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Abstract

Background

The neuroendocrine stress response allows vertebrates to cope with stressors via the acti-
vation of the Hypothalamic-Pituitary-Adrenal (HPA) axis, which ultimately results in the
secretion of glucocorticoids (GCs). Glucocorticoids have pleiotropic effects on behavior and
physiology, and might influence telomere length dynamics. During a stress event, GCs
mobilize energy towards survival mechanisms rather than to telomere maintenance. Addi-
tionally, reactive oxygen species produced in response to increased GC levels can damage
telomeres, also leading to telomere shortening. In our systematic review and meta-analysis,
we tested whether GC levels impact telomere length and if this relationship differs among
time frame, life history stage, or stressor type. We hypothesized that elevated GC levels are
linked to a decrease in telomere length.

Methods

We conducted a literature search for studies investigating the relationship between telomere
length and GCs in non-human vertebrates using four search engines: Web of Science, Goo-
gle Scholar, Pubmed and Scopus, last searched on September 27th, 2020. This review
identified 31 studies examining the relationship between GCs and telomere length. We
pooled the data using Fisher’'s Z for 15 of these studies. All quantitative studies underwent a
risk of bias assessment. This systematic review study was registered in the Open Science
Framework Registry (https://osf.io/rqves).

Results

The pooled effect size from fifteen studies and 1066 study organisms shows no relationship
between GCs and telomere length (Fisher's Z =0.1042, 95% CI = 0.0235; 0.1836). Our
meta-analysis synthesizes results from 15 different taxa from the mammalian, avian,
amphibian groups. While these results support some previous findings, other studies have
found a direct relationship between GCs and telomere dynamics, suggesting underlying
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mechanisms or concepts that were not taken into account in our analysis. The risk of bias
assessment revealed an overall low risk of bias with occasional instances of bias from miss-
ing outcome data or bias in the reported result.

Conclusion

We highlight the need for more targeted experiments to understand how conditions, such as
experimental timeframes, stressor(s), and stressor magnitudes can drive a relationship
between the neuroendocrine stress response and telomere length.

Introduction

The vertebrate neuroendocrine stress response integrates external stimuli into a broad range
of physiological adjustments through the activation of the Hypothalamic-Pituitary-Adrenal
axis (HPA axis) and the concomitant secretion of glucocorticoids (GCs) [1, 2]. While the pri-
mary GC produced varies by taxa (e.g., cortisol in humans and corticosterone in birds and
other mammals [3]), the impacts of GCs on organismal physiology are remarkably similar.
Across species, an increase in GC secretion can typically be detected in 3-5 minutes following
interaction with a stressor [4]. Additionally, GCs are relatively easy to quantify because they
are present in all vertebrates and can be measured noninvasively in multiple matrices includ-
ing hair and feces using a variety of assays [5, 6]. Therefore, wildlife stress physiology studies
often rely on GC measurements as an indicator of the neuroendocrine stress response [7]. Fol-
lowing their secretion, GCs induce a myriad of acute behavioral and physiological effects to
prioritize immediate survival [8, 9].

In addition to allowing animals to cope with immediate stressors, GCs can influence other
cellular processes such as telomere length dynamics. Telomeres are evolutionarily conserved
caps that protect chromosomes against the loss of coding nucleotides during cell replication
and against chromosomal fusion [10]. Telomere shortening is associated with aging, the neu-
roendocrine stress response, and survival, and is thus of interest to several fields of biology [1,
11]. In humans, increased telomere loss predicts the onset of age-related diseases, cardiovascu-
lar complications, cellular senescence, and other aging phenotypes [12, 13]. Telomere attrition
can be attributed to several causes including the “end replication problem” in which the termi-
nal end of linear DNA cannot be completely replicated by the lagging strand [14]. Since the
end replication problem occurs at every cell division, telomeres continuously shorten with age
progression [15]. Other stressors such as inflammatory challenges erode telomeres regardless
of age [16].

In non-human vertebrates including birds, mammals, fish, amphibians and reptiles, expo-
sure to challenging environmental conditions correlates with shorter telomeres [17, 18].
Reproductive stressors such as an artificially increased brood size can also shorten telomeres
in zebra finch parents compared to controls and parents with a reduced brood size [19]. Early
telomere length is positively correlated with survival and lifetime breeding success in both wild
purple-crowned fairy wrens and zebra finches. Thus, individuals with longer telomeres are
more likely to survive and produce more offspring that survive to maturity [20, 21]. Therefore,
telomere dynamics—the change in telomere length attributed to processes of elongation and
shortening—is related to organismal fitness [22]. In addition to impacting telomere length,
stressors that lead to energy limitation such as psychological stress, disease, accelerated growth,
nutrient shortage and work load activate the HPA axis causing the release of GCs [23].
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Thus, several hypothesized connections between GCs and telomere length exist. Firstly,
GCs are an essential part of the vertebrate stress response, and their primary function is to
mobilize energy [5]. Accordingly, the “metabolic telomere attrition hypothesis” proposes that
during events that require an increased amount of energy and metabolic rates, telomeres are
shortened as collateral [20]. As a result of the high energy expenditure, the energetically expen-
sive maintenance of telomeres cannot take place as an emergency survival mechanism due to a
shift in energy allocation [23]. In addition, GCs stimulate the generation of reactive oxygen
species (ROS) and subsequent oxidative damage to telomeres, which are particularly suscepti-
ble to oxidation due to a high guanine content [11, 24-26]. Finally, cortisol reduces telomerase
—the enzyme responsible for telomere maintenance—activity in human T lymphocytes [27].
This reduction in telomerase activity can result in excessive telomere attrition [28]. Since wild-
life face an array of stressors throughout their lifetime and these stressors can erode telomeres,
GCs may play a mechanistic role in telomere loss [1].

External stressors cause pleiotropic effects that can potentially influence telomere dynamics,
however the evidence for a causal relationship between GCs and telomere length is sparse.
Two recent literature reviews on the topic by Angelier et.al 2018 and Casagrande and Hau
2019 [11, 23] summarize the potential relationship between GCs and telomere length. How-
ever, it is essential to build a quantitative understanding of the relationships between the neu-
roendocrine stress response and its downstream effects. In this study, we review the existing
literature for empirical evidence of the relationship between GC secretion and telomere length
to better understand the underlying mechanism of telomere shortening as well as potential
consequences of the neuroendocrine stress response in non-primate vertebrates. Using a
meta-analytical framework, we tested whether GC levels impact telomere length and if this
relationship can differ among time frame, life history stage, or stressor type. We hypothesized
that elevated GC levels are linked to a decrease in telomere length.

Methods
Literature search and study selection

We conducted a literature search for studies investigating the relationship between telomere
length and GC levels in non-human vertebrates using four search engines: Web of Science,
Google Scholar, Pubmed and Scopus. Five subsets of the following keywords ‘reactive oxygen
species,” ‘antioxidant,” ‘glucocorticoid,” ‘cortisol,” ‘corticosterone,” ‘telomere length,’” ‘chronic
stress,” ‘oxidative stress,” ‘acute stress,” ‘chronic stress,” ‘telomeres,” and ‘HPA axis,” were con-
ducted in each search engine. We did not specify a time frame in our literature search. Addi-
tional records were obtained from the reference section of studies included in the meta-
analysis. Our study includes a qualitative synthesis of 31 full-text, peer-reviewed studies, and
we report effect sizes for 15 of these studies.

Studies were excluded if (1) GCs were administered, but physiological measurements such
as feather or plasma GC levels were not taken. Such studies were excluded because it would
not be possible to calculate the appropriate effect size (Fisher’s Z) for correlation data. For
homogeneity in effect size calculation and statistical analysis, we did not include studies in
which (2) GCs and telomere length were not specifically measured at two different time points
(before or after treatment) (3) raw data was not accessible to use for the effect size calculation,
or (4) telomere length measurements or GC measurements were log transformed.

Statistical data analyses

Meta-analysis. We conducted statistical analyses exclusively on studies with raw data
available. When data was not publicly accessible, we contacted authors via email for consensual
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access. For each study, the correlation coefficient (R*) was calculated by fitting a linear mixed
model using the “lme4” R package (version 3.6.1, R Development Core Team, Boston, MA).
When possible, random effects such as multiple blood draws from a single individual were
incorporated in the linear mixed model (LMER) to account for variability not captured by
explanatory parameters. For studies where a random effect could not be determined, a linear
model (LM) was fitted. From the LMs and LMERs, R? values were obtained from the model
and converted into Fisher’s Z, then adjusted for sample size and combined into a pooled effect
size (Fisher’s Z; Z) using the R package “meta”. The random-effects model meta-analysis was
implemented in our study as this model accounts for the assumption that studies come from
different populations, rather than the same population. These pooled effect sizes were then
visualized in a forest plot.

The “meta” package was also used to assess the statistical difference between observed and
fixed effect model estimate of effect size (Cochrane’s Q) and the percent of variability in effect
sizes that is not caused by sampling error (I”). After estimating heterogeneity, we identified
potential outliers. Studies were classified as outliers if the study had an effect size with a confi-
dence interval that did not intersect with the confidence interval of the pooled effect size.

Since some studies can have a larger influence on the pooled effect size than others due to
its sample size or individual effect size, we conducted an influence analysis. The analysis was
conducted by omitting each study one at a time and simulating the pooled effect size, with a
confidence interval had the study not been included. This influence analysis was represented
in a Baujat plot, which shows the contribution of each study to heterogeneity as Cochrane’s Q,
and compares this to the study’s influence on the pooled effect size.

Subgroup analysis. Since experimental design can affect the outcome of a study, differ-
ences in effect size may be attributed to these variables. As such, further sources of between-
study heterogeneity were investigated through subgroup analysis and meta-regression. In the
subgroup analysis, studies were grouped based on different categorical experimental parame-
ters. We completed eight different subgroup analyses for the following parameters—duration
of stressor, type of GC assay, telomere assay, species, taxa, study type, life history stage, and
stressor type. For each subgroup analysis, a pooled effect size (Fisher’s Z) was calculated. We
then compared pooled effect sizes and tested for between-study subgroup differences. The
meta-regression was analogous to the subgroup analysis, except the parameter of investigation
is continuous rather than categorical. We conducted one meta-regression for publication year
and subsequently tested for between-study subgroup differences. For all analyses the signifi-
cance threshold was set at p<0.05.

In the subgroup analysis, studies included in the meta-analysis were clustered based on cat-
egorical grouping and represented as a pooled effect size with a 95% confidence interval. The
between study difference was indicated by Cochrane’s Q and the subsequent p-value for this
statistical measure. The first subgroup analysis “stressor duration” organized studies based on
the timeframe of the experiment—less than one week (n = 1), one to two weeks (n = 2), two to
three weeks (n = 7), three to four weeks (n = 1), or longer than four weeks (n = 4)—. The sec-
ond subgroup analysis, “type of stress” compared anthropogenic (n = 5) to naturally occurring
stress (n = 7), or if stress was simulated by GC administration (n = 3). The subsequent sub-
group analysis “life history stage, “differentiates studies based on pre-maturate study organ-
isms (n = 12), or post-maturate study organisms (n = 3). Next, the subgroup “GC assay,”
separates studies into those that quantified plasma GCs (n = 13) or non-plasma GCs (n = 2).
Similarly, by performing the subgroup analysis for the variable “telomere assay” we hoped to
parse out potential differences between the three methods of telomere quantification: gPCR
(n=7), TeloTAGGG (n = 1), and Telomerase Restriction Fragment (TRF; n = 7). The fifth
subgroup analysis contrasts avian (n = 12) and non-avian (n = 3) studies. To explore the
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relationship between individual species, we performed an additional subgroup analysis for
each species included in the study. Finally, the subgroup analysis “study type” distinguished
studies based on study design: cross-sectional (n = 5), repeated measures (n = 2), or within
individual (n = 8) design.

Publication bias. Published studies may not accurately represent the total studies investi-
gating an area of research due to selective outcome reporting, missing studies and a higher
likelihood of publication of studies reporting a significant (p<0.05) result. While proving
selective outcome reporting and other forms of publication biases is challenging, missing stud-
ies can be visually represented using a funnel plot. Commonly, studies with small effect sizes
and small sample studies are likely to be missing, which can be depicted with funnel asymme-
try or holes in the funnel plot. We created a funnel plot by graphing effect size against study
precision, defined as the standard error of the effect size to visualize potential publication bias.
We also report an Egger’s test, which is represented by the intercept, it’s confidence interval,
and the associated p-value to determine if publication bias was statistically significant.

Risk of bias in included studies. We assessed studies for missing outcome-level data,
measurement of the outcomes, and outcome reporting in each included study. For the missing
outcome-level data domain, we considered studies that could not report values for telomere
length or GCs in less than 10% of total study organisms as low risk. We designated studies that
did not report these values for 10-50% of study organisms as moderate risk and studies that
did not report values for over 50% of GCs or telomere length, as high risk. Secondly, we based
risk of bias in the measurement of outcome on the type of GC and telomere measurement.
Low risk studies utilized plasma GCs or salivary GCs because these quantifications capture ele-
vations related to a short-term stress event within minutes. Studies that measured GCs in fecal
matter received a ranking of some concern because fecal GCs typically encapsulate cumulative
stress over the day rather than GCs related to a particular environmental stressor. Fecal GCs
also received a ranking of some concern due to potential variations related to storage and col-
lection times, which can affect the concentration of fecal GC metabolites in a sample [29]. We
considered studies that measured GCs in feathers as high risk because feathers incorporate
GCs in over a month. Additionally, we considered feather GC quantification as high risk
because feather preparation and GC extraction can vary greatly [30]. Finally, for the risk of
bias due to outcome reporting we denoted studies that based results off a subset of time points
or measurements high risk. We denoted studies that report results based on all time points
with low risk. We took these three domains into consideration when assessing overall risk of
bias.

Results
Literature search and study selection

We electronically screened 789 records for relevance from the following databases: Google
Scholar (n = 512), Web of Science (n = 105), PubMed (n = 72), and Scopus (n = 100). 2113
additional records were hand screened from the reference section of the 31 studies used in
qualitative analysis. Of the total 2902 records that were screened for relevance, 78 were
removed as duplicates and 2,489 did not fit criteria for our study. For example, some excluded
studies include human trials, cell culture work, or studies that only assessed research questions
pertaining to either telomere length or GC levels, but not both (Fig 1; S1 Table). Of the 183
assessed full-text articles, we removed 152 studies that did not fulfill our inclusion criteria. We
statistically analyzed 15 of the remaining 31 studies, the ones that provided raw data for analy-
sis either within the manuscript or after contacting the corresponding author [16, 22, 29-42].
The other 16 studies appeared to fit criteria but did not provide raw data for analysis [26, 30,
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Fig 1. PRISMA diagram. PRISMA diagram showing the selection process for references included in the meta-analysis
of the effects of GCs on telomere length.

https://doi.org/10.1371/journal.pone.0257370.9001

43-55]. The literature and study selection process is illustrated using a PRISMA diagram
(Fig 1).

Meta-analysis

The random-effects model meta-analysis is represented as a pooled effect size (Fisher’s Z) with
95% confidence intervals (Fig 2). No studies were removed as outliers. The model found no
relationship between GC levels and telomere length (Fisher’s Z = 0.1042, CI = 0.0235; 0.1836).
Both heterogeneity measures, Cochrane’s Q (Q = 11.31, p = 0.6615) and I” with 95% confi-
dence intervals (I? = 0.0%; CI = 0.0%; 42.6%) yielded similar results.

The influence analysis indicated that theoretically removing one study at a time did not
yield pooled effect sizes (Fisher’s Z = 0.09-0.11) that differed from the original pooled effect
size (Fisher’s Z = 0.11, S1 Fig). Additionally, the influence analysis demonstrated that certain
studies unevenly impacted the pooled effect size and/or overall heterogeneity (S2 Fig), but no
studies were removed as outliers.

Subgroup analysis

The subgroup analysis for “stressor duration” found no differences between any of the tested
time frames (Table 1). The difference between-studies was not statistically significant

Weight  Weight

Study Total Correlation COR  95%Cl (fixed) (random)
Bauch_2016 27 010 [0.30;046] 24%  3.5%
Burraco_2019 9 - 001 [0.20;0.21] 89%  9.2%
Casagrande_2020 20 - 025 [0.21,062] 1.7%  2.6%
Gil_2019 239 001 [0.12,0.14] 231%  14.3%
Grunst_2020 168 —E— 0.03 [0.12;0.18] 16.2%  12.4%
Hau_2015 32 — 0.05 [0.30;040] 28%  4.1%
Herborn_2014 104  — 019 [0.01;0.36] 9.9%  9.7%
Injaian_2019 17 —————— 032 [0.19,070] 14%  22%
Lansade_2018 64 R 027 [0.03;048] 6.0%  7.1%
Lemaitre_2021 43 e 010 [0.21;0.39] 39%  5.2%
Pegan_2019 48 —— 001 [0.27,0.30] 4.4%  57%
Sebastiano_2017 62 —f— 013 [0.12,0.37) 58%  6.9%
Stier_2020 60 —f— 0.06 [0.20;0.31] 56%  6.8%
Watson_2016 25 e 047 [0.090.73] 22%  32%
Young_2017_1 63 e 0.08 [0.17,0.32] 59%  7.0%
Fixed effect model 1066 < 0.09 [0.03; 0.15] 100.0% -
Random effects model < 0.10 [0.02; 0.18] ~ 100.0%

Heterogeneity: /2 = 0%, 1 = 0.0077, § = 0166
06-04-02 0 0204 06

Fig 2. Forest plot. Distribution of effect sizes of GCs on telomere length and 95% CI of effect size. Dashed lines
represent pooled effect sizes using a random and fixed effect model. Heterogeneity (I), the percent of variability in
effect sizes that is not caused by sampling error indicates very little variability in effect size. Weight indicates the
influence the study has on the overall pooled effect.

https://doi.org/10.1371/journal.pone.0257370.9002
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Table 1. Pooled effect sizes with 95% CI of experimental parameters investigated during the five subgroup analyses for stressor duration, stressor type, life history
stage, GC assay and taxa group.

Experimental Parameter Number of Studies Effect Size 95% CI
(Fisher’s Z)
Stressor Duration
<lweek n=1 0.0135 -0.2717; 0.2965
1-2 weeks | n=2 0.0959 -0.1663; 0.3454
2-3 weeks | n=7 0.0741 -0.0157;0.1628
3-4weeks n=1 0.0957 -0.2950; 0.4591
> 4 weeks | n=4 0.2181 0.0101; 0.4080
Type of Stress
Anthropogenic n=5 0.1902 0.0059; 0.3621
Naturally occurring | n =7 0.0451 -0.0388; 0.1284
GC administration | n=3 0.1425 -0.0320; 0.3085
Life History Stage
Pre-maturation | n =12 0.1111 0.0185; 0.2019
Post-maturation | n=3 0.0843 -0.1183;0.2800
GC Assay
Plasma GCs | n =12 0.1012 0.0061; 0.1945
Non-Plasma GCs | n=3 0.1161 -0.0437;0.2701
Taxa Group
Avian | n=12 0.1012 0.0088; 0.1919
Non-Avian | n=3 0.1183 -0.0600; 0.0936
Species n=1 0.0993 [-0.2072; 0.3881]
Capreolus capreolus
Coturnix japonica n=1 0.0596 [-0.1973; 0.3089]
Fregata magnificens n=1 0.1306 [-0.1232; 0.3684]
Hydrobates pelagicus n=1 0.4651 [0.0857; 0.7267]
Parus major n=2 0.0707 [-0.1322; 0.2678]
Phalacrocorax aristotelis n=1 0.1852 [-0.0600; 0.2893]
Rana temporaria n=1 0.0067 [-0.1962; 0.2090]
Rissa tridactyla n=1 0.0826 [-0.1686; 0.3238]
Sterna hirundo n=1 0.0957 [-0.2950; 0.4591]
Sturnus unicolor n=1 0.0088 [-0.1182;0.1356]
Tachycineta bicolor n=2 0.1134 [-0.2110; 0.4153]
Turdus merula n=1 0.0539 [-0.3004; 0.3952]
Welsh pony n=1 0.2693 [0.0252; 0.4831]
Telomere Assay n=7 0.1186 [-0.0089; 0.2424]
qPCR
TeloTAGGG  n=1 0.1306 [-0.1232; 0.3684]
TRF |n=7 0.0909 [-0.0409; 0.2197]
Study Type n=>5 0.1687 [-0.0219; 0.3474]
Cross sectional
Repeated measure | n =2 0.0271 [-0.1336; 0.1864]
Within individual | n = 0.0984 [0.0040; 0.1910]

The meta-regression was performed for the continuous variable publication year and represented as Cochrane’s Q and the associated p = value. Publication dates ranged

from 2014-2021. Publication date was not a significant predictor of effect size (Q = 1.252, p = 0.2632).

https://doi.org/10.1371/journal.pone.0257370.t001
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(Q=1.86, p =0.7594). Similarly, the subgroup analysis for “stressor type,” did not reveal a dif-
ference between types of stressors (Table 1). The between study difference was not significantly
different (Q = 2.56, p = 0.2783). Likewise, our subgroup “life history stage,” did not show dif-
ferences between effect sizes for pre- and post-maturation organisms (Table 1), and did not
indicate a difference between groups (Q = 0.06, p = 0.8119). The fourth subgroup analysis,
“GC assay” did not find a difference between plasma GCs and other GC measurements, yield-
ing a non-significant difference between studies (Q = 0.03, p = 0.8742) (Table 1). Additionally,
the between study difference for the telomere assay subgroup did not find a significant differ-
ence between the three telomere quantification methods (Q = 0.12, p = 0.9401; Table 1). Our
sixth subgroup analysis examined potential differences in effect size due to taxa, which could
be divided into the binary categories avian and non-avian (Table 1). There was no difference
between-studies (Q = 0.03, p = 0.8666). Our analysis further explored species-specific differ-
ences and accordingly did not find a significant difference between species (Q = 9.27,

p = 0.6797). Similarly, the final analysis investigated potential differences between study
designs and yielded a non-significant difference between cross-sectional, repeated measures,
or within individual designs (Q = 1.27, p = 0.5289).

Publication bias

We found publication bias against studies with small sample size and small effect size (53 Fig;
Egger’s test for small sample bias: intercept = 1.420616, CI = 0.3753223; 2.465909,
p = 0.02064949).

Risk of bias in included studies

We represent the results of the risk of bias analysis in Table 2. Four of fifteen studies received a
risk of bias ranking of moderate concern. These studies had some missing values for GCs or
telomere length or selectively reported one time point in the results. The other eleven studies
received a ranking of low risk and accordingly reported nearly all values for physiological
parameters, measured GCs in plasma or saliva, and did not selectively report results.

Table 2. Overall risk of bias assessed based on missing outcome data, measure of outcome and in the selection of reported results.

Author

Bauch et. al
Burraco et. al
Casagrande et. al
Gil et. al
Grunst et. al
Hau et. al
Herborn et. al
Injaian et. al
Lansade et. al
Lemaitre et. al
Pegan et. al
Sebastiano et. al
Stier et. al
Watson et. al

Young et. al

https://doi.org/10.1371/journal.pone.0257370.1002

Year

2016
2019
2020
2019
2020
2015
2014
2019
2018
2021
2019
2017
2020
2016
2017

Bias due to missing outcome data | Bias in measure of outcome | Bias in the selection of reported result | Overall Risk of Bias

high
low
high
low
low
low
low
high
low
low
high
low
low
low

moderate

low high some concern
low low low risk

low low some concern
low low low risk

high low low risk

low low low risk

low low low risk

low high high risk

low low low risk
moderate low low risk

low low some concern
low low low risk

low low low risk

low low low risk

low high some concern
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Discussion

External and internal stimuli can activate the neuroendocrine stress response in vertebrates,
resulting in the secretion of GCs, which induces multiple downstream physiological and
behavioral effects [8, 9]. GCs might directly or indirectly cause telomere erosion [1, 11, 32].
Therefore, our goal was to investigate the relationship between GCs and telomere length via
meta-analysis using data from empirical studies. Though our sample size was limited (n = 15),
our data do not support the hypothesis that elevated GC levels result in telomere shortening.

The empirical evidence for a relationship between GCs and telomere length is mixed, with
some studies showing that telomere shortening is directly related to GC levels, and other stud-
ies finding no relationship. For example, GCs influence telomere dynamics in wild roe deer
and great tits [32, 39], but not in red squirrels or magellanic penguins [46, 47]. These results
suggest that the relationship between GCs and telomere length is species-specific. Alterna-
tively, a potential relationship may be obscured by the methods used to measure GCs and telo-
mere length or by differences in experimental design including time frame. A differential
sensitivity of the HPA axis can also obscure conclusions made from GC measurements espe-
cially in free-ranging vertebrates that can potentially encounter a variety of external stimuli
[1]. For example, since GC levels in plasma remain elevated for several minutes after a stressor
subsides, it can be challenging to assess whether a measured GC increase results from the
stressor in question, the stress involved in obtaining a sample from the experimental subject,
or an unrelated event triggering HPA axis activation [6, 56]. As baseline plasma GC samples
must be collected quickly in many species, it can be logistically difficult to attain a true baseline
GC value in the field [57-60]. GCs can also be incorporated into other matrixes such as saliva,
feathers, and hair [4, 58]. The multitude of non-invasive GC sampling sources is advantageous
to conservation physiology as their quantification does not require capture [6]. However,
across tissues and fluids, the time required for GC incorporation varies. For example, eleva-
tions in plasma GCs can be detected within minutes of stressor exposure, whereas GCs inte-
grate into hair a week or more after stressor exposure [4]. Hence, there are caveats in the
interpretation of each measurement such as incongruencies between GC levels in plasma and
other tissues, hair and saliva [60]. Therefore, GC measurements in feces may be more repre-
sentative of accumulated stress, rather than the event in question [6].

GC quantification in tissues and feces can also present specific uncertainty and imprecision
during sampling, storage, and extraction. In fecal samples, GC metabolites can increase up to
92% in 120 days and provide an inaccurate assessment of GC levels [61, 62]. Excrement not
collected immediately or across different time scales can obscure potential differences since
exposure to abiotic factors like rainfall or extreme temperature can alter the concentration of
fecal glucocorticoid metabolites [63]. Moreover, diet can affect GC metabolites in fecal sam-
ples, since an increased amount of cellulose depresses fecal glucocorticoid metabolite concen-
trations [61]. Similarly, feather preparation and extraction can also affect GC levels [64].
Further, different parts of the feather yield different concentrations of GCs. Saliva based GC
extraction and quantification hosts similar shortcomings, though salivary GCs increase on a
similar timeline (5-10 minutes) to circulating plasma GCs and thus prove a close proxy for
plasma GC quantification [65]. Other factors such as time since last meal and recent activity
also impact salivary GC measurement [66].

Similar considerations must be taken into account when assessing telomere length. Since
telomere length can be influenced by environmental, maternal, and epigenetic effects, there is
a large inter-individual variability in telomere dynamics [11, 67]. Several factors may contrib-
ute to this variability including discrepancies between the repeatability of different telomere
measurement assays. Seven studies included in our meta-analysis utilized the telomere
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restriction fragment (TRF) assay, which depends on the distribution of the terminal restriction
fragments to average the length of telomeres in a given cell population [68]. The other eight
studies used the quantitative polymerase chain reaction (qQPCR, n = 7), which relies on the
quantification of the highly conserved (TTAGGG),, sequence for a Southern blot variation
(TeloTAGGG for telomere quantification (n = 1) [69]. TRF-based studies are highly repeatable
within individuals, whereas qPCR based studies are less repeatable and more variable than
TREF because they are more prone to measurement errors [70]. QPCR can also bias measure-
ments of telomere length because some species that exhibit interstitial telomeric repeats will
artificially enlarge telomere length [71, 72]. In addition to methodological differences, there is
large individual variability in telomere length based on tissue type [73]. In adult zebra finches,
telomere length in red blood cells is correlated with telomere length in the spleen, liver and
brain, but not muscle or heart [31]. While avian studies in our meta-analysis used red blood
cells for telomere measurement, telomere length was measured in tail muscle and liver in
mammals and amphibians, which could lead to discrepancies when comparing among studies
[31, 46, 57].

A variety of biological factors also contribute to the diversity of telomere dynamics observed
within a study and the large amount of observed inter-individual variability. The rate of telo-
mere shortening can be influenced by the life histories and environmental conditions [22]. In
accordance with the metabolic telomere attrition hypothesis, shortening is exacerbated by life
history stages requiring more energy, such as reproduction [32]. Within an energy intensive
process like reproduction, there can be a large inter-individual variability related to reproduc-
tive effort, which can be attributed to brood size and food availability [74]. Differences in
reproductive roles during the breeding season account for sex-specific telomere dynamics
which can contribute to differences in the variability of telomere dynamics within a study [75].
Finally, individuals respond differently to environmental challenges which can act synergisti-
cally with rapid growth or energy intensive life stages to magnify the rate of telomere shorten-
ing in non-model vertebrates [71].

Telomere dynamics can be complicated by the presence of telomerase which in some cases
can elongate telomeres [22, 76]. Typically, telomerase exhibits higher activity in developing
organisms as compared to adults [77]. Ectotherms such as amphibians and reptiles have telo-
merase that is active throughout adulthood while endotherms reduce telomerase expression
almost to non-detectable levels as they reach maturity [11, 70]. However, there is conflicting
evidence on these observations, as telomerase activity has been detected in adult common
terns and European Storm Petrels among other species [78, 79]. Nonetheless, adult telomere
shortening is observed in chickens, which have active telomerase in the adult life stage [26].
While there is an absence of empirical evidence on the long-term activity of telomerase in
many avian species, even adults exhibit general shortening trends [76].

Many factors influence GC and telomere measurements. During the subgroup analysis, we
attempted to disentangle the underlying causes of the variation in effect size. Ultimately, we
found no impact of stressor, taxa, type of GC assay, or life history stage on the heterogeneity of
the effect size. While no subgroup was identified as a predictor of heterogeneity in effect size,
pooled effect sizes in certain categories with the subgroup indicate a higher pooled effect size
than the overall pooled effect size. The small sample size for some parameters precluded fur-
ther statistical analysis, however, we found variables of interest that may play a large role in the
relationship between GCs and telomere length. For example, within “experimental time-
frame,” (n = 4) the group of studies with a timeframe above four weeks had a pooled effect size
0f 0.2181, while all other groups’ pooled effect size was less than that of the overall pooled effect
size. Since most studies took place in less than four weeks, this suggests that while almost
immediate changes in GCs can be observed, the impact of GCs on telomere length cannot be
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seen on short time scales. This idea is consistent with typical responses of telomere shortening
observed in studies that take place for more than a year [29, 54, 79-81]. More work is needed
to explore if long-term rather than short-term studies can be used to tease apart parameters
that underlie the connection between GCs and telomere length such as stressor type or
duration.

While GC secretion is often viewed as the endpoint of HPA axis activation in response to
external stimuli, GC manipulation is an oversimplification of the stress response which
involves a multitude of physiological mechanisms that can each impact energy allocation and
promote telomere erosion [8]. This highlights the problematic nature of the category “GC
stress” which was investigated as a category during the subgroup analysis, in which studies
subjected organisms to GC manipulation via an implant or oral administration. Since previous
research found that organismal stress can result in adverse physiological responses without the
involvement of the HPA axis, these results underscore the issue of using only GCs as a proxy
for stress [82, 83].

Overall, we found no relationship between GCs and telomere length across studies. Cur-
rently, the existing literature shows both a direct relationship and a lack of a relationship
between GCs and telomere dynamics, suggesting that the underlying mechanisms driving this
relationship are species-specific or altered by differences in experimental design. However,
due to limited sample size, we are unable to investigate the underlying variables that play a role
in this relationship. Here, we highlight the need for more studies with targeted experimental
parameters to understand how conditions, such as experimental timeframes, stressor(s), and
stressor magnitudes can drive a potential relationship between the neuroendocrine stress
response and cellular aging. Thus, we recommend the following research priorities to groups
studying similar questions.

1. Experimental timeframes and stressor magnitudes should be long enough to observe telo-
mere erosion in relation to stressors when studying GCs.

2. When possible, studies should use a repeated measures design to measure cortisol levels
and telomere lengths before and after stress exposure to account for individual variation.

3. While the avian taxa are well represented in this research topic, there is a dearth of informa-
tion on other taxa. It will be important to investigate the neuroendocrine stress response in
other vertebrates including mammals and reptiles to understand if similar principles hold
true in these taxa or if telomere dynamics differ across taxa.

4. If possible, future research should assess the functionality of the study organisms’ HPA axis
by ACTH/dexamethasone challenge prior to exposure to a stressor and completion of the
study.

Certainty of evidence

We utilized the applicable Cochrane/GRADE categories “risk of bias,” “inconsistency,” and
“publication bias,” for the determination of the certainty of evidence. Overall, we have a mod-
erate confidence in the certainty of evidence. While most studies received a low risk of bias
assessment, and had low heterogeneity, we report a considerable amount of publication bias as
evidenced by Egger’s test and an asymmetrical funnel plot.

Supporting information
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(PDF)
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S1 Fig. Influence analysis plot. The leave one out recalculation reveals a similar effect size
across studies and indicates that studies evenly contribute to the pooled effect size.
(TIF)

S2 Fig. Baujat plot. Studies can have an unequal influence on the pooled effect size and con-
tribute to the heterogeneity of effect sizes. The horizontal axis represents Cochrane’s Q and
influence on the pooled effect size on the vertical axis.

(TIF)

S3 Fig. Funnel plot. The lack of studies in the bottom left of the “funnel” demonstrates publi-
cation bias against studies with small sample sizes and small effect sizes.
(TTF)

S1 Table. Search strategy table. Details search term combinations used to search online data-
bases and websites.
(XLSX)
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