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ABSTRACT
We consider a multilayer hyperbolic-parabolic PDE system which consti-
tutes a coupling of 3D thermal – 2D elastic – 3D elastic dynamics, in which
the boundary interface coupling between 3D fluid and 3D structure is real-
ized via a 2D elastic equation. Our main result here is one of strong decay
for the given multilayered – heat system. That is, the solution to this com-
posite PDE system is stabilized asymptotically to the zero state. Our proof
of strong stability takes place in the ‘frequency domain’ and ultimately
appeals to the pointwise resolvent condition introduced by Tomilov [23].
This very useful result, however, requires that the semigroup associated
with ourmultilayered FSI systembe completely non-unitary (c.n.u). Accord-
ingly, we firstly establish that the semigroup {eAt}t≥0 is indeed c.n.u., in
part by invoking relatively recent results of global uniqueness for overdeter-
mined Lamé systems on non-smooth domains. Although the entire proof
also requires higher regularity results for some trace terms, this ‘resolvent
criterion approach’ allows us to establish a ‘classially soft’ proof of strong
decay. In particular, it avoids the sort of technical PDE multipliers invoked
in [Avalos G, Geredeli PG, Muha B. Wellposedness, spectral analysis and
asymptotic stability of a multilayered heat-wavewave system. J Differ Equ.
2020;269:7129–7156].
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1. Introduction

1.1. Description of the problem

Themulti-layered PDEmodels discussed below arise in the context of fluid-structure interactionwith
composite structures. Such FSImathematically account for the fact thatmammalian veins and arteries
are typically composed of various layers of tissues; each layer will manifest its own intrinsic material
properties, and aremoreover separated from the others by thin elastic laminae; see [1]. Consequently,
appropriate FSI will contain an additional PDE which evolves on the boundary interface to account
for thin elastic layer.

In what follows we describe the setting and explicit description of the PDE system under the study:
Throughout, the fluid geometry�f ⊆ R

3 will be a Lipschitz, bounded domainwith exterior boundary
�f . The polyhedral structure domain�s ⊆ R

3 will be ‘completely immersed’ in�f , with its polygonal
boundary faces denoted �j, 1 ≤ j ≤ K. If given faces �i and �j satisfy �i ∩ �j �= ∅ for i �= j then the
interior dihedral angle between them is in (0, 2π) (see Figure 1).
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2 G. AVALOS AND P. G. GEREDELI

Figure 1. Geometry of the FSI domain.

The boundary interface �s = ∂�s between �f and �s is then the union of said polygonal faces.
That is,

�s = ∪K
j=1�j.

In addition, ν(x) is the unit normal vector which is outward with respect to �f , and so inwards with
respect to �s. The two dimensional vector nj, 1 ≤ j ≤ K, will denote the exterior normal vector with
respect to polygonal face�j.With {�s,�f } as given, the PDE systemunder consideration is as follows:

{
ut − �u = 0 in (0,T) × �f

u|�f = 0 on (0,T) × �f ;
(1)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂2

∂t2
hj − divσ�s(hj) + hj = ν · σ(w)|�j −

∂u
∂ν

|�j on (0,T) × �j, for 1 ≤ l ≤ K

hj|∂�j∩∂�l = hl|∂�j∩∂�l on (0,T) × (∂�j ∩ ∂�l), for all 1 ≤ l ≤ K such that ∂�j ∩ ∂�l �= ∅
nj · σ�s(hj)

∣∣
∂�j∩∂�l

= − nl · σ�s(hl)
∣∣
∂�j∩∂�l

on (0,T) × (∂�j ∩ ∂�l)

for all 1 ≤ l ≤ K such that ∂�j ∩ ∂�l �= ∅.

(2)

⎧⎨⎩
wtt − divσ(w) = 0 on (0,T) × �s

wt|�j = ∂

∂t
hj = u|�j on (0,T) × �j, for j = 1, . . . ,K

(3)

[u(0), h1(0),
∂

∂t
h1(0), . . . , hK(0),

∂

∂t
hK(0),w(0),wt(0)] = [u0, h01, h11, . . . , h0K , h1K ,w0,w1]. (4)

Here, the stress tensors σ and σ�s constitute Lamé systems of elasticity on their respective ‘thick’ and
‘thin’ layers. Namely,

(i) For function v in �s,

σ(v) = 2με(v) + λ[I3 · ε(v)]I3,
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where strain tensor ε(·) is given by

εij(v) = 1
2

(
∂vj
∂xi

+ ∂vi
∂xj

)
, 1 ≤ i, j ≤ 3;

(ii) Likewise, for function g on polygon �j,

σ�s(g) = 2μ�sε�s(g) + λ�s[I2 · ε�s(g)]I2

with

(ε�s)ik(g) = 1
2

(
∂gk
∂xi

+ ∂gi
∂xk

)
, 1 ≤ i, k ≤ 2.

where {μ, λ}, {μ�s , λ�s} are respective Lamé parameters. We will consider said multi-layered-
heat PDE system with initial data (4) drawn from the natural finite energy space H, defined
as:

H =
{
[u0, h01, h11, . . . , h0K , h1K ,w0,w1] ∈ L2(�f ) × H1(�1) × L2(�1) × · · ·

× H1(�K) × L2(�K) × H1(�s) × L2(�s) , such that for each 1 ≤ j ≤ K :

(i) w0|�j = h0j;

(ii) h0j|∂�j∩∂�l = h0l|∂�j∩∂�l on ∂�j ∩ ∂�l, for all 1 ≤ l ≤ K such that ∂�j ∩ ∂�l �= ∅
}
.

(5)

Here,H is a Hilbert space with the inner product

(�0, �̃0)H = (u0, ũ0)�f +
K∑
j=1

(σ�s(h0j), ε�s (̃h0j))�j +
K∑
j=1

(h0j, h̃0j)�j

+
K∑
j=1

(h1j, h̃1j)�j + (σ (w0), ε(w̃0))�s + (w1, w̃1)�s , (6)

where

�0 = [u0, h01, h11, . . . , h0K , h1K ,w0,w1] ∈ H; �̃0 = [̃
u0, h̃01, h̃11, . . . , h̃0K , h̃1K , w̃0, w̃1

] ∈ H. (7)

1.2. Main objective and literature

The PDE model (1)–(4) is one amongst a class of coupled PDE systems which have been derived,
so as to mathematically describe the interaction between viscous blood flow and the multi-layered
vessels through which such flow is transported within a given mammalian species; see e.g. [1, 2]. (See
also the following references which generally deal with the mathematical and/or modeling analysis
of coupled (single-layered) structure-fluid PDE systems [3–13].)

In this work, we consider the strong stability problem; namely that of ascertaining that the
thick elastic-thin elastic-thermal solution components tend asymptotically to the zero state, for
given finite energy data in H; see Theorem 3.1. In particular, we investigate whether the dissipa-
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tion which emanates only from the thermal component of the coupled system (1)–(4), suffices to
strongly stabilize the elastic dynamics, notwithstanding the fact that the three distinct PDE compo-
nents each evolve on their own respective geometries.

We emphasize here that the domain of the associated thick Lamé-thin Lamé-heat semigroup gen-
erator is not compactly embedded into the finite energy space H– see (8) and (A.i)–(A.iv) below–
consequently, a conclusion of strong stability here will not follow from classic PDE control arguments,
for which it is essentially sufficient (given an underlying compactness of the resolvent of the associ-
ated semigroup generator) to establish weak stability; see e.g. [14]. With reference to such means, the
fundamental example in the literature is the strong stability problem for the boundary damped wave
equation on a bounded domain (see [15–18]). Again, what allows for said approach is the fact that
the semigroup generator of the boundary damped wave equation has domain which is compactly
embedded into H1 × L2. In the present situation, this avenue of approach is not available.

An analogous result of asymptotic decay was obtained in [19] for a canonical ‘thick’ wave - ‘thin’
wave - heat PDE model. Likewise, as in the present situation, the associated multi-layered structure
- heat semigroup generator in [19] does not have compact resolvent. However, in [19], with a view
of ultimately invoking the wellknown spectral criterion in [20] for strong stability, the authors were
compelled to invoke a PDEmultiplier method (in the frequency domain) so as to derive a wave iden-
tity for the thick wave PDE component. (Such wave identities for uncoupled dynamics are of course
instrumental in establishing uniform stabilization; see [16, 18, 21].) So in some sense, the partial
multiplier approach to strong decay in [19] resembles that of [18] for said boundary damped wave
equation.

By contrast, we intend in the presentwork to pursue an approachwhich eschews the need for deriv-
ing analogous energy identities for the thick Lamé solution component of the multilayered-thermal
system. Certainly, such Lamé energy identities exist (although of course they are a bit cumber-
some) and have been used in the context of PDE boundary stabilization problems–see; e.g. [22] and
[4]– however, since the present issue is one of strong, and not uniform decay, it would seem prefer-
able to find a ‘softer’ functional approach–somewhat in the spirit of the aforesaid works on boundary
damped wave equation strong decay– at least to the extent possible.

To this end, our strong stability proof here is predicated upon ultimately invoking the resolvent
criterion in [23]; see Theorem 3.2. Essentially, in order to infer strong decay of finite energy solutions
of (1)–(4), we will show below that the associated thick Lamé - thin Lamé - heat semigroup generator
has (non-compact) resolvent which ‘almost everywhere’ obeys a certain strong limit with respect
to parameter values in the right half complex plane. In order to avail ourselves of Theorem 3.2, we
must as a preliminary step establish that the multilayered structure heat semigroup (besides being a
contraction) is also completely non-unitary (c.n.u). In this step, wewill need to appeal to the relatively
recent global uniqueness (Holmgren’s-type) result for Lamé systems of elasticity; see [24]. Moreover,
we will need to recall higher regularity results for uncoupled three dimensional Lamé systems of
elasticity on polyhedra; see [25].

We intend, as future work, to investigate uniform decay properties of (1)-(4) – probably taking as
our point of departure the canonical multilayered structure – heat system in [19]. Accordingly, we
should mention those results of exponential and polynomial decay in the literature for single-layered
structure – parabolic PDE models, [26–33].

1.3. Notation

For the remainder of the text norms || · ||D are taken to be L2(D) for the domain D. Inner products
in L2(D) is written (·, ·), while inner products L2(∂D) are written 〈·, ·〉. The space Hs(D) will denote
the Sobolev space of order s, defined on a domainD, andHs

0(D) denotes the closure of C∞
0 (D) in the

Hs(D) norm which we denote by ‖ · ‖Hs(D) or ‖ · ‖s,D. We make use of the standard notation for the
trace of functions defined on a Lipschitz domain D, i.e. for a scalar function φ ∈ H1(D), we denote
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γ (w) to be the tracemapping fromH1(D) toH1/2(∂D).Wewill also denote pertinent duality pairings
as (·, ·)X×X′ .

2. Preliminaries

With respect to the above setting, the PDE system given in (1)–(4) may be associated with an abstract
ODE in Hilbert spaceH. To wit, the operator A : D(A) ⊂ H → H be defined by

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

� 0 0 0 0 0 0 0
0 0 I · · · 0 0 0 0

− ∂

∂ν
|�1 (divσ�s − I) 0 · · · 0 0 ν · σ(·)|�1 0

...
...

... · · · ...
...

...
...

0 0 0 · · · 0 I 0 0

− ∂

∂ν
|�K 0 0 · · · (divσ�s − I) 0 ν · σ(·)|�K 0

0 0 0 · · · 0 0 0 I
0 0 0 · · · 0 0 divσ(·) 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
; (8)

D(A) =
{
[u0, h01, h11, . . . , h0K , h1K ,w0,w1] ∈ H :

(A.i) u0 ∈ H1(�f ), h1j ∈ H1(�j) for1 ≤ j ≤ K,w1 ∈ H1(�s);
(A.ii) (a) �u0 ∈ L2(�f )

(b) divσ(w0) ∈ L2(�s),
(c) divσ�s(h0j) + ν · σ(w0)|�j − ∂u0

∂ν
|�j ∈ L2(�j) for 1 ≤ j ≤ K;

(A.iii) u0|�f = 0, u0|�j = h1j = w1|�j , for1 ≤ j ≤ K;
(A.iv) For 1 ≤ j ≤ K :

(a) h1j|∂�j∩∂�l = h1l|∂�j∩∂�l on ∂�j ∩ ∂�l, for all 1 ≤ l ≤ K such that ∂�j ∩ ∂�l �= ∅ ;
(b)

nj · σ�s(h0j)
∣∣∣
∂�j∩∂�l

= − nl · σ�s(h0l)
∣∣
∂�j∩∂�l

, for all 1 ≤ l ≤ K such that

∂�j ∩ ∂�l �= ∅
}
. (9)

With this matrix, if �(t) = [u(t), h1(t), ∂
∂t h1(t), . . . , hK(t), ∂

∂t hK(t),w(t),wt(t)], and �0 =
[u0, h01, h11, . . . , h0K , h1K ,w0,w1] then the solution of (1)–(4) may be written simply as

d
dt

�(t) = A�(t); �(0) = �0. (10)

Proceeding along similar lines of approach as in [19], one can obtain the following result of well
posedness:

Theorem 2.1: The operator A : D(A) ⊂ H → H, defined in (8) and (9), generates a C0-semigroup
of contractions onH. Consequently, the solution�(t) = [u(t), h1(t), ∂

∂t h1(t), . . . , hK(t), ∂
∂t hK(t),w(t),

wt(t)] of (1)–(4), or equivalently (10), is given by

�(t) = eAt�0 ∈ C([0,T];H),

where �0 = [u0, h01, h11, . . . , h0K , h1K ,w0,w1] ∈ H.
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In fact, the main result of this manuscript is to show that the solution to the system (1)–(4) has a
decay to the zero state. To prove this, we firstly need to give the following dissipation estimate from
which the decay arises:

Proposition 2.2: The solution of (1)–(4), or equivalently (10), satisfies the following relation for 0 ≤
t0 ≤ t ≤ ∞ :

2
∫ t

t0
‖∇u(τ )‖2�f

dτ + ‖�(t)‖2H = ‖�(t0)‖2H (11)

Proof: With respect to the right-hand side of (10) we have, upon taking the H-inner product with
respect to �, and then an integration over (t0, t),∫ t

t0
(A�(τ),�(τ))H dτ

=
∫ t

t0
(�u, u)�f dτ +

K∑
j=1

∫ t

t0

[(
σ�s

(
∂

∂t
hj
)
, ε�s(hj)

)
�j

+
(

∂

∂t
hj, hj

)
�j

]
dτ

+
K∑
j=1

∫ t

t0

[(
divσ�s(hj),

∂

∂t
hj
)

�j

− (hj,
∂

∂t
hj)�j

]
dτ

+
K∑
j=1

∫ t

t0

〈
ν · σ(w) − ∂u

∂ν
,

∂

∂t
hj
〉
�j

dτ +
∫ t

t0
(σ (wt), ε(w))�s dτ

+
∫ t

t0
(divσ(w), ε(wt))�s dτ

= −
∫ t

t0
(∇u,∇u)�f dτ +

K∑
j=1

∫ t

t0

[(
σ�s

(
∂

∂t
hj
)
, ε�s(hj)

)
�j

+
(

∂

∂t
hj, hj

)
�j

]
dτ

−
K∑
j=1

∫ t

t0

[(
σ�s

(
∂

∂t
hj
)
, ε�s(hj)

)
�j

+
(

∂

∂t
hj, hj

)
�j

]
dτ

+
∫ t

t0
(σ (wt), ε(w))�s dτ −

∫ t

t0
(σ (wt), ε(w))�sdτ

+
∫ t

t0

〈
∂u
∂ν

, u
〉
∂�f

dτ +
K∑
j=1

∫ t

t0

〈
ν · σ(w) − ∂u

∂ν
,

∂

∂t
hj
〉
�j

dτ

−
∫ t

t0
〈ν · σ(w),wt〉�s dτ +

K∑
j=1

∫ t

t0

〈
nj · σ�s(hj),

∂

∂t
hj
〉
�j

dτ .

Invoking the BCs in (A.iii) and (A.iv), imposed on the structure-structure-heat variables, we then
have ∫ t

t0
(A�(τ),�(τ))H dτ

= −
∫ t

t0
‖∇u‖2�f

dτ + 2iIm
K∑
j=1

∫ t

t0

[
(σ�s

(
∂

∂t
hj
)
, ε�s(hj))�j +

(
∂

∂t
hj, hj

)
�j

]
dτ . (12)
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Applying this relation to the RHS of the relation,∫ t

t0

(
d
dτ

�(τ),�(τ)

)
H
dτ =

∫ t

t0
(A�(τ),�(τ))H dτ

we obtain the desired estimate. �

3. Main result: strong stability via resolvent criterion

This section is devoted to addressing the issue of asymptotic behavior of the solution whose existence
– uniqueness is guaranteed by Theorem 2.1. In this regard, we show that the system given in (1)–(4)
is strongly stable in the finite energy spaceH. Our main result is as follows:

Theorem 3.1: Finite energy solutions of the multilayered-heat PDE system (1)–(4), or equivalently (10)
decay strongly to zero. That is to say, the solution of (1)–(4), with initial data �0 ∈ H, satisfies

lim
t→0

‖�(t)‖H = 0.

To prove Theorem 3.1, in contrast to the approach taken in [19] which is geared to invoke the
wellknown spectral criteria for stability in [20], we will adopt instead a resolvent-basedmethodology.
In particular, we will ultimately appeal to the following theorem (see [34, Theorem 8.7] or [23, p.
75–76], see also [35].)

Theorem 3.2: Let A generate a C0−semigroup of completely, non-unitary contractions on a Hilbert
space H. If there exists a dense set M ⊂ H such that

lim
α→0+

√
αR(α + iβ ;A)x = 0 (13)

for every x ∈ M and almost every β ∈ R, then the semigroup is strongly stable. Here, R is the resolvent
operator of the generator A defined by R(α + iβ ;A) = ((α + iβ)I − A)−1.

Remark 3.3: We recall that an operator L ∈ L(H) is completely non-unitary (c.n.u) if the trivial
subspace is the only subspace of H which reduces L to a unitary operator (see, e.g. [14]).

Remark 3.4: Pointwise resolvent criterion such as those in Theorem 3.2 are formulated to yield
insight on how behavior of a semigroup generator resolvent, as its ‘frequency domain’ parameter
tends to the imaginary axis, allows for the inference of asymptotic decay. For example, given Hilbert
spaceH, ifA : H → H generates a boundedC0-semigroup, then, analogous to (13) of themanuscript,
if

lim
α→0+

√
αR(α + iβ ;A) = 0

for all x in some dense set of H, and for all β ∈ R, then as argued on page 18 of [34], necessarily
iR ∩ σ(A) = {∅}. Consequently, from the spectral criteria in [20] and [36], one concludes strong
stability of {eAt}t≥0. One will have similar implications for ‘c.n.u.’ resolvent criteria in Theorem 3.2.

Lemma 3.5: The given elastic-elastic-heat semigroup {eAt}t≥0 is completely non-unitary (c.n.u).

Proof: With reference to problem (1)–(4), assume that initial data �0 is drawn from an invariant
subspaceW ⊂ H onwhich the operator family {eAt}t≥0 is unitary. Then from the expression (10) and
the dissipative relation (11) of Proposition 2.2, we have that the heat component of (1)–(4) satisfies

u = 0 on (0,T) × �f . (14)

Consequently from the BC’s in (3) we have

wt|�s = 0 on (0,T) × �s, (15)
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∂

∂t
hj = 0 in (0,T) × �j for j = 1, . . . ,K. (16)

Differentiating the thin elastic equations in (2), and subsequently invoking (14) and (16) we have in
turn

ν · σ(wt)|�s = 0 on (0,T) × �s. (17)

If we now make the change of variable v ≡ wt , then from (3), (15) and (17), we have that v satisfies
the overdetermined Lamé system{

vtt − divσ(v) = 0 on (0,T) × �s
v|�s = ν · σ(v)|�s = 0 on (0,T) × �s.

(18)

Consequently, from the Holmgren’s type result in [24]1 (see also [37]) we get for T> 0 sufficiently
large,

v = 0 OR wt = 0 in (0,T) × �s, (19)

and so

w = constant in (0,T) × �s. (20)

From the compatibility condition between thick and thin elastic displacements in (5), we then have
from (20) that

hj = constant in (0,T) × �j, for 1 ≤ j ≤ K.

Applying this consequence to the thin elastic equation in (2) and further invoking (14), (16) and (20)
we get

hj = 0 in (0,T) × �j, for 1 ≤ j ≤ K. (21)

Finally, (20), (21) and said compatibility condition between thick and thin elastic displacements,
imposed in the natural energy spaceH, yield

w = 0 on (0,T) × �s. (22)

To conclude, (14)–(16), (21) and (22) yield on (0,T)

eAt�0 = 0, �0 ∈ W

so necessarilyW = {0}. This finishes the proof of Lemma 3.5. �

Before embarking on our proof of strong stability, we recall the following regularity result for the
homogeneous boundary value problem involving the Lamé system of elasticity on polyhedron �s.
(We are not aiming here for great generality.)

Proposition 3.6: Suppose z ∈ H1(�s) satisfies the BVP{ −divσ(z) = f ∈ L2(�s)
z|�s = 0 on �s.

Then z has the higher regularity

‖z‖
H

3
2+ε

(�s)
+

K∑
j=1

∥∥ν · σ(z)|�j

∥∥
Hε (�j)

≤ C
∥∥f ∥∥

�s
. (23)
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Proof: The fact that z ∈ H
3
2+ε(�s) comes immediately from [25, Theorem 4.5.1, p. 140, see also the

remark on p. 149]. (See also Theorem 4.5 of [38].) Moreover, given a point on boundary face �j, let
unit (tangent) vectors τ1,τ2 –we neglect the index j here– be such that {ν(x), τ1(x), τ2(x)} constitutes
an orthonormal basis of R

3. Therewith, one can compute outright –see e.g. Proposition A.1 (iii) of
[29]– the expression for j = 1, 2 · · · ,K :

ν · σ(z)|�j = λ

[
∂z
∂ν

· ν + ∂z
∂τ1

· τ1 + ∂z
∂τ2

· τ2

]
ν

+2μ
∂z
∂ν

+ μ

[(
∂z
∂τ2

· ν

)
−

(
∂z
∂ν

· τ2

)]
τ2

+μ

[(
∂z
∂τ1

· ν

)
−

(
∂z
∂ν

· τ1

)]
τ1. (24)

To deal with RHS, we recall the known bounded Sobolev trace maps for a polyhedron (see e.g.
Theorem 6.9 (i), page 43 of [39]):

z ∈ H
3
2+ε(�s) → z|�j ∈ H1+ε(�j), j = 1, 2, . . . ,K

z ∈ H
3
2+ε(�s) → ∂z

∂ν
|�j ∈ Hε(�j), j = 1, 2, . . . ,K. (25)

Applying these maps to RHS of (24), and invoking said continuous mapping f → z in (23) now
completes the proof. �

Proof of Theorem 3.1 – Strong Stability
Having established that the multi-layered structure-heat PDE contraction semigroup {eAt}t≥0 is

c.n.u by Lemma 3.5, we can make use of the resolvent criterion given in Theorem 3.2. To this end, we
define the operator AD : D(AD) ⊂ L2(�s) → L2(�s) via{

ADf = −divσ(f )
D(AD) = {f ∈ H1

0(�s) : −divσ(f ) ∈ L2(�s)}. (26)

With respect to this self-adjoint operator with compact inverse, we denote

S ≡ {β ∈ R : β2 is an eigenvalue of AD : D(AD) ⊂ L2(�s) → L2(�s)}. (27)

In order to invoke the resolvent criterion in Theorem 3.2, we will establish that the thick elastic-thin
elastic-heat generator obeys the strong limit (13) for all β ∈ R\(S ∪ {0}). To this end, with α > 0 and
fixed β ∈ R\(S ∪ {0}), we consider the resolvent equation

[(α + iβ)I − A]� = �∗
0 (28)

where the solution � = [u0, h01, h11, . . . , h0K , h1K ,w0,w1] ∈ D(A) and the data �∗
0 = [u∗

0, h
∗
01, h

∗
11,

. . . , h∗
0K , h

∗
1K ,w

∗
0,w

∗
1] ∈ H. From the definition ofD(A), this abstract equation can be written explic-

itly as

(α + iβ)u0 − �u0 = u∗
0 in �f (29)

For 1 ≤ j ≤ K :⎧⎨⎩ (α + iβ)h0j − h1j = h∗
0j in �j

(α + iβ)h1j − divσ�s(h0j) + h0j + ∂u0
∂ν

− ν · σ(w0) = h∗
1j in �j

(30)



10 G. AVALOS AND P. G. GEREDELI

h0j|∂�j∩∂�l = h0l|∂�j∩∂�l on (∂�j ∩ ∂�l), for all 1 ≤ l ≤ K such that ∂�j ∩ ∂�l �= ∅ (31)

nj · σ�s(h0j)|∂�j∩∂�l = −nl · σ�s(h0l)|∂�j∩∂�l on (∂�j ∩ ∂�l), for all 1 ≤ l ≤ K such that

∂�j ∩ ∂�l �= ∅ (32)

w1 = (α + iβ)w0 − w∗
0 in �s (33)

− β2w0 − divσ(w0) = −(α2 + 2iαβ)w0 + (α + iβ)w∗
0 + w∗

1 in �s (34)

[(α + iβ)w0 − w∗
0]|�j = h1j = u0|�j on �j. (35)

Throughout, take 0 < α < M0, for some positive constant M0, and we will give the proof in the
following steps:

Step I (A static dissipation relation): Taking the (·, ·)-inner product of both sides of (28) with
respect to �, we have

α ‖�‖2H + iβ ‖�‖2H − (A�,�)H = (�∗
0,�)H.

Proceeding as in the proof of Proposition 2.2, we obtain

α ‖�‖2H + iβ ‖�‖2H + ‖∇u0‖2�f
= (�∗

0,�)H + 2i
K∑
j=1

Im(σ�s(h1j), ε�s(h0j))�j

+ 2i
K∑
j=1

Im(h1j, h0j)�j + 2iIm(σ (w1), ε(w0))�s

or

α ‖�‖2H + ‖∇u0‖2H = Re(�∗
0,�)H. (36)

Invoking the boundary conditions (35) and the Sobolev Trace Theorem, we then have for 1 ≤ j ≤ K

[(α + iβ)w0 − w∗
0]|�j = h1j = u0|�j =

√
O (∣∣(�∗

0,�)H
∣∣) on �j. (37)

Step II (An estimate for the thick elastic displacement): We start here by defining the ‘Dirichlet’
map D : L2(�s) → L2(�s) via

Dg = v ⇐⇒
{

divσ(v) = 0 in �s
v = g on �s

(38)

By the Lax–Milgram Theorem, and a subsequent integration by parts with respect to (38), we have

D ∈ L
(
H

1
2 (�s),H1(�s)

)
; ν · σ(D(·)) ∈ L

(
H

1
2 (�s),H− 1

2 (�s)
)
. (39)

With this mapping, if we now let

z = w0 − i
β
D([αw0 − u0 − w∗

0]|�s), (40)

then from (34), we have that z solves the BVP:⎧⎨⎩ −β2z − divσ(z) = −iβD([αw0 − u0 − w∗
0]|�s) − (α2 + 2iαβ)w0 + (α + iβ)w∗

0 + w∗
1 in �s

z = 0 on �s.
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Since β2 is not an eigenvalue of AD (defined in (26)), we then have

z = (β2 − AD)−1
[
iβD([αw0 − u0 − w∗

0]|�s) + (α2 + 2iαβ)w0 − (α + iβ)w∗
0 − w∗

1

]
in �s.

Estimating RHS by means of (36), (39), (37) and the Sobolev Trace Theorem, we then have

‖z‖�s = O
(√∣∣(�∗

0,�)H
∣∣ + ∥∥�∗

0
∥∥
H

)
. (41)

In turn, by the higher regularity result in Proposition 3.6, we have

‖z‖
H

3
2+ε

(�s)
+

K∑
j=1

∥∥ν · σ(z)|�j

∥∥
Hε (�j)

≤ C
∥∥β2z − iβD([αw0 − u0 − w∗

0]|�s) − (α2 + 2iαβ)w0 + (α + iβ)w∗
0 + w∗

1
∥∥

�s
.

Appealing to estimate (23) and (41) (and once more (36), (39), (37) and Sobolev Trace Theory), we
have

‖z‖
H

3
2+ε

(�s)
+

K∑
j=1

∥∥ν · σ(z)|�j

∥∥
Hε (�j)

≤ O
(√∣∣(�∗

0,�)H
∣∣ + ∥∥�∗

0
∥∥
H

)
. (42)

Now, invoking the decomposition

w0 = z + i
β
D([αw0 − u0 − w∗

0]|�s),

we combine (36), (42), (39) and (37) to have

‖w0‖H1(�s) +
K∑
j=1

∥∥ν · σ(w0)|�j

∥∥
H− 1

2 (�s)
≤ O

(√∣∣(�∗
0,�)H

∣∣ + ∥∥�∗
0
∥∥
H

)
. (43)

Step III (An estimate for the thin elastic displacement): For 1 ≤ j ≤ K, wemultiply both sides of
the thin elastic equation in (30)2 by h0j, followed by an integration over �j, and integration by parts.
Summing the resulting expressions gives

K∑
j=1

[
(σ�s(h0j), ε�s(h0j))�j +

∥∥h0j∥∥2 �j

]
−

����������K∑
j=1

〈
nj · σ�s(h0j), h0j

〉
�j

= −(α + iβ)(u0,w0)�s + 〈ν · σ(w0),w0〉�s −
〈
∂u0
∂ν

,w0

〉
�s

+
K∑
j=1

(h∗
1j, h0j)�j . (44)

(Here, in canceling the thin layer boundary terms on ∂�j, we are invoking the boundary conditions
in (31)–(32).) Now, with respect to the normal derivative ∂u0

∂ν
|�s of the thermal component, we can

integrate by parts so as to deduce the trace estimate∥∥∥∥∂u0
∂ν

∥∥∥∥
H− 1

2 (�s)

≤ C
[
‖∇u0‖�f + ‖�u0‖�f

]
= C

[
‖∇u0‖�f + ∥∥(α + iβ)u0 − u∗

0
∥∥

�f

]
.



12 G. AVALOS AND P. G. GEREDELI

Invoking the estimate (36) now gives∥∥∥∥∂u0
∂ν

∥∥∥∥
H− 1

2 (�s)

= O
(√∣∣(�∗

0,�)H
∣∣ + ∥∥�∗

0
∥∥
H

)
. (45)

Applying this estimate, along with relation (36), and (43) for {w0, ν · σ(w0)|�s} (and using again the
Sobolev Trace Theorem), we get√√√√ K∑

j=1

[
(σ�s(h0j), ε�s(h0j))�j +

∥∥h0j∥∥2 �j

]
= O

(√∥∥�∗
0
∥∥
H ‖�‖H +

√∣∣(�∗
0,�)H

∣∣ + ∥∥�∗
0
∥∥
H

)
(46)

Moreover, applying (36) and the estimate (43) to the resolvent relation (33), we have

‖w1‖�s = O
(√∣∣(�∗

0,�)H
∣∣ + ∥∥�∗

0
∥∥
H

)
. (47)

Now, if we combine (36), (43), (46) and (47), we then have

‖�‖H ≤ C0,β

(√∥∥�∗
0
∥∥
H ‖�‖H +

√∣∣(�∗
0,�)H

∣∣ + ∥∥�∗
0
∥∥
H

)
.

Invoking finally |ab| ≤ δa2 + Cδb2 for δ > 0, we arrive at (after rescaling δ > 0),

(1 − Cβ) ‖�‖H ≤ Cβ ,δ
∥∥�∗

0
∥∥
H .

This gives the required strong limit in (13) for all �∗
0 ∈ H and all β ∈ R\(S ∪ {0}). This completes

the proof of Theorem 3.1.

Note

1. In [24], the geometry was assumed to be C1. However the details of proof apply readily to piecewise C1−domains.
Indeed, Holmgren’s uniqueness will hold for Lamé systems on Lipschitz domains; see [40].
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