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ABSTRACT

Context. The Parker Solar Probe (PSP) measures solar wind protons and electrons near the Sun. To study the thermodynamic properties
of electrons and protons, we include electron effects, such as distributed turbulent heating between protons and electrons, Coulomb
collisions between protons and electrons, and heat conduction of electrons.
Aims. We develop a general theoretical model of nearly incompressible magnetohydrodynamic (NI MHD) turbulence coupled with a
solar wind model that includes electron pressure and heat flux.
Methods. It is important to note that 60% of the turbulence energy is assigned to proton heating and 40% to electron heating. We use
an empirical expression for the electron heat flux. We derived a nonlinear dissipation term for the residual energy that includes both the
Alfvén effect and the turbulent small-scale dynamo effect. Similarly, we obtained the NI/slab time-scale in an NI MHD phenomenology
to use in the derivation of the nonlinear term that incorporates the Alfvén effect.
Results. A detailed comparison between the theoretical model solutions and the fast solar wind measured by PSP and Helios 2 shows
that they are consistent. The results show that the nearly incompressible NI/slab turbulence component describes observations of the
fast solar wind periods when the solar wind flow is aligned or antialigned with the magnetic field.
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1. Introduction

The shear flow caused by the difference between a fast and
slow solar wind speed in the inner heliosphere (Coleman 1968)
results in a slower cooling rate of the solar wind temperature than
predicted by adiabatic cooling r−4/3, where r is the heliocen-
tric distance. Turbulence transport model equations have been
used to study solar wind heating, and these include turbulent
stream shear and pickup ion sources (Zank et al. 1996, 2017,
2018a; Smith et al. 2001, 2006a,b; Breech et al. 2008, 2009;
Adhikari et al. 2014, 2015, 2017, 2020a,b; Wiengarten et al. 2015,
2016; Shiota et al. 2017; Engelbrecht & Strauss 2018). These
theories confirm that the radial profile of the solar wind pro-
ton temperature is nonadiabatic. Recently, Boldyrev et al. (2020)
developed a kinetic theory in which the electron temperature
decreases as r−2/5, indicating that the electron temperature also
presents a nonadiabatic radial profile. However, in Boldyrev’s
model, the electron temperature is caused by the capture and
escape of electrons, so there is no heating of electrons by tur-
bulence, which is thought to be responsible for the nonadiabatic
radial profile of the electron and proton temperatures. However,
the electron heat flux, Coulomb collisions between electrons and
protons, as well as wave-particle interactions between electrons
and whistler waves (Tang et al. 2020) may also affect the radial
evolution of electron and proton temperatures (Cranmer et al.
2009; Breech et al. 2009; Engelbrecht & Strauss 2018; Chhiber
et al. 2019) as well as other thermodynamic properties, such
as entropy. Recently, Adhikari et al. (2020b) illustrated the role
that turbulence played in the increase of entropy throughout the
heliosphere.

In the solar wind plasma, solar wind protons, solar wind
electrons, and heavy ions are not in thermal equilibrium. These
particles exhibit different temperatures and speeds, which are
more obvious in the low-density regions with the least frequent
Coulomb collisions (Kohl et al. 1998; Kasper et al. 2008). Under-
standing the plasma properties among different species will help
to clarify the kinetic physical processes of energy deposition into
plasma.

The mass density and momentum flux of the solar wind
are mainly determined by protons. However, the electrons carry
approximately half of the thermal energy of the plasma, so it
should not be neglected in a complete study. Effects associated
with the incorporation of electrons include splitting the turbu-
lent energy into electron and proton heating, electron heat flux,
and Coulomb collisions between electrons and protons. Leamon
et al. (1998) pointed out that about 60% of the turbulent energy
at 1 au is used for proton heating. Breech et al. (2009) partition
turbulence energy for proton and electron heating 60:40, respec-
tively (see also, Cranmer et al. 2009). We include electron effects
in a coupled nearly incompressible magnetohydrodynamic (NI
MHD) phenomenology–solar wind model.

In previous studies (Zank et al. 2017, 2018b,a; Adhikari et al.
2017, 2020a,c), we considered only proton heating by the dis-
sipation of NI MHD turbulence (Zank et al. 2017). This paper
develops a more general theoretical model of solar wind plus
NI MHD turbulence that includes electron effects. We use this
model to study the electron and proton heating and the evolution
of the solar wind proton and electron entropy in the fast solar
wind. For this, we use the NI MHD turbulence transport model
equations of Zank et al. (2017), which describe the evolution of
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majority quasi-2D and NI/slab turbulence throughout the heliop-
shere. Quasi-2D turbulence corresponds to turbulence that has
zero frequency transverse fluctuations whose k vector is primar-
ily in the plane orthogonal to the magnetic field – there is a
slowly varying component that is not strictly 2D (see, Hunana
& Zank 2010; Zank et al. 2017, 2018b). In the NI MHD descrip-
tion, the quasi-2D turbulence is the dominant incompressible
fluctuating component. The NI/slab terminology refers to the
nearly incompressible component in the NI MHD description –
this component contains Alfvén waves (traditionally called slab
turbulence), but it also contains zero frequency 2D modes and
therefore it is not strictly slab turbulence. The NI refers to “nearly
incompressible”. The NI/slab component is a minority com-
ponent in the NI MHD formulation. This includes the energy
in forward and backward propagating modes, cross-helicity,
residual energy, fluctuating magnetic and kinetic energy, and cor-
responding correlation lengths. Here, we modify the nonlinear
dissipation term for higher order NI/slab residual energy of Zank
et al. (2017) to include Alfvén and turbulent small-scale dynamo
effects (Zank et al. 2012). We discuss this in detail below. In this
study, we compare the theoretical solutions with the fast solar
wind of the first orbit Parker Solar Probe (PSP) and Helios 2.

We organize the manuscript as follows. Section 2 presents
the coupled NI MHD turbulence plus solar wind model, includ-
ing electron effects. In Sect. 3, we discuss the comparison
between the theoretical and observed results. Section 4 presents
a discussion and conclusions.

2. Gas dynamic and NI MHD turbulence transport
equations

The force generated by the pressure gradient of the solar wind
electrons and protons drives the solar wind from the surface of
the Sun to the outer heliosphere (Parker 1958; Verdini et al. 2010;
Chhiber et al. 2019; Adhikari et al. 2020c), although the solar
wind speed has been observed to slow down in the outer heliop-
shere because of the pickup ions (Richardson & Wang 2003;
Zank et al. 2018a; Elliott et al. 2019). Adhikari et al. (2020b)
pointed out that the turbulent shear source can also lead to a
decrease in the solar wind speed, but it is not as significant as
pickup ions. Here, we study the evolution of turbulence in the
fast solar wind in the inner heliosphere, so we do not include
the pickup ion source nor the turbulent shear source for now. We
note that driving related to shear may be important to the solar
wind and coronal heating problem, but this will be examined
elsewhere. The evolution of the solar wind density and the solar
wind speed can be described by the 1D steady-state continuity
and momentum equations in a spherically symmetric coordinate
system as

d
dr

(r2ρU) = 0; (1)

ρU
dU
dr

= −dPp

dr
− dPe

dr
, (2)

where ρ is the solar wind mass density, U is the solar wind speed,
Pp is the thermal proton pressure, and Pe is the thermal elec-
tron pressure. Equation (1) gives the (conservation of mass flux)
r2ρU = const, indicating that the solar wind density decreases as
r−2 only when the solar wind speed is constant. We assume that
the electron density and the proton density are approximately
equal, that is to say ne ≈ np. In Eq. (2), we do not include the
magnetic force (J × B)r = −1/(µ0r)Bφd/dr(rBφ). We calculate

the magnetic force from the Parker spiral (not shown in this
manuscript), which is two orders of magnitude smaller than that
of protons and electrons. Under the assumption of spherically
expansion, the 1D steady-state transport equations for the proton
and electron pressure in a spherical coordinate system r can be
written in the form,

U
dPp

dr
+ γPp

dU
dr

+ 2γ
U
r

Pp = (γ − 1)
(
νpe(Pe − Pp) + fpS t

)
; (3)

U
dPe

dr
+ γPe

dU
dr

+ 2γ
U
r

Pe

= (γ − 1)
[
νep(Pp − Pe) − ∇ · qe + (1 − fp)S t

]
, (4)

where S t is a turbulent heating term, fp denotes the fraction of
the turbulent energy that heats the solar wind protons and (1− fp)
denotes the fraction of turbulent energy that heats the solar
wind electrons, γ(= 5/3) is the polytropic index, and νpe and
νep are the rates of proton-electron Coulomb collisions (Barakat
& Schunk 1982; Zank 2014). The Coulomb collision frequen-
cies are balanced, therefore; neνep ≈ npνpe. The Pe − Pp term in
Eqs. (3)–(4) models Coulomb collisions, through which the elec-
trons and protons exchange heat over a timescale 1/νep ∼ 1/νpe.
For νpe, we use an expression given by Cranmer et al. (2009),

νpe ≈ 8.4 × 10−9
( ne

2.5 cm−3

) ( Te

105 K

)−3/2

s−1. (5)

Equation (5) is derived by assuming mp � me and using the
rate of temperature equilibrium as described by Spitzer (1962)
(see also, Isenberg 1984; Cranmer et al. 1999), and gives a large
mean free path of the order of 500−1500 au at 1 au for electron-
proton collisions (Cranmer et al. 2009). For electron–electron
collisions, the mean free path is found to be of the order of
∼0.5 au at 1 au (see, Spitzer 1962; Salem et al. 2003), which
is quite low compared to the mean free path (mfp) of electron-
proton collisions. A few authors pointed out that electrons and
protons can also exchange energy via collisionless wave-particle
interactions (e.g., Cuperman & Harten 1970; Perkins 1973). We
note that the collisional term vanishes when Pe = Pp.

In Eq. (4), the term qe is the electron heat flux (the pro-
ton heat flux is neglected Braginskii 1965). The effect of the
proton heat flux on the proton temperature is less important in
comparison to the turbulent heating term. However, the effect
of electron heat flux on the electron temperature cannot be
excluded. Although we use an isotropic model for the electron
and proton temperatures, we use the electron heat flux in the
direction parallel to the magnetic field (Cranmer et al. 2009).
Because the pressure/temperature contribution is dominated by
the Maxwellian core, the parallel and perpendicular contribution
to the pressure/temperature are much lower and can be neglected
(Tang et al. 2020). Because the core electrons are Maxwellian,
their heat flux is zero, and thus heat flux is dominated by the elec-
tron strahl. Although, we consider a parallel electron heat flux,
we use an empirical formula determined by fitting the observed
electron heat flux. In modeling the electron heat flux (q||) along
the direction of the magnetic field, the question arises of whether
solar wind is collision dominated or collisionless in a particular
spatial regime. For a collision dominated model, the Spitzer &
Härm (1953) heat flux expression q|| = −κ||∇||Te(r) gives a very
large temperature at 1 au in contrast to observations (Hollweg
1976). Whereas the collisionless model of Hollweg (1976) pro-
duces a reasonable temperature, his model neglects nonlocal
effects (Scudder & Olbert 1979). The Hollweg (1976) model
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does not consider electron-wave/turbulence scattering, which
can affect electron transport significantly (Tang et al. 2020).
Cranmer et al. (2009) derived an empirical expression for the
electron heat flux q|| by fitting the electron heat flux measured by
Helios 2 from 0.3 to 1 au (Pilipp et al. 1990) obtaining,

ln
(

q||,e
q0

)
= −0.7037 − 2.115x − 0.2545x2, (6)

where x ≡ ln(r/1 au) and q0 = 0.01 erg cm−2 s−1. Equation (6)
is entirely empirical and cannot address whether the solar wind
is collisionally dominant or collisionless. The term ∇ · qe can be
expressed in a 1D spherically symmetric coordinate system as
(Cranmer et al. 2009)

∇ · qe =
1
r2

∂

∂r

(
r2q|| cos2 φ

)
, (7)

where φ is the Parker spiral angle given by

tan φ =
Ωr sin θ

U
, (8)

and Ω = 2.7 × 10−6 rad s−1 is the solar rotation frequency. We
set a colatitude θ = 90◦, because we compare the model results
with PSP and Helios 2 measurements in the ecliptic plane.

In addition to Coulomb collisions and the electron heat flux,
Eqs. (3)–(4) include a turbulent heating term, in which turbu-
lence energy is distributed between electrons and protons. Here,
we assume a constant fraction of fp = 0.6 within 1 au (Leamon
et al. 1998), so that 60% of the turbulence energy is used for
proton heating, and 40% for electron heating. Breech et al.
(2009) used fp = 0.6 throughout the heliosphere, and Howes
(2010, 2011), Engelbrecht & Strauss (2018) assumed fp = fp(r)-
however, there is no consensus yet about fp beyond 1 au.

The turbulent heating term S t uses a von Kármán phe-
nomenology, and is given by (Verdini et al. 2010; Zank et al.
2018a)

S t =αmpns

 〈z∞+2〉2〈z∞−2〉1/2
L+∞

+
〈z∞−2〉2〈z∞+2〉1/2

L−∞

+ E∞D

 〈z∞+2〉1/2
λ−∞

+
〈z∞−2〉1/2

λ+∞

 + 2
〈z∗+2〉〈z∞+2〉〈z∞−2〉1/2

L+∞

+ 2
〈z∗−2〉〈z∞−2〉〈z∞+2〉1/2

L−∞
+
〈z∗+2〉2〈z∗−2〉1/2

L+∗

+
〈z∗−2〉2〈z∗+2〉1/2

L−∗
+ E∗D

 〈z∞−2〉
λ+∞

+
〈z∞+2〉
λ−


− 〈z

∗+2〉〈z∞−2〉1/2
λ+∞

− 〈z
∗−2〉〈z∞+2〉1/2

λ−∞

+E∗D
VA

λ+∗ + λ−∗
(1 − σ∗c)1/2Mt

A0
2
]
, (9)

where “∞” denotes dominant quasi-2D turbulence and
“∗” denotes minority NI/slab turbulence, 〈z+2〉 denotes the
energy in forward propagating modes, 〈z−2〉 the energy in back-
ward propagating modes, and ED the residual energy. The
parameters L+ and L− are the correlation functions correspond-
ing to forward and backward propagating modes and can be
expressed by L± ≡ 〈z±2〉λ±, where λ± are the correlation lengths
of forward and backward propagating modes. The parameter α
is the von Kármán-Taylor constant, mp the proton mass, and ns

the solar wind proton density. The parameter σ∗c is the normal-
ized cross-helicity, Mt

A0 is the turbulent Mach number, and we
use Mt

A0 = 0.1. This heating term is discussed further below in
the context of the dissipation of residual energy. We encourage
readers to read Zank et al. (2017), where the detailed derivation
of the NI MHD turbulence transport model equations and their
definitions are presented.

We do not include the magnetic field in the above equations,
but the NI/slab turbulence transport model equations contain the
magnetic field in the form of the Alfvén velocity. The magnetic
field is assumed to be radial and given by,

B = B0

( r0

r

)2
r̂,

where B0 is the magnetic field at a reference point r0, and r̂ is a
unit vector and defines the direction of the magnetic field.

In the NI MHD phenomenology, the turbulence transport
equations can be expressed in terms of the majority quasi-2D tur-
bulence and a minority NI/slab turbulence component. Under the
assumption of spherical expansion, the 1D steady-state major-
ity quasi-2D turbulence transport model equations are given by
(Zank et al. 2017)

U
d〈z∞±2〉

dr
+

1
2

(
〈z∞±2〉 + E∞D

) (dU
dr

+
2U
r

)
= −2α

〈z∞±2〉2〈z∞∓2〉1/2
L±∞

;

(10)

U
dE∞D
dr

+
1
2

(E∞D + E∞T )
(

dU
dr

+
2U
r

)
= −αE∞D

 〈z∞+2〉1/2
λ−∞

+
〈z∞−2〉1/2

λ+∞

 + α

 〈z∞+2〉〈z∞−2〉1/2
λ+∞

+
〈z∞−2〉〈z∞+2〉1/2

λ−∞

 ; (11)

U
dL±∞
dr

+
1
2

(
L±∞ +

L∞D
2

) (
dU
dr

+
2U
r

)
= 0; (12)

U
dL∞D
dr

+
1
2

(
dU
dr

+
2U
2

) (
L∞D + L+

∞ + L−∞
)

= 0. (13)

Here E∞T = (〈z∞+2〉 + 〈z∞−2〉)/2 is the quasi-2D total turbulent
energy, L∞D is the correlation function of the quasi-2D residual
energy, and L∞D ≡ E∞Dλ

∞
D , where λ∞D is the correlation length

of the quasi-2D residual energy. The parameters L±∗ are the
correlation functions corresponding to forward and backward
propagating modes and L±∗ ≡ 〈z∗±2〉λ±∗ , where λ±∗ are the cor-
relation lengths of NI/slab forward and backward propagating
modes). We note that the quasi-2D turbulence couples with the
NI/slab turbulence through the second and third terms on the
right-hand sides of Eqs. (10) and (11), respectively. The dissi-
pation term for the residual energy in Eq. (11) is different from
that of Zank et al. (2017), because the turbulent dynamo effect
is included (Grappin et al. 1982, 1983; Zank et al. 2012). Here,
the first term on the right hand side (rhs) represents the non-
linear term derived from the Kolmogorov phenomenology (see,
Zank et al. 2017), and the second term on the rhs represents the
turbulent small-scale dynamo effect (Grappin et al. 1982, 1983;
Zank et al. 2012). The turbulent dynamo effect is included in the
residual energy because simulations (Grappin et al. 1982, 1983)
show that the dynamo effect is present in the MHD turbulence
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and controls the evolution of the residual energy. In Eq. (11),
the first term on the rhs reduces the residual energy, although
the second term on the rhs increases the residual energy. The
1D spherically symmetric transport equations for steady-state
NI/slab turbulence are given by (Zank et al. 2017)

(U ∓ VA)
d〈z∗±2〉

dr
+

1
2

dU
dr

(
〈z∗±2〉 − E∗D

)
− (2b − 1)

U
r
〈z∗±2〉

+ (6b − 1)
U
r

E∗D ± 4b
VA

r
E∗D ∓

1
2

VA

ρ

dρ
dr

(
〈z∗±2〉 − E∗D

)
= −2α

〈z∗±2〉〈z∞±2〉〈z∞∓2〉1/2
L±∞

− 2α
〈z∗±2〉2〈z∗∓2〉1/2

L±∗
; (14)

U
dE∗D
dr

+
1
2

dU
dr

(E∗D − E∗T ) − (2b − 1)
U
r

E∗D + (6b − 1)
U
r

E∗T

− 4b
VA

r
E∗C −

1
2

VA

ρ

dρ
dr

E∗C = −αE∗D

 〈z∞−2〉1/2
λ+∞

+
〈z∞+2〉1/2

λ−∞


+ α

 〈z∗+2〉〈z∞−2〉1/2
λ+∞

+
〈z∗−2〉〈z∞+2〉1/2

λ−∞

 − αE∗D
VA

λ+∗ + λ−∗

× (1 − σ∗c)1/2Mt
A0

2
+ α

 〈z∗+2〉〈z∗−2〉1/2
λ+∗

+
〈z∗−2〉〈z∗+2〉1/2

λ−∗

 ;

(15)

(U ∓ VA)
dL±∗
dr

+
1
2

(
L±∗ −

L∗D
2

)
dU
dr
− (2b − 1)

U
r

L±∗

+

(
3b − 1

2

)
U
r

L∗D ± 2b
VA

r
L∗D ∓

1
2

VA

ρ

dρ
dr

(
L±∗ −

L∗D
2

)
= 0; (16)

U
dL∗D
dr

+
1
2

(L∗D − L+
∗ − L−∗ )

dU
dr
− 2U

r

[(
b − 1

2

)
L∗D −

(
3b − 1

2

)
×(L−∗ + L+

∗ )
]
− 4b

VA

r
(L+
∗ − L−∗ ) − 1

2
VA

ρ

dρ
dr

(L+
∗ − L−∗ ) = 0,

(17)

where VA is the Alfvén velocity. The parameter b defines the
geometry of NI/slab turbulence. We use b = 0.33 (see Zank
et al. 2012, 2017, for further discussion). Similarly, we use a von
Kármán Taylor constant α = 0.008. There is no good physical
reason to choose these specific values for b and α, the former
of which is related to a closure assumption for off-diagonal 2-
point correlations, and the latter to the heating rate associated
with nonlinearity. However, we choose these values so that the
numerical solutions are close to the observed values. The terms
on the right hand sides of Eqs. (10), (11), (14), and (15) are
the nonlinear dissipation terms, which are responsible for the
decrease in turbulence energy. The nonlinear dissipation terms
for the transport equations of the energy in forward and back-
ward propagating modes are derived by assuming a Kolmogorov
phenomenology for a fully developed turbulence (see Zank et al.
2012, 2017, 2020). These nonlinear decay terms have been ver-
ified by Hossain et al. (1995) through numerical simulations.
However, because the residual energy is not a conserved MHD
quantity, the modeling of the nonlinear dissipation term for the
residual energy is not as obvious as those for the forward and
backward propagating modes or for the total turbulent energy.
The residual energy is usually negative in the inertial range, that
is, the fluctuating magnetic energy is greater than the fluctuating
kinetic energy. However, in some cases, the fluctuating kinetic
energy can sometimes be greater than the fluctuating magnetic

energy, that is, a positive residual energy. To derive the non-
linear term for the residual energy, Zank et al. (2017) followed
a Kolmogorov phenomenology (see also, Adhikari et al. 2015).
However, Zank et al. (2012) derived another form of the nonlin-
ear term by considering that the Alfvén effect and the turbulent
small-scale dynamo effect (Grappin et al. 1982, 1983) control the
evolution of the residual energy (see, Zank et al. 2012, for more
discussion). Here, we derive a nonlinear term for the residual
energy following Zank et al. (2012, 2017, 2020) (see appendix for
the derivation), where Zank et al. (2020) introduce the NI/slab
time-scale in the NI MHD phenomenology. In Eq. (15), the first
term on the rhs is a nonlinear dissipation term derived from a
Kolmogorov phenomenology (see, Zank et al. 2017). The sec-
ond and fourth terms represent the turbulent small-scale dynamo
effect in turbulence, which is derived following Zank et al.
(2012), that is, we extend dynamo effect to a NI MHD phe-
nomenology. The third term represents the Alfvén effect, which
is derived based on Zank et al. (2012), but is slightly modified
according to Zank et al. (2020), multiplying by (1 − σ∗c)1/2Mt

A0
2.

When σ∗c = ±1, the third term vanishes, which indicates that the
dissipation term related to the Alfvén effect vanishes for the uni-
directional Alfvén waves (see, Zank et al. 2020, for a detailed
discussion).

NI MHD theory can be used to study the evolution of the
variance of the density fluctuations in the solar wind (Zank et al.
2017, 2018a; Adhikari et al. 2017, 2020c). The 1D steady-state
transport equation of the density variance is given by (Zank et al.
2017; Adhikari et al. 2017)

U
d〈ρ∞2〉

dr
+ 2〈ρ∞2〉dU

dr
+ 4

U
r
〈ρ∞2〉 = −α 〈u

∞2〉1/2〈ρ∞2〉
l∞u

, (18)

where 〈u∞2〉 =
(〈z∞+2〉 + 〈z∞−2〉 + 2E∞D

)
/4 is the quasi-

2D fluctuating kinetic energy and l∞u =
[
(E∞T + E∞C )λ+

∞+
(E∞T − E∞C )λ−∞ + E∞Dλ

∞
D
]
/2(E∞T + E∞D ) is the correlation length of

the quasi-2D fluctuating kinetic energy. The parameter E∞C is the
quasi-2D cross-helicity. In the next section, we present numeri-
cal solutions of the solar wind plus NI MHD turbulence transport
equations and compare the theoretical results with the PSP and
Helios 2 measurements.

3. Results: numerical solutions and observed
results

This section presents a comparison between the theoretical
results and observations derived from PSP SWEAP (Kasper
et al. 2016) and FIELDs (Bale et al. 2016), and Helios 2
measurements. We solve the coupled solar wind and turbu-
lence transport model equations from 45.15 R� to 215 R�
using the boundary conditions shown in Table 1, and then
we compare the theoretical solutions with the observed
results. To compare the model results with PSP observations,
we select four intervals in 2018 with start time and end
time (DOY:HR:MN): (312:13:0.378–313:8:46.54), (318:1:56.62–
319:5:54.51), (319:21:25.64–321:7:59.89), and (323:7:7.16—
324.0.46:27.35), where the radial component of the solar wind
speed is approximately constant, that is, the plasma is unper-
turbed (Borovsky 2016). Note that the selected interval corre-
sponds to the fast solar wind flow with average speed of 514.38,
514.29, 559.13, and 464.89 kms−1, respectively, that the PSP
first encountered in the outbound direction. The boundary value
derived at 45.15 R� is far from the perihelion of the first orbit
of PSP (35.55 R�) because of the selection of the interval of
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Table 1. Boundary values for solar wind parameters and turbulence
quantities at 0.21 au (45.15 R�).

Parameters Values Parameters Values

〈z∞+2〉 35 008 k m2 s−2 〈z∗+2〉 17 019.3 km2 s−2

〈z∞−2〉 3179.6 km2 s−2 〈z∗−2〉 907.96 km2 s−2

E∞D −1134 km2 s−2 E∗D −51.3 km2 s−2

L+
∞ 1.1 ×1010 km3 s−2 L+

∗ 1.14 ×109 km3 s−2

L−∞ 1.46 ×109 km3 s−2 L−∗ 1.53 ×108 km3 s−2

L∞D −6.12 ×109 km3 s−2 L∗D −1.72 ×108 km3 s−2

U 530 km s−1 np 75.55 cm−3

Te 3 × 105 K Tp 5.15 × 105 K
〈ρ∞2〉 60 cm−6

Notes. We assume the electron density is approximately equal to the
proton density, ne ≈ np. The proton thermal pressure is determined by
Pp = npkBTp and the electron thermal pressure is determined by Pe =
nekBTe, where kB is Boltzmann’s constant.

unperturbed fast solar wind. The plasma data corresponds to the
moment data derived from PSP SWEAP measurements (Kasper
et al. 2016). For Helios 2, we select the data intervals at three
radial distances 0.29, 0.65, and 0.87 au in 1976, where Helios
2 sampled high-speed streams originating in the same source
region at the Sun (Bruno 1992). We derive the turbulent quan-
tities from the measurements of PSP and Helios 2 using a
procedure similar to that used in our series of papers (Zank et al.
1996; Adhikari et al. 2014, 2015, 2017; Shiota et al. 2017; Zhao
et al. 2018), therefore, we do not describe it here. In deriving
the observed values, we employ the criteria that (i) the angle
between the large-scale mean flow and the magnetic field should
be less than 20◦ (θUB < 20◦) and greater than 160◦ (θUB > 160◦),
and (ii) the mean square fluctuations of the velocity, magnetic
field, solar wind density, and solar wind temperature should be
lower than the square of their mean fields to avoid data associ-
ated with shocks and other embedded structures. Here, we use
the NI MHD turbulence transport model equations (Zank et al.
2017) to compare with highly aligned flows measured by PSP
and Helios 2 (Telloni et al. 2019; Zhao et al. 2020a). The NI
MHD turbulence transport model equations are developed based
on the NI MHD phenomenology (Zank & Matthaeus 1992, 1993;
Hunana & Zank 2010). In NI MHD theory, quasi-2D turbulence
is the dominant component and NI/slab turbulence is a minor-
ity component. Previous observations (Telloni et al. 2019; Zhao
et al. 2020a) and theory (Zank et al. 2020) have shown that unidi-
rectional Alfvén waves can exhibit a Kolmogorov-like power-law
k−5/3, where k is the wavenumber, because of the quasi-2D turbu-
lence. Because a spacecraft (PSP) can measure only the NI/slab
component in highly aligned flows (Adhikari et al. 2020c), the
perpendicular component is essentially invisible.

The dissipation of turbulence heats the solar wind protons
and electrons at different rates (Cranmer et al. 2009; Breech et al.
2009; Engelbrecht & Strauss 2018; Chhiber et al. 2019). Sim-
ilarly, Coulomb collisions between the electrons and protons,
and the electron heat flux may influence the solar wind proton
temperature and the solar wind electron temperature (Cranmer
et al. 2009; Breech et al. 2009; Engelbrecht & Strauss 2018). In
this work, we distribute turbulent energy to proton and electron
heating in the ratio of 60:40 (Breech et al. 2009), leading to a
greater solar wind proton temperature than solar wind electron
temperature (see top left panel of Fig. 1). Figure 1 (top left) com-
pares the theoretical and observed solar wind proton and electron
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Fig. 1. Comparison between the theoretical (solid and dashed curves)
and observed solar wind plasma parameters as a function of heliocentric
distance. The red and blue squares are the observed results with error
bars. Top left: solar wind electron and proton temperature. Top right:
solar wind proton and electron entropy. Bottom left: solar wind speed.
Bottom right: solar wind density.

temperatures as a function of heliocentric distance. The theo-
retical solar wind proton temperature (solid curve) decreases as
r−0.66 with increasing heliocentric distance, which is slower than
adiabatic cooling. Similarly, the theoretical solar wind electron
temperature (dashed curve) decreases as r−0.54 until ∼150 R�,
and then decreases as r−0.24 until 215 R�. The flattening of the
electron temperature between ∼150 R� and 215 R� is because
of the electron heat flux. Breech et al. (2009) found a shelf-like
region in the electron temperature between 1 and 10 au. The red
and blue squares denote the solar wind proton temperature mea-
sured by PSP and Helios 2, respectively, with error bars, where
the error bars denote the interquartile range. Similarly, the green
and magenta triangles denote the electron temperature measured
by PSP (Moncuquet et al. 2020) and Helios 2 (Cranmer et al.
2009). In PSP measurements, there is no significant difference
between the electron and proton temperatures, whereas Helios
2 measurements show a difference of a factor of ∼2−6 between
them. The results show that the theoretical proton temperature
is basically consistent with the observed solar wind proton tem-
perature between 0.2 and 1 au. Similarly, the theoretical solar
wind electron temperature is in reasonable agreement with the
electron temperature measured by PSP and Helios 2.

The top right plot of Fig. 1 shows the solar wind proton
and electron entropy as a function of heliocentric distance. The
theoretical and observed solar wind entropy is determined by
S a ∼ log(Pa/ρ

γ
a) (a ≡ (p, e), where p denotes a proton and e an

electron), where γ = 5/3 is a polytropic index. The solid curve
denotes the solar wind proton entropy and the dashed curve the
solar wind electron entropy. The red and blue squares describe
the observed proton entropy, and the green and magenta trian-
gles the observed electron entropy. The theoretical and observed
solar wind proton and electron entropy show that the entropy
increases as r0.02 with increasing heliocentric distance. Adhikari
et al. (2020b) showed that the increase in the solar wind proton
entropy is because of the dissipation of turbulence. In addition,
Coulomb collisions between electrons and protons, and the heat
flux affect entropy. The Coulomb collision term is as a result
of the unequal electron and proton temperature (Te , Tp) (see
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the first term on the right-hand side of Eqs. (3) and (4)), which
vanishes when Te = Tp. Because the Coulomb collision term
becomes negative in Eq. (3) and positive in Eq. (4) because
Tp > Te (see top left panel of Fig. 1), it acts as a source for
the electron temperature/pressure/entropy, although it also acts
as a sink for the proton temperature/pressure/entropy. Similarly,
the electron heat flux term also acts as a source for the electron
temperature/pressure/entropy. Therefore, the increase in proton
entropy is determined by the dissipation of turbulence, whereas
the increase in electron entropy is because of the dissipation of
turbulence and the electron heat flux. The effect of Coulomb col-
lisions is negligible compared to the turbulent heating term. If
the turbulent heating term is neglected in Eqs. (3) and (4), the
proton entropy and electron entropy remain almost constant, the
proton temperatures decreases adiabatically, and the solar wind
speed decreases very slightly (not shown in this manuscript).
However, when the heating term is included, the proton entropy
and electron entropy increase modestly by about 2.96 and 2.55%
at 1 au from 0.2 au. Figure 1 (top right) shows that the radial
profiles of the theoretical proton entropy and electron entropy
are consistent with the corresponding observed entropy with
increasing heliocentric distance.

In Eqs. (3) and (4), the first term on the left-hand side is the
advection term. The second and third terms (a divergence term
in a spherical coordinate system r) describe the expansion of the
solar wind flow. The right hand side includes turbulent heating,
electron heat flux and Coulomb collisions between protons and
electrons. For an exclusively adiabatically expanding solar wind,
the radial profile of the solar wind proton temperature is r−1.33.
With the inclusion of the turbulent heating terms, the radial pro-
file of the proton temperature is r−0.65, and that of the electron
temperature is r−0.54 from 45.15 R� to 215 R�. However, the
electron heat flux also influences the electron temperature.

Figure 1 (bottom left) compares the theoretical and observed
solar wind speed as a function of heliocentric distance. As a
result of the force generated by the solar wind proton and elec-
tron thermal pressure gradients, the theoretical solar wind speed
(solid curve) increases slightly with distance. The theoretical
solar wind speed is reasonably consistent with the observed solar
wind speed (red and blue squares). However, compared with the
high-speed flow measured by PSP, Helios 2 measures high speed
flow (>700 km s−1) at its perihelion. Similarly, Fig. 1 (bottom
right) shows that the theoretical (solid curve) and observed (red
and blue squares) solar wind proton density are consistent. The
theoretical solar wind density decreases as r−2.03.

Figure 2 (top left) compares the theoretical and observed
energy in forward propagating modes as a function of heliocen-
tric distance. Here, the solid curve is the theoretical quasi-2D
energy in forward propagating modes, which is greater than
the observed energy in forward propagating modes. The dashed
curve is the minority NI/slab energy in forward propagating
modes and its radial profile is similar to that of the observed
energy in forward propagating modes. This result is consistent
with the results of Adhikari et al. (2020c), in that the theo-
retical NI/slab turbulent quantities are close to the observed
results for fast solar wind during which the velocity and mag-
netic field are highly aligned or anti-aligned. When modeling
the NI MHD turbulence-driven solar wind model for fast solar
wind, Adhikari et al. (2020c) explicitly assume that the NI/slab
normalized cross-helicity σ∗c = 1 and the NI/slab normalized
residual energy σ∗D = 0, that is, only unidirectional Alfvén waves
are present in highly aligned flows, which is consistent with the
results of Telloni et al. (2019); Zhao et al. (2020a), and Zank
et al. (2020). Telloni et al. (2019) and Zhao et al. (2020a) using
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Fig. 2. Comparison between the theoretical and observed turbulent
quantities as a function of heliocentric distance. Top left and right pan-
els: energy in forward and backward propagating modes. Bottom left and
right: normalized residual energy and the normalized cross-helicity. The
solid curve denotes the quasi-2D component, and the dashed curve rep-
resents the slab component. The red and blue squares are the observed
quantities measured by PSP and Helios 2 with error bars, respectively.

WIND and PSP measurements of highly aligned flows found
that the unidirectional Alfvén waves exhibit a Kolmogorov-like
power law spectrum k−5/3, where k is the wavenumber. Zank
et al. (2020) proposed a detailed NI MHD theory to explain the
Kolmogorov power-law spectrum displayed by the unidirectional
Alfvén waves. Here, we do not explicitly assume that σ∗c = 1 or
σ∗D = 0, but the observed results are calculated by specifying
θUB < 20◦ or θUB > 160◦, where θUB is the angle between the
large-scale solar wind flow and the magnetic field. In this case,
PSP and Helios 2 can measure only the minority NI/slab com-
ponent because quasi-2D fluctuations are effectively invisible to
the spacecraft (Telloni et al. 2019; Zhao et al. 2020a; Zank et al.
2020; Adhikari et al. 2020c). The result shows that theoretically
and observationally, the energy in forward propagating modes
is large near the Sun and decreases with increasing heliocentric
distance.

In the top right panel of Fig. 2, there is also reasonable agree-
ment between the observed energy in backward propagating
modes and the theoretical NI/slab energy in backward propa-
gating modes, which is again consistent with PSP and Helios
2 being able to measure only the NI/slab NI/slab component in
field aligned flows. The energy in backward propagating modes
first decreases and then increases slightly with increasing helio-
centric distance. Similar to the energy in forward propagating
modes, the quasi-2D energy in backward propagating modes
is also greater than the observed and NI/slab energy in back-
ward propagating modes. Coleman (1968) suggested that the
difference in flow speeds between the fast and slow solar wind
produces a turbulent shear source in the inner heliosphere and
this turbulent shear source generates the backward propagat-
ing modes (Adhikari et al. 2015). However, this turbulent shear
source is not included here. In this model, the reflection of for-
ward propagating modes by the solar wind speed, the solar wind
density, and the magnetic field gradients produces backward
propagating modes.

The normalized residual energy is plotted as a function
of heliocentric distance in Fig. 2 (bottom left). The observed
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Fig. 3. Comparison between theoretical and observed turbulent quan-
tities as a function of heliocentric distance. Top left and right panels:
fluctuating magnetic and kinetic energy. Bottom left and right panels:
variance of the density fluctuations and the Alfvén ratio, respectively.
The convention for the curves is the same as used in Fig. 2.

normalized residual energy (red and blue squares) shows that
σD is close to zero within 100 R�, which indicates that the fluc-
tuating kinetic and magnetic energy are approximately equal,
that is, Alfvénic, and then decreases with increasing heliocen-
tric distance. This is consistent with the results of Roberts et al.
(1987a,b), who found that the Alfvénicity decreases as a func-
tion of heliocentric distance. However, this analysis is different
from Roberts et al. (1987a,b) because we consider only field
aligned flows here. The theoretical NI/slab normalized resid-
ual energy (dashed curve) is in reasonable agreement with the
observed normalized residual energy, which again indicates that
the spacecraft measures a minority NI/slab component when
the solar wind flow is aligned or antialigned with the mag-
netic field (Telloni et al. 2019; Zhao et al. 2020a; Zank et al.
2020; Adhikari et al. 2020c). However, the quasi-2D normal-
ized residual energy (solid curve) decreases more rapidly than
the NI/slab normalized residual energy, implying that the quasi-
2D turbulence is more magnetically dominated than the NI/slab
turbulence. Figure 3 (bottom right) displays the Alfvén ratio
rA = 〈u2〉/(〈B2〉/µ0ρ), that is, the ratio between the fluctuating
kinetic and magnetic energy density, as a function of heliocen-
tric distance. The results of the Alfvén ratio and the normalized
residual energy are consistent.

The normalized cross-helicity σc is a measure of the
Alfvénicity of solar wind fluctuations (see, Telloni et al. 2019;
Zhao et al. 2020b; Parashar et al. 2020). Figure 2 (bottom
right) compares the theoretical and observed normalized cross-
helicity as a function of heliocentric distance. In the figure, the
observed σc (red and blue squares) satisfies σc > 0.7, indicat-
ing that the observed solar wind fluctuations are Alfvénic. The
observed solar wind fluctuations are more Alfvénic closer to
the Sun, where σc ∼ 0.9 at heliocentric distance ∼45.15 R�
in the field aligned flows measured by PSP. The NI/slab nor-
malized cross-helicity (dashed curve) is consistent with the
observed σc measured by PSP and Helios 2. The quasi-2D nor-
malized cross-helicity near perihelion is assumed to be about
0.83, which decreases rapidly with increasing heliocentric dis-
tance. Similar to Fig. 2, this result also clearly shows that the PSP
measures minority NI/slab turbulence in the fast wind during
which the velocity and magnetic field are closely aligned or

anti-aligned. The theoretical and observed normalized cross-
helicity decreases with increasing distance, consistent with the
results of Roberts et al. (1987a,b). The decrease in the normal-
ized cross-helicity corresponds to the generation of backward
modes caused by the reflection of forward propagating modes.

PSP and Helios 2 directly measure the magnetic field. The
variance of the magnetic field fluctuations is plotted in Fig. 3 (top
left) showing that the theoretical NI/slab fluctuating magnetic
energy (dashed curve) is in good agreement with the observed
fluctuating magnetic energy (red and blue squares), where the
dashed curve decreases as r−2.54. The quasi-2D fluctuating mag-
netic energy (solid curve) is greater than the observed and
theoretical NI/slab fluctuating magnetic energy and decreases as
r−2.48 with increasing heliocentric distance. It is worth noting
that the observed fluctuating magnetic variance does not decay
as predicted by WKB theory despite the high cross-helicity. The
theoretical results of the fluctuating magnetic energy and the
energy in forward and backward propagating modes also show
that the quasi-2D energy is greater than the NI/slab energy. Only
NI/slab components are measured by spacecraft in the highly
aligned flows and the theoretical results of the NI/slab compo-
nents are found to be similar to the observed results. However,
in the case of fluctuating kinetic energy, the NI/slab fluctuating
kinetic energy may also be greater than the quasi-2D fluctuating
kinetic energy (top right panel of Fig. 3) (see also, Zank et al.
2018b). Here, the NI/slab fluctuating kinetic energy is greater
than the quasi-2D fluctuating kinetic energy beyond ∼66 R�. The
theoretical quasi-2D fluctuating kinetic energy (solid curve) is in
good agreement with the observed fluctuating kinetic energy.

Understanding the variance of the density fluctuations is
important for estimating the angular broadening of radio sources
in the inner and outer heliosphere, and very local interstellar
medium (VLISM) (Bastian 1994; Tasnim et al. 2020). Adhikari
et al. (2020c) found that the variance of the density fluctuations
in the fast solar wind in the open field region decays as r−6.1,
and that in the slow solar wind in the outer heliosphere decays as
r−2.98 (Adhikari et al. 2020a). The variance of the density fluctu-
ations measured by PSP and Helios 2 (red and blue squares) and
the theoretical variance of the density fluctuations (solid curve)
are plotted in Fig. 3 (bottom left). Both observations and theory
are in good agreement, and decrease as r−4.53. Although Adhikari
et al. (2020c) and this paper study the variance of density fluc-
tuations in the fast solar wind, Adhikari et al. (2020c) study the
variance of density fluctuations from the base of the solar corona
to 100 R�, finding that the variance of density fluctuations drops
very rapidly near the base of the solar corona.

The correlation length is important for the evolution of tur-
bulence because it controls the decay rate of turbulence, and
thus determines the heating rate. Because the heating rate is
inversely proportional to the correlation length, the heating rate
is strong when the correlation length is small and weak when
the correlation length is large (Verdini et al. 2010; Zank et al.
2012). In Fig. 4, we compare the theoretical and observed cor-
relation length/correlation function with increasing heliocentric
distance. The top left and right panels of Fig. 4 are the correlation
lengths corresponding to the forward and backward propagating
modes. The NI/slab correlation length for forward propagating
modes (dashed curve) is consistent with the observed correla-
tion length (red and blue squares). The NI/slab correlation length
of backward propagating modes (dashed curve) is in reason-
able agreement with the observed correlation length of backward
propagating modes. The correlation length of the quasi-2D for-
ward and backward propagating modes (solid curve) increases
more gradually as a function of heliocentric distance.
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Fig. 4. Correlation length and the correlation function as a function
of heliocentric distance. Top left: correlation length corresponding to
forward propagating modes. Top right: correlation length correspond-
ing to backward propagating modes. Middle left: correlation length of
magnetic field fluctuations. Middle right: correlation length of velocity
fluctuations. Bottom left: correlation length of residual energy. Bottom
right: correlation functions. The convention for the curve is the same as
used in Fig. 2.

The correlation length for the magnetic field fluctuations also
increases as distance increases (middle left panel of Fig. 4). The
correlation length of the NI/slab fluctuating magnetic energy is
in reasonable agreement with the corresponding observed corre-
lation length. However, the correlation length of the quasi-2D
fluctuating magnetic energy is greater than the NI/slab cor-
relation length. The observed correlation length for velocity
fluctuations also increases with heliocentric distance. However,
the quasi-2D fluctuating velocity correlation length decreases
with distance, and the correlation length of NI/slab fluctuating
kinetic energy is approximately constant (middle left panel of
Fig. 4). The results show that the theoretical correlation length
for velocity fluctuations is inconsistent with the observed cor-
relation length of velocity fluctuations. This may be as a result
of the inclusion of the turbulent dynamo effect. However, with
this effect, the theoretical normalized residual energy does not
decrease very rapidly. The bottom left panel of Fig. 4 plots
the correlation length of the residual energy as a function of
heliocentric distance. The theoretical NI/slab and quasi-2D cor-
relation length of residual energy is lower than the observed
correlation length, which first decreases and then increases with
increasing heliocentric distance. The bottom right panel of Fig. 4
shows the correlation functions corresponding to forward and
backward propagating modes, and the residual energy with
increasing heliocentric distance. The quasi-2D correlation func-
tion corresponding to forward and backward propagating modes
(solid red and blue curves) decrease and increase gradually

with distance. The quasi-2D correlation function of the resid-
ual energy (solid green curve) decreases with distance. Similarly,
the NI/slab correlation function corresponding to forward propa-
gating modes (dashed red curve) is approximately constant. The
NI/slab correlation function for backward propagating modes
(dashed blue curve) increases with distance slightly. Finally, the
NI/slab correlation function of the residual energy (dashed green
curve) decreases as a function of heliocentric distance.

4. Discussion and conclusions

We developed a very general theoretical model of a nearly
incompressible magnetohydrodynamic (NI MHD) turbulence
plus solar wind model, including electron pressure and heat flux.
In incorporating electrons, we include the splitting of turbu-
lent heating between protons and electrons, Coulomb collisions
between protons and electrons, and heat conduction of electrons.
The mass density and momentum flux of the solar wind are
controlled mainly by solar wind protons, whereas, the thermal
energy carried by electrons accounts about similar to that of the
protons. Solar wind electrons should not therefore be excluded
in a complete treatment of the solar wind. We used a new form
of nonlinear dissipation term for the residual energy, different
from that of Zank et al. (2017). Zank et al. (2017) derived the
nonlinear term for the residual energy following a Kolmogorov
phenomenology. However, because the residual energy is not a
conserved MHD invariant, modeling of the nonlinear dissipation
term for the residual energy is not as obvious as that of the total
turbulent energy. Zank et al. (2012) derived the nonlinear dissi-
pation term for the residual energy by following ideas introduced
by Grappin et al. (1982, 1983), which includes the Alfvén effect
and the turbulent small-scale dynamo effect. We included these
effects in the derivation of the nonlinear term for the residual
energy, that is, we extended this description to NI MHD phe-
nomenology. In deriving the nonlinear dissipation term for the
residual energy related to Alfvén effect, we used the NI/slab
time-scale introduced by Zank et al. (2020), which ensures that
the nonlinear term vanishes for the unidirectional Alfvén waves,
that is, σ∗c = ±1 (Adhikari et al. 2019).

We compared the theoretical solutions with the fast solar
wind measured by PSP and Helios 2. We calculated the observed
results by following two criteria: (i) the angle between the large-
scale mean flow and the magnetic field should be less than 20◦
(θUB < 20◦) or greater than 160◦ (θUB > 160◦), and (ii) the mean
square fluctuations of the velocity, magnetic field, solar wind
density, and solar wind temperature should be lower than the
square their mean fields to avoid data associated with shocks
and other embedded structures. Criteria (i) results in PSP and
Helios 2 measuring only the NI/slab component, and not quasi-
2D component (Telloni et al. 2019; Zhao et al. 2020a). We found
good agreement between the theoretical NI/slab results and the
observed results. We summarize our main findings as follows.

– The theoretical solar wind proton temperature decreases
as r−0.65 with increasing distance r and shows reasonable
agreement with the observed solar wind proton temperature.
The theoretical solar wind electron temperature decreases as
r−0.54 (where r is heliocentric distance) from 45.15 R� to
∼150 R� and then more slowly as r−0.24 between ∼150 R�
and 215 R�. The slow decrease in the electron temperature
is because of the electron heat flux. The theoretical electron
temperature is in reasonable agreement with the observed
electron temperature measured by PSP and Helios 2.

– The theoretical and observed solar wind proton entropy
and electron entropy are consistent, and increase as r0.02
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with increasing heliocentric distance. The increase in proton
entropy is because of the dissipation of turbulence (Adhikari
et al. 2020b), whereas the electron entropy increases as a
result of the dissipation of turbulence and the electron heat
flux.

– The theoretical NI/slab energy in forward and backward
propagating modes, normalized residual energy, normalized
cross-helicity, fluctuating magnetic energy, and Alfvén ratio
are consistent with the observed values, which indicates that
PSP and Helios 2 measure the NI/slab component in the fast
solar wind when the large-scale mean flow and the magnetic
field are aligned or anti-aligned.

– The observed values of normalized cross-helicity, normal-
ized residual energy, and Alfvén ratio indicate that the fast
solar wind is Alfvénic. The Alfvénicity decreases with dis-
tance, consistent with observations reported by Roberts et al.
(1987a,b). The theoretical NI/slab results are close to the
observed values, indicating that the NI/slab turbulence is
Alfvénic as well.

– The theoretical and observed variances of the density fluctu-
ations are consistent, and decrease gradually as r−4.53.

We used recently developed NI MHD turbulence transport model
equations (Zank et al. 2017) to study the evolution of turbulence
in the fast solar wind when electron effects are included. It is
found that the NI/slab results are close to those observed in the
fast solar wind when the flow and the magnetic field are aligned
or anti-aligned (see also, Telloni et al. 2019; Zhao et al. 2020a for
related observations, and Zank et al. 2020; Adhikari et al. 2020c
for related theory). When investigating turbulence evolution in
slow solar wind as measured by PSP (Adhikari et al. 2020a), we
found that the observed results are close to the quasi-2D com-
ponent predictions. This in part reflects that the solar wind flow
and magnetic field are not necessarily well (anti) aligned in the
slow flow. It also likely reflects basic differences in origin of the
fast and slow solar wind (e.g., Matthaeus et al. 1990; Bruno &
Carbone 2013; Dasso et al. 2005; Wang et al. 2019).
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Appendix A: Nonlinear term for the residual
energy

The modeling of the nonlinear dissipation term for the residual
energy is not as obvious as that for the total turbulent energy
because the residual energy is not a conserved MHD invari-
ant. Zank et al. (2017) derived a nonlinear term for the residual
energy by assuming a Kolmogorov phenomenology. We used a
similar form of the nonlinear term in our series of papers (Zank
et al. 2017, 2018b,a; Adhikari et al. 2017, 2020c,a). Here, we
derive a nonlinear term for the residual energy that includes the
Alfvén effect and turbulent small-scale dynamo effect. For this,
we start with Eq. (22) of Zank et al. (2012),

ED dissipation term = −ED

τD
A

+ 〈z+ · NL+〉 + 〈z− · NL−〉;

= −ED

τD
A

+
〈z+2〉〈z−2〉1/2

λ+

+
〈z−2〉〈z+2〉1/2

λ−
,

(A.1)

where the first term on the rhs defines the Alfvén effect, and the
remaining terms define the effect of a turbulent dynamo. The
parameter τD

A ∼ λD/VA is the relaxation time-scale. We assume
λD ∼ λ+ + λ− to avoid a singularity that arises in λD ≡ LD/ED
when ED = 0. Equation (A.1) can be written in the form,

ED dissipation term ≡−ED
VA

λ+ + λ−
+
〈z+2〉〈z−2〉1/2

λ+

+
〈z−2〉〈z+2〉1/2

λ−
.

(A.2)

We derive a nonlinear dissipation term for the residual energy
associated with the higher order NI/slab turbulence. We first
define the relaxation time for the NI/slab turbulence as

τD
∗ ≡

λ+
∗ + λ−∗
VA

(1 − σ∗c)−1/2Mt
A0
−2
, (A.3)

where, following Zank et al. (2020), we introduce the (1 −
σ∗c)−1/2Mt

A0
−2 term, where Mt

A0 is the turbulent Mach number,

and σ∗c is the normalized cross-helicity. When σ∗c = ±1,τD
∗ is

very large, which indicates that there is no energy transfer in the
inertial range for unidirectional Alfvén waves (Adhikari et al.
2019). The nonlinear term for the NI/slab residual energy is then
given by,

E∗D dissipation term = − E∗D

 〈z∞+2〉
λ−∞

+
〈z∞−2〉
λ+∞


+
〈z∗+2〉〈z∞−2〉1/2

λ+∞
+
〈z∗−2〉〈z∞+2〉1/2

λ−∞

− E∗D
VA

λ+∗ + λ−∗
(1 − σ∗c)1/2Mt

A0
2

+
〈z∗+2〉〈z∗−2〉1/2

λ+∗
+
〈z∗−2〉〈z∗+2〉1/2

λ−∗
.

(A.4)

In Eq. (A.4), the first term is similar to that of Zank et al. (2017),
which is derived following a Kolmogorov phenomenology. The
fourth term defines the Alfvén effect, which is responsible for
the decrease in the residual energy, and is zero for unidirec-
tional Alfvén waves. The remaining terms define the turbulence
dynamo effect (Grappin et al. 1982, 1983; Zank et al. 2012),
which leads to the growth of the residual energy (second, third,
fifth and sixth term).

The dissipation term for the quasi-2D residual energy can be
written in the form,

E∞D dissipation term =−E∞D

 〈z∞+2〉
λ−∞

+
〈z∞−2〉
λ+∞


+
〈z∞+2〉〈z∞−2〉1/2

λ+∞
+
〈z∞−2〉〈z∞+2〉1/2

λ−∞
,

(A.5)

where the first term is similar to that of Zank et al. (2017), and
the second and third terms represent the turbulent dynamo effect
(Grappin et al. 1982, 1983; Zank et al. 2012), which leads to an
increase in residual energy.
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