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Abstract. We study the problem of atomic broadcast—the underlying
problem addressed by blockchain protocols—in the presence of a ma-
licious adversary who corrupts some fraction of the n parties running
the protocol. Existing protocols are either robust for any number of cor-
ruptions in a synchronous network (where messages are delivered within
some known time A) but fail if the synchrony assumption is violated, or
tolerate fewer than n/3 corrupted parties in an asynchronous network
(where messages can be delayed arbitrarily) and cannot tolerate more
corruptions even if the network happens to be well behaved.

We design an atomic broadcast protocol (TARDIGRADE) that, for any
ts > tq with 2ts + t, < n, provides security against ts corrupted parties
if the network is synchronous, while remaining secure when t, parties
are corrupted even in an asynchronous network. We show that TARDI-
GRADE achieves optimal tradeoffs between ¢; and t,. Finally, we show a
second protocol (UPGRADE) with similar (but slightly weaker) guarantees
that achieves per-transaction communication complexity linear in n.

Keywords: Atomic broadcast - Byzantine agreement - Consensus.

1 Introduction

Atomic broadcast [10] is a fundamental problem in distributed computing that
can be viewed as a generalization of Byzantine agreement (BA) [21,33]. Roughly
speaking, a BA protocol allows a set of n parties to agree on a value once, even
if some parties are Byzantine, i.e., corrupted by an adversary who may cause
them to behave arbitrarily. In contrast, an atomic broadcast (ABC) protocol
allows parties to repeatedly agree on values by including them a totally-ordered,
append-only log maintained by all parties. (Formal definitions are given in Sec-
tion 3. Note that ABC is not obtained by simply repeating a BA protocol mul-
tiple times; this point is discussed further below.) Atomic broadcast is used as a
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building block for state machine replication, and has received renewed attention
in recent years for its applications to blockchains and cryptocurrencies.
Different network models for atomic broadcast can be considered. In a syn-
chronous network [2,8,15,19,29], all messages are delivered within some known
time A. In an asynchronous network [16,26], messages can be delayed arbitrarily.
(Some work assumes the partially synchronous model [13], where messages are
delivered within some time bound A that is unknown to the parties. We do not
consider this model in our work.) Assuming a public-key infrastructure (PKI),
atomic broadcast is feasible for ¢, < n adversarial corruptions in a synchronous
network, but only for ¢, < n/3 faults in an asynchronous network. A natural
question is whether it is possible to design a protocol that can withstand strictly
more than n/3 faults if the network happens to be synchronous, without entirely
sacrificing security if the network happens to be asynchronous. More precisely,
fix two thresholds t,,ts with t, < t,. Is it possible to design a network-agnostic
atomic broadcast protocol that (1) tolerates ts corruptions if it is run in a syn-
chronous network and (2) tolerates t, corruptions if it is run in an asynchronous
network? Depending on one’s assumptions about the probabilities of different
events, a network-agnostic protocol could be preferable to either a purely syn-
chronous protocol (which loses security if the network is asynchronous) or a
purely asynchronous one (which loses security if there are n/3 or more faults).
We settle the above question in a model where there is a trusted dealer who
distributes information to the parties in advance of the protocol execution:

— We present an atomic broadcast protocol, TARDIGRADE,! that achieves the
above for any t,,t, satisfying ¢, + 2ts < n. We also prove that no atomic
broadcast protocol can provide the above guarantees? if ¢, 4+ 2t, > n, and so
TARDIGRADE is optimal in terms of the thresholds it tolerates.

— We also describe a second protocol, UPGRADE, that is sub-optimal in terms
of t,,ts but has asymptotic communication complexity comparable to state-
of-the-art asynchronous atomic broadcast protocols (see Table 1).

To see how TARDIGRADE can be advantageous to either a fully synchronous or a
fully asynchronous protocol, consider the following concrete example. Fix t,,ts
with t, < n/3 < ts and 2t5 +t, < n, and let f(¢) be the probability that the
number of faults is strictly greater than t. Suppose f(t,) = 1/10, f([%5]) =
1/20, and f(ts) = 0, and the probability that the network delay ever exceeds the
assumed bound is pao = 1/10. Then a purely synchronous protocol fails to provide
security with probability pa = 1/10, while a purely asynchronous protocol fails
to provide security with probability f(|25*]) = 1/20. But TARDIGRADE (with
parameters t,,ts) fails to provide security only with probability f(ts) + pa -

F(ta) = 1/100.

! Tardigrades, also called water bears, are microscopic animals known for their ability
to survive in extreme environments.

2 This does not contradict the existence of synchronous ABC protocols for t, < n,
since such protocols are insecure in an asynchronous setting even if no parties are
corrupted.
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Protocol Communication | Network model
HoneyBadger [26] O(n - |tx|) Asynchronous
BEAT1 / BEAT?2 [12] O(n? - |tx|) Asynchronous
Dumbol / Dumbo?2 [16] O(n - |tx|) Asynchronous

TARDIGRADE O(n? - |tx|) Network-agnostic

UPGRADE O(n - |tx|) Network-agnostic

Table 1. Per-transaction communication complexity of ABC protocols, for transactions
of length |tx|, assuming infinite block size and suppressing dependence on the security
parameter for simplicity.

Our work is inspired by work of Blum et al. [5], who show analogous results
(with the same thresholds) for the simpler problem of Byzantine agreement. We
emphasize that ABC is not realized by simply repeating a (multi-valued) BA
protocol multiple times. In particular, the validity property of BA guarantees
only that if a value is used as input by all honest parties then that transaction
will be output by all honest parties. In the context of ABC, however, each honest
party holds a local buffer containing multiple values called transactions. Trans-
actions may arrive at arbitrary times, and there is no way to ensure that all
honest parties will input the same transactions to some execution of an underly-
ing BA protocol. (Although generic transformations from BA to ABC are known
in other settings [9], no such transformation is known for the network-agnostic
setting we consider.) Indeed, translating the approach of Blum et al. from BA
to ABC introduces several additional challenges. In particular, as just noted, in
the context of atomic broadcast there is no guarantee that honest parties ever
use the same transaction, making it more challenging to prove liveness. A cen-
tral piece of our construction is a novel protocol for the fundamental problem of
asynchronous common subset (ACS). Our ACS protocol achieves non-standard
security properties that turn out to be generally useful for constructing proto-
cols in a network-agnostic setting; it has already served as a crucial ingredient
in follow-up work [6] on network-agnostic secure computation.

1.1 Related Work

There is extensive prior work on both Byzantine agreement and atomic broad-
cast/SMR/blockchain protocols; we do not provide an exhaustive survey, but
instead focus only on the most closely related works.

Miller et al. [26] already note that well-known SMR protocols that tolerate
malicious faults (e.g., [8,19]) fail to achieve liveness in an asynchronous network.
The HoneyBadger protocol [26] is designed for asynchronous networks, but only
handles ¢ < n/3 faults even if the network is synchronous.

Several of the most prominent blockchain protocols rely on synchrony [15,29];
Nakamoto consensus, in particular, relies on the assumption that messages will
be delivered much faster than the time required to solve proof-of-work puzzles,
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and is insecure if the network latency is too high or nodes become (temporarily)
partitioned from the network.

We focus on designing a single protocol that may be run in either a syn-
chronous or asynchronous network while providing security guarantees in either
case. Related work includes that of Malkhi et al. [25] and Momose and Ren [27],
who consider networks that may be either synchronous or partially synchronous;
Liu et al. [22], who design a protocol that tolerates a minority of malicious faults
in a synchronous network and a minority of fail-stop faults in an asynchronous
network; and Guo et al. [17] and Abraham et al. [2], who consider temporary
disconnections between two synchronous network components.

A different line of work [23,24,30,31] designs protocols with good responsive-
ness. Roughly, such protocols still require synchrony, but terminate in time pro-
portional to the actual message-delivery time § rather than the upper bound on
the network-delivery time A. Kursawe [20] gives a protocol for an asynchronous
network that terminates more quickly if the network is synchronous (but does
not tolerate more faults in that case). Finally, other work [3,11,14,32] considers
a model where synchrony is available for some (known) period of time, and the
network is asynchronous afterward.

1.2 Paper Organization

We describe our model in Section 2, and give formal definitions in Section 3. In
Section 4, we describe a protocol for the asynchronous common subset (ACS)
problem. Then, in Section 5, we show how to construct a network-agnostic atomic
broadcast protocol (TARDIGRADE) achieving optimal security tradeoffs using
ACS and other building blocks. In Section 6, we present a second atomic broad-
cast protocol (UPGRADE) that achieves per-transaction communication complex-
ity linear in n at the cost of tolerating fewer corruptions.

2 Model

We consider protocols run by n parties P, ..., P,, over point-to-point authen-
ticated channels. Some fraction of these parties are controlled by an adversary,
and may deviate arbitrarily from the protocol. For simplicity, we generally as-
sume a static adversary who corrupts parties prior to the start of the protocol;
in Section 5.6, however, we do briefly discuss how TARDIGRADE can be modified
to tolerate an adaptive adversary who may corrupt parties as the protocol is
executed. Parties who are not corrupted are called honest.

In our model, the network has two possible states. The state is fixed prior
to the beginning of the execution; however, the state is not known to the hon-
est parties. When the network is synchronous, all parties begin the protocol at
the same time, parties’ clocks progress at the same rate, and all messages are
delivered within some known time A after they are sent. The adversary is able
to adaptively delay and reorder messages arbitrarily (subject to the bound A).
When the network is asynchronous, the adversary is able to delay messages for
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arbitrarily long periods of time (as long as all messages are eventually delivered).
The parties still have local clocks in the asynchronous setting; however, in this
case their clocks are only assumed to be monotonically increasing. In particular,
parties’ clocks are not necessarily synchronized, and they may start the protocol
at different times.

We assume the network is either synchronous or asynchronous for the life-
time of the protocol. A more general model would consider a network that al-
ternates between periods of synchrony and asynchrony. Our adaptively secure
protocol (cf. Section 5.6) tolerates an asynchronous network that later becomes
synchronous so long as the attacker does not exceed t, corruptions until all it-
erations initiated while the network was asynchronous are complete, and does
not exceed ts corruptions overall. Handling a synchronous network that later
becomes asynchronous is only interesting if some mechanism is provided to “un-
corrupt” parties (as in the proactive setting). This is outside our model, and we
leave treatment of this case as an interesting direction for future work.

We assume a trusted dealer who initializes parties with some information
prior to execution of the protocol. Specifically, we assume the dealer distributes
keys for threshold signature and encryption schemes, each secure for up to t
corruptions. In a threshold signature scheme there is a public key pk, private
keys ski,...,sky, and (public) signature verification keys (pki,...,pk,). Each
party P; receives sk;, pk, and (pki,...,pk,), and can use its secret key sk; to
create a signature share o; on a message m. A signature share from party P; on
a message m can be verified using the corresponding public verification key pk;
(and is called valid if it verifies successfully); for this reason, we can also view such
a signature share as a signature by P; on m. We often write (m); as a shorthand
for the tuple (i,m,0;), where o; is a valid signature share on m with respect
to P;’s verification key, and implicitly assume that invalid signature shares are
discarded. A set of 5+ 1 valid signature shares on the same message can be used
to compute a signature for that message, which can be verified using the public
key pk; a signature o on a message m is called walid if it verifies successfully
with respect to pk. We always implicitly assume that parties use some form of
domain separation when signing to ensure that signature shares are valid only
in the context in which they are generated.

In a threshold encryption scheme, there is a public encryption key ek, (pri-
vate) decryption keys dk1, ..., dk,, and public verification keys vk, ..., vk, that
can be used, as above, to verify that a decryption share is correct (relative to
a particular ciphertext). A party P; can use its decryption key dk; to generate
a decryption share of a ciphertext c; any set of t; + 1 correct decryption shares
enable recovery of the underlying message m. Security requires that no collection
of ts parties can decrypt on their own.

We idealize the threshold signature and encryption schemes for simplicity,
but they can be instantiated using any of several known protocols; in particular,
we only require CPA-security for the threshold encryption scheme. We assume
that signature shares and signatures have size O(k), where k is the security
parameter; this is easy to ensure using a collision-resistant hash function. We
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assume that encrypting a message m of length |m| produces a ciphertext of
length |m| + O(k), and that decryption shares have length O(x); these are easy
to ensure using standard KEM/DEM mechanisms.

3 Definitions

In this section, we formally define atomic broadcast and relevant subprotocols.
Throughout, when we say a protocol achieves some property, we include the
case where it achieves that property with overwhelming probability in a security
parameter k. Additionally, in some cases we consider protocols where parties
may not terminate even upon generating output; for this reason, we mention
termination explicitly in our definitions when applicable.

Many of the definitions below are parameterized by a threshold ¢. This will
become relevant in later sections, where we will often analyze a protocol’s proper-
ties in a synchronous network with ¢ corruptions, as well as in an asynchronous
network with ¢, corruptions.

3.1 Broadcast and Byzantine Agreement

A reliable broadcast protocol allows parties to agree on a value chosen by a des-
ignated sender. Honest parties are not guaranteed to terminate; hence, reliable
broadcast is weaker than standard broadcast. However, if there is some honest
party who terminates, then all honest parties terminate.

Definition 1 (Reliable broadcast). Let IT be a protocol executed by parties
Py, ..., P,, where a designated sender P* € {Py, ..., P,} begins holding input v*
and parties terminate upon generating output.

— Validity: IT is t-valid if the following holds whenever at most t parties are
corrupted: if P* is honest, then every honest party outputs v*.

— Consistency: II is t-consistent if the following holds whenever at most t
parties are corrupted: either no honest party outputs a value, or all honest
parties output the same value v.

If IT is t-valid and t-consistent, then we say it is t-secure.

We reserve the term “broadcast” for reliable broadcast. When a party P;
sends a message m to all parties (over point-to-point channels), we say that P;
multicasts m.

Byzantine agreement (BA) is closely related to broadcast. In a BA protocol,
there is no designated sender; instead, each party has their own input and the
parties would like to agree on an output.

Definition 2 (Byzantine agreement). Let IT be a protocol executed by parties
Py, ..., P, where each party P; begins holding input v; € {0,1}.
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— Validity: IT is t-valid if the following holds whenever at most t of the parties
are corrupted: if every honest party’s input is equal to the same value v, then
every honest party outputs v.

— Consistency: II is t-consistent if whenever at most t parties are corrupted,
every honest party outputs the same value v € {0,1}.

— Termination: IT is t-terminating if whenever at most t parties are corrupted,
every honest party terminates with some output in {0,1}.

If II is t-valid, t-consistent, and t-terminating, then we say it is t-secure.

3.2 Asynchronous Common Subset

Informally, a protocol for the asynchronous common subset (ACS) problem [4]
allows n parties, each with some input, to agree on a subset of those inputs.
(The term “asynchronous” in the name is historical, and one can also consider
protocols for this task in the synchronous setting.)

Definition 3 (ACS). Let IT be a protocol executed by parties Py, ..., P,, where
each P; begins holding input v; € {0,1}*, and parties output sets of size at most n.

— Validity: IT is t-valid if the following holds whenever at most t parties are
corrupted: if every honest party’s input is equal to the same value v, then
every honest party outputs {v}.

— Consistency: II is t-consistent if whenever at most t parties are corrupted,
all honest parties output the same set S.

— Liveness: II is t-live if whenever at most t parties are corrupted, every
honest party generates output.

If II is t-consistent, t-valid, and t-live, we say it is t-secure.
For our analysis, it will be helpful to define a few additional properties.
Definition 4 (ACS properties). Let IT be as above.

— Set quality: IT has t-set quality if the following holds whenever at most t
parties are corrupted: if an honest party outputs a set S, then S contains the
input of at least one honest party.

— Validity with termination: IT is t-valid with termination if, whenever at
most t parties are corrupted and every honest party’s input is equal to the
same value v, then every honest party outputs {v} and terminates.

— Termination: IT is t-terminating if whenever at most t parties are corrupted,
every honest party generates output and terminates.

3.3 Atomic Broadcast

Protocols for atomic broadcast (ABC) allow parties to maintain agreement on
an ever-growing, ordered log of transactions. An atomic broadcast protocol does
not terminate but instead continues indefinitely. We model the local log held



8 E. Blum et al.

by each party P; as a write-once array Blocks; = Blocks;[1], Blocks;[2], . ... Each
Blocks;[j] is initially set to a special value L. We say that P; outputs a block in
iteration j when P; writes a set of transactions to Blocks;[j]; similarly, for each
i, j such that Blocks;[j] # L, we refer to Blocks;[j] as the block output by P; in
iteration j. For convenience, we let Blocks; [k : ¢] denote the contiguous subarray
Blocks;[k], . . ., Blocks;[¢] and let Blocks;[: ¢] denote the prefix Blocks;[1 : £].

For simplicity, we imagine that each party P; has a local buffer buf;, and that
transactions are added to parties’ local buffers by some mechanism external to
the protocol (e.g., via a gossip protocol). Whenever P; outputs a block, they
delete from their buffer any transactions that have already been added to their
log. We emphasize that a particular transaction tx may be provided as input
to different parties at arbitrary times, and may be provided as input to some
honest parties but not others.

Definition 5 (Atomic broadcast). Let IT be a protocol executed by parties
Py, ..., P, who are provided with transactions as input and locally maintain ar-
rays Blocks as described above.

— Completeness: I1 is t-complete if the following holds whenever at most t
parties are corrupted: for all j > 0, every honest party outputs a block in
iteration j.

— Consistency: I is t-consistent if the following holds whenever at most t
parties are corrupted: if an honest party outputs a block B in iteration j
then all honest parties output B in iteration j.

— Liveness: II is t-live if the following holds whenever at most t parties are
corrupted: if every honest party is provided a transaction tx as input, then
every honest party eventually outputs a block that contains tx.

If II is t-consistent, t-live, and t-complete, then we say it is t-secure.

In the above definition, a transaction tx is only guaranteed to be contained
in a block output by an honest party if every honest party receives tx as input.
A stronger definition might require that a transaction is output even if only a
single honest party receives tx as input; however, it is easy to achieve the latter
from the former by requiring honest parties to forward new transactions they
receive to the rest of the parties in the network.

4 ACS with Higher Validity Threshold

A key component of our atomic broadcast protocol is an ACS protocol for asyn-
chronous networks that is secure when the number of corrupted parties is below
a fixed threshold ¢,, and guarantees validity up to a higher threshold ¢;. More
precisely, fix t, < t; with ¢, + 2 - ts < n; we show a t,-secure ACS protocol
that achieves t,-termination, ts-validity with termination, and t,-set quality.
Throughout this section, we assume an asynchronous network. (Of course, the
protocol achieves the same guarantees in a synchronous network.)
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Our protocol is adapted from the ACS protocol of Ben-Or et al. [4] (later
adapted by Miller et al. [26]), which is built using subprotocols for reliable broad-
cast and Byzantine agreement. We present our construction in two steps: first,
we describe an ACS protocol Hf\“c’éi (cf. Figure 1) that is t,-secure and has ¢,-set
quality, but is non-terminating. Then, we construct a second protocol Hf\%’és (cf.
Figure 2) that uses H;”C’éi as a subprotocol. HZ‘LC’? inherits security and set qual-
ity from H,i“c’éi, and additionally achieves t,-termination and ts-validity with
termination.

Protocol H,i‘%st At a high level, an execution of U;‘E; involves one instance
of reliable broadcast and one instance of Byzantine agreement per party P;,
denoted Bcast; and BA;, respectively. Informally, Bcast; is used to broadcast
P;’s input v;, and BA; is used to determine whether P;’s input will be included
in the final output. When a party receives output v} from Bcast;, they input 1
to BA;. Once a party has received output from n —t, broadcasts, they input 0 to
any BA instances they have not yet initiated. Each party keeps track of which
BA instances have output 1 using a local variable S* := {i : BA; output 1}. At
the end of the protocol, if a party observes a majority value v in the set of values
{vl}ies*, it outputs the singleton set {v}; otherwise, it outputs {v}};cs+, i.e.,
the set of all values broadcast by parties in S*.

We assume an ABA subprotocol that is secure for ¢, < n/3 corruptions and
has communication complexity O(n?), such as the ABA protocol of Mostéfaoui
et al. [28]. We also assume an asynchronous reliable broadcast protocol Bcast
that is ts-valid and ¢,-consistent with communication complexity O(n? |v]). Tt
is straightforward to adapt Bracha’s (asynchronous) reliable broadcast proto-
col [7] to achieve these properties; an example construction can be found in
Appendix A.1.

Lemma 1. Fiz t,,t, with t, + 2 -ts < n, and assume there are at most t
corrupted parties during some execution of Hf\”c’éi. If an honest party P; outputs
a set S;, then Jv; € S; such that v; was input by an honest party P;.

Proof. We show that P;’s output S; always includes a value that was output
from an execution of Bcast where the corresponding sender is honest. The lemma
follows from t,-validity of Bcast.

Suppose P; generates output due to Event 1, so S; is a singleton set {v}.
P; must have received v as output from at least n — t, executions of {Bcast;}.
Because n — 2t, > t, > 0, at least one of those corresponds to an honest sender.

Next, suppose P; generates output due to Event 2. Again, S; is a singleton
set {v}. P; must have seen at least L‘S—;lj + 1 broadcast instances terminate
with output v, and furthermore |S*| > n — t,. Therefore, P; has seen at least
|25t ] +1 > |2:] +1 > ¢, executions of {Bcast;} terminate with output v.
Since there are at most ts corrupted parties, at least one of those executions
must correspond to an honest sender.

Finally, suppose P; generates output due to Event 3, so S; = {v}};cs-. Since
there are at most ts corrupted parties and |S*| —ts > n—t, —ts > ts > 0, at
least one party in S* is honest. ad
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ta,ts
HACS*

— Set commit := false and S* := ().

— Run Becast; as the sender with input v;, and for each i # j run Bcast;
with P; as the sender.

— Upon Bcast; terminating with output v;: if P; has not yet begun running
BA; then begin running it with input 1.

— Upon BA; terminating with output 1: add ¢ to S™.

— Upon setting |S*| to n — ¢q: for any BA; that P; has not yet begun
running, begin running BA; with input 0.

Predicates:
Ci(v): at least n — t; executions {Bcast; };c[,) have output v.
Cy: v for which C;(v) is true.
C(v): |S™| > n—ta, all executions {BA;},c[,) have terminated, and a strict
majority of the executions {Bcast; };cs+ have output v.
Ca: Jv for which Cz(v) is true.
C3: |S*| > n — ta, all executions {BA;};c[,) have terminated, and all
executions {Bcast; };cs+ have terminated.

Output conditions:

(Event 1) If C1(v) = true for some v and commit = false then:
set commit := true and output {v}.

(Event 2) If C = false, C2(v) = true for some v, and commit = false then:
set commit := true and output {v}.

(Event 3) If Cy = C5 = false, C5 = true, and commit = false then:
set commit := true and output {v;};cs+.

Fig. 1. An ACS protocol, from the perspective of party P; with input v;.

Lemma 2. Ift, + 2 -t; <n, then Hiacst 18 ts-valid.

Proof. Assume at most t; parties are corrupted, and all honest parties have
the same input v. By ts-validity of Beast, at least n — t5 executions of {Bcast;}
(namely, those for which the sender is honest) will eventually output v. It follows
that all honest parties eventually set C;(v) = true, at which point they will
output {v} if they have not already generated output. It only remains to show
that there is no other set an honest party can output.

If an honest party generates output S due to Events 1 or 2, then S is a
singleton set. Since all honest parties have input v, Lemma 1 implies S = {v}.

To conclude, we show that no honest party can generate output due to
Event 3. Assume toward a contradiction that some honest party P generates
output due to Event 3. Then P must have seen Bcast; terminate (say, with out-
put v;) for all ¢ € S*. Since also |S*| > n —t, > 2t,, a majority of those execu-
tions {Bcast; };cs+ correspond to honest senders and so (by ts-validity of Bcast)
resulted in output v. But then Cy(v) would be true for P, and P would not
generate output due to Event 3. a
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Lemma 3. Fiz t, < t, with t, + 2 -ts; < n, and assume at most t, parties
are corrupted during an execution of U/K“C’éi. If honest parties Py, Py output sets
S1, 82, respectively, then S1 = Ss.

Proof. Say P; generates output due to event ¢ and P» generates output due
to event j, and assume without loss of generality that ¢ < j. We consider the
different possibilities.

First, assume ¢ = 1 so Event 1 occurs for P; and S; = {v;} for some value v;.
We have the following sub-cases:

— If Event 1 also occurs for Py, then Sy = {vy} for some value vy. P and Py
must have each seen some set of at least n —t, > n/2 executions of {Bcast;}
output v; and vs, respectively. The intersection of these sets is non-empty;
thus, t,-consistency of Bcast implies that v; = vy and hence S; = S5.

— If Event 2 occurs for P,, then once again Sy = {vs} for some vy. P, must

have |S*| > n —t,, and must have seen at least {%J +1> [%J +1
executions of {Bcast;} output ve. Moreover, P; must have seen at least n—t,
executions of {Bcast;} output v;. Since

2t

—t,
n J+1Znt‘;+{2J+l>n, (1)

nterL

these two sets of executions must have a non-empty intersection. But then
t,-consistency of Bcast implies that v; = vy and hence S; = Ss.

— If Event 3 occurs for P, then P, must have seen all executions {Bcast; };c s
terminate, where |S*| > n—t,. We know P has seen at least n—t, executions
{Bcast; };c[,,) output vy, and so (by t,-consistency of Bcast) there are at
most t, executions {Bcast;};c[,) that P> has seen terminate with a value
other than v1. The number of executions of {Bcast;};cs+ that P> has seen
terminate with output v; (which is at least (n — ¢,) — ts > t5) is thus
strictly greater than the number of executions {Bcast; };cs+ that P5 has seen
terminate with a value other than vy (which is at most ¢s). But then Cs(v1)
would be true for P>. We conclude that Event 3 cannot occur for Ps.

Next, assume ¢ = j = 2, so Event 2 occurs for P; and P,. Then S; = {v;}
and Sy = {v2} for some vy,vs. Both P and P must have seen all executions
{BA;}ic[n) terminate. By ¢,-consistency of BA, they must therefore agree on S*.
P; must have seen a majority of the executions {Bcast; };c s+ output v;; similarly,
P, must have seen a majority of the executions {Bcast;};cs+ output ve. Then
t,-consistency of Bcast implies v; = vs.

Finally, consider the case where j = 3 (so Event 3 occurs for P) but i > 1 (so
Py generates output due either to Event 2 or 3). As above, t,-consistency of BA
ensures that P, and P, agree on S*. Moreover, P, must have seen all executions
{Bcast; };cs+ terminate, but without any value being output by a majority of
those executions. But then ¢,-consistency of Bcast implies that P also does not
see any value being output by a majority of those executions, and so Event 2
cannot occur for Pp; thus, Event 3 must have occurred for P;. Therefore, t,-
consistency of Bcast implies that P; outputs the same set as Ps. a
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Lemma 4. Ift, <ts andt, +2-ts < n, then H/:“Cé* 1s tq-live.

Proof. Tt follows easily from t,-security of Bcast and BA that if any honest party
generates output then all honest parties generate output, so consider the case
where no honest parties have (yet) generated output. Let H denote the indices
of the honest parties. By ts-validity of Bcast, all honest parties eventually see
the executions {Bcast; };c g terminate, and so all honest parties input a value to
the executions {BA;};ci. By tq-security of BA, all honest parties eventually see
those executions terminate and agree on their outputs. There are now two cases:

— If all executions {BA;};cy output 1, then it is immediate that all honest
parties have |S*| > n — t,.

— If BA,; outputs 0 for some i € H, then (by t,-validity of BA) some honest
party P must have used input 0 when running BA;. But then P must have
seen at least n — t, other executions {BA;} output 1. By t,-consistency of
BA, this implies that all honest parties see at least n — t, executions {BA;}
output 1, and hence have |S*| > n — t,.

Since all honest parties have [S*| > n — t,, they all execute {BA;};c[,). Once
again, t,-termination of BA implies that all those executions will eventually
terminate. Finally, if ¢ € S* for some honest party P then P must have seen BA;
terminate with output 1; then ¢,-validity of BA implies that some honest party
used input 1 when running BA; and hence has seen Bcast; terminate. It follows
that P will see Bcast; terminate. As a result, we see that every honest party can
(at least) generate output due to Event 3. O

Lemma 5. Ift, <ts; andt, +2-t; <n, then HZ"C’éi has to-set quality.

Proof. If an honest party P outputs S = {v} due to Event 1, then P has seen
at least n — ¢y executions {Bcast;} terminate with output v. Of these, at least
n—ts —t, > 0 must correspond to honest senders. By ts-validity of Bcast, those
honest parties must have all had input v, and so set quality holds. Alternatively,
say P outputs a set {v} due to Event 2. Then P must have |S*| > n — t,, and
at least L%j +1 > 25t +1 > t, of the executions {Bcast;};cs+ output v.
At least one of those executions must correspond to an honest party, and that
honest party must have had input v (by ts-validity of Bcast); thus, set quality
holds. Finally, if P output a set S due to Event 3, then S contains every value
output by {Bcast;};cs- with |[S* > n — t,. Since S* must contain at least one
honest party, set quality follows as before. a

Theorem 1. Fizt,,ts witht, <ts andt, +2-ts <n. Then Hf\‘lcst 18 tq-secure
and ts-valid, and has tq-set quality.

Proof. Lemma 2 proves t¢-validity. Lemmas 3 and 4 together prove t,-liveness
and t,-consistency, and Lemma 6 proves t,-set quality. a

Lemma 6. Ift, <ts andt, +2-ts <n, then Hliac’éi has t,-set quality.
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Proof. If an honest party P outputs S = {v} due to Event 1, then P has seen
at least n — ty executions {Bcast;} terminate with output v. Of these, at least
n —ts —t, > 0 must correspond to honest senders. By ¢,-validity of Bcast, those
honest parties must have all had input v, and so set quality holds. Alternatively,
say P outputs a set {v} due to Event 2. Then P must have |S*| > n — t,, and
at least LlS |j + 1> 25t +1 > t, of the executions {Bcast;};cs+ output v.
At least one of those executions must correspond to an honest party, and that
honest party must have had input v (by ts-validity of Bcast); thus, set quality
holds. Finally, if P output a set S due to Event 3, then S contains every value
output by {Bcast; };cs+. Since |S*| > n —t,, S* must contain at least one honest
party, and so set quality follows as before. a

Protocol H,i%’és Protocol H;“C’Sti does not guarantee termination. We transform
I t%’si to a terminating ACS protocol A”C’SS using digital signatures. The parties
first run HZ‘E’éi. When a party P; generates output S; from that protocol, it then
notifies the other parties by multicasting a signature share(commit, S;); on S;.
Any party who receives enough signature shares to form a signature—or receives
a signature directly—multicasts the signature to all other parties, outputs the
corresponding set, and terminates.

t(l 7tS
HACS

Run H,i‘é’stf using input v;.

— Upon receiving output S; from IT42s, multicast (commit, S;);.

— Upon receiving ¢t + 1 signature shares of (commit, S), form a signature
o on (commit, S), multicast (commit, S, o), output S, and terminate.
Upon receiving a valid signature o of (commit,S), multicast
(commit, S, o), output S, and terminate.

Fig. 2. A terminating ACS protocol, from the perspective of party P; with input v;.

Lemma 7. HZ“C’StS 1s ty-terminating.

Proof. If one honest party terminates H/i"c’és then all honest parties will eventu-
ally receive a valid signature and thus terminate II, t‘“ts . But as long as no honest
parties has yet terminated, t livcncss of t”c’é* 1mphcs that all honest parties
will generate output from ACS*; moreover, t,-consistency of Aac’si implies that
all those outputs will be equal to the same set S. So the n —t, > t, + 1 honest
parties will send signature shares on S to all parties, which means that all honest
parties will terminate. a

Lemma 8. Fix t,,t; witht, <ts andt, +2-ts <n. Then H,’f\‘z:’ss 18 tq-secure,
to-terminating, and ts-valid with termination, and has t,-set quality.
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Proof. Lemma 7 implies that H,i%’és is t,-live as well as t,-terminating. If an
honest party outputs a set S from Hf\“c’gs, then (as long as at most ¢, parties
are corrupted) at least one honest party must have output S from H,i%’sti. Thus,
Hf\“c’gs inherits t,-set quality, t,-consistency, and ts-validity (without termina-
tion) from ITyee: (cf. Theorem 1). Tt is straightforward to extend ¢ -validity to
ts-validity with termination using an identical argument as in Lemma 7. ad

asts

Communication complexity of Hf\cs . Let |v] be the size of each party’s in-
put. Recall that each instance of Bcast has communication complexity O(n? |v]),
and each instance of BA has cost O(n?). Since the inner protocol Hf\ac’éi consists
of n parallel instances of Bcast and BA, the cost of the inner protocol is O(n? |v|).
In the remaining steps, each party sends a set of size at most n plus a signature
share (or signature) to everyone else, contributing an additional O(n?-(n |v|+x))

asls

communication. The total communication for IT,2¢ is thus O(n® [v| + n?k).

5 Network-Agnostic Atomic Broadcast

In this section, we show our main result: for any t; > t, with ¢, + 2t5; < n,
an atomic broadcast protocol that is tg-secure in a synchronous network and
t,-secure in an asynchronous network.

5.1 Technical Overview

At a high level, each iteration of the protocol consists of four main steps. First,
there is an information-gathering phase in which each party sends its input to all
other parties, and waits for a fixed amount of time to receive inputs from others.
Any party who receives enough inputs during the first phase will use them as
input to a synchronous block agreement (BLA) protocol HésLA. If the network
is synchronous and at most ¢, parties are corrupted, the BLA subprotocol will
output a set of inputs that contains sufficiently many honest parties’ inputs.
The BLA subprotocol is run for a fixed amount of time, with the timeout chosen
to ensure that (with high probability) it will terminate before the timeout if
the network is synchronous. This brings us to the third phase, in which parties
run the ACS protocol Hf\“c’és. If a party received output from the BLA protocol
before the timeout, they will use that as their input to the ACS subprotocol;
otherwise, they wait until they have received sufficiently many inputs from other
parties and use those. The final phase occurs once parties have received output
from the ACS protocol. The parties use that output to form the next block.
The BLA and ACS protocols are designed to have complementary security
properties. In particular, if the network is synchronous then the BLA protocol
will ensure that all honest parties use the same input value B in the ACS pro-
tocol. This is exactly why HZ‘E’? has ts-validity with termination: so that that,
in this case, all parties will be in agreement on the singleton set {B} after run-
ning Hf\%’és. On the other hand, if the network is not synchronous and at most
t, parties are corrupted, it is possible that IT, ésl_A will not succeed, and parties
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may input different values to H};‘&’;S. However, in this case t,-security of Hli‘}:’és
ensures that the parties will agree on a set of values B = {f1, 82, ... }. More-
over, the output-quality property ensures that at least a constant fraction of the
values in B were contributed by honest parties.

5.2 Block Agreement

We use a block-agreement protocol to agree on objects that we call pre-blocks.
(The name alludes to their role in our eventual atomic broadcast protocol, where
they will serve as an intermediate between parties’ raw inputs and the final
blocks.) A pre-block is a vector of length n whose ith entry is either L or a
message along with a valid signature by P; on that message. The quality of
a pre-block is defined as the number of entries that are not 1; we say that a
pre-block is a k-quality pre-block if it has quality at least k.

Definition 6 (Block agreement). Let IT be a protocol executed by parties
Py, ..., P,, where parties terminate upon generating output.

— Validity: IT is t-valid if whenever at most t of the parties are corrupted and
every honest party’s input is an (n — t)-quality pre-block, then every honest
party outputs an (n — t)-quality pre-block.

— Consistency: II is t-consistent if whenever at most t of the parties are
corrupted, every honest party outputs the same pre-block B.

If IT is t-valid and t-consistent, then we say it is t-secure.

A synchronous block-agreement protocol can be constructed using a straight-
forward adaptation of the synod protocol by Abraham et al. [1]. (For complete-
ness, a construction and security analysis can be found in Appendix A.2.)

Theorem 2. Fiz a mazimum input length |m|. There is a block-agreement pro-
tocol IlgLa with communication complexity O(n®k? +n?k|m|) that is t-secure for
any t < n/2 when run in a synchronous network and terminates in time 5k A.

5.3 A Network-Agnostic Atomic Broadcast Protocol

We now describe our atomic broadcast protocol TARDIGRADE (cf. Figure 3), pa-
rameterized by thresholds ¢; and ¢,. Let L denote a desired maximum block size,
i.e., the maximum number of transactions that can appear in a block. At a high
level, parties agree on each new block via the following steps. First, each party P;
chooses a set V; of L/n transactions from among the first L transactions in its lo-
cal buffer. (We assume without loss of generality that parties always have at least
L transactions in their buffer, since they can always pad their buffers with null
transactions.) Next, P; encrypts V; using a (ts, n)-threshold encryption scheme
to give a ciphertext u;. (As in HoneyBadger [26], transactions are encrypted
to limit the adversary’s ability to selectively censor certain transactions.) Each
party signs its ciphertext and multicasts it, then waits for a fixed period of time
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to receive signed ciphertexts from the other parties. Whenever a party receives
a signed ciphertext during this time, they add it to a pre-block. Any party who
forms an (n — t4)-quality pre-block in this way within the time limit will input
that pre-block to ITg a. The parties then wait for another fixed period of time
to see whether ITg o outputs an (n —t,)-quality pre-block. If a party receives an
(n — ts)-quality pre-block as output from ITg o within this time limit, it inputs
that pre-block to the ACS protocol Hf\“c"sts. Otherwise, if some party does not
receive suitable output within the time limit, it inputs a pre-block containing
the signed ciphertexts it received directly from other parties. (In this case, if
a party has not received enough signed ciphertexts to form an (n — t,)-quality
pre-block, it waits for additional ciphertexts to arrive before inputting its pre-
block to ITyxe.) At this point, each party waits for IT;=&° to output a set of
pre-blocks. The output of H;“C’és is passed into a subroutine ConstructBlock that
performs threshold decryption for each ciphertext in each pre-block in the set,
and combines the resulting transactions into a final block.

Each party begins iteration k& when its local clock reaches time T}, := A-(k—1),
where X\ > 0 is a spacing parameter. (The value of \ is irrelevant for the security
proofs, but can be tuned to achieve better performance in practice; see further
discussion in Section 5.4.) If the network is synchronous, parties’ clocks are
synchronized and so all parties begin each iteration at the same time. If the
network is asynchronous, we do not have this guarantee. In either case, parties
do not necessarily finish agreeing on block k prior to starting iteration k' > k,
and so it is possible for parties to be participating in several iterations in parallel.

We implicitly assume that messages in each iteration, including messages cor-
responding to the various subprotocols, carry an identifier for the corresponding
iteration so that parties know the iteration to which it belongs. Importantly, the
executions of ITg o and Hf\‘é’és associated with a particular iteration are entirely
separate from those of other iterations.

Theorem 3 (Completeness and consistency). Fiz t,,ts with t, < ts and
to+2-ts <mn. Then HZ“B’ES is to-complete/consistent when run in an asynchronous
network, and ts-complete/consistent when run in a synchronous network.

Proof. First, consider the case where at most ¢ parties are corrupted and the
network is synchronous. In the beginning of each iteration k, each honest party
multicasts a set of transactions, and so every honest party can form an (n — t)-
quality pre-block by time T}, + A. Thus, every honest party starts running Ilg a
at time Ty + A using an (n — t4)-quality pre-block as input. By ¢s-security of
IIg| a in a synchronous network (note ts < n/2), with overwhelming probability
every honest party outputs the same (n — t,)-quality pre-block g* from Ilga
by time Ty + A + 5xA. Therefore, each honest party inputs 5* to Hf\“c’és. By
ts-validity with termination of IT,2&| every honest party obtains the same out-
put B* from H;“C’és. So all honest parties eventually receive n — ts > t5 valid
decryption shares for each ciphertext in each pre-block of B*, and they all output
the same block.
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tasts
Iyge
For each iteration k£ =1,2,... do:

— At time Ty, = A-(k—1): sample V < ProposeTxs(L/n, L) and encrypt V'
using pk to produce a ciphertext p. Multicast (input, (u);).
Upon receiving a signed input (input, (u);) from P; (for iteration k):
e If this is the first input received for iteration k, create a new pre-
block 8 := (L,..., L) and set ready,, := false.
o If BF[i] = L: set BY[i] := (u);.
o If Bf is an (n — ts)-quality pre-block and ready, = false, set
ready,, := true.
— At time Ty + A: if ready, = true, run ITg A using input ﬂf.
— At time T} + A + 5rA:
e Terminate Ilgia (if it has not already terminated). If IIgia had
output an (n — ts)-quality pre-block 8*, run Hf\‘égs using input £*.
Else, wait until ready, = true and then run HZ"C"StS using input ,Bf
e When Hf\‘é‘sts terminates with output B*, run ConstructBlock(B™*)
to produce a block B. Then set Blocks[k] := B and delete from
buf; any transactions that appear in Blocks[k].

ProposeTxs(¢, M): choose a set V' of £ values {txi,...,tx;} uniformly (with-
out replacement) from the first M values in buf;, then output V.

ConstructBlock(B*): participate in threshold decryption for each unique ci-
phertext p in each pre-block 8 € B*. Once all decryptions have
finished, output the set B of all unique transactions obtained.

Fig. 3. Our atomic broadcast protocol TARDIGRADE, from the perspective of party P;.

The case where the network is asynchronous and at most t, parties are
corrupted is similar. In each iteration, each honest party multicasts a set of
transactions and so every honest party eventually receives input from at least
n—tq, > n — ts distinct parties and can form an (n — t,)-quality pre-block. This
means that every honest party eventually runs HZ“C’StS using an (n — ts)-quality
pre-block as input. By t,-security of H,i‘g;i all honest parties eventually receive
the same output B* from HZ“C’éS. So all honest parties will eventually receive
n —t, > ts valid decryption shares for each ciphertext in each pre-block of B*,
and they all output the same block. a

In what follows, we let Blocks[k] denote the block output by honest parties
in iteration k. We now turn our attention to liveness. We begin by proving a
bound on the number of honest parties who contribute transactions to a block.
Formally, we say that an honest party P; contributes transactions to a block B :=
ConstructBlock(B*) if there is a pre-block 8 € B* such that B[i] # L. Using this
lower bound, we show that any transaction that is at the front of most honest
parties’ buffers will eventually be output with overwhelming probability. Liveness
follows by arguing that any transaction that is in the buffer of all honest parties
will eventually move to the front of most honest parties’ buffers.
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Lemma 9. Fiz t,,t; with t, < ts and t, + 2 -ty < n, and assume at most
t, parties are corrupted and the network is asynchronous, or at most ts parties
are corrupted and the network is synchronous. Then in an execution of HX“B’ES,
for any block B output by an honest party, at least n — (ts + t,) honest parties
contributed transactions to B.

Proof. First, consider the case where at most t, parties are corrupted and the
network is asynchronous. As shown in the proof of Theorem 3, every honest party
executes H/K“C’;S using an (n — t,)-quality pre-block as input. Thus, the input of

every honest party to Hf\‘gé‘“’ contains at least n — (ts + ¢,) ciphertexts created

by honest parties. By t,-set quality of HZ‘E’éS, the output of HZ“C’StS contains some
honest party’s input and the lemma follows.

Next, consider the case where at most ¢ parties are corrupted and the net-
work is synchronous. As shown in the proof of Theorem 3, every honest party
executes Hf\“c’és using the same (n—t)-quality pre-block 3 as input. By t¢-validity
with termination of ;‘E’Sts, all honest parties output B* = {8} from H;”C’Sts. Be-
cause f3 is (n—t,)-quality, it contains at least (n—2¢,) honest parties’ ciphertexts;

the lemma follows. O

Lemma 10. Assume the conditions of Lemma 9. Consider an iteration k and
a transaction tx such that, at the beginning of iteration k, all but at most tg
honest parties have tx among the first L transactions in their buffers. Then for
any > 0, tx is in Blocks[k : k + 7] except with probability at most (1 —1/n) 1.

Proof. By Lemma 9, at least n — (¢s +t,) honest parties contribute transactions
to Blocks[k]. So even if ts parties are corrupted, at least one of the n— 2t¢ honest
parties who have tx among the first L transactions in their buffers contributes
transactions to Blocks[k]. That party fails to include tx in the set V' of transac-
tions it chooses with probability (127;)/(;”) =1—1 and so tx is in Blocks[k]
except with probability at most 1 — % (Note that this does not take into ac-
count the fact that the adversary may be able to choose which honest parties
contribute transactions to B. However, because the parties encrypt their trans-
actions, the adversary’s choice has no effect on the calculation.) If tx does not
appear in Blocks[k], then we can repeat the argument in all successive iterations
k+1,...,k+r until it does. a

Theorem 4 (Liveness). Fiz t, < ts witht, +2-ts <n. Then H;“B’ff 18 to-live
i an asynchronous network, and ts-live in a synchronous network.

Proof. Suppose all honest parties have received a transaction tx. If, at any point
afterward, tx is not in some honest party’s buffer then tx must have already
been included in a block output by that party (and that block will eventually be
output by all honest parties). If all honest parties have tx in their buffers, then
they each have a finite number of transactions ahead of tx. By completeness,
all honest parties eventually output a block in each iteration. Additionally, by
Lemma 9, at least n — (¢s +t,) honest parties’ inputs are incorporated into each
block, and so in each iteration all but at most ¢; honest parties each remove
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at least L/n transactions from their buffers. It follows that eventually all but
at most t5 honest parties will have tx among the first L transactions in their
buffers. Once that occurs, Lemma 10 implies that tx is included in the next
blocks except with probability negligible in . a

The above shows that a transaction received by all honest parties is eventually
output. This is the standard notion of liveness in asynchronous networks. When
working in a synchronous model, on the other hand, it is common to analyze
liveness in more concrete terms. We provide such an analysis in Appendix C.

5.4 Efficiency and Choice of Parameters

The communication cost per iteration is dominated by the cost of the ACS and
BLA subprotocols. Both ACS and BLA are run on pre-blocks, which have size
L-|tx|+O(n-k). Thus, each execution of BLA incurs cost O(n3k?+n?L|tx|k), and
an execution of ACS incurs cost O(n*k + n3L|tx|). The overall communication
per block is therefore O(n*x + n3k% + n®L|tx| + n?L|tx|k).

At the beginning of every iteration, each honest party uniformly selects L/n
transactions from among the first L transactions in its buffer. The following
lemma shows that the expected number of distinct transactions they collectively
choose is O(L):

Lemma 11. Assume the conditions of Lemma 9. In any iteration of HZ“B’ES,
the expected number of distinct transactions contributed by honest parties to the
block B output by the honest parties in that iteration is at least L/4.

Proof. The expectation is minimized when all honest parties have the same L
transactions as the first L transactions in their buffers, so we assume this to be
the case. As in Lemma 10, for some particular such transaction tx, the probability
that some particular honest party fails to include tx in the set V of transactions
it chooses is 1 — L. Since, by Lemma 9, at least n — (t, + ta) > n/3 honest
parties contribute transactions to B, the probability that none of those parties
choose tx is at most (1 — %)n/g < e /3 < 3/4, and so tx is chosen by at least
one of those parties with probability at least 1/4. (Once again, we do not take
into account the fact that the adversary may be able to choose which honest
parties contribute transactions because honest parties encrypt the transactions
they choose.) The lemma follows by linearity of expectation. O

Because each block contains O(L) transactions, the communication cost per
transaction is O((n*k + n®k?)/L + n3|tx| + n?|tx|k). So for L = O(nk), the
amortized communication cost per transaction is O(n3|tx| + n?|tx|k).

We remark that although each block contains at least L/4 distinct transac-
tions in expectation, it is possible that some of those transactions are not new,
i.e., they may have already been included in a previous block. This is possible
because honest parties may sample their input in some iteration before having
finished outputting blocks in all previous iterations. Thus, the actual commu-
nication cost per transaction may be higher than what we computed above. In
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general, the amount of overlap between blocks will depend on the spacing pa-
rameter A as well as the actual network conditions and the parties’ local clocks.
If X is too small, some space in each block may be wasted on redundant trans-
actions; however, setting A to be too large could introduce unnecessary delays
in a synchronous network. Understanding how different choices of A\ affect our
protocol’s performance in various network conditions is an interesting challenge
for future work.

5.5 Optimality of Our Thresholds

We show that our protocol achieves the optimal tradeoff between the security
thresholds. This result does not follow immediately from the impossibility result
of Blum et al. [5] for network-agnostic Byzantine agreement because reductions
from BA to atomic broadcast do not trivially translate to the network-agnostic
setting; however, the main ideas of their proof readily extend to the case of
atomic broadcast.

Lemma 12. Fiz t,,ts,n with t, + 2ts > n. If an n-party atomic broadcast
protocol is ts-live in a synchronous network, then it cannot also be t,-consistent
i an asynchronous network.

Proof. Assume t, + 2t, = n and fix an ABC protocol I1. Partition the n parties
into sets Sp, S1, S, where |Sp| = |S1| = ts and |S,| = t,. Consider the following
experiment:

— Choose uniform mg,m; < {0,1}*. At global time 0, parties in Sy begin
running I7 holding only mg in their buffer, and parties in S; begin running
IT holding only m; in their buffer.

— All communication between parties in Sy and parties in S; is blocked. All
other messages are delivered within time A.

— Create virtual copies of each party in S,, call them S? and S!. Parties in S?
begin running IT (at global time 0) with their buffers containing only my,
and communicate only with each other and parties in Sj.

Compare this experiment to a hypothetical execution Esc of II in a syn-
chronous network, in which parties in S; are corrupted and simply abort, and
the remaining parties are honest and initially hold only (uniformly chosen) myq in
their buffer. The views of parties Sy U SY in the experiment are distributed iden-
tically to the views of the honest parties in Egync. Thus, ts-liveness of II implies
that in the experiment, all parties in Sy include mg in some block. Moreover,
since parties in Sy never receive information about mi, they include m; in any
block with negligible probability. By a symmetric argument, in the experiment,
all parties in S7 include m; in some block, and include mg in any block with
negligible probability.

Now, consider a hypothetical execution E,gnc of II, this time in an asyn-
chronous network. In this execution, parties in Sy and S are honest while parties
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in S, are corrupted. The parties in Sy and S initially hold mg, my < {0,1}", re-
spectively. The corrupted parties interact with parties in Sy as if they are honest
and have myg in their buffer, and interact with parties in Sy as if they are honest
and have my in their buffer. Meanwhile, all communication between parties in Sy
and S is delayed indefinitely. The views of the honest parties in this execution
are distributed identically to the views of Sy U S7 in the above experiment, yet
the conclusion of the preceding paragraph shows that ¢,-consistency is violated
with overwhelming probability. a

5.6 Adaptive Security

Our analysis of TARDIGRADE assumes a static adversary who must choose the set
of corrupted parties prior to the start of the protocol. In fact, TARDIGRADE is not
secure against an adaptive adversary, since an adaptive adversary can prevent
IIg A from terminating within time 5k A by corrupting the parties who are cho-
sen as leaders. It is possible to modify TARDIGRADE to achieve adaptive security
by suitably modifying Ilg A in a relatively standard way: rather than choosing
a leader who acts as the only proposer, each party will act as the proposer for
one instance of the propose protocol, and a leader is then chosen retroactively
after all instances terminate. Designing an adaptively secure network-agnostic
atomic broadcast protocol with improved communication complexity is an in-
teresting direction for future work. (Note that the committee-based approach in
the following section is not adaptively secure.)

6 Improving Complexity using Committees

In this section, we describe an extension to TARDIGRADE that achieves lower
amortized communication complexity in the presence of a static adversary. The
improved protocol, UPGRADE, achieves expected communication complexity per
transaction that is linear in n; specifically, it has expected per-transaction com-
munication complexity O(nk|tx| + x2|tx|). This is made possible by delegating
the most expensive steps of TARDIGRADE to a small committee.

To prove security for TARDIGRADE, we often used the fact that any suffi-
ciently large subset of parties contained at least some minimum number of hon-
est parties. We cannot assume this about the committees in UPGRADE, as the
committee may be constant size, and in particular may be less than the number
of corrupted parties. Instead, we prove that UPGRADE is secure in a setting with
O(e) fewer corrupted parties, where € is a positive constant parameter of the
protocol. More formally, fix ¢,,t, as before, and fix ¢, such that ¢, < (1—2¢) -t
(for some € > 0); with probability 1 — e‘o(ez"‘), the improved ABC protocol is
ts-secure in a synchronous network and t,-secure in an asynchronous network.
(Unless otherwise mentioned, all of the claims in this section hold with this
probability.)

As in TARDIGRADE, we assume a trusted dealer who sets up threshold en-
cryption and signature schemes. During the setup phase, the dealer also selects
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a committee C C {P1,..., P,} of size O(k) and provides each committee mem-
ber P; € C with a special credential 7; that proves P; is on the committee. (For
example, 7; might be a signature (i) p on the index i that can be checked against
the dealer’s public key.) We also assume that there is a collision-resistant hash
function H : {0,1}* — {0,1}" known to all the parties.

6.1 Committee-Based Reliable Broadcast

We briefly describe a committee-based reliable broadcast protocol that will prove
useful in our improved ACS construction. The basis for the committee-based
protocol is a plain reliable broadcast protocol Bcast that is ts-valid and t,-
consistent with communication complexity O(n? |v]) a hash of the sender’s input.
(An example construction can be found in Appendix A.1.) The sender sends their
input v individually to each of the committee members. If the hash output by
the reliable broadcast matches this value, the committee members propagate v
to all parties.

Mgy (v)

Throughout, let ¢, := | 1="ts |,

n

— If P, = P*: send input v to each P; € C, and input h = H(v) to IT%3.

Run I7%.

If P; € C and I] é‘*B has output h': upon receiving a message v’ from P*

or (v',h,m;) from some P; € C, if H(v') = b/, multicast (v, h', 7).

— Upon receiving (v, H(v"),n;) from at least t. + 1 distinct P; € C
(even if HésB has not yet output a value), output v” and terminate.

Fig. 4. A reliable broadcast protocol for sender P* and committee C, from the per-
spective of party P;.

The security analysis uses standard techniques for broadcast; for complete-
ness, proofs can be found in Appendix D.2.

ta,ts . .
g+ - Running the inner broadcast on hashes

of size O(k) has communication complexity O(n?k), while sending the value,
hash, and credential to all parties costs O(nk(|m|+«)). Thus, sending a message
of size |m| using the ‘wrapped’ reliable broadcast costs O(n’k + n|m|x + nx?),
while sending it using the inner reliable broadcast alone costs O(n?|m|).

Communication complexity of I1

6.2 Committee-Based ACS

We can construct a committee-based ACS protocol (Figure 5) by making two
minor changes to the basic ACS protocol introduced in Section 4. First, the
inner (non-terminating) ACS protocol is modified to use the committee-based
broadcast described in Section 6.1. Because broadcast is used opaquely by the
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inner ACS protocol, this change does not require any special modifications, and
the claims previously proven about the inner ACS protocol still hold. Second,
the termination wrapper is modified so that only the members of the committee
send the output in its entirety. Upon outputting a set S from the inner (non-
terminating) ACS subprotocol, each committee member P; multicasts S and
(commit, H(S));, along with the credential they received from the dealer. The
other parties will echo signature shares and hashes, but not the set .S itself.

e (v5)

Throughout, let ¢, := \_%J

— Input v; to IT)ed".

— If P; € C: upon receiving output S; from IT,20*, compute h := H(S;)
and multicast (S, (commit, h);, ;).

— Upon receiving at least ¢, + 1 valid signature shares o; = (commit, h);
from distinct parties in C' on the same value h, form a combined signa-
ture o for h and multicast (o, h).

— Upon receiving a valid combined signature o for some h, multicast o.

— Upon holding S, o such that ¢ is a combined signature for h from parties
in C and S is a set such that H(S) = h, output S and terminate.

Fig. 5. A terminating ACS protocol with predetermined committee C', shown from the
perspective of party P; with input v;.

The proof that HZ”’C’sti (v) is t,-secure and has f¢-validity with termination is

very similar to the security proof for the basic ACS protocol, so we omit it.

Communication complexity of H;‘E’Sti . As before, let |m| represent the size of
parties’ inputs. When instantiated using the committee-based broadcast protocol
from Section 6.1, the communication complexity of the inner ACS protocol is
O(n3k + n?%|m|k + n?k?). Moving on to the rest of the protocol, we see that the
committee members multicast their output, a signature share, and the credential
they received from the dealer. (Note that the signature share is for a hash of
the output rather than the entire output.) Since the signature share, credential,
and hash are each of size O(k), this step contributes O(n - k(n - |m| + k)) =
O(n%k-|m|+nr?). Next, all parties multicast a combined signature of size O(k),
for a total cost of O(n?k). All together, the total cost of the improved ACS
protocol is O(n®k + n?|m|k + n?k?).

6.3 An ABC Protocol with Improved Communication Complexity
Here, we give an overview of UPGRADE. Because the high-level techniques are

similar to TARDIGRADE, we will highlight the key differences between the two
protocols and defer further details to the appendix.
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The first (and simplest) difference is that wherever TARDIGRADE would run
an instance of the plain ACS protocol, UPGRADE runs the improved version
described in Section 6.2. The second difference concerns how parties choose and
share their inputs, and how those inputs are combined to form a final block.
At the beginning of the protocol, when parties choose a set of transactions to
input, they will now also choose a second, larger input set, which is encrypted
and sent only to the committee members. The committee members form the
large ciphertexts into a separate pre-block, which is used to construct the final
block in case ACS outputs only one small pre-block is output. Sending a large
pre-block all-to-all is costly, so the committee members also form a placeholder
called a block pointer. A block pointer contains a hash of a large pre-block and a
combined signature on that hash by members of the committee. In most steps,
the block pointer can be sent in place of the large pre-block. Although forming
and sharing the block pointer adds some extra communication, we are able to
significantly increase the expected number of distinct transactions.
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A  Useful Sub-Protocols

A.1 Reliable Broadcast with Higher Validity Threshold

In
to

this section, we present a concrete protocol (cf. Protocol 6) that can be used
instantiate the broadcast subprotocol needed for our ACS construction. Our

protocol is based on Bracha’s (asynchronous) reliable broadcast protocol [7], but
allows for a more general tradeoff between consistency and validity.

gy (v")

- Set ready = false.

. If P, = P*: multicast v*.

- Upon receiving initial value v* from P*, multicast (echo,v™).

- Upon receiving (echo,v™) messages on the same value v* from n —
ts distinct parties: if ready = false, set ready = true and multicast
(ready, v™).

- Upon receiving (ready,v”™) messages on the same value v* from ts +
1 distinct parties: if ready = false, set readied = true and multicast
(ready, v™).

- Upon receiving (ready, v™) messages on the same value v* from n — ¢
distinct parties: output v* and terminate.

Fig. 6. A reliable broadcast protocol with sender P*, from the perspective of party P;.

Lemma 13. Ifty, < n/2 then Héﬁé 18 ts-valid.

Proof. Assume there are at most ¢ corrupted parties, and the sender is honest.
All honest parties receive the same value v* from the sender, and consequently



Atomic Broadcast for Arbitrary Network Conditions 27

send (echo,v*) to all other parties. Since there are at least n —ts honest parties,
all honest parties receive (echo,v*) from at least n — ¢, different parties, and as
a result send (ready,v*) to all other parties. By the same argument, all honest
parties receive (ready,v*) from at least n — t, parties, and so can output v*
(and terminate). Fix any v # v*; to complete the proof, we argue that no honest
party will output v. Note first that no honest party will send (echo, v). Thus, any
honest party receives (echo,v) from at most ¢s other parties. Since ts < n — i,
no honest party will ever send (ready, v). By the same argument, this shows that
any honest party receives (ready, v) from at most ¢, other parties, and hence will
not output v. O

Lemma 14. Fiz t, <ts witht, +2-ts <n. Then Hé‘“B 18 to-consistent.

Proof. Suppose at most t, parties are corrupted, and that an honest party P;
outputs v. Then P; must have received (ready,v) from at least n — ts distinct
parties, at least n —ts —t, > ts + 1 of whom are honest. Thus, all honest parties
receive (ready,v) from at least t; + 1 distinct parties, and so all honest parties
send (ready, v) to everyone. It follows that all honest parties receive (ready,v)
from at least n—t, > n—t, parties, and so can output v as well. To complete the
proof, we argue that an honest party cannot output v’ # v. We argued above
that every honest party sends (ready,v) to everyone. Since t, < ts + 1, each
honest party must have sent (ready,v) in response to receiving (echo,v) from
at least m — t, distinct parties. If some honest party outputs v’ then, arguing
similarly, every honest party must have received (echo,v’) from at least n — ¢
distinct parties. But this is a contradiction, since an honest party sends only a
single echo message but 2 - (n —t5) — t, > n. O

A.2 A Block-Agreement Protocol

In this section, we show how to construct a block-agreement protocol that can be
used in our atomic broadcast protocol in Section 5. Throughout this section, we
assume the network is synchronous and at most ¢t < n/2 parties are corrupted.

Recall from Definition 6 that block agreement is used to agree on pre-blocks,
which are vectors of length n such that the i** entry is either a valid signed
message by P; or simply L. A k-quality pre-block is a pre-block with at least k
non-_L entries. Honest parties are assumed to input (n — t)-quality pre-blocks,
and ignore any pre-blocks with quality less than n — t.

The structure of our block agreement protocol is inspired by the synod pro-
tocol of Abraham et al. [1]. We begin by defining a subprotocol Héjr;pose (see
Figure 7) in which a designated party P* serves as a proposer. A tuple (r, 3,C)
is called a round r wvote for a pre-block [ if either:

—r=0and C =0, or
— r > 0and C is a set of at least ¢ + 1 signed messages (commit, r;, 8); from
distinct parties such that r; > r.
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When the exact value of  is unimportant, we simply refer to the tuple as a vote.

At the start of the propose protocol, the proposer waits to receive a set V'
of signed votes on valid pre-blocks such that |V| > ¢ + 1. Then, the proposer
determines a safe pre-block to propose from among these votes by finding the
vote (r*, 8*,C*) in V such that r* is greater than or equal to the round number
of all other votes in V' (breaking ties by lowest party index). The proposer then
multicasts a proposal message (propose, (r*, 8%, C*),V).. An honest party who
receives a proposal will consider it valid if all of the following hold:

— the signatures on the propose message and on each vote in V' are valid,
— (* is a valid pre-block,

— there is a round r* vote for g* in V,

|[V| contains at least ¢ 4+ 1 votes,

— r* is greater than or equal to the round number of all votes in V.

If any of these conditions are not met, the proposal is not considered valid.

I pose (7, 8, C)

1. (All parties) At time O: send vote; := (vote, (r, 3,C)); to P*.

2. (Only proposer) Until time A: Set V' = (). Upon receiving a vote vote;
from party P; on a valid pre-block: if this is the first such message
received from P; during this round, add vote; to V.

3. (Only proposer) At time A, if |[V| > ¢, find the vote (r*,8%,C")
in V such that r* is greater than or equal to the round number of
all votes in V' (breaking ties by lowest party index), and multicast
(propose, (r*, 3%,C"), V).

4. (All parties) At time 2A, if a valid m = (propose, (r*, 3%, C*), V). has
been received from P*, multicast m. Otherwise, output L.

5. (All parties) At time 3A: let m; denote the valid proposal forwarded
by P; (if any). If there exists m; such that m; # m, output L. Other-
wise, output the pre-block 8* carried by the proposal m.

Fig. 7. A protocol H,f,:pose parameterized by threshold ¢ and designated proposer P*,
from the perspective of party P;.

We first show that any two honest parties who generate output in this pro-
tocol agree on their output.

Lemma 15. If honest parties P; and P; output B3;, 8; #L, respectively, in an
execution of IT5 then B; = p;.

Propose’

Proof. If P; outputs 8; #.L, then P; must have received a valid proposal message
for B; by time 2A. That message is forwarded by P; to P;, and hence P; either
outputs L (if the proposals do not match) or the same value ;. O

Next, we show that if each honest party P; inputs a vote (r;, 8,C;) on the
same pre-block 3, and no honest party ever receives a vote (r/, 8’, C’) such that
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v’ > min;{r;} and B’ # B, then any honest party who outputs a value other than
1 outputs .

Lemma 16. If the input of each honest party P; to H,fr;pose is a round r;-vote
on the same valid pre-block (3, and if no honest party ever receives a round r'-
vote on ' # B with v’ > min;{r;}, then every honest party outputs either [

or L.

Proof. Consider an honest party P who outputs 8 #.1. That party must have
received a valid proposal message from P*, which in turn must contain a vote
(ri, B, C;) from at least one honest party P;. Under the assumptions of the lemma,
any other vote (1, 3’,C’) contained in the proposal message with ' > r; has
B’ = B. It follows that P outputs £. |

Finally, we show that when P* is honest then all honest parties do indeed
generate output.

Lemma 17. If each honest party P; inputs a vote (r;, B;, C;) on some valid pre-
block f3; to ITE" and P* is honest, then there is some (n—t)-quality pre-block

Propose’

B #L such that every honest party outputs 3.

Proof. P* will receive at least t+1 votes from honest parties, and so sends a valid
proposal message on some (n — t)-quality pre-block § to all honest parties. (It
is possible for the set V' to include votes from dishonest parties, but these votes
must be on (n — t)-quality pre-blocks.) Since P* is honest, and the adversary
cannot forge signatures on other proposals behalf of P*, this is the only valid
proposal message the honest parties will receive. Therefore, all honest parties
output 8 #.L. |

We now present a protocol II. (Figure 8) that uses Hﬁzpose to achieve
a form of graded consensus on pre-blocks. As in the protocol of Abraham et
al. [1], we rely on an atomic leader-election mechanism Leader with the following
properties: On receiving input r from a majority of parties, Leader chooses a
uniform leader P* € {1,...,n} and sends (r, P*) to all parties. This ensures
that if less than half of all parties are corrupted, then at least one honest party
must call Leader with input r before the adversary can learn the identity of the
leader. A leader-election mechanism tolerating any ¢ < n/2 faults can be realized
(in the synchronous model with a PKI) based on general assumptions [18]; it
can also be realized more efficiently using a threshold unique signature scheme.

Below, we refer to a message (commit,r, 8); as a valid commit message from
P; on a pre-block 3 if the quality of B is at least (n — t) and the associ-
ated signature is valid. Commit messages are used to construct notify messages
(notify, r, B, C'). A notify message (notify, r, 8, C) is valid if § is an (n—t)-quality
pre-block and C' is a set of valid commit messages such that (1) all commit mes-
sages carry the same pre-block 8, (2) C' contains messages from at least ¢ + 1
distinct parties, and (3) for each ¢; = (commit,r;, 8); € C the round number r;
is greater than or equal to r.

We refer to the value g in a tuple (8, C,g) as the grade.
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T
HGC

At time 0: Set ¢’ = . Call Leader(r) and let (r, P*) denote the output.
Run Hé),:pose using input (r, 3, C).

At time 3A: Let 8" denote the output of nggr;pose' If B* # L, multicast
(commit, r, 8);. Until time 4A, upon receiving a valid commit mes-
sage ¢; = (commit,r;, 8;); from P;, if this is the first such message
received from Pj, add ¢; to C".

At time 4A: If there is a subset C” C C’ of commit messages on the
same pre-block B’ such that (a) |[C”| > t + 1, and (b) for each
¢j = (commit, r;, 8'); € C”, r; > r, then multicast (notify,r, 3’,C"),
output (8',C",2), and terminate.

At time 5A: If a valid notify message (notify,r, 3%, C*) has been received,
output (8*,C*, 1) and terminate (if there is more than one such mes-
sage, choose arbitrarily). Otherwise, output (L, L,0) and terminate.

Fig. 8. A graded consensus protocol from the perspective of party P; with input
(r,8,C).

Lemma 18. Assume that the input of each honest party P; to II{- is a vote
on the same (n — t)-quality pre-block 8. If no honest party ever receives a round
r’ wvote on 8 # B such that v’ is greater than or equal to the smallest round
number carried by an honest parties’ input in step 1 of II¢c, then (1) no honest
party sends a commit message on ' # B and (2) any honest party who outputs
a nonzero grade outputs (3.

Proof. By Lemma 16, every honest party outputs either 5 or L in every execution
of Ilpropose in step 1. It follows that no honest party P; sends a commit message
on B # [, proving the first part of the lemma. Since at most ¢ parties are
corrupted, this means an honest party will receive fewer than ¢+ 1 valid commit
messages on anything other than f; it follows that if an honest party outputs
grade g = 2 then that party outputs (3,C,2).

Arguing similarly, no honest party will receive a valid notify message on
anything other than . Hence each honest party that outputs grade 1 outputs
(8,C",1). O

Lemma 19. If an honest party outputs (3,C,g) such that g # 0 in an execution
of I, then no honest party sends a commit message on 3 # [5.

Proof. Say an honest party outputs (8, C, g) where g is nonzero. That party must
have received a valid notify message on 3. Therefore, C' must contain signatures
from at least ¢ + 1 distinct parties. It follows that at least one honest party P
must have sent a commit message on §. This means that P must have received
B as its output from ITZ" By Lemma 15, this means the pre-block output

Propose*

by any other honest party from IT%~ is either S or L. ad

Propose
Lemma 20. If some honest party outputs (8,C,g) with grade g = 2 in an
execution of I, then each honest party P; outputs (8;, Ci, g;) such that 5; =
and g > 0.
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Proof. Say an honest party P outputs (8, C, g) such that g = 2. By Lemma 19,
this means no honest party sent a commit message on 3’ # 3; it is thus impossible
for any honest party to output 3’ # 8 with a nonzero grade. Since P sends a
valid notify message on 8 to all honest parties before terminating, every honest
party will output 8 with a nonzero grade. a

Lemma 21. During an execution of II -, the event that every honest party out-
puts the same (n —t)-quality pre-block § with a grade of 2 occurs with probability
at least 1/2.

Proof. The leader P* is honest with probability at least "T*t > 1/2. If the leader
is honest, agreement on an (n — t)-quality pre-block g follows from Lemma 20.
Therefore, it remains to show that whenever the leader is honest, every honest
party outputs grade 2.

Assume P* is honest. Lemma 17 implies that every honest party receives the
same pre-block 8 #1 as output from H,frzpose. Thus, every honest party sends
a valid commit message on S by time 3A. Consequently, each honest party P;
receives n — t commit messages on the same pre-block 8 before time 4A. This
causes them to output with grade g = 2. a

In Figure 9 we describe the complete block-agreement protocol I1g a. Note
that parties do not terminate upon generating output; instead, parties terminate
after participating in all x rounds of the protocol.

ITga(B)

Set (B',C") = (B,0) and set r = 0.
While r < k:

- At time 57 - A: run IT{c using input (r, ', C").
- At time 5(r + 1) - A: let (8%, C", g) denote the output of IIgc. If g > 0,
set (8',C") = (B8*,C*). Additionally, if g = 2, output 8. Set r = r + 1.

Fig. 9. A block-agreement protocol Ilg a with security parameter k, from the perspec-
tive of party P;.

Lemma 22. Ift < n/2, then Ilg p is t-secure.

Proof. Assume at most ¢ parties are corrupted during an execution of ITgia.
Termination follows trivially from the protocol description, as parties terminate
after k fixed-length rounds.

Let r* be the first round in which some honest party outputs a pre-block
B. We first show that in every subsequent round, the following hold: (1) every
honest party P; uses as its input in step 1 a round r; vote on §; and (2) the
adversary cannot construct a round 7’ vote on ' # S for any ' > min;{r;}.
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Consider some honest party P; who outputs a pre-block £ in round r*. P;
must have received a valid notify message for 8 during the graded consensus
subprotocol for that round. By Lemma 20, this means every honest party received
a valid notify message for § in the same execution of IIf., and so claim (1)
holds in iteration r* 4+ 1. Moreover, Lemma 19 implies that no honest party sent
a commit message on ' # f in the execution of IT{.-, and so claim (2) also
holds in iteration 7* + 1. Lemma 18 implies, inductively, that the two claims will
continue to hold in every subsequent iteration. Thus, any other honest party
P; who generates output in Ilg s also outputs 3, regardless of whether they
generate output in round r* or a later round. This proves t-consistency.

Lemma 21 shows that in each iteration of ITg a, with probability at least 1/2
there is an (n — t)-quality pre-block 8 such that all honest parties output S in
that iteration. Thus, after  iterations all honest parties have generated (n — t)-
quality output except with negligible probability. This proves t-validity. a

Communication complexity of block agreement. During the propose sub-
protocol, parties send and receive votes. Recall that a vote is a tuple (r, 3, C),
where r is a constant, £ is an input to the BLA protocol, and C' is a set of O(n)
signatures o; on (commit,r;, 3). Because r; is not necessarily equal to r; for all
0;,0; in C, the signatures cannot be combined into a single threshold signature.
Thus, a vote is size O(nk + |m|), where |m| denotes the size of parties’ inputs.
The most expensive step of the propose subprotocol requires all parties to send
a vote to all other parties, resulting in an overall communication complexity for
the propose subprotocol of O(n?(nk + |m|)) = O(n3k + n?|m|).

In the graded consensus subprotocol, the parties participate in one run of
the propose subprotocol and send a constant number of all-to-all messages of
size O(nk + |m|). Since both of these steps cost O(n®k + n?|m|), the overall
communication complexity for one instance of graded consensus is the same as
that of the propose protocol.

The BLA protocol runs « iterations of the graded consensus protocol, for a
total communication cost of O(k - (n®k 4+ n?|m|)) = O(n3k? + n%k - |m|).

B Proof of Lemma 12

Assume t, + 2t; = n and fix an ABC protocol II. Partition the n parties into
sets So, 51,5, where [So| = |S1| = ts and |S,| = t,. Consider the following
experiment:

— Choose uniform mg,m; < {0,1}". At global time 0, parties in Sy begin
running I7 holding only mg in their buffer, and parties in S; begin running
II holding only my in their buffer.

— All communication between parties in Sy and parties in S is blocked. All
other messages are delivered within time A.

— Create virtual copies of each party in S,, call them S? and S!. Parties in S?
begin running T (at global time 0) with their buffers containing only m,
and communicate only with each other and parties in Sj.
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Compare this experiment to a hypothetical execution Esyn. of II in a syn-
chronous network, in which parties in S; are corrupted and simply abort, and
the remaining parties are honest and initially hold only (uniformly chosen) mg in
their buffer. The views of parties SoUS? in the experiment are distributed iden-
tically to the views of the honest parties in Esnc. Thus, ¢s-liveness of I implies
that in the experiment, all parties in Sy include mg in some block. Moreover,
since parties in Sy never receive information about mi, they include m; in any
block with negligible probability. By a symmetric argument, in the experiment,
all parties in S7 include m; in some block, and include mg in any block with
negligible probability.

Now, consider a hypothetical execution E,snc of I, this time in an asyn-
chronous network. In this execution, parties in Sy and S are honest while parties
in S, are corrupted. The parties in Sy and S initially hold mg, m; < {0,1}", re-
spectively. The corrupted parties interact with parties in Sy as if they are honest
and have my in their buffer, and interact with parties in S; as if they are honest
and have my in their buffer. Meanwhile, all communication between parties in Sy
and S is delayed indefinitely. The views of the honest parties in this execution
are distributed identically to the views of Sy U S; in the above experiment, yet
the conclusion of the preceding paragraph shows that t¢,-consistency is violated
with overwhelming probability.

C Concrete Liveness Analysis

Imagine an external observer watching the protocol, with a clock running at
rate p. (The observer’s clock is not visible to the honest parties and is not as-
sumed to be synchronized with parties’ local clocks.) Let p; denote the (possibly
variable) rate at which P;’s local clock runs relative to the observer’s clock.

Fix some finite interval I = [Start, End] during an execution of the protocol.
From the perspective of the observer, it is possible to identify bounds pn (1),
Pmaz(I) on the skew of honest parties clocks during interval I, so that for all
honest P;, pmin < pi < Pmaz- The observer can also determine an upper bound
0(I) such that any message sent by time T' € [Start, End — 4] is delivered by time
T + 6. (Note that in an asynchronous network, §(I) may be significantly greater
than A.) Lastly, we let B4, denote the maximum number of transactions in any
honest party’s buffer during a given interval. We emphasize that pmin, Pmaz, 0,
and Sq. do not need to be known by the honest parties, and are used only for
the analysis.

For each i and each k, let Start; ; and End; ; be the time according to the
observer’s clock when P; begins iteration £ and when P; outputs block k, re-
spectively, and let I; ;, denote the interval [Start; , End; x]. (By completeness of
the protocol, End; j is well-defined for all ¢ and k.)

The claims below apply in either setting (¢, corruptions in an asynchronous
network, or ts corruptions in a synchronous network); however, in a synchronous

network the bounds are naturally simpler because we have pyin = pPmaz = p and
0= A.
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Lemma 23. For any iteration k, the number of new blocks started by honest

party P; during the interval I;) := [Start;,End;x] is at most 7 = Pmex .
(M) (with overwhelming probability), where pmin, Pmazs 5 Bmaxs

and T are measured by an external observer over the interval I; , and A(d, k)
s an upper bound such that the local running time of Hf\“c’és for P; during the
interval I, , is at most A(0, k), with overwhelming probability in k.

Proof. Let p; be the rate of P;’s local clock (or an upper bound on the rate,
if it is variable). Each honest party P; begins a new block every A clock ticks,
as measured by their local clock. Thus, the number of new blocks started by
an honest party P; during the interval I, i, is the length of I, ;, (in global time)
divided by A/p;.

We would like to find an upper bound on the length of I; , for all honest F;.
The most significant contributors to the length of I; ;. are the running time of
IIg a and /txacé The local running time of Ilg A is at most 5kA + A for any
honest party, because P; will timeout at this time if IIg o has not yet output.
Thus, the running time of Ilg o for P; according to the observer’s clock is at
most 5’""?7?4. By assumption, pm,in < p; for all P;, and so the global running
time of Ilg a for any honest party is at most %‘ Similarly, the running

time of f\“c’és from the observer’s perspective is bounded above by @ (with

overwhelming probability in ).

We can simply add the bounds for Ilg a and Hf\ac’és together to get an upper
bound on the entire length of the interval I; ;. Plugging this bound into the
expression we had originally, we have the following bound on the number of new
blocks started by any P; during the interval I; ,, which holds with overwhelming
probability in k:

il _ 25t +ACK) pras <5m + A+ AG, n)) -

Api — A A

Pmaz Pmin

This completes the proof. a
The following lemma concerns the overall progress of the honest parties.

Lemma 24. Let t denote the number of dishonest parties during an execution
of H;”B’és, and let tx be a transaction that has been received by each honest P;
by time Start; .. Let pmin, Pmazs 05 Bmaz, and T be bounds as described above
over the interval I,fk+cm,T := [minp,ep (Start; ), maxp,e g (End; x1c)]. Then with
overwhelming probability in the security parameter k, there are at least n — t
honest parties P; such that P; removes at least Binqr transactions from their

buffer during the interval [Start; i, Start; ke, .r], where ¢ := BL’;‘;LI . #‘f_w

Proof. By Lemma 23, we know that every honest party P; has output block k by
time Start; j+-. Therefore, by time Start; ;4,, P; has removed from their buffer
any transactions that are included in Blocks[k]. In particular, if P;’s input was
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included in block &, then P; must have removed at least L/n transactions from
the front of their buffer between time Start; , and Start; j4-.

Next, we can extend this argument to apply to sets of honest parties. Recall
from Lemma 9 that at least n — (5 + t,) honest parties’ inputs are included in
each block. Let S}, . . denote the set of honest parties whose inputs are included
in block k +¢-7 (¢ =0,1,2,...). For each P; € Sj, ., notice that P; must
have selected L/n transactions from their buffer as input at time Start; jyc.r,
and those transactions were included in block k + ¢ - 7. Therefore, P; must have
removed at least L/n transactions from their buffer at some point during the
interval [Start; g c.r, Start; py(c41)r)-

Consider a sequence of sets Sy, S, ., Si 0. -- -, defined as above. Suppose
the adversary is able to choose S* in each iteration, subject to the constraint
that each S* must contain at least n — (ts + t,) honest parties. We would like
to find an upper bound on number of iterations needed to ensure that all but ¢
of the honest parties have tx among the first L transactions in their buffer. For
convenience, assume that each honest parties initially has exactly B4, trans-
actions in their buffer ahead of tx, and assume without loss of generality that
parties Pi,...,P,_; are honest. In the worst case, the adversary chooses the
honest parties for each set in the sequence in a round robin fashion, i.e.:

Stier ={Pi | 14+c-(n—(ts+ta)) <i < cte-(n—(ts+t,)) mod (n—1t)}. (3)

. Bmax n—t : * *
Let ¢, := T ne(ioia) and consider the sequence of sets Si, ...,50, .

determined according to the round robin strategy. All together, each honest party

is in at least L("_(t;‘ttta))‘cmj = Lﬁi"/j;j distinct sets in the sequence. Therefore,

each honest party P; has removed at least L%j - L/n = Byae transactions
from their buffer during the interval [Start; j, Start; ke, .7 ). O

D Atomic Broadcast with Improved Complexity

D.1 Protocol Description

This section contains a detailed description of the improved atomic broadcast
protocol, UPGRADE, which was deferred from Section 6.3. Pseudocode for the
protocol is presented in Protocol 1, and related utilities are defined in Figure 2.

At the beginning of the protocol, when parties choose a set of transactions
to input, they will now also choose a second, larger input set, which is encrypted
and sent only to the committee members. The committee members use these
ciphertexts to form a separate pre-block. (To distinguish between the two, we
refer to a pre-block composed of smaller ciphertexts as a ‘small pre-block’ and
a pre-block composed of larger ciphertexts as a ‘large pre-block.”’) Sending this
large pre-block all-to-all would increase the communication complexity beyond
what we can afford. Thus, the committee members create a placeholder called a
block pointer that can be sent in its place at various points during the protocol. A
block pointer for a large pre-block 8% consists of a hash H(/3'9) and a combined
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signature by the committee members on H(3'9). We say that a block pointer
T = (h,0) is well-formed if o is a valid combined signature on h. Committee
members will only create signature shares for a hash h if if they have received
a pre-block 89 such that h = H(S'9); thus, a block pointer acts as a promise
that a corresponding pre-block exists. Now, when parties provide input to BLA
and ACS, they will input a pair (8™, 1) where 3™ is a small pre-block and 7
is a block pointer.®> We refer to a pair (3°™,7) as a block share, and say that a
block share (3°™,7) is well-formed if 3°™ is an (n — t,)-quality pre-block and 7
is a well-formed block pointer. Because a block pointer is only size O(k), running
BLA and ACS on block shares is only slightly more expensive than running BLA
and ACS on small pre-blocks alone.

In the event that ACS outputs only a single block share {(8°™,7)}, the
committee members will wait to receive the large pre-block (!9 that matches T,
at which point they will send %9 in full to all parties. In this case, the parties will
use 3'9 to construct the final block. Alternatively, if the output of ACS contains
multiple block shares, the committee members do not need to send (9 at all.
Instead, the parties will use the small pre-blocks to form the final block.

To simplify the protocol description, we implicitly assume a means of domain
separation between iterations. More precisely, we assume that parties can distin-
guish messages belonging to iteration k from messages belonging to iteration k’
for any k # k' in some way that does not rely on arrival time (e.g. by including
a tag in each message), and a protocol message belonging to iteration k is only
ever used in iteration k.

Communication complexity of H;‘Eéi . We compute the communication com-
plexity of each step of the protocol. First, each party P; samples a set of L/n
transactions, and divides this set into n subsets of equal size. The j** subset is
encrypted and sent to party P;. Each small ciphertext is size O(L|tx|/n? + k), so
the total cost of this step is O(n?k+ L|tx|). Separately, each party also chooses a
large sample of L/n transactions, encrypts it using the committee’s public key,
and sends the resulting ciphertext of size O(L|tx|/n + k) to only the committee
members. The total cost of this step is O(nk(L|tx|/n + k) = O(nk? + L|tx|x).

As before, each party gathers the small ciphertexts they receive into a pre-
block. Meanwhile, the members of the committee gather large ciphertexts into
a separate pre-block. A small pre-block is size O(L|tx|/n + nk), and a large
pre-block is size O(L|tx| + nk).

A member of the committee P; who collects a large pre-block 8 will send
(B,(H(B))j,(4)p) to all other members of the committee. These messages also
have size O(L|tx| + nk), because the size of the signatures is absorbed by the
size of the large pre-block. Committee members will echo the first message
(8, (H(B'))4, (i) p) that they receive from each other committee member P; € C
(with their own signature and credential) until they either receive ¢, signatures
on the same hash or they receive a block pointer directly, at which point they will

3 ACS is agnostic to the type of input it receives, so it can be used as-is. BLA is
not technically agnostic to the type of input, however, we can simply amend the
definition of a valid proposal to include a well-formed block pointer.
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multicast the block pointer and stop echoing signatures. Sending and echoing the
large pre-blocks among the committee members incurs cost O(k?(L|tx| +nk)) =
O(nk? + Lltx|k?). A block pointer has size O(k), and so x committee members
multicasting a block pointer contributes only O(nk?) communication.

Recall that in original version of the protocol, parties input pre-blocks to
both BLA and ACS. In the new version, the inputs are block shares of size
O(L|tx|/n 4+ nk). Previously, we showed that the communication complexity of
BLA is O(n®k? 4+ n?|m|k) and the communication complexity of the improved
ACS is O(n3k + n?Im|k + n?k?). Setting |m| = O(L|tx|/n + nk), the communi-
cation complexity of both protocols simplifies to O(n®k? + nkL|tx]|).

After the parties receive a set of block shares as output from ACS, they
must use threshold decryption to reveal which transactions will be included in
the block. If the output of ACS contains only one block share, then the final
block will be constructed using the block pointer. In this case, each committee
member multicasts the corresponding large pre-block (waiting to receive it if
necessary), as well as one decryption share for each of the O(n) large ciphertexts
in the block indicated by the block pointer, for a total of O(n?s? + nkL|tx|).
Conversely, if the output of ACS contains more than one block share, the final
block will be constructed from the small pre-blocks. In this case, each committee
member sends decryption shares for each of the ciphertexts in each of the small
pre-blocks. The output contains up to O(n) pre-blocks, each containing O(n)
ciphertexts. Therefore, each committee member sends O(n?) decryption shares
to each party, for a total cost of O(nk(n?k)) = O(n3x?).

Having computed the contribution of each step, we can see that the domi-
nating terms arise from BLA, ACS, and forming the block pointer, for a total of
O(n®k? + nkL|tx| + nk® + L|tx|k?) per block.

In order to compute the amortized cost of a block per transaction, we first
need to compute a lower bound on the expected number of distinct transactions
per block. If the final block is constructed from a large pre-block indicated by a
block pointer, then it must contain samples of size L/n from at least n— (ts+t,)
honest parties — precisely the same as the basic protocol. In this case, by Lemma
11, we know that the expected number of distinct transactions is at least L/4. If
the final block is instead constructed from small pre-blocks, the calculation is not
exactly the same as before, but the steps are largely the same. In this case, the
final block will contain at least n—(¢s+t,) pre-blocks input by honest parties, and

each of these pre-blocks contains samples of size L/n? from at least n — (t; +t,)

2
honest parties, for a total of w - L honestly chosen transactions. As
before, for a given transaction tx, the probability that some particular honest
party’s sample does not include tx is 1 — # By Lemma 9, at least n— (ts+t,) >

n/3 honest parties contribute transactions to B, and so the probability that

none of those parties choose tx is at most (1 — #)n/g < e /9 < 9/10; thus,
tx is chosen by at least one of those parties with probability at least 1/10. (As
before, the fact that parties’ inputs are encrypted means that the adversary’s
ability to choose which ciphertexts are included in a block is irrelevant.) The
lemma follows by linearity of expectation.
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We have shown that each block contains at least O(L) distinct transactions
in expectation. Setting L = n’k, we obtain an amortized cost per transaction of
O(nkltx| + K2[tx]).

Security analysis. The improved protocol is secure for up to t5 corrupted par-
ties in a synchronous network and up to ¢, corrupted parties in an asynchronous
network, where n > 2t, +t, and t, < t, < (1 — 2€) - ts. Security for the im-
proved protocol can be argued very similarly to the original, so we will limit our
attention to details that differ from the original.

Let us begin with the consistency property. First, consider the case in which
the network is synchronous and there are at most ¢, corrupted parties. In this
case, any honest party’s encrypted inputs will be received by all honest parties
within time A, and so all honest parties hold an n — t,-quality small pre-block
by time T} + A. Likewise, the honest committee members are able to assemble
a block pointer and forward it to all parties by time T} + 4A. Thus, all parties
input a well-formed block share to Ilg|a.

ITg A is secure for any t < n/2 parties in a synchronous network, and so we
can rely on its security properties. In particular, consistency of ITg a ensures
that all honest parties output the same well-formed block share (8™, 7) by time
Ty +4A+5cA. Therefore, all honest parties input (5™, 7) to the improved ACS
protocol. By #, validity of the ACS protocol, all honest parties receive (3°™,7) as
output from ACS. By the security of the underlying threshold encryption scheme,
all honest parties output the same block after running the block construction
utility, as desired.

In the case that the network is asynchronous and there are most t, cor-
rupted parties, consistency of the improved protocol follows immediately from
t,-security of the ACS subprotocol.

Turning our attention to liveness, we note that the lower bounds on the
number of honest parties’ inputs included in the eventual output still hold when
the inputs are block shares rather than sets of ciphertexts, because HZ‘&’StS is
agnostic of the type of input value. Furthermore, as we showed earlier in this
section, both the new protocol and original protocol produce blocks containing
at least O(L) distinct transactions in expectation. Thus, the arguments we used
to prove liveness of the original protocol can be straightforwardly adapted to the
improved protocol.

Finally, we remark that the proof of Theorem 3 can be repurposed almost
verbatim to prove completeness of the improved protocol, using the security
properties of the block agreement subprotocol and improved ACS subprotocol.

D.2 Proofs

Let x5, denote the distribution that samples a subset of the n parties, where
each party is included independently with probability s/n. We can use standard
Chernoff bounds to prove the following useful facts about the composition of
committees.
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Protocol 1 H;‘géi: an ABC protocol, described from the perspective of P;.

1: for k€ [1,2,...] do
2 committee members:
3 create a new large pre-block ;gk =(L1,...,1) and set flag readyiC = false
4: upon receiving a large signed sample (large, (v);) from P;:
5: if ﬁ;gk [i] = L: set ﬁjlgk [i] = vi
6 if 5;,91@ is (n — ts)-quality and readyﬁf = false:
7 set ready'? = true and send (ﬂé?k, (H(ﬁ]lf’k))j, (j)p) to each P; € C
8: while 7, = L:
9: upon receiving the first valid (8, (H(8)):, (i)p) from P; € C:
10: send (8, (H(B8));,{j)p) to each P; € C
11: upon receiving valid (8, (H(8'));, (j)p) (for the same ')
12: from ¢, + 1 distinct P; € C:
13: combine signature shares into a signature o for H(3')
14: set 7, = (H(B'), o) and multicast 7y
15: upon receiving well-formed 7 = (h, 0):
16: set 7, = 7 and multicast 7%
17: upon receiving output B* from Hz‘é’sts, it B* ={(8;™,7")}:
18: wait to receive 8 such that 7* points to £, then multicast 3
19: all parties:
20: create a new small pre-block 8;% := (L,..., L) and block pointer 7, = L
21: set flag ready;™ = false
22: upon receiving a small signed sample (small, (u);) from P;:
23: if B [i] = L: set BF[i] = p
24: if 37% is (n — ts)-quality and ready;™ = false: set ready;™ = true
25: upon receiving a block pointer 7 = (h, o) from P; € C:
26: if 7, = 1l:set 7, =17
27: at time Ty, := X - (k — 1):
28: choose a sample V' < ProposeTxs(L/n, L)
29: partition Vj into n sets Vj1,...,Vj of size L/n2, encrypt each set to
30: form ciphertexts (1, .., fjn, and send (small, (1;,:);) to each P;.
31: choose a sample W; < ProposeTxs(L/n, L), and encrypt it to form
32: a ciphertext p. Send (large, (u);) to each P; € C.
33: at time T} + 4A:
34: if ready;™ = true and 7 # L: input (ﬂ;’,?,T) to IlgLA
35: at time Ty +4A + 55 A:
36: stop running I1g|a
37: if ITgia has output well-formed (B5™, 7%): input (85, 7*) to ITjes*
38: else: wait for ready;™ = true and 7 # L, then input (8, 7) to Hf\‘é’sts
39: wait for IT)22* to output B*
40: if B*={(8",7")}=1:
41: wait to receive ﬂff such that 7* points to ﬂ,lcg
42: Bout + ConstructBlock({})
43: else:
44: Bout < ConstructBlock({8:™ |(Bi™,T) € B*})
45: set Blocks[k] = Bout and delete all transactions tx € Blocks[k] from buf;

46: end for
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Figure 2 Utilities for H;‘ZB’ES, described from the point of view of party P;

1: function ProposeTxs(¢, M):

2 choose ¢ values v1, ..., v, uniformly at random (without replacement) from

3 the first M values in buf;

4 output {vi,...,ve}

5: function ConstructBlock(B): > B is expected to be a set of pre-blocks
6 for each pre-block g in B, for each unique ciphertext u in 3:

7 participate in threshold decryption for p

8 upon completing decryption of all ciphertexts 1, po,...:

9 output the set of transactions By = {tx | tx € u;}

Lemma 25 (Chernoff bound). Let X3, ..., X,, be independent Bernoulli ran-
dom wvariables with parameter p. Let X =Y. X;, so pp := E[X] = p-n. Then,
for 6 €10,1]:

752;14/2'

~5%u/(2+5)

= PrX <(1-94)-4

<e
—Pr[X>(1+46)-pl <e

Lemma 26. Fiz s <n and 0 < e <1/3. If C < xsn, then:

625
1. C contains fewer than (1 + ¢€) - s parties except with probability e~ %< .

25

2. C contains more than (1 — €) - s parties except with probability e~ =" .

3. If there are at most ty < (1 — 2¢) - ts corrupted parties, then C contains
fewer than (1 —¢€) - s - % corrupted parties except with probability at most
67628/(4766)'

4. If there are at most t, corrupted parties, then C' contains more than (1 —¢) -
2

s-ts/n honest parties except with probability at most e~ 5 .

Proof. Let H C [n] be the indices of the honest parties. Let X; be the Bernoulli
random variable indicating if P; € C, so Pr[X; = 1] = s/n. Define Z; =}, X,
Zo = ngHXj,and Zy =Y X;. Then:

jeH <.
1. Since E[Z7] = s, setting 6 = € in Lemma 25 yields
Pr{Zy > (1+¢) s] < e <s/(2F0), (4)
2. Using the other half of Lemma 25, setting § = € yields

PriZy <(1—¢)-s] <e /2 (5)

3. Since E[Zo] < iy s/n < (1—2€)-ts-s/nand t,/n < 1/2, setting § = 55
in Lemma 25 yields

pr|zy> L=t 8] o /oo, ()

n =
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4. Assuming that there are at most ¢, corrupted parties, then E[Z3] > (n —
tq) - 8/n. Thus, plugging in § = ¢, we have

_2(n—tg)s
€ 2n

PriZs <(1—¢€)(n—ty)-s/n]<e (7)

Next, using the fact that ¢;/n < n/2 and (n —t,)/n > 2n/3, we see that
(I—-e)s-ts/n<(l—¢€)s/2<(l—¢€)s-2/3<(l—¢€)s-(n—ty)/n. (8)

Thus, Pr[Zs < (1 —¢€)s-ts/n] <Pr[Zs < (1 —€)(n—t,) - s/n]. Putting these
eQ(nfta)s 25

two pieces together, we have Pr[Z3 < (1 —€)s-ts/n] <e 2  <e '3
(note the last step is only used to simplify the bound).

O

Lemma 27. Hé‘gf is ty-valid.

Proof. Consider an execution in which the sender P* is honest and holds input
v. P* will input h = H(v) to II§5 and send v to each member of the committee.
By ts-validity of HéSB, every honest party eventually receives output h such
that h = H(v) from the inner broadcast. Thus, each honest committee member
P; eventually sends (v, h, (i)p), upon either receiving v directly from P*, or
receiving a matching (v, h, (j)p) from another committee member. Additionally,
no honest committee member will ever send a message (v', 1/, (i)p) such that
h # horv #w.

By Lemma 26, except with negligible probability, there are not enough ma-
licious parties on the committee to cause an honest party to output v’ # wv.
Furthermore, Lemma 26 also states that there are at least ¢, + 1 honest parties
on the committee with overwhelming probability, so all honest parties will even-
tually receive enough messages on (v, h) to output v and terminate. O

Lemma 28. II 1" is tq-consistent.

Proof. Suppose some honest party P; outputs a value v. P; must have received
messages of form (v, h, (j)p) from at least ¢, + 1 distinct members of the com-
mittee. With overwhelming probability, at least one of these messages was sent
by an honest committee member. Call that committee member P;. An honest
committee member will only send such a message after receiving h as output
from the inner broadcast. By t,-consistency of the inner broadcast, all parties
eventually receive h as output from the inner broadcast. Hence, no honest com-
mittee member will ever send a message (v, 1/, (j)p) for v/ # v, because this
would imply that either there is a collision such that H(v) = H(v') for v # v/,
or that they received h/ # h from the inner broadcast. By Lemma 26, with
overwhelming probability there are at most t,, malicious parties on the commit-
tee, and so with this same probability no honest party will receive the ¢, + 1
signatures for v’ # v required to output v’ # v during this execution.

Finally, as long as some honest committee member sent (v, h, (j)p), that
message will eventually arrive at all parties. This will cause any honest committee
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member who is still running to echo it, if they have not already. Since we showed
above that no honest party can terminate with output v’ # v, we see that all
parties will eventually receive enough messages of form (v, h, (j)p), at which
point they will output v and terminate. a
Lemma 29. Let t, <is. Then HZ‘E’; (v) is to-terminating.

Proof. Consider a point during an execution of Hf\&ti such that no honest party
has seen a combined signature, and therefore, no honest parties have terminated.
While this holds, the inner loop H;‘E’és remains live due to the t,-liveness prop-
erty. Thus, at any (global) time ¢; during the execution such that no honest party
has yet seen a combined signature, there must be some (global) time t5 > t; at
which an honest party in the committee outputs a value in the inner loop. Addi-
tionally, for any two honest parties that receive sets B, B’ as output from IT /i“c’st“,
we have B = B’. By Lemma 26, with overwhelming probability, at least ¢, + 1
honest parties are on the committee. This means that eventually some honest
party will receive at least t,, + 1 signed outputs on the same h = H(B) from
members of the committee, at which point they will form a combined signature,
forward it to all parties, and begin waiting to receive B. The combined signature
will eventually be delivered to any honest party who is still running, and hence
they eventually also start waiting to receive such B. Because at least one of
the signatures in the combined signature must have been contributed an honest
committee member P’ (with overwhelming probability, due to Lemma 26), every
party will eventually receive the set B from P’ and terminate. O



