  - \alpha D(g \cdot \nabla w1)e3 + \xi \nabla \psi (p0, w1)\| 2\scrO +

1

2
\| \Delta w1\| 2\Omega 

\biggr\} 

\geq \epsilon 

2

\biggl\{ 
\| p0\| 2\scrO + (1 - \delta ) \| u0  - \alpha D(g \cdot \nabla w1)e3 + \xi \nabla \psi (p0, w1)\| 2\scrO +

1

2
\| \Delta w1\| 2\Omega 

\biggr\} 

(106) + \lambda \| w2 + h\alpha \cdot \nabla w1 + \xi w1\| 2\scrO .

Using the Cauchy--Schwarz inequality, now we obtain

\| | [\lambda I  - (\scrA +B)]\varphi | \| H\bot 
N
\| | \varphi | \| H\bot 

N

\geq \epsilon 

2

\biggl\{ 
\| p0\| 2\scrO + (1 - \delta ) \| u0  - \alpha D(g \cdot \nabla w1)e3 + \xi \nabla \psi (p0, w1)\| 2\scrO +

1

2
\| \Delta w1\| 2\Omega 

\biggr\} 

(107) + \lambda \| w2 + h\alpha \cdot \nabla w1 + \xi w1\| 2\scrO ,

which gives the desired estimate (100), with therein

\varrho = min
\Bigl\{ \epsilon 
4
, \lambda 

\Bigr\} 
,

and finishes the proof of Lemma 12.
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Now, combining Lemmas 10, 11, and 12 gives that the map [\lambda I - (\scrA +B)] satisfies
the requirements of Lemma 14 in the appendix, which, in turn, yields that

[\lambda I  - (\scrA +B)] - 1 \in \scrL (H\bot 
N ),

and the range condition (64) holds. This finishes the proof of Lemma 9.
By Lemmas 8 and 9, we have the desired contraction semigroup generation with

respect to the special inner product ((\cdot , \cdot ))H\bot 
N
. Hence we have the asserted wellposed-

ness statement of Theorem 6. Moreover, from the values of the parameters \alpha and \xi 
in (26) and (63), respectively, as well as the definition of ((\cdot , \cdot ))H\bot 

N
in (20), we infer

that e(\scrA +B)t is uniformly bounded in time, in the standard \scrH -norm. In fact, given
\phi \ast = [p\ast , u\ast , w\ast 

1 , w
\ast 
2 ] \in H\bot 

N , set

(108) \phi (t) =

\left[    
p(t)
u(t)
w1(t)
w2(t)

\right]    = e(\scrA +B)t

\left[    
p\ast 

u\ast 

w\ast 
1

w\ast 
2

\right]    .
Then,

\| \phi (t)\| 2\scrH = \| p\| 2\scrO + \| u\| 2\scrO + \| \Delta w1\| 2\Omega + \| w2\| 2\Omega 

\leq C
\Bigl[ 
\| p\| 2\scrO + \| u - \alpha D(g \cdot \nabla w1)e3 + \xi \nabla \psi (p, w1)\| 2\scrO + \alpha 2 \| D(g \cdot \nabla w1)e3\| 2\scrO 

+\xi 2 \| \nabla \psi (p, w1)\| 2\scrO + \| \Delta w1\| 2\Omega + \| w2 + h\alpha \cdot \nabla w1 + \xi w1\| 2\Omega + \| h\alpha \cdot \nabla w1 + \xi w1\| 2\Omega 
\Bigr] 

\leq C
\Bigl[ \bigm\| \bigm\| \bigm\| \bigm| \bigm| \bigm| e(\scrA +B)t\phi \ast 

\bigm| \bigm| \bigm| \bigm\| \bigm\| \bigm\| 2
H\bot 

N

+\alpha 2 \| D(g \cdot \nabla w1)e3\| 2\scrO +\xi 
2 \| \nabla \psi (p, w1)\| 2\scrO +\| h\alpha \cdot \nabla w1 + \xi w1\| 2\Omega 

\Bigr] 
.

Using the fact that e(\scrA +B)t is a contraction semigroup on H\bot 
N with respect to the

norm \| | \cdot | \| H\bot 
N
, and then combining this fact with (21), we have

\| \phi (t)\| 2\scrH \leq C[\| U\| 2\ast + \xi 2] \| \phi (t)\| 2\scrH + C1 \| \phi \ast \| 2\scrH .

For \| U\| \ast small enough, we then have

\| \phi (t)\| \scrH \leq C\ast \| \phi \ast \| \scrH for all t > 0.

This concludes the proof of Theorem 6.

4. Appendix. In this section we will provide some useful lemmas that are crit-
ical in this manuscript. In reference to problem (4)--(6), we start with defining the
adjoint operator (\scrA + B)\ast : D((\scrA + B)\ast ) \cap H\bot 

N \subset H\bot 
N \rightarrow H\bot 

N of the semigroup
generator \scrA +B in the following lemma.

Lemma 13. The adjoint operator of the generator (\scrA +B) (given via (16)--(17))
is defined as

(\scrA +B)\ast = \scrA \ast +B\ast 
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=

\left[    
U\cdot \nabla (\cdot ) div(\cdot ) 0 0
\nabla (\cdot ) div\sigma (\cdot ) - \eta I +U\cdot \nabla (\cdot ) 0 0
0 0 0  - I

 - [\cdot ]\Omega  - [2\nu \partial x3(\cdot )3 + \lambda div(\cdot )]\Omega \Delta 2 0

\right]    

+

\left[    
div(U)(\cdot ) 0 0 0

0 div(U)(\cdot ) 0 0
\r A - 1

\bigl\{ 
(div([U1, U2]) +U\cdot \nabla )

\bigr\} 
(\cdot )| \Omega \r A - 1

\bigl\{ 
div[U1, U2]+U\cdot \nabla 

\bigr\} 
[2\nu \partial x3 (\cdot )3 + \lambda div(\cdot )]\Omega 0 0

0 0 0 0

\right]    

+

\left[     
 - div(U)(\cdot ) 0 0 0

0 0 0 0

0 0  - \r A - 1
\Bigl\{ 
(div[U1, U2]+U\cdot \nabla )\Delta 2(\cdot )

\Bigr\} 
+U\cdot \nabla (\cdot ) + \Delta \r A - 1\nabla \ast 

(\nabla \cdot (U\cdot \nabla (\cdot ))) 0

0 0 0 0

\right]     

(109) = L1 + L2 +B\ast .

Here, \nabla \ast \in \scrL (L2(\Omega ), [H1(\Omega )]
\prime 
) is the adjoint of the gradient operator \nabla \in \scrL (H1(\Omega ),

L2(\Omega )) and the domain of (\scrA +B)\ast | H\bot 
N

is given as

D((\scrA +B)\ast ) \cap H\bot 
N = \{ (p0, u0, w1, w2) \in L2(\scrO )\times H1(\scrO )\times H2

0 (\Omega )\times L2(\Omega ) :

properties (A\ast .i)--(A\ast .vii) hold\} ,

where the following hold:

1. (A\ast .i) U \cdot \nabla p0 \in L2(\scrO ).

2. (A\ast .ii) div \sigma (u0) +\nabla p0 \in L2(\scrO ) (So, [\sigma (u0)n+ p0n]\partial \scrO \in H - 1
2 (\partial \scrO ).)

3. (A\ast .iii) \Delta 2w1  - [2\nu \partial x3(u0)3 + \lambda div(u0)]\Omega  - p0| \Omega \in L2(\Omega ).
4. (A\ast .iv) (\sigma (u0)n+ p0n)\bot TH1/2(\partial \scrO ). That is,

\langle \sigma (u0)n+ p0n, \tau \rangle 
\bfH  - 1

2 (\partial \scrO )\times \bfH 
1
2 (\partial \scrO )

= 0 in \scrD \prime (\scrO ) for every \tau \in TH1/2(\partial \scrO ).

5. (A\ast .v) The flow velocity component u0 = f0 + \widetilde f0, where f0 \in V0 and \widetilde f0 \in 
H1(\scrO ) satisfies

\widetilde f0 =

\Biggl\{ 
0 on S,

w2n on \Omega 

(and so f0| \partial \scrO \in TH1/2(\partial \scrO )).

6. (A\ast .vi) [ - w2 + U\cdot \nabla w1 + \Delta \r A - 1\nabla 
\ast 
(\nabla \cdot (U\cdot \nabla w1))] \in H2

0 (\Omega ) (and so w2 \in 
H1

0 (\Omega )).
7. (A\ast .vii)

\int 
\scrO [U \cdot \nabla p0+div (u0)]d\scrO 

+
\int 
\Omega 
\r A - 1 \{ (div[U1, U2] +U\cdot \nabla )([p0 + 2\nu \partial x3

(u0)3 + \lambda div(u0)]\Omega )\} d\Omega 
 - 
\int 
\Omega 
\r A - 1

\Bigl\{ 
(div[U1, U2]+U\cdot \nabla )\Delta 

2
w1

\Bigr\} 
d\Omega 

+
\int 
\Omega 
[U\cdot \nabla w1 +\Delta \r A - 1\nabla 

\ast 
(\nabla \cdot (U\cdot \nabla w1))]d\Omega 

= 0.
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Proof. Let \varphi = [p0, u0, w1, w2] \in D(\scrA + B) \cap H\bot 
N , \widetilde \varphi = [\widetilde p0, \widetilde u0, \widetilde w1, \widetilde w2] \in D(\scrA +

B)\ast \cap H\bot 
N . Then, we have

(\scrA \varphi , \widetilde \varphi )\scrH =  - (U\nabla p0, \widetilde p0)\scrO  - (div(u0), \widetilde p0)\scrO  - (\nabla p0, \widetilde u0)\scrO 
+(div\sigma (u0), \widetilde u0)\scrO  - \eta (u0, \widetilde u0)\scrO  - (U\nabla u0, \widetilde u0)\scrO 

+(\Delta w2,\Delta \widetilde w1)\Omega + (p0| \Omega  - [2\nu \partial x3
(u0)3 + \lambda div(u0)] | \Omega , \widetilde w2)\Omega  - (\Delta 2w1, \widetilde w2)\Omega 

= (p0,div(U)\widetilde p0)\scrO + (p0,U\nabla \widetilde p0)\scrO  - \langle u0 \cdot n,\widetilde p0\rangle \partial \scrO + (u0,\nabla \widetilde p0)\scrO 
+(p0,div(\widetilde u0))\scrO  - \langle p0,\widetilde u0 \cdot n\rangle \partial \scrO  - (\sigma (u0), \epsilon (\widetilde u0))\scrO 

+ \langle \sigma (u0) \cdot n, \widetilde u0\rangle \partial \scrO  - \eta (u0, \widetilde u0)\scrO 
+(u0,div(U)\widetilde u0)\scrO + (u0,U\nabla \widetilde u0)\scrO + (\Delta w2,\Delta \widetilde w1)\Omega 

 - ([2\nu \partial x3(u0)3 + \lambda div(u0)] | \Omega  - p0| \Omega , \widetilde w2)\Omega  - (\Delta w1,\Delta \widetilde w2)\Omega .

Using the domain criterion (A.vi), we then have from the above equality

(\scrA \varphi , \widetilde \varphi )\scrH = (p0,div(U)\widetilde p0)\scrO + (p0,U\nabla \widetilde p0)\scrO 
 - (w2 +U\nabla w1, \widetilde p0)\Omega + (u0,\nabla \widetilde p0)\scrO + (p0,div(\widetilde u0))\scrO 

 - (\sigma (u0), \epsilon (\widetilde u0))\scrO  - \eta (u0, \widetilde u0)\scrO + (u0,div(U)\widetilde u0)\scrO + (u0,U\nabla \widetilde u0)\scrO 
+(w2,\Delta 

2 \widetilde w1)\Omega  - (\Delta w1,\Delta \widetilde w2)\Omega .

Subsequently, integrating by parts in the third line of the last relation, we get

(\scrA \varphi , \widetilde \varphi )\scrH = (p0,div(U)\widetilde p0)\scrO + (p0,U\nabla \widetilde p0)\scrO 
 - (w2 +U\nabla w1, \widetilde p0)\Omega + (u0,\nabla \widetilde p0)\scrO + (p0,div(\widetilde u0))\scrO 
+(u0,div\sigma (\widetilde u0))\scrO  - \langle u0, \sigma (\widetilde u0) \cdot n\rangle \partial \scrO  - \eta (u0, \widetilde u0)\scrO 

+(u0,div(U)\widetilde u0)\scrO + (u0,U\nabla \widetilde u0)\scrO 
+(w2,\Delta 

2 \widetilde w1)\Omega  - (\Delta w1,\Delta \widetilde w2)\Omega .
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Now, integrating by parts in the second line, and using again domain criterion (A.vi),
we have

(\scrA \varphi , \widetilde \varphi )\scrH = (p0,div(U)\widetilde p0)\scrO + (p0,U\nabla \widetilde p0)\scrO 
 - (w2, [\widetilde p0 + 2\nu \partial x3

(\widetilde u0)3 + \lambda div(\widetilde u0)] | \Omega )\Omega 
+(w1, (div[U1, U2] +U\nabla ) [\widetilde p0 + 2\nu \partial x3

(\widetilde u0)3 + \lambda div(\widetilde u0)] | \Omega )\Omega 
+(u0,\nabla \widetilde p0)\scrO + (p0,div(\widetilde u0))\scrO + (u0,div\sigma (\widetilde u0))\scrO 
 - \eta (u0, \widetilde u0)\scrO + (u0,div(U)\widetilde u0)\scrO + (u0,U\nabla \widetilde u0)\scrO 

(110) + (w2,\Delta 
2 \widetilde w1)\Omega  - (\Delta w1,\Delta \widetilde w2)\Omega .

Also we have

(111) (B\varphi , \widetilde \varphi )\scrH =  - (div(U)p0, \widetilde p0)\scrO + (\Delta (U\nabla w1),\Delta \widetilde w1)\Omega .

For the second term of the RHS of the above equality, for any w1, \widetilde w1 \in H3(\Omega )

(\Delta (U\nabla w1),\Delta \widetilde w1)\Omega =

\biggl\langle 
\partial 

\partial \nu 
(U\nabla w1),\Delta \widetilde w1

\biggr\rangle 
\partial \Omega 

 - (\nabla (U\nabla w1),\nabla \Delta \widetilde w1)\Omega 

= \langle (U \cdot \nu )\Delta w1,\Delta \widetilde w1\rangle \partial \Omega  - (\nabla (U\nabla w1),\nabla \Delta \widetilde w1)\Omega ,

where we have used the fact that w1 = \partial w1

\partial \nu = 0 and this yields

\partial 

\partial \nu 
(U\nabla w1) = (U \cdot \nu )\partial 

2w1

\partial \nu 
= (U \cdot \nu )(\Delta w1| \partial \Omega ).

Then

(\Delta (U\nabla w1),\Delta \widetilde w1)\Omega =

\biggl\langle 
\Delta w1,

\partial 

\partial \nu 
(U\nabla \widetilde w1)

\biggr\rangle 
\partial \Omega 

 - (\nabla (U\nabla w1),\nabla \Delta \widetilde w1)\Omega 

= (\Delta w1,\Delta (U\nabla \widetilde w1))\Omega + (\nabla \Delta w1,\nabla (U\nabla \widetilde w1))\Omega  - (\nabla (U\nabla w1),\nabla \Delta \widetilde w1)\Omega 

(112) = (\Delta w1,\Delta (U\nabla \widetilde w1))\Omega + (\Delta w1,\nabla \ast [\nabla (U\nabla \widetilde w1)])\Omega  - (\nabla (U\nabla w1),\nabla \Delta \widetilde w1)\Omega ,

where \nabla \ast \in \scrL (L2(\Omega ), [H1(\Omega )]
\prime 
) is the adjoint of the gradient operator \nabla \in \scrL (H1(\Omega ),

[L2(\Omega )]). To continue with the third term on the RHS of (112),

 - (\nabla (U\nabla w1),\nabla \Delta \widetilde w1)\Omega = (U\nabla w1,\Delta 
2 \widetilde w1)\Omega 
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=  - (w1, \{ div[U1, U2] +U\nabla \} \Delta 2 \widetilde w1)\Omega 

(113) =  - (\Delta w1,\Delta \r A - 1 \{ div[U1, U2] +U\nabla \} \Delta 2 \widetilde w1)\Omega .

If we take into account (113) in (112) and invoke the biharmonic operator with
clamped homogeneous boundary conditions, we take

(\Delta (U\nabla w1),\Delta \widetilde w1)\Omega =  - (\Delta w1,\Delta \r A - 1 \{ div[U1, U2] +U\nabla \} \Delta 2 \widetilde w1)\Omega 

(114) + (\Delta w1,\Delta (U\nabla \widetilde w1))\Omega + (\Delta w1,\Delta [\Delta \r A - 1\nabla \ast [\nabla (U\nabla \widetilde w1)]])\Omega .

Now, considering (114) in (111) and combining the result with (110) gives the adjoint
operator given in (109) and completes the proof of Lemma 13.

In order to establish the wellposedness result, one of the key tools that we use in
our proof is the invertibility criterion of a linear, closed operator, which we recall in
the following lemma [34, p. 102, Lemma 3.8.18].

Lemma 14. Let L be a linear and closed operator from the Hilbert space H into
H. Then L - 1 \in \scrL (H) if and only if R(L) is dense in H and there is an m > 0 such
that

\| Lf\| \geq m \| f\| for all f \in D(L).
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