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Abstract

We present a new fluid plasma solver with adaptive Cartesian mesh (ACM) based on a
full-Newton (nonlinear, implicit) scheme for non-equilibrium gas discharge plasma. The
electrons and ions are described using drift—diffusion approximation coupled to Poisson
equation for the electric field. The electron-energy transport equation is solved to account for
electron thermal conductivity, Joule heating, and energy loss of electrons in collisions with
neutral species. The rate of electron-induced ionization is a function of electron temperature
and could also depend on electron density (important for plasma stratification). The ion and
gas temperature are kept constant. The transport equations are discretized using a
non-isothermal Scharfetter—Gummel scheme to resolve possible large temperature gradients in
the sheaths. We demonstrate the new solver for simulations of direct current (DC) and
radiofrequency (RF) discharges. The implicit treatment of the coupled equations allows using
large time steps. The full-Newton method (FNM) enables fast nonlinear convergence at each
time step, offering significantly improved simulation efficiency. We discuss the selection of
time steps for solving different plasma problems. The new solver enables solving several
problems we could not solve before with existing software: two- and three-dimensional
structures of the entire DC discharges including cathode and anode regions, electric field
reversals and double-layer formation, the normal cathode spot and an anode ring, moving
striations in diffuse and constricted DC discharges, and standing striations in RF discharges.
The developed FNM-ACM technique offers many benefits for tackling the disparity of gas
discharge plasma systems’ time scales and nonlinearity.

Keywords: gas discharges, multi-fluid model, implicit coupled solver, low temperature
plasma, adaptive Cartesian mesh, stratification
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(Some figures may appear in colour only in the online journal)

1. Introduction from the distinction of electron and ion mass. The nonlin-
earities appear from coupling charged particle transport with
electric fields and from the ionization processes, which are
highly sensitive to electron energy spectra. Implicit solvers can
* Author to whom any correspondence should be addressed. address the disparity of time scales [1]. Such solvers enable

Plasmas are characterized by a disparity of time scales and
nonlinear behavior. The disparity of the time scales comes
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using time steps exceeding the fast processes’ characteristic
time scales by effectively removing the time derivatives from
the corresponding transport equations for electrons. Ideally,
implicit solvers allow obtaining steady-state solutions in a sin-
gle time step using nonlinear iterations to address coupling and
nonlinearities of equations describing plasmas.

These strategies have been implemented in some form in
most of the existing kinetic and fluid plasma solvers [2]. Exist-
ing multi-fluid, multi-temperature models use finite volume
(FV) [3, 4] or finite element [5] space discretization and solve
plasma transport equations sequentially using iterations for
solving each equation. The sequential solution reduces com-
puter memory usage but limits the time step by the conver-
gency requirement—the ‘sequentialization penalty’. For ther-
mal plasma, a fully implicit multi-fluid reactive model with a
single temperature for all species was implemented [6], assum-
ing quasi-neutrality and a local thermodynamic equilibrium
model for electrons. Fully implicit solvers require consider-
able memory, which limits the size of the problem they can
solve.

For kinetic plasma simulations, particle-in-cell (PIC) meth-
ods and discrete velocity models have been developed. They
are very computationally expensive compared to the fluid mod-
els because they typically operate on the shortest time- and
length scales and calculate the velocity distribution functions
of plasma species rather than their macro-parameters such as
density, mean velocity, and temperature. Implicit and semi-
implicit particle-based and mesh-based kinetic solvers have
also been developed [7, 8]. It appears that the best procedure
for addressing the disparity of time scales is to separate the
fast and slow processes into separate blocks to enable indi-
vidual control of the time steps and use ‘recycling’. Such a
‘recycling’ procedure is well known for the PIC methods [9].

Recent demands for understanding and addressing the dis-
parity of temporal, spatial, and energy scales in plasmas come
from developing adaptive kinetic-fluid solvers [10]. Many
plasma problems require space, time, and model adaptation for
an efficient solution [11, 12]. The need for implicit solvers and
adaptive time steps has been recognized recently [13] for prob-
lems that require resolving both electron and ion time scales.
A typical example is a gas discharge maintained by alternating
electric fields at high frequencies [from radio-frequency (RF)
to microwave and optical range]. Typically, at high frequen-
cies, ions do not respond to the time variations of the fields
maintaining the plasma; they only respond to a slow-varying
electric field generated by the plasma.

In contrast, electrons could respond to the high-frequency
field dynamics forming sheaths and skin layers, where elec-
trons acquire kinetic energy for gas ionization. How to
solve such problems in the general case with implicit cou-
pled solvers? How to select the appropriate time step? Can
we develop optimal strategies for simulations of collisional
plasma operating at different frequency ranges? The present
paper attempts to address some of these challenges.

Implicit methods or, more generally, full Newton methods
(FNMs) have been introduced in the late 80s and early 90s
for modeling semiconductor devices [14-20]. They became
a standard in most of the commercially available simulators,

such as Medici, Dessis, and others. The NanoTCAD software
[21, 22] relies on FNM implementation on a binary Cartesian
mesh. The FNM approach is also used now in many compu-
tational fluid dynamics (CFD) codes [23—26] to overcome the
numerical stiffness intrinsically present in CFD problems. The
FNM approach is typically applied to the set of Navier—Stokes
equations for the density, momentum, and energy equations
describing the mean flow properties while solving the often-
stiff chemistry for species fractions in the same global matrix
constructed from the Jacobians.

Automatic mesh generation and dynamic mesh adaptation
to a solution and/or a changing geometry is a hot topic in
modern computational physics. Many magnetohydrodynamics
(MHD) codes for space plasma use adaptive mesh refinement
(AMR) [27], which is also an essential part of today’s CFD
codes such as Converge [28], Simerics [29], FIoEFD [30], and
others. We have previously implemented an adaptive mesh and
algorithm refinement (AMAR) framework [31], which allows
us to adapt the computational mesh to locally required spatial
resolution and select kinetic or fluid models on a cell-by-cell
basis. In the AMAR framework, an open-source Gerris flow
solver, GFS [32], is used for generating adaptive Cartesian
mesh (ACM) for complex embedded boundaries. GFS pro-
duces a 2:1 balanced grid, which means that (a) the levels of
direct neighbors cannot differ by more than one and (b) the
levels of diagonal neighbors cannot differ by more than one.
These additional constraints simplify the gradient and flux cal-
culations. Fully threaded tree, the pointer-based data structure
of GFS allows fast access to cell neighbors, facilitating effi-
cient implementation of dynamic AMR and parallelization.
Besides the cut-cell technique for the boundary treatment, we
have also implemented the immersed boundary method [33].

The present work is devoted to combining ACM and FNM
techniques for fluid plasma simulations. The authors are not
aware of any publications describing the FNM implementa-
tion for ACM. Commercial software COMSOL uses FNM
with the finite element method (FEM) in semiconductor and
plasma modules [34]. A recently developed Zapdos code [35]
also relies on FEM and FNM for solving partial differen-
tial equations (PDEs) via interfacing with PETSc library [36].
Both COMSOL and Zapdos solve the fluid plasma equations
using a logarithmic transformation for the particle densities
and the electron energy density to ensure the solution’s positiv-
ity. The log transformation introduces additional nonlinearity
and makes the implementation more involved than the natural
variables used in the present work. Most of the current plasma
codes for modeling gas discharges are based on a segregated
solution approach. For example, our previous ACM plasma
code [31] uses explicit solvers suitable for the treatment of fast
(electron) time scales. The CFD-ACE+ code [50] uses implicit
solvers. However, the PDEs are solved sequentially (i.e., in
an uncoupled or loosely coupled manner; e.g., via additional
sub-iterations), which may pose numerical issues for solving
problems with strong coupling (e.g., large plasma densities).

The structure of the paper is as follows. Section 2 dis-
cusses the implementation of the FNM-ACM solver for the
commonly-used drift—diffusion (DD) plasma model. Section 3
contains simulation results demonstrating the capabilities of
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the method. We discuss the selection of time steps and com-
pare the efficiency of the explicit and FNM plasma solvers.
Finally, section 4 includes a conclusion and outlook.

2. Full Newton method implementation in the ACM
framework

2.1. Plasma model

The plasma model equations adopted in this work include the
balance equations for the electron (n.) and ion (n;) densities
coupled to Poisson equation for the electrostatic field:

one B

CICE =V - Je = geSe, (D
Bni

qCE_FV'Jl_qCSl' (2)

In these equations g, = |e| is the absolute value of the
electron charge, Sy are the source (e.g., ionization) and sink
(e.g., recombination) terms, J. and J; are the electron and ion
current densities, respectively. The electron energy transport
equation is:

Nreactions
+V-be=E-Jo—n. > KAe, ()

r=1

a(ne €e)
ot

where ¢, is the average electron energy, K, is the reaction rate
and Ag, is the electron energy change per electron per col-
lision. For inelastic collisions Ae, corresponds to the energy
threshold of an r-type collision (e.g., excitation or ionization
processes). The energy loss corresponding to elastic collisions
is given by

Ae, = %X’i/@ (T.—T,), (4)
where m. is the electron mass and M, is the mass of the heavy
particle (e.g., atom) and T, is the common temperature of
neutral plasma species.

The electron current density is

kgT.
Je = qeDeVne — genefieV <90 - Z e) s (5)
or, in a different form
VT,
JC - quevne + gelle {/J/ev (_(P) + D, T } . (6)
e

Similarly, for the ion species (i = ij, iz, .. .)

Ji = —qeZiDiVn;i + qeZin; {Miv (=) — D; VTTl } (D
1

Here, the electron and ion mobilities are y, and p;, and the
corresponding diffusion coefficients, D,; = kBq:e'i tei- The DD
approximation for the electron and ion fluxes neglects iner-
tial effects, which is a reasonable approximation for collision-
dominated gas discharge plasmas. Furthermore, the ion motion
is dominated by drift. The ion diffusion term is negligible in
most computational domains and can only be comparable to
the drift term at zero electric field points. It is known that the

ion inertia effects are essential in weakly collisional plasma,
and they will be added to our solver in future work.

The electron energy flux &, in equation (3) can then be
written as:

& = —ke VT — (e + kBTe)'g. ¢))

The average electron energy €. consists of thermal energy,
3/2kgTe, and the electron kinetic energy 1/2m.v>. We can
neglect the electron directed kinetic energy compared with the
thermal energy to obtain:

&= —nvr. - Tt ©)
B

According to (9), the electron energy flux &, contains ther-
mal conduction and convection terms. The thermal conduc-
tivity coefficient (k) for electrons is given by the Wiede-
mann—Frantz law:

(10)

2
Ke = <; —|—ce> k—BTe,uene.
qe

For semiconductors, the value of ¢, = —0.5 is commonly
used [18], while ¢, = 0 is common for plasma. In most publi-
cations devoted to plasmas, the energy density flux is used in
the form:

5 5
&= _gDeV(neGe) - gNeVCP(nefe) (1T)

However, the energy flux expressed by equation (9) has
a more transparent physical meaning since it separates the
thermo-diffusion term explicitly. Equation (9) also indicates
that in the quasi-neutral plasma, where the electron flux (J.)
transforms into a ambipolar diffusion flux, J, ~ J;, the ther-
mal diffusion (proportional to the free electron diffusion coef-
ficient) dominates over convection. Indeed, the ratio of the free
electron diffusion coefficient to the ambipolar diffusion coef-
ficient scales as D./D, ~ /M /m, > 1 for typical T > T;.
The temperatures of ions and neutrals are kept constant, and
the background gas is assumed motionless.

The system of the particle density and electron energy
transport equations is completed by Poisson equation for the
electrostatic potential ¢:

Ve EE) =V (V) =q. (Y Zm—n), (12
where € = ¢¢ is the permittivity of the plasma and ¢ is that
of vacuum (for gas, e, = 1).

The system of plasma equations is fully defined by set-
ting appropriate boundary conditions at plasma boundaries. At
metal walls, the following boundary conditions are set for the
electron and ion fluxes:

1
n-J.=qe <4vene - iln- Fi)) : (13)
n-Ji=qe (%Wini + an;pi(n 'E)> ; (14)
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where 7; is the secondary electron emission coefficient due to
ith ion bombardment, the ion flux I'; = J;/g., and

1,
a =
03

with n being a unit vector normal to the wall. For the energy
flux, the following boundary condition is set:

(n-E)>0
(n-E)<O0

noE = sune) ~ T Y T, (19)

At metal boundaries, the electrostatic potential can be set to
given values (so-called Dirichlet-type boundary conditions),
which are in turn explicitly prescribed or computed from
external circuit solutions.

At dielectric walls, the same set of boundary conditions
defined in equations (13)—(15) is used (with typically v; = 0).
In order to compute the plasma potential at these boundaries,
we introduce a surface charge, o, for which we solve the
following time dependent (local) balance equation:

a_a
ot

at all boundary faces. The surface charge density is then used
to compute the appropriate boundary conditions at boundary
faces for the electrostatic potential through Gauss’ law:

=Y m-J)+@m-Jo) (16)

em-E)y=cm-(—Vyp)) =o. 17)

At metal boundaries, the electrostatic potential is set to
given values, which can be explicitly prescribed or computed
from external circuit solutions. At dielectric walls, we calcu-
late a surface charge, o, by integrating charged particle fluxes
at the boundary faces.

The DD model for electrons and ions described above is
common for gas discharge and semiconductor device simu-
lations [37]. Often, the rates of electron-induced reactions in
the plasma model are obtained by solving the local Boltzmann
equation for electrons [38] over a range of . and the reduced
electric field, E/N, to obtain look-up-tables for the ionization
rate as a function of n. and electron temperature 7 [39, 50].
Instead of using this procedure, in the present work, we express
the electron-induced ionization rate in the Arrhenius form:

Re(T.) = ATB e 5/Te, (18)

where A, B, and E, are constants. For modeling plasma stratifi-
cation, we introduce a nonlinearity arising due to Maxwelliza-
tion of the electron energy distribution function (EEDF) [40,
41]:

Ne
exp| — |, ne<n

_ n

R.(n.,T.) = ATE e Ea/Te ni
exp| — |, ne>mn

ne

(19)

Here, n. controls the rate of the nonlinear dependence, and

ny defines the saturation value. The volume recombination is
expressed in the form:

(20)

Srecomb = Bnine .

Figure 1. Schematic representation of face reconstruction on ACM
with the cell to the left being one-level up and the cell to the right
being one-level down (after reference [32]). Arrows show cell faces
(here, right, and left). Also shown are right-state locations (crosses)
involved in face reconstruction in the developed SG scheme.

The recombination rate, /3, was varied to study the transition
between diffuse to constricted discharges.

2.2. Discretization of the enhanced SG scheme

We have utilized the FV approach with cell-centered vari-
ables to discretize the plasma equations. Figure 1 illus-
trates a control-volume (CV) cell together with neighbor-
ing cells of different refinement levels. In our ACM frame-
work, the refinement level difference of neighbor cells can-
not be larger than one, so that only one hanging node
per any given face is allowed. The FV spatial recon-
struction scheme brings the neighbor cell values to the
same level along the coordinate axes by invoking neigh-
boring cells in the perpendicular direction to the CV cell’s
current face across which the fluxes are computed. Then,
the right-state (whose locations are marked by cross sym-
bols in figure 1) is reconstructed by a linear combination of
all involved neighbor cell-centered values, while the left-state
consists of the cell-centered values of the CV cell itself. This
way, second order spatial accuracy is achieved when perform-
ing reconstruction at faces involving not axis aligned cells
(so-called transversal or diagonal neighbors) [32].
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The Scharfetter—Gummel (SG) scheme for computing the
particle and energy fluxes at cell faces assumes that all quan-
tities, except charged species densities, remain unchanged
between the left (L) and right (R) states shown in figure 1 [14,
16, 18]. The electron and ion density fluxes at the faces are
computed as

frif
Y [ (w—«m)
Jh=2e ey kB |
e Ay ¢ U

PR — PL
“an (=22 ).

YR — PL
nB| ——
v ( U, )

YR — YL
—nrB| -7
( Up )

where the face quantities (locations indicated are arrows in
figure 1) are labeled by ‘f” superscript index, g, = |e| is the
absolute value of the electron charge, Ur,; = kgTe;/qe is the
thermal electrical constant, ug’i are electron and ion mobili-
ties at cell faces, /s is the face normal distance between left
and right (neighbor) cell centers or positions (depending on the
neighboring cell refinement levels), and B (x) = x/(e* — 1) is
the Bernoulli function.

The face values of the electron and ion mobilities are
interpolated as

. Zi‘]e:uifU%

JE
1 Af

>

pi = ps + w' (s — psi) - (23)
with a face weight, w', determined by the face neighbor geom-
etry (fine—fine, coarse—fine, etc; e.g., w" = 0.5 on a fine—fine
interface) while the right-state values are reconstructed by a
linear combination of neighboring cell-center values. Simi-
larly, U;ei and all other face properties such as electron and
ion diffusion coefficients are computed.

An essential feature of the developed model is an extended,
nonisothermal SG scheme. Such schemes are commonly and
successfully used in semiconductor TCAD codes but are not
common for plasma simulations. The extended SG scheme for
the electron current continuity equation takes into account the
spatial variation of the electron temperature. When the electron
temperature varies across neighboring cells, the nonisothermal
SG scheme for the electron density flux becomes [18, 19]:

S geDe(Ter — Te) {B (A) MeR _ p (—A) ne,L:| ,
Af In (%) Te,R Te,L
eL

(24)
where

ln(Te,R / Te,L)

A =
(Te,R - Te,L)

[Z— (pr — 1) — 2ATer - Te,L)] eR)
B

We have used these equations in our FNM code. The value
of such a treatment could be particularly important near plasma
boundaries and electrodes (cathode and anode) where the
electron temperature can vary sharply over short distances.

There are several approaches to the energy flow’s dis-
cretization in the nonisothermal SG scheme [20]. We adopted
the discretization scheme, in which the electron energy flow is
written as [20]

Sf _ _é kBDg (Te,R - Te,L)
¢ 2 Af ln(Te,R/Te,L)

B (A) e~ B (~B) ne

The Joule heating source often represents a source of
numerical instabilities. An implicit treatment of the electron
energy source made it possible to increase the time step by sev-
eral orders of magnitude in conventional (non-FNM) plasma
codes [4]. In our FNM approach, we have attempted two tech-
niques. In the first one, the Joule heating term was rewritten as
[18]

T 27

In the second approach, by converting the CV cell (£2) inte-
gration to summation over cell faces, we obtained [17, 20]

one
E-J.=-V-(pJe)+qep (n +Se>.

/Je-de:/V(cpJe)dV—/soV-(Je) av
Q Q Q
= (g — pLAS,
f

with AS® being the face surface area and f index denotes sum-
mation over cell faces. We have implemented and tested both
these methods and found that the second scheme gives more
robust results and better nonlinear convergence at each time
step.

The implicit treatment of the boundary conditions is essen-
tial for the FNM scheme consistency to achieve better conver-
gence properties. The boundary conditions at metal electrodes
and dielectric walls are treated implicitly by adequately set-
ting the corresponding fluxes across the boundary cell faces
and computing the related Jacobian terms.

The mesh refinement/coarsening criteria can be specified in
the simulation scripts based on a combination of several events
(see reference [32] for details). In these events, the minimum
and maximum refinement levels are specified together with a
set of sensitivity thresholds (or minimum variation of solution
variable to be resolved across all neighboring cells of any given
cell) for each particular grid adaptation event, which can be a
function of cell position and solution variables. Such criteria
can be based on computational cell locations (e.g., proximity
to the plasma walls and electrodes), gradients or magnitudes
of the solution variables, or any functions or combinations
of such variables. Hence, depending on the problems being
solved, one can build a rather sophisticated set of grid adap-
tation events to ensure proper grid resolution and solver effi-
ciency for steady-state and transient problems. We have used
simple grid adaptation events based on gradients of the electro-
static potential and electron density for plasmas controlled by
ambipolar diffusion in the present work. More sophisticated
grid adaptation criteria have been previously used for high-
pressure gas breakdown simulations and streamer simulations
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with AMR [42]. For steady-state simulations, we typically
adapt the grid every 100—1000 time steps, while for transient
simulations, the grid is adapted more often (e.g., each time step
or every tenth step).

We paid attention to properly redistributing conserved
quantities across smaller cells upon refinement. The zeroth-
order algorithm would uniformly distribute the parent cell
solution across all children cells of the next refinement level.
We used the reconstruction approach based on the first-order
spatial accuracy approximation, which employs slope-limited
(e.g., Van Leer) gradients. The gradients were computed at
cell centers of parent (coarse) cells, from which the values
at cell centers of children (fine) cells were constructed. For
some variables (such as electron density), we apply the log-
arithmic transformation to ensure further robustness (which
preserves positiveness). During cell coarsening, the children’s
cells’ variables are cast into their larger parent cell using a
cell volume averaging technique, ensuring proper quantity
conservation.

2.3. FNM implementation

In the section, we describe the FNM technique’s implementa-
tion for solving the discretized system of the plasma transport
equations coupled to Poisson equation. In the FNM method,
the full set of plasma equations with N ion species is repre-
sented as
F (p,ne,nip, ..., nin, Te) = 0. (29)

Itis also possible to use the total electron energy (€, = nc€.)
as an independent variable (instead of the electron temper-
ature). Such an approach has been used in reference [20]
to secure Jacobian matrix diagonal dominance (especially
in the regions with low electron density) as well as in ref-
erence [35] in combination with log transformation of &.
We have implemented both approaches in our FNM scheme
and have not observed significant advantages of the latter
approach for the conducted test problems. However, as we
continue implementing new features (such as implicit treat-
ment of the finite-rate chemistry) and broaden the range of test
problems, we keep assessing these two approaches for better
performance.

Then, in the selected FNM scheme, the complete set of
multi-ion plasma equations with Nj.,s i0n species can be
represented in a vector form as

F(Q) =0, (30)

where the Njo,s + 3 solution vector (defined at cell centers of
CV cells) is

€29

V- (=eVy) —q. (Z Zin; — ”e)

on,
F‘@ qe - _V'Je_qesea
F ot
e % +V-Ju — q.S;
Fe Fnl] _ e ot il evil
. Z)ni
Foy qe 8tN + V- Jiv — geSiy
F, 0 (ne2ksT,)
ey "Ble
T+V~se—E~Je+nlejKrer

(32)

As one can see, we include the ion species into the same
matrix together with electrons and electrostatic potential. Such
a treatment resembles the techniques commonly used in semi-
conductor device modeling. It may be advantageous for plasma
systems to separate the electron and ion transport simulations,
thus considerably reducing the matrix size and the computa-
tional cost. In the present work, we explored the fully cou-
pled approach to illustrate the method’s capabilities. The fully
coupled method may be advantageous for modeling ion—ion
plasmas and magnetized plasmas where electron transport is
strongly affected by the magnetic field.

By introducing the following update rule (for each implicit
time step advance m <—m + 1) with k being the nonlinear
(implicit) sub-iteration index, one can write down a compact
form with an update vector AQ

Qm+ 1k+1

— Qm—‘rl,k +AQm+l,k+l, (33)

where the initial condition for each Newton sub-iteration k is:

Qm+l’k:0 — Qm

Following reference [18], we employ the first-order
backward-differentiation-formulato the time-derivative terms.
For the time discretization, composite techniques employ-
ing both the trapezoidal rule and the second-order backward-
differentiation-formula were used, as described in reference
[18]. A Newton iteration is then solved as

OF(Q) \ it k
bo QT =-F (@),

where the time marching index m is omitted for brevity.

In the FV formulation, the discretized flux vector ® across
each face of a CV cell becomes a function of the left state O}
(composed of the cell center values of the CV cell, i.e., Q) =
Q) and the right state Qy (involving direct as well as indirect
neighboring cell values, see figure 1), i.e., ® = ®(Q;,0g)-
Then the discretized form of the Jacobian matrix for a Newton
iteration takes two forms for the left and right (neighbor) state
vectors. For plasma with one ion-species, we can write:

(34)

(35)

OF, OF, OF, OF,
Opr Oner  Onm OTep
OF,, OF,, ~ OF, 0OF,
Tk — OF(Q" _ | 9oL Oner  Onip OTep
L7 a0, | OF, OF,, OF,, ~ OF, ’
0 L Bne,L 8ni,L 8Te,L
oFr,  OFr,  OFr, OFr,
dpL Oner  Onjy, OTep

(36)
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where some of the Jacobian matrix elements are zero (such as,
(%%, and %). Similarly, the Jacobian matrix 'I"l; correspond-
ing the right state vector Qy can be written down. In the imple-
mented numerical scheme, all Jacobian matrix entries were
computed analytically based on the non-thermal SG scheme
density and energy flux definitions given above. Analytic com-
putation of the partial derivatives makes the code run faster
and more robust, as no numerical differentiation needs to be
performed.

The Jacobian matrix was assembled as a sparse matrix
using the compressed row storage format. This matrix was
allocated at the beginning of each time step based on the
current grid state together with the cell-connectivity matrix.
The cell-connectivity matrix was computed only once at the
beginning of each time step. The elements of the Jacobian
matrix were updated at each nonlinear Newton sub-iteration.
At the end of the time step both matrices are deallocated.
Although these were not very time-consuming operations for
the problems solved in the present paper, the matrices’ alloca-
tion and the computation of cell-connectivity need to be done
only after the computational grid has undergone adaption. This
approach will be implemented in future work to increase the
code’s efficiency for larger problems. Such an implementation
is straightforward in the current framework.

2.4. Linear matrix solver

At the core of the implemented FNM is a linear matrix solver
that solves the resulting system of linear equations:
YiRAQR = —F(@). (37)

The corresponding matrix is of general unsymmetrical,
sparse type. As pointed out in reference [43], linear sys-
tems arising from the discretization of the semiconductor and
plasma transport models can be highly ill-conditioned and,
therefore, quite challenging for direct and preconditioned iter-
ative solvers. That work then discusses recent advances in the
development of robust direct and iterative sparse linear solvers.
It was obtained in reference [43] that for the preconditioned
iterative Krylov subspace solvers, nonsymmetric permutations
combined with scaling unsymmetrical reorderings gave the
best results in terms of the number of required iterations and
the time to compute the solution. As it is further discussed in
detail in reference [20], there are three main ways to solve
this equation: the direct method (LU lower—upper decompo-
sition), fixed-point iteration algorithms (such as Gauss—Seidel
and super relax iteration schemes), and Krylov subspace iter-
ation methods (conjugate gradients class, minimum residual
class, and others). With the direct methods being computa-
tionally costly (matrix bandwidths of ~15-30 are obtained
in our typical TCAD and plasma simulations), one tends to
rely on the iteration methods, which in turn must tackle two
issues: large matrix condition numbers (due to which the LU
algorithm can fail and the number of iterations in Krylov sub-
space iteration methods drastically increase) and the round-off
errors (important to minority carrier densities in semiconduc-
tors and sheath regions in plasmas). Algorithms relying on

transport free quasi-minimal residual (TFQMR) and gener-
alized minimal residual methods, as well conjugate gradient
squared method (CGS), bi-conjugate gradient, bi-conjugate
gradient stabilized were observed to give good results, but they
must be combined with ways of minimizing the residual, see
reference [20] for details. The current (at the time of writing
reference [20]) commercial TCAD software packages, such
as Medici integrated the LU and CGS methods, with Dessis
adopting the LU and TFQMR methods, while the TCAD code
in reference [20] builds upon the LU method (for smaller prob-
lems) as well as on the Krylov subspace methods available in
PETSc [44]. The modern commercial TCAD software pack-
ages have been reported to successfully make use of such
matrix solvers as PARDISO [45].

In the present work, we used a high-performance itera-
tive solver [46] available in our NanoTCAD framework. It
uses high order preconditioning by incomplete decomposition
to ensure good accuracy, reliable stability, and fast conver-
gence. The resulting linear algebraic system is solved using
a CGS-type iterative method with preconditioning by incom-
plete decomposition. To avoid diagonal pivot degeneration,
the Kershaw diagonal modification is used, and the apparent
computational complexity of the solver estimates as ~O(NY4),
which allows efficient computations for larger matrices arising
in multi-dimensional settings. Alternatively, to facilitate the
usage of the developed techniques by other research groups,
we are working on interfacing and adapting the AMR FNM
framework to open-source linear matrix solvers available in
the PETSc and Trilinos [47] suites. This will also allow us to
have more comprehensive customization over the broad range
of available solver types and their tuning parameters to achieve
better convergence for each problem of interest, as well as
to tackle code’s efficient parallelization. The results of these
developments will be reported elsewhere.

2.5. Nonlinear convergence and time stepping

In the developed FNM approach, the system of governing
equations is advanced from one time to the next, t — ¢ + At
(time marching index m in equation (33)), while performing
nonlinear sub-iterations for each given time step (index k in
equations (16) and (18)). Because of the nature of the tran-
sient governing equations, nonlinear convergence within each
time step is largely controlled by the selected time step (Ar),
which defines the diagonal dominance of the Jacobian matrix.
Also, because of the AMR capabilities, the convergence (both
local and global) can be efficiently controlled by dynamically
adapting the computational grid to resolve the critical plasma
features, e.g., large space charge and strong electric field. The
time local (within a given time step, index k) convergence
of the FNM technique (as any Newton iteration technique) is
also determined strongly by initial conditions (set at k = 0 in
equation (34)). If these initial conditions (at time ¢) are close
to the solution at the end of the sub-iteration cycle (at time
t + Ar), when large time steps can be used. This is typically
the case for steady-state [e.g., direct current (DC)] discharges.
For transient simulations of RF discharges or gas break-
down simulations, smaller time steps are required. Since the
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system of governing equations is strongly nonlinear and
depends greatly on the initial conditions, it is not possible to
provide a general recipe for selecting the maximum allowed
time step At a priori, contrary to the explicit solvers where
the time step can be most often estimated accurately from the
courant—friedrichs—lewy (CFL) condition and from the dielec-
tric relaxation time controlling the particle—field coupling. In
our simulations with the FNM scheme, the time step was
determined by experimenting with the nonlinear convergence
rates over each time step (typically, convergence over 4-5
orders of magnitude suffices). Since an implicit time step costs
more than an explicit time advance, one can expect that the
FNM scheme will be most efficient for steady-state or slowly-
varying problems by allowing large time steps. At the same
time, transient problems evolving on the (fast) electron-time
scale can be more efficiently solved by explicit techniques.

In our typical FNM plasma simulations, low initial plasma
density was set up. Once a voltage was applied to one of the
electrodes (at time ¢t = 0), electron motion and multiplication
first developed at the fast electron time scale. The electron
motion produced space charge and high electric fields, enhanc-
ing further electron multiplication and the development of
electron avalanche. During this initial highly transient phase,
the time steps At were typically set to 0.05-0.1 ns for the
problems described below. After completing this stage, the
plasma dynamics occur on the slow ion time scale, and the
FNM scheme allows increasing the time steps. In our simula-
tions, we have found that and it is advantageous to gradually
ramp up At during the following few 1000’s time steps with
the final allowed time step being set to the values which ensure
good nonlinear convergence (typically, 4—5 orders of magni-
tude). Typical achieved A#’s ranged between a few ns for RF
plasma problems and 200—500 ns for DC problems. A typical
example of a 2D DC plasma in argon gas at 400 mTorr with an
inter-electrode gap of 2 cm is shown in figure 2. The cathode on
the left is grounded (y = 0.1), the voltage of 200 V is applied
to the anode (on the right), and the top and bottom boundaries
are dielectric walls. AMR was based on magnitudes of space
charge and electric field. A fixed number of nonlinear sub-
iterations (10) were performed with the total number of time
steps of 15000. During the first 5000 steps, At was increased
to 200 ns. The time histories of residuals plotted in figure 2
show that for the three main solution variables (electrostatic
potential, electron density, and temperature), the local residu-
als (index k in equations (16) and (18)) drop by a least four
orders of magnitude (by almost ten orders of magnitude at
the beginning of simulation when the time step is still small),
while the global residuals (index m in equation (33)) dropped
by almost 12 orders of magnitude thus indicating complete
convergence. Such convergence rates (to almost machine pre-
cision) may not be required for most of the typical plasma
simulations, but they demonstrate superior capabilities of the
developed FNM code. Our preliminary results indicate that DC
plasma simulations with the developed FNM code are up to
a factor of 100 more efficient than those obtained with our
explicit code [31]. More detailed comparison studies are in
order when fully implicit treatment of finite-rate chemistry

is implemented, which will allow increasing further the effi-
ciency of the new FNM framework for a broad range of plasma
problems.

3. Results of simulations

We have applied the new solver to simulations of various DC
and RF discharges in 2D and 3D settings. The code is capable
of handling 2D-axisymmetric geometries, which are typical
for these systems, by adequately setting the cell and face met-
rics in the electron and ion particle and the energy fluxes across
faces of CV cells.

3.1. Direct current glow discharges

Figure 3 shows the results of 2D simulations of a DC discharge
in a long cylindrical dielectric tube of radius R = 1 cm and the
inter-electrode length d = 7 cm. The cathode is grounded, and
a voltage of 235 V is applied to the anode. The initial plasma
density was set to ~10% cm~>. The time step for this case was
50 ns.

The results shown in figure 3 illustrate the typical structure
of a DC glow discharge containing a cathode region, an axi-
ally uniform positive column, and an anode region. The plasma
density (a) has a large peak in a negative glow near the cathode,
passes through a minimum in the Faraday dark space before
reaching an axially constant value in positive column plasma,
and decays near the anode. The electric potential distribution
(b) connects the equipotential electrodes with a positive col-
umn plasma. The radial (ambipolar) electric fields are estab-
lished to equalize the electron and ion fluxes to the wall. A
complicated redistribution of the electric potential takes place
in the cathode region, forming a collisional double layer. The
ionization rate (c) has a sharp peak in the negative glow and
decreases sharply in the Faraday dark space before increas-
ing again in the positive column. The ionization rate decreases
near the anode, forming an anode dark space and produces an
off-axis peak on the anode surface.

Figure 4 shows distributions of plasma parameters along
the discharge axis. The ionization rate has a sharp peak near
the boundary of the cathode sheath with plasma; it vanishes in
the Faraday dark space, increases again in the positive column
plasma, and decreases near the anode forming an anode dark
space. The axial electric field changes its sign at two points a
and b in the cathode region. It remains constant in the positive
column, where the plasma density is axially uniform. The axial
electric field’s value in the positive column is controlled by
plasma to balance the ionization rate and the particle loss to
the wall by diffusion and surface recombination. The electric
field decreases near the anode and even reverses the sign at
the point ¢ near the anode. The electron temperature is high in
the cathode sheath, passes through a minimum in the cathode
region before reaching a constant value in the positive column,
and decreases near the anode. The DC discharge’s calculated
axial structure has all the features observed in experiments and
described in textbooks on gas discharge physics [48].

Figure 5 shows the electron density’s radial distributions
and the ionization rate in the positive column and at the anode
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Figure 3. Spatial distributions of electron density (a) in 10'° cm ™3, electrostatic potential (b) in V, and ionization rate (in 10> cm s~!) near

cathode (c) and near anode (d).

surface. In the positive column (a), the radial distributions of
the ionization rate and plasma density are similar. At the anode,
the radial distribution of the ionization rate forms a ring with
a minimum on the axis and sharp peaks near the wall (b).
Simultaneously, the radial distribution of the plasma density
remains monotonic, as in the positive column. The formation
of the anode ring that can break into different spots along the
azimuthal direction has been observed in experiments. It is of
interest to understand the self-organization of the anode region
in DC discharges.

Figure 6 illustrates the structure of the cathode region based
on 3D simulations of a DC discharge in a rectangular clam-
ber with dimensions 1 X 1 x 3 cm for gas pressure 0.4 Torr
and voltage 300 V. Iso-surfaces of the ion density as well as
three slices with contour lines are shown in figure 6. The condi-
tions correspond to a normal discharge with the cathode sheath
length of the order of the transverse chamber size R. The phe-
nomenon of the normal current density is one of the key con-
cepts in gas discharge physics [48]. The cathode spot covers
only a part of the cathode surface. The current density in the
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spot remains constant, and the size of the spot increases with
the increasing current until the spot covers the entire surface of
the cathode. These processes have been previously described
in numerous publications [49] and simulated with different
codes [37, 50, 51]. It is seen in figure 6 that the transverse
distributions of the ion density gradually change from axially
symmetric distributions on the cathode surface to a rectangular
profile in quasi-neutral plasma.

Figure 7 shows the axial distributions of the electron and
ion densities and the electric field along the axis, similar to the
2D simulations in the cylindrical tube discussed above. The
axial distribution of plasma density has two maxima: the first
at the plasma-sheath boundary and the second close to anode.
The electric field reverses sign three points marked a, b, and
c in figure 7. The first field reversal (point a) occurs close
to the plasma-sheath boundary, the second reversal (point b)
occurs near the minimum of plasma density, and the third field

reversal (point ¢) is close to the point of maximum plasma den-
sity. The key difference with the previous 2D simulations is
the lower current density in the 3D case and the short inter-
electrode gap, which corresponds to the absence of a positive
column.

Our fluid model describes the cathode region’s typical
structure and captures qualitatively all the essential features
observed in experiments and previous simulations. The fluid
model’s success is ensured by incorporating the energy bal-
ance of electrons. It is known that the local field approximation
(when the ionization rate is assumed to be a function of the
local electric field instead of the electron mean energy) gives
no electric field reversals in the cathode region [52, 53]. The
lack of quantitative description of gas discharges by fluid mod-
els is also known and well described in several publications
[54, 55].

Experiments and kinetic theory reveal the presence of three
distinct electron groups in the cathode region [56]. The fast
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Figure 6. Iso-surfaces of ion density with three slices with contour lines for a DC discharge in a rectangular chamber with dimensions

2 x 2 X 6 cm: Ar, 0.4 Torr, voltage 350 V.
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electrons with kinetic energies exceeding the first excitation
potential of atoms produce non-local ionization in the neg-
ative glow. The fast electrons, which consist of the primary
electrons injected from the cathode and those generated in the

1

cathode sheath, may have an anisotropic velocity distribution
function (electron beam). The range of their penetration into
plasma corresponds to the length of the negative glow. The
second electron group includes slow electrons trapped in the
potential well formed in the cathode region. These electrons
have near-Maxwellian energy distribution with a temperature
that can be close to the gas temperature. They are responsible
for the large peak of the plasma density in the cathode region
but give zero contribution to the current. The current is trans-
ported by intermediate electrons, which occupy the energy
range between the slow and fast electrons. The formation of
distinct electron groups associated with the double-layer for-
mation in collisional and near-collisionless plasma is typical
for gas discharges and space plasmas [57].

Obviously, one cannot expect a quantitative description of
physics from a fluid model that describes all the complexity
of electron kinetics in terms of an average electron. A recent
paper [55] illustrated how the one-dimensional fluid model
could be improved to better describe the cathode region’s
longitudinal structure by incorporating non-local ionization
induced by the fast electrons. The addition of the non-local ion-
ization decreases the electron temperature in the negative glow
and increases the length of the Faraday dark space between
the negative glow and the positive column. In future work, we
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ion densities (right) at three times during the RF period.

plan to replace the fluid model for electrons with a grid-based
kinetic solver.

3.2. Capacitively coupled plasmas

We have performed 2D axisymmetric simulations of capac-
itively coupled plasma (CCP) in a dielectric tube of radius
R = 6 cm, inter-electrode gap d = 2 cm, driven by RF
voltages at frequencies of 100, 10, and 1 kHz. The sec-
ondary emission coefficient was 7 = 0.1. Figure 8 shows
spatial distributions of plasma parameters in argon at a
pressure of 1 Torr, frequency of 100 kHz, and voltage
150 V. The time step in these simulations was between
2 and 10 ns.

Figure 9 compares the time modulation of electron den-
sity and temperature on the axis in the center of discharge (at
x = 0) for different driving frequencies. At 100 kHz, the
plasma density modulation in plasma is negligible, which is
consistent with figure 8. With decreasing driving frequency,

the time modulations of electron density in plasma become
substantial. The electron temperature is strongly modulated at
all these frequencies.

Figure 10 compares the time-variations of electron and ion
current densities at the center of the electrode at 100 and
10 kHz. Both electron and ion currents are strongly modulated
during the RF period. The electron current’s negative values
are due to the secondary electron emission from the cathode,
which reaches maximal value during the peaks of the ion cur-
rent. The time modulation of the ion current is specific to low-
frequency CCP operating in the so-called dynamics regime
[58]. In this regime, the ion transit time through the sheath is
comparable to the RF period, and the ion current at the elec-
trode is absent during a substantial part of the RF period. At
higher frequencies, the ions respond to the electric field’s time-
averaged value in the sheath. The ion current at the electrode
becomes nearly constant during the RF period, and the electron
current has sharp peaks when the sheath voltage has minimal
values. The ion current is constant during the RF period [59].
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3.3. Plasma stratification in argon discharges

Plasma stratification (i.e., pattern formation along the direction
of discharge current) often occurs in DC and RF discharges
over a wide range of gas pressures and discharge currents
[60, 61]. In DC discharges of noble gases, striations (ioniza-
tion waves) usually move along the electric field direction,
while standing striations are typical for molecular gases. We
have applied the FNM plasma solver for simulations of stria-
tions in argon discharges and discovered the common mech-
anism of stratification in DC and RF discharges at relatively
high currents (plasma densities). The nonlinear dependence
of the ionization rate on electron density is the leading cause
of plasma stratification. The present paper provides details of
simulations and describes some new results compared to those
briefly reported in two letters [40, 41].

3.3.1. Moving striations in DC discharges. Simulations were
performed for a cylindrical dielectric tube of radius R = 1 cm
and length L = 14 cm. The anode was grounded, and a voltage
was applied to the cathode. The electric potential at the dielec-
tric walls was calculated from the local surface charge, which
evolved in time based on electron and ion fluxes. During our
simulations of the discharge development, striations first orig-
inate in the cathode region and gradually propagate towards
the anode. However, the striations themselves move towards
the cathode that corresponds to the backward waves (with the
group and phase velocities in opposite directions), which are
well known from the analytical theory of small-amplitude stri-
ations under these conditions. The corresponding DC interme-
diate movie (https://stacks.iop.org/PSST/30/045013/mmedia)
illustrating the dynamics of discharge stratification and mesh
adaptation is available on the journal web site.

Figure 11 shows instantaneous spatial distributions of elec-
tron density in diffuse and constricted discharges at two gas
pressures (1 Torr and 400 Torr) in argon. The radius of the
plasma column in the diffuse discharge is controlled by surface
recombination, and the striation wavelength is about the radius
of the discharge tube. In the constricted discharge, the radius
of the plasma column is controlled by volume recombination
and is smaller than R. The striation wavelength is smaller,
and the plasma radius changes over striation wavelength dur-
ing the wave propagation. This agrees well with the reported
experimental observations of the striations in constricted dis-
charges. The bottom part of figure 11 shows a dynamically
adapted mesh for the constricted discharge. The mesh adap-
tation criterion is based on the gradients of the electrostatic
potential and electron density. A DC constricted AMR movie
available on the journal web site illustrates the dynamics of
plasma stratification in DC discharges.

Figure 12 shows distributions of the electric field, elec-
tron density, and temperature on the axis of the diffuse (left)
and constricted (right) discharges. In the diffuse discharge, the
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Figure 11. Instantaneous spatial distributions of electron density (10'© cm~3) for the diffuse discharge (top) and constricted discharge
(middle). The bottom part shows the dynamically adapted mesh for the constricted discharge (argon 400 Torr).

maximal value of the electric field is observed near the maxi-
mal gradient of plasma density, which corresponds to the dom-
inance of the ambipolar component of the electric field over
the conduction component. The maximal value of the elec-
tron temperature is shifted towards the cathode compared to
plasma density, which corresponds to the propagation of stria-
tions towards the cathode. Electric field reversals take place
in the constricted discharge, which indicates that striations
are substantially nonlinear in the constricted positive column.
In diffuse discharge, electric field reversals are negligible for
these conditions.

In the constricted discharge, the maximal value of the elec-
tric field is observed again near the point of maximal gra-
dient of plasma density. This corresponds to the dominance
of the ambipolar electric field over the conduction field. The
field is close to zero at the points of maximal plasma den-
sity on the axis. That is in good agreement with the two-
dimensional theory of striations in constricted discharges. The
maximal values of the electron temperature are shifted towards
the cathode compared to the maximums of plasma density,
which corresponds to the propagation of striations towards
the cathode. The electric field changes sign between the max-
imum plasma density and the maximum electron tempera-
ture. This corresponds to highly nonlinear waves under these
conditions.

Figure 13 shows the radial distributions of electron densi-
ties in two phases of waves, which correspond to the maximal
and minimal density on the axis. In the diffuse discharge (left),
the radial distribution of plasma densities changes weakly.
In the constricted discharge (right), the radial distribution of
plasma density changes substantially over the striation wave-
length. The radius of plasma has a minimum at the point
of maximal plasma density on the axis, which is in good
agreement with the two-dimensional theory of striations in
constricted discharges.

3.3.2. Standing striations in RF discharges. The key differ-
ence between moving striations in DC discharges and standing
striations in RF discharges is the absence of the RF electric
field’s time-average component in the striation-free positive
column. In our experiments and simulations, we have observed
that any discharge asymmetry and the appearance of even a
small DC component of the electric field in CCP results in
a movement of striations along the axis. Figure 14 shows an
example of 2D axisymmetric simulations of CCP for tube
radius R = 1 cm, inter-electrode lengths L = 14 cm (a) and
20 cm (b), gas pressure 0.5 Torr, driving frequency of 20 MHz,
and n. =4 x 10" m=3. The striation wavelength varies discon-
tinuously with changing the inter-electrode distance so that an
integer number of standing waves always forms between the
electrodes. Six striations are observed in our simulations for
L = 14 cm, and eight striations are formed for L = 20 cm.
It is seen that the two central striations at L = 20 cm are
slightly longer than the rest of the waves. They will break into
an additional pair with a further increase of the inter-electrode
distance L.

Figure 15 shows the time variations of electron density in
the middle of the gap (at x = 0) and close to the electrode (at x
= L/2) during the plasma stratification process. It is seen that
standing striations are formed during a few thousands of RF
cycles. The time of striation formation is also large compared
to the particle ambipolar diffusion time to the wall. A CCP-
movie available on the journal web site illustrates the transient
process of striation formation. They propagate from electrodes
towards the discharge center. In fully striated plasma, despite
substantial time variations of the power deposition, the elec-
tron density, and the electron temperature do not vary in time
under these conditions, except within the oscillating sheaths
near the electrodes. The developed code helped clarify the
plasma stratification mechanism and study the nonlinear stage
often realized in the experiments [41].
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(right) discharges.

3.4. Comparison of explicit and FNM solvers

Detailed benchmarking of the new FNM solver with previ-
ously developed codes is not the goal of the present work and
could be a subject of future studies. In this section, we will
only provide some comments and estimates to compare the
accuracy and efficiency of the previously developed explicit
and the new FNM code. The programming language for both
codes is C with inheritance [32]. Both the explicit and FNM
codes were run on Intel Xeon CPU-E5-2680 v4 2.40 GHz pro-
cessors in serial mode. However, the numerical schemes in
the explicit code [31] and the new FNM code are quite dif-
ferent. In particular, the explicit code used the semi-implicit
Poisson solver, fully explicit isothermal SG scheme for the par-
ticle transport, and a scheme with no special treatment of the
Joule heating term and boundary conditions. Hence the results
of the two codes can be expected to be somewhat different even
on the same computation grids. Direct benchmarking of the
explicit and FNM codes would require the implementation of

the same spatial and temporal discretization schemes, with the
same treatment of different terms of the governing equations.

However, some estimates can still be made using the two
codes in terms of the memory footprint and timings for com-
parable accuracy of the solution. We have selected two 2D
axisymmetric, steady-state problems for comparative studies.
One problem is a short DC plasma case (400 mTorr of Ar gas,
gap 2 cm, applied voltage 200 V) and the other problem is a
long DC plasma case (1 Torr of Ar gas, inter-electrode distance
5 cm, tube radius 1 cm, applied voltage 100 V). The number of
solved species was 5 in both cases: electrons, ground-state Ar
species (allocated but not solved for), and (for generality) three
types of ions, of which only the Ar™ ion played a role under
simulated discharge conditions. The short DC plasma case has
adistinctive feature of stronger electric fields between the elec-
trodes, and thus shorter CFL time steps allowed in the explicit
code. The second case is characterized by larger plasma for-
mation times due to the presence of a long positive column
region controlled by the ambipolar diffusion.
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For each setup, we have selected the same AMR grids (with
cell clustering around the cathode, anode, and dielectric walls
regions) to be used in the explicit and FNM codes. The num-
ber of cells was close to 2 K in both cases. RAM required
to run the explicit code was ~350 MB while the FNM code
required ~400 MB (~0.3-0.4 MB per cell). The extra RAM
of ~50 MB required to run the FNM code could be attributed
to the Jacobian matrix storage, as well to the linear matrix
solver storage (which was found to scale exceptionally well
with the number of degrees of freedom, see references in the
paper). The explicit code relied on the semi-implicit imple-
mentation of the Poisson solver [31] while Poisson equation
itself was solved by the multigrid technique [32] with the con-
vergence of 3—4 orders of magnitude (typically, in 4-5 iter-
ations) thus ensuring implicitness of this solver. The results
showed that 1000 time steps for the explicit code took ~25 s
of CPU time, while 1000 steps of the FNM code took ~500 s,
thus the explicit code being ~20 faster per time step than the

FNM code. The physical time steps for the explicit code were
about 10-50 ps at the initial stage of plasma evolution and later
dropped to several ps after the narrow plasma sheaths were
formed.

On the contrary, the physical time step in the FNM code
started with ~100 ps and could be gradually ramped to
0.1 ps (sometimes even larger, up to 1 ps) during the first sev-
eral 1000’s steps, which then remained at this level until the
end of the simulation. We have run these simulations to a phys-
ical time of 1 ms, which is a typical time scale for the plasma
to establish due to chemical reactions and ambipolar diffusion
processes. For the explicit code with a time step of ~10 ps
to reach out to such times, it requires ~100 M (1 ms/10 ps)
time steps. For the FNM code with the time step of 0.1 us,
it requires only ~10 K time steps. While the FNM code was
found to be ~20 times more expensive, because of the dras-
tic difference (~10000X) of the time steps required, the final
simulation could be obtained ~500 times faster in terms of the
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CPU time. Since the plasma can be established faster than 1 ms
(say, 0.2 ms), the resulting (conservative) speed up estimation
is 100X.

Itis worth noting that our explicit code has the semi-implicit
Poisson solver thereby avoiding the strict dielectric relaxation
time step limitation (which can be a fraction of ps at the
studied plasma densities); hence, the explicit time step was
only limited by the CFL condition. The FNM solver relied
on the explicit chemistry implementation, which was likely to
be the main cause of its observed time step limitation. More
accurate benchmarking of the explicit and FNM codes could
involve a larger set of cases (e.g., with a larger number of cells
and plasma species, as well as time transient cases, such as
RF plasmas). Such benchmarking could be a subject of sep-
arate studies. However, even these preliminary results have
already shown the great advantages of developed FNM tech-
nology. This technology is currently being further advanced
via fast—slow modular splitting and chemistry implicitness for
efficient plasma simulations.

4. Conclusions and outlook

We have described an initial implementation of a multi-
fluid, multi-temperature plasma solver with ACM using a
full-Newton (coupled, implicit) scheme. The new solver pro-
vided breakthrough capabilities for solving several gas dis-
charge problems that we could not solve before with existing
software. With the new solver, we could calculate the two-
dimensional structure of the entire DC discharges, including
cathode and anode regions, electric field reversals and the for-
mation of a double layer, a normal cathode spot, and an anode
ring, for realistic values of the secondary electron emission
coefficient at the cathode and high discharge currents. We
could also simulate moving striations in diffuse and constricted
DC discharges, and standing striations in RF discharges in
argon gas. We have observed good convergence rates and

proper dynamic grid adaptation for resolving time-variations
of space-charge sheaths in the CCP at the electron scale and
the slow plasma dynamics at the ion time scale. The fully
implicit treatment of the coupled plasma equations allowed
using large time steps (speedup factors up to 100 compared
to explicit solvers). The full-Newton treatment enabled fast
nonlinear convergence at each time step, offering significantly
improved fluid plasma simulations.

In the present paper, we considered the plasma boundaries
aligned with the grid lines. In future work, we will treat non-
aligned boundaries using the cut-cell technique, as previously
done in our explicit plasma solver. Simulating free surfaces
of the complex shape appears very attractive for modeling
discharges with liquid electrodes [11] using the VoF method
with AMR. The developed FNM-ACM technique can effi-
ciently treat such problems. The FNM-ACM solver’s paral-
lelization can be done efficiently using the Forest-of-Trees or
space-filling curve algorithms. The work in these directions is
currently underway and will be reported elsewhere.

Adding a general-purpose chemistry solver is another
subject of our future work. The developed solver is ready
to be linked with finite-rate chemistry solvers using multi-
temperature reaction rates (for electrons, gas species, and
vibrational states of molecules). The nonlinear source and
loss terms for charged and neutral species can be treated
using several techniques, such as a point-implicit approach
[62], high-order Runge—Kutta techniques with adaptive time-
stepping, as well as explicit techniques. The plan is to treat
the species transport and finite-rate chemistry in a fully cou-
pled way, as commonly used in CFD for modeling combustion
and flames with complex and often stiff chemistries. The cou-
pling of the charged particle motion and the electron energy
transport with self-consistent electric fields makes plasma pro-
cesses highly nonlinear and multi-scale problems. The devel-
oped FNM-ACM technique offers many benefits for tackling
plasma systems’ time scales’ disparity and nonlinearity.

We wish to point out that the implemented code has not
been optimized for maximal performance. However, the code
runs fast and allows large time steps for stability, with good
convergence observed for a broad range of grid resolution vari-
ation. The time steps employed in the present paper can be
further increased by implicit (or semi-implicit) treatment of
the finite-rate chemistry, as was discussed earlier. Among dif-
ferent optimization techniques in the future is an automatic
time-step-control algorithm [18], which ensures maximum
allowable time steps during runs. Another method is matrix
bandwidth reduction, which can further speed up the code.
Such a technique is easily realizable with ACM by reordering
the cells for decreasing the adjacency matrix. Another advan-
tage of the FNM is that it efficiently treats the cut cells that
often invoke the small-cell problem, limiting the allowed time
step in explicit algorithms and requiring rather complicated
(in terms of bookkeeping) cell-merging techniques [32]. The
FNM technique avoids this problem altogether by including
the cut cells into a single computational matrix. The use of
implicit (thus, no CFL limit) but uncoupled schemes can result
in severe convergence problems, especially in small cut cells
with volumes much smaller than off-body cells. Thus, the full
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advantages of the developed FNM-ACM techniques will be
realized for complex plasma interface simulations.

For our fluid modeling of collisional gas discharge plas-
mas, we have adapted the numerical techniques commonly
used in semiconductor modeling with the fully coupled solu-
tion for electrons and holes in a single (global) matrix. For
plasma systems, in general, this approach may not be neces-
sary, as the electron and ion mobilities in plasmas differ by
factors of 100—1000. In contrast, the charge carrier mobilities
in semiconductor systems may be of the same order of mag-
nitude. Thus, ion transport can be solved separately for the
plasma systems, which can significantly reduce the computa-
tional cost, especially for modeling of more exotic plasma sys-
tems such as ion—ion plasmas, strongly magnetized or ‘liquid’
plasmas. We plan to combine the developed FNM approach
with the time-scale separation methodology to treat electrons
and heavy (ion and neutral) species by loosely dependent mod-
ules. The loosely coupled approach would also allow using
hybrid kinetic-fluid models for electrons while fluid models
treat ions. Such a system would facilitate simulations of plas-
mas with large numbers of heavy species and complicated
chemical mechanisms.
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