
PEREGRiNN: Penalized-Relaxation
Greedy Neural Network Verifier

Haitham Khedr(B), James Ferlez, and Yasser Shoukry

University of California, Irvine, USA
{hkhedr,jferlez,yshoukry}@uci.edu

Abstract. Neural Networks (NNs) have increasingly apparent safety
implications commensurate with their proliferation in real-world appli-
cations: both unanticipated as well as adversarial misclassifications can
result in fatal outcomes. As a consequence, techniques of formal verifi-
cation have been recognized as crucial to the design and deployment of
safe NNs. In this paper, we introduce a new approach to formally verify
the most commonly considered safety specifications for ReLU NNs – i.e.
polytopic specifications on the input and output of the network. Like
some other approaches, ours uses a relaxed convex program to mitigate
the combinatorial complexity of the problem. However, unique in our
approach is the way we use a convex solver not only as a linear feasibil-
ity checker, but also as a means of penalizing the amount of relaxation
allowed in solutions. In particular, we encode each ReLU by means of the
usual linear constraints, and combine this with a convex objective func-
tion that penalizes the discrepancy between the output of each neuron
and its relaxation. This convex function is further structured to force the
largest relaxations to appear closest to the input layer; this provides the
further benefit that the most “problematic” neurons are conditioned as
early as possible, when conditioning layer by layer. This paradigm can
be leveraged to create a verification algorithm that is not only faster in
general than competing approaches, but is also able to verify consider-
ably more safety properties; we evaluated PEREGRiNN on a standard
MNIST robustness verification suite to substantiate these claims.

Keywords: Machine learning/AI · Decision procedures and solvers

1 Introduction

Neural Networks have become an increasingly central component of modern
machine learning systems, including those that are used in safety-critical cyber-
physical systems such as autonomous vehicles. The rate of this adoption has
exceeded the ability to reliably verify the safe and correct functioning of these
components, especially when they are integrated with other components such as

This work was sponsored by the NSF awards #CNS-2002405 and #CNS-2013824.

c© The Author(s) 2021
A. Silva and K. R. M. Leino (Eds.) CAV 2021, LNCS 12759, pp. 287–300, 2021.
https://doi.org/10.1007/978-3-030-81685-8_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81685-8_13&domain=pdf
https://doi.org/10.1007/978-3-030-81685-8_13

288 H. Khedr et al.

controllers. Thus, there is an increasing need to verify that NNs reliably produce
safe outputs, especially subject to malicious adversarial inputs [16,20,27,28].

In this paper, we propose PEREGRiNN, an algorithm for efficiently and for-
mally verifying the input/output behavior of ReLU NNs. In this context, PERE-
GRiNN falls into the broad category of sound and complete search and optimiza-
tion NN verifiers [22]. The search aspect of PEREGRiNN involves iterating over
different combinations of neuron activation patterns to verify that each is compat-
ible with the specified safety constraints (on the input and output of the network).
Like other algorithms in this category, PEREGRiNN combines this search with
optimization techniques to make inferences about the feasibility of full-network
activation patterns on the basis of activation patterns of only a subset of neurons.
The optimization in question reformulates the original NN feasibility problem into
a relaxed convex feasibility problem to allow sound inferences: i.e. if the convex
relaxation is infeasible, then the original NN problem may soundly be concluded
to be infeasible. In this relaxed feasibility problem, the output of each individual
neuron is assigned a relaxation variable that is decoupled from the actual output of
that neuron. PEREGRiNNalso uses a type of reachability analysis (symbolic inter-
val analysis) both to enhance the optimization-based inference described above
and as a source of additional sound inference itself. For this reason, PEREGRiNN’s
search procedure searches neurons in a layer-by-layer fashion, preferring to fix the
phases of neurons closest to the input layer first.

In contrast to other search and optimization algorithms, however, PERE-
GRiNN augments each convex feasibility querywith a (convex) penalty function in
order to obtain better guidance on which activation patterns to search next. In par-
ticular, we note that the amount of relaxation needed on a neuron can be regarded
as a quasi-measure of how close the convex solver came to operating the associated
neuron in a valid regime – i.e. at a valid evaluation of that neuron on a particu-
lar input. In this sense, the amount of relaxation in aggregate can be regarded as
a quasi-measure of how close the solver came to finding a valid evaluation of the
network as a whole. Inversely, the largest distance between a relaxation variable
and its neuron’s closest ReLU constraint intuitively corresponds in some sense to
how “problematic” that neuron is with regard to obtaining such a valid evaluation.
These distances we refer to as the “slacks” for each neuron. Thus, PEREGRiNN
may be regarded as greedily minimizing a slack-based penalty.

Finally, we evaluated the performance of PEREGRiNN by using it to verify
the adversarial robustness of networks trained on the MNIST [21] dataset. Our
experiments show that PEREGRiNN is on average 1.27× faster than Neurify [31],
1.24× faster than Venus [6], 1.15× faster than nnenum [4], and 1.65× faster than
Marabou [19]. It also proves 27%, 19%, 10%, and 51% more properties than the
other solvers, respectively. PEREGRiNN’s unique convex penalty augmentations
are also considered in ablation experiments to validate their benefits.

Related Work. Since PEREGRiNN is a sound and complete verification algo-
rithm, we restrict our comparison to other sound and complete algorithms.
NN verifiers can be grouped into roughly three categories: (i) SMT-based
methods, which encode the problem into a Satisfiability Modulo Theory prob-
lem [11,18,19]; (ii) MILP-based solvers, which directly encode the verification

PEREGRiNN: Penalized-Relaxation Greedy Neural Network Verifier 289

Sampling

Inference

Inference Component

Symbolic Interval

Inference

Convex Program

Inference

Search Component

Backtrack &

Condition New

Feasible?

Infeasible?

Activations
unexplored?

All activations
explored?

Neurons un-
conditioned?

All neurons
conditioned?

SAFE

UN-SAFEUN-SAFE
Counterexample

Neuron

Recondition
Infeasible?

Else

Found?

Else

Fig. 1. Block diagram of the PEREGRiNN algorithm

problem as a Mixed Integer Linear Program [3,5–8,14,23,29]; (iii) Reachability
based methods, which perform layer-by-layer reachability analysis to compute
the reachable set [4,13,15,17,30,32,34,35]; and (iv) convex relaxations meth-
ods [10,31,33]. In general, (i), (ii) and (iii) suffer from poor scalability. On the
other hand, convex relaxation methods depend heavily on pruning the search
space of indeterminate neuron activations; thus, they generally depend on obtain-
ing good approximate bounds for each of the neurons in order to reduce the
search space (the exact bounds are computationally intensive to compute [9]).
These methods are most similar to PEREGRiNN: for example, [7,25,32] recur-
sively refine the problem using input splitting, and [31] does so via neuron split-
ting. Other search and optimization methods include: Planet [11], which com-
bines a relaxed convex optimization problem with a SAT solver to search over
neurons’ phases; and Marabou [19], which uses a modified simplex algorithm.

2 Problem Formulation

In this paper, we will consider Rectified Linear Unit (ReLU) NNs. An n-layer
ReLU network, is a composition of n ReLU layer functions: i.e. NN = fn ◦
fn−1 ◦ · · · ◦ f1 where the ith ReLU layer function is defined as fi : y ∈ Rki−1 $→
max{Wiy + bi, 0} ∈ Rki . We refer to f1 as the input layer. Finally, to refer to
individual neurons, we use the notation (z)j to indicate the jth element of z.

Verification Problem. Let NN be an n-layer NN as defined above. Further-
more, let Py0 ⊂ Rk0 be a convex polytope in the input space of NN , and
let Pyn ⊂ Rkn be a convex polytope in the output space of NN . Finally, let
h! : Rk0 ×Rkn → R, ! = 1, . . . ,m be convex functions defining joint input/output
constraints on NN . Then the verification problem is to decide whether

{
x ∈ Rk0

∣∣∣ x ∈ Py0 ∧ NN (x) ∈ Pyn ∧
(m

∧
!=1

h!(x,NN (x)) ≤ 0
)}

= ∅. (1)

3 PEREGRiNN Overview

The general structure of PEREGRiNN is depicted in Fig. 1. Like other search
and optimization based NN verifiers it has two main components: a search com-
ponent and an inference component, and PEREGRiNN iterates back and forth

290 H. Khedr et al.

between these these two components until termination. In particular, the search
and inference components interact in the following way. The search component
successively iterates over all possible on/off activations for each neuron; this is
done by fixing these activations one neuron at a time, starting from the input
layer and working towards the output layer. The process of fixing a neuron’s acti-
vation is referred to as conditioning its phase: each neuron can be in either its
active phase (operating linearly) or inactive phase (outputting zero). Thus, the
search component provides the inference component a subset of neurons, each of
which has been conditioned; the inference component then attempts to soundly
reason about whether the remaining, unconditioned neurons can be operated in
such a way as to violate the safety constraint. If the inference component soundly
concludes safety for all possible activations of the remaining unconditioned neu-
rons, then the search component backtracks, oppositely reconditioning one of
the neurons that was already conditioned. Otherwise, if a sound safe conclusion
is not made, then the search component uses information from the inference
component to decide on a new neuron to condition, and the process repeats.
The algorithm terminates if either a counterexample to safety is found, or else
all possible neuron activations are considered without finding such a counterex-
ample.

The convex program inference block is at the heart of the inference compo-
nent and PEREGRiNN itself. In this block, PEREGRiNN, like other search and
optimization solvers, uses a relaxed linear feasibility program where the output
of each individual neuron is assigned a relaxation variable that is decoupled from
the actual output of that neuron. In the notation of Sect. 2, such a linear feasi-
bility program can be written as follows, where the vector variables yi, i *= 0 are
the relaxation variables.

yi ≥ 0, yi ≥ Wiyi−1 + bi ∀i = 1, . . . , n
y0 ∈ Py0 , yn ∈ P c

yn
,

m
∧

!=1
h!(y0, yn) ≤ 0

(2)

Importantly, if (2) is infeasible, then the original NN problem in (1) may
be soundly concluded to be infeasible as well – and hence, safe. However, as
described above, the primary function of the convex feasibility program is to
use a set of conditioned neurons supplied by the search component in order to
soundly reason about the remaining neurons. To do this, the conditioned neurons
supplied by the search component are incorporated into the feasibility program
(2) as equality constraints in the following way:

Neuron (yi)j ON: (yi)j = (Wiyi−1 + bi)j ∧ (yi)j ≥ 0 (3)
Neuron (yi)j OFF: (yi)j = 0 ∧ (Wiyi−1 + bi)j ≤ 0. (4)

Inferences created by the symbolic interval inference block using Symbolic Inter-
val Analysis [32] are also incorporated using equality constraints like (3) and (4).

Of the remaining blocks, the “Backtracking & Reconditioning” block is essen-
tially described above. The “Condition New Neuron” and “Sampling Inference”
blocks have features unique to PEREGRiNN that are described in Sect. 4; the

PEREGRiNN: Penalized-Relaxation Greedy Neural Network Verifier 291

former implements a novel neuron prioritization, and the latter is a unique app-
roach to quickly obtaining initial safety counterexamples.

4 PEREGRiNN Enhancements

4.1 Sum-of-Slacks Penalty

The core enhancement in PEREGRiNN is the inclusion of a specific objective
function in the convex program used by the inference component. As per the
discussion above, this objective function is interpreted as a penalty on how far
away a particular solution is from a valid input/output response of the network
(and activation pattern on all hidden neurons). Specifically, this penalty function
penalizes the sum of all of the “slack” variables for the entire network, where each
neuron’s slack variable is defined as si ! yi−(Wi ·yi−1+bi). That is the distance
between a relaxation variable yi and the linear response of its associated neuron.
During each feasibility/inference call, this has the obvious effect of incentivizing
the convex solver to choose an actual input/output response of the network.

In addition, this penalty is effectively the L1-norm of the vector of all the slack
variables, since the slack variables are non-negative. The L1-norm of a vector,
used as a penalty function, is well known to effectively encourage sparsity on the
resulting optimal solution. Thus, the sum-of-slacks effectively incentivizes the
convex solver to leave as few neurons as possible indeterminate in the solution.
That is a sum-of-slacks penalty effectively encourages the convex solver to fix
the phases of as many neurons as possible.

4.2 Max-Slack Conditioning Priority

As noted above, the search component of PEREGRiNN operates layer-wise from
input layer to output layer in order to leverage Symbolic Interval Analysis for
additional inference. Hence, the search component always chooses the next neu-
ron to be searched (i.e. conditioned) from among those as-yet-unconditioned
neurons that are closest to the input layer. It further makes sense to only con-
sider conditioning neurons that the convex solver was unable to operate at valid
inputs/output. However, the convex solver typically returns several neurons to
choose from with this property, and it is necessary to choose which of them to
search next. Given the interpretation of a neuron’s “slack” variable as a measure
of how “problematic” that neuron was for the solver to obtain a valid evaluation
of the network, PEREGRiNN’s search component chooses the next neuron to
condition based on slack-order ranking of those neurons that are not being oper-
ated at valid input/output points. This “max-slack” heuristic choice is unique
to PEREGRiNN; compare to the output gradient heuristic employed in [31].

4.3 Layer-wise-Weighted Penalty

PEREGRiNN takes the “max-slack” neuron search priority one step further,
though. Using techniques similar to those in [26], it is possible to show that

292 H. Khedr et al.

there exists weights q1, . . . , qn such that solving (2) with the penalty

min
y0,..,yn

n∑

i=0

ki∑

j=1

qisij (5)

will result in a solution that is guaranteed to concentrate the most total slack in
the earliest (unconditioned) layer. Thus, by using the layer-wise weighted sum-of-
slacks penalty in (5), PEREGRiNN is uniquely able to force the (unconditioned)
layer closest to the input layer to have the largest total slack among all the layers.
As a consequence, PEREGRiNN effectively concentrates the most “problematic”
neurons in the layer where the next conditioning choice will be made. This
scheme makes it much more likely that the neuron with the highest slack among
all of the neurons will be among the next neurons considered for conditioning – in
effect, often guiding the search component to condition on the most problematic
neuron in the whole network (although this is not guaranteed).

As noted above, SMC [26] can be used to obtain layer-wise weights that
guarantee concentration of slack in the earliest (shallowest) layer. However, these
weights are often very large, since they depend on bounding the slack variables
(most readily by over-approximation); the effect of this is possible computational
instability in the convex program. Thus, as an implementation matter, we instead
select these weights using a heuristic scheme characterized by two real-valued
hyperparameters, λ0 and γ. In particular, the weight of the ith layer, qi, is
selected as qi = λ0 · γi. In our experiments, we found the values λ0 = 10−7 and
γ = 103 to effectively achieve the maximum slack concentration in the earliest
layers.

4.4 Initial Counterexample Search by Sampling

Finally, PEREGRiNN extends a simple idea first introduced in [32] to rapidly
identify counterexamples by means of sampling. The basic idea is to sample
within a known region of the input to the NN (or the input to some deeper layer),
and evaluate the NN (sub-NN) exactly on those samples in order to rapidly iden-
tify a counterexample; this approach help identify un-safe networks/properties
early on. However, whereas [32] samples from within hyper-rectangle sets derived
by symbolic interval analysis, PEREGRiNN uses the Volesti [12] Python library
to uniformly sample points within the polytopic input constraint set, Py0 , and
thus applies to be more general input constraint sets in (1).

5 Experiments

We evaluated the performance and effectiveness of PEREGRiNN at verifying
the adversarial robustness of NNs trained to recognize digits using the standard
MNIST dataset. This verification problem fits into the general NN verification
problem described in Sect. 2, and it is described subsequently in detail. In this
context, we evaluated PEREGRiNN with two objectives described as follows.

PEREGRiNN: Penalized-Relaxation Greedy Neural Network Verifier 293

Table 1. Architecture of the NN models used in the experiments

Models # ReLUs Architecture

MNIST FC1 512 < 784, 256, 256, 10 >

MNIST FC2 1024 < 784, 256, 256, 256, 256, 10 >

MNIST FC3 1536 < 784, 256, 256, 256, 256, 256, 256, 10 >

1. We conducted ablation experiments for all of PEREGRiNN’s novel features
as described in Sect. 4. In particular, we compared the performance of a full
implementation of PEREGRiNN – i.e. exactly as described in Sect. 4 – with
implementations that are otherwise the same except for changing one and
only one of the following: the penalty function used in the convex program
inference block; the neuron prioritization used by the search component.

2. We compared PEREGRiNN against other state-of-the-art NN verifiers, both
in terms of the time required to verify individual networks and properties and
in terms of the number of properties proved with a common, fixed timeout.

Implementation. We implemented PEREGRiNN in Python, and used an off-
the-shelf Gurobi 9.1 [1] convex optimizer for solving linear programs; the Volesti
[12] Python interface was used to sample from the input polytope for the sam-
pling inference block. For the other NN verifiers, we used publicly available
implementations that were published by their creators (citations are included
below). Each instance of of any verifier was run within its own single-core Vir-
tual Box VM with 30 GB of memory; no more than 4 VMs were run concurrently
on a host machine with 48 hyperthreaded cores and 256 GB of memory.

5.1 Adversarial Robustness Verification Task

Subsequent experiments used the testbench we describe in this section; it is
largely identical to the PAT-FCN test in the VNN-COMP 2020 competition [2].

Neural Networks. We used three ReLU NNs to recognize digits using the
standard MNIST training database; these NNs are exactly as in the PAT-FCN
portion of [2]. The sizes of these fully-connected networks are described in Table 1.
Each entry in the “Architecture” column of Table 1 is the number of number of
neurons in a layer, from input layer on the left to output layer on the right.

Verification Properties. We created a number of NN verification tasks based
on proving whether the above described networks were robust against max-norm
perturbations of their inputs. In particular, each verification task involves prov-
ing whether a particular input image, x′, always results in the same classification
when it is subjected to a max-norm perturbation of at most some fixed size, ε > 0.
Thus, each such verification problem is parameterized by both the specified input
image, x′, and the maximum amount of perturbation, ε.

294 H. Khedr et al.

Formally, let x′ be a given image in category t ∈ {1, . . . ,M}, and let ε > 0
be a specified maximum amount of max-norm perturbation of x′. Then we say
that a NN with M classification outputs, NN , is robust if for each classification
category m ∈ {1, . . . ,M} \ {t} the set of inputs yielding classification of x′ as m

φm ! {x | x ∈ Rk0 , ‖x − x′‖∞ ≤ ε, z ∈ Rkn , max
i=1,...,n

NN (x)i = NN (x)m} (6)

is empty. Note that each instance of (6) is compatible with the problem in (1).

Adversarial Robustness Verifier Testbench. Our verification testbench
was then constructed by selecting 50 test images from the MNIST test dataset;
this set of test images includes the 25 used in the PAT-FCN portion of [2]. Each
test instance was then a combination of one of those images, one of the networks
from Table 1 and one the following two max-norm perturbations, ε = 0.02 or
ε = 0.05; these perturbations are same ones used in PAT-FCN [2]. Thus, each
verification test in our testbench can be identified by one of 300 tuples of the
form: (net, image, perturb.) ∈ TB ! {FC1, FC2, FC2}×{1, . . . , 50}×{0.02, 0.05}.

5.2 Ablation Experiments

In this series of experiments we evaluated the contribution that each of the
primary PEREGRiNN enhancements made to its overall performance. This was
done by comparing the full PEREGRiNN algorithm – as described in Sect. 4 –
with altered versions that replace exactly one of those enhancements at a time.
Note: removing core features of PEREGRiNN often resulted in much longer
run times, so the experiments in this section use a testbench TB′ ⊂ TB that
excludes all tests with one of the larger networks FC2 or FC3 and ε = 0.05.

Penalty Function Ablation. Our first ablation experiment evaluated the con-
tribution of PEREGRiNN’s unique penalty function features; see Sect. 4.1 and
Sect. 4.3. In particular, we ran different variants of PEREGRiNN with the fol-
lowing penalty functions used inside the convex program inference block:

1. “Weighted sum of slacks”: PEREGRiNN’s own weighted sum of slacks
penalty;

2. “Sum of slacks”: A sum-of-slacks penalty with equal weighting on all layers;
3. “Feasibility”: A feasibility-only convex program such as the one used in other

tools, e.g. [31] (i.e. simply using a constant penalty function of 1);
4. “Inverted weighted sum of slacks”: PEREGRiNN’s own weighted sum of slacks

penalty, except with the layer-wise weights applied in reverse order to force
slack towards deeper layers rather than shallower ones (see also Sect. 4.3).

Figure 2a shows a cactus plot of the number of proved cases vs. the timeout
permitted to the algorithm: i.e. to prove at least a specified number of the test
cases, each algorithm must have its timeout set at to the value of its curve in

PEREGRiNN: Penalized-Relaxation Greedy Neural Network Verifier 295

Fig. 2a. Figure 2b shows a histogram of the number of times each of the algorithm
variants needed to call the convex solver in order to terminate; this quantifies
each algorithm’s cost in a well-known unit of computation, also the single most
computationally costly part of PEREGRiNN. Figure 2b plots the number of
convex solver calls required for evenly spaced bins of convex solver calls.

(a) Cactus plot; proved cases vs. timeout (b) Histogram; number convex calls used

Fig. 2. Performance of PEREGRiNN variants with different objective functions

Conclusions: Figure 2a demonstrates that PEREGRiNN’s weighted sum of slacks
has a clear benefit over both a uniformly weighted sum-of-slacks penalty and a
plain feasibility convex program. For timeouts of longer than ≈ 1.2 seconds,
PEREGRiNN overtakes the other two in terms of number of properties proved;
even the uniform sum-of-slacks penalty considerably outperforms the feasibility
convex program at similar timeouts. Note that reversing the layer-wise weights of
PEREGRiNN’s penalty function incurs a performance hit, especially for timeouts
>1.2 s. This suggests that driving slacks toward shallower layers, where the next
neuron is conditioned, is the correct heuristic to apply. Figure 2b also shows that
going from feasibility to sum-of-slacks to weighted sum-of-slacks significantly
reduces the number of test cases that require between 425 and 525 calls to the
convex solver. This order of comparison shows a concomitant net influx of tests
into the lowest bin of < 25 convex calls; PEREGRiNN has the most test cases
in this category, with ≈130 test cases proved in < 25 convex solver calls.

Neuron Conditioning Priority Ablation. In the second ablation experi-
ment, we evaluated the contribution of PEREGRiNN’s maximum-slack neuron
conditioning priority (see Sect. 4.2). To that end, we ran variants of PERE-
GRiNN with three different neuron conditioning priorities for the search compo-
nent:

1. “Maximum slack”: PEREGRiNN’s max-slack neuron conditioning priority;
2. “Minimum slack”: This variant conditions the neuron with the smallest slack;
3. “Random choice”: This variant conditions on a random indeterminate neuron.

The performance of these algorithm variants is shown in Fig. 3a and Fig. 3b.
As in the previous ablation experiment, Fig. 3a shows a cactus plot of the number

296 H. Khedr et al.

of proved cases vs. the timeout, and Fig. 3b shows a histogram of the number of
calls to the convex solver required under each of the conditioning priorities.

Conclusions: Figure 3a shows that PEREGRiNN’s max-slack neuron priority
allows it to prove slightly more properties than either a random neuron choice
priority or the minimum-slack priority. The maximum slack priority also required
the fewest total convex calls across all instances: it used 178 fewer than minimum
slack and 686 fewer than a random choice. Thus, we conclude PEREGRiNN’s
max-slack heuristic slightly improves performance on this testbench.

5.3 Comparison with Other NN Verifiers

In this experiment, we evaluated PEREGRiNN with respect to a number of
state-of-the-art NN verifiers on our adversarial robustness testbench, TB. In
particular, we ran the following tools on TB: Venus [6]; Marabou [19]; Neu-
rify [31]; and nnenum [4]. Venus was run with st ratio=0.4, depth power=4,
offline deps = True, online deps = True, and ideal cuts = True; Marabou
and Neurify were used with default parameters but THREADS = 1; and nnenum
had ADVERSARIAL SEARCH turned off. Each algorithm had its own one-core VM.

(a) Cactus plot; proved cases vs. timeout (b) Histogram; number convex calls used

Fig. 3. Performance of PEREGRiNN variants with different conditioning priorities

Figure 4 contains a cactus plot showing the results for each of these algo-
rithms, including PEREGRiNN. For a given number of test cases to be proved,
Fig. 4 depicts the corresponding timeout required for each of the algorithm to
prove that many cases. Of all the algorithms, PEREGRiNN was able to prove
the most properties within the timeout limit of 600 s: PEREGRiNN was able
to prove 190 properties; it was followed by nnenum, which proved 172; Venus,
which proved 159; Neurify, which proved 149; and Marabou, which proved 125.
Marabou consistently performed the worst, proving fewer cases than any other
algorithm at every timeout. By contrast, Neurify was able to prove significantly
more test cases than any other algorithm for extremely short timeouts, but it
failed to prove more than 150 out of 300 test cases across the whole experiment.
nnenum performed worse than Neurify on the way to proving 150 test cases, but
it fared significantly better than either PEREGRiNN or Venus, which had more
or less similar performance below this threshold. However, after ≈150 test cases,

PEREGRiNN: Penalized-Relaxation Greedy Neural Network Verifier 297

PEREGRiNN significantly outperformed all other algorithms: as the timeout
was increased, PEREGRiNN proved additional properties at a rate significantly
outpacing its closest competitor in this regime, nnenum. We further note that
all algorithms proved a mixture of SAT and UNSAT properties.

This data, taken as a whole, suggests that PEREGRiNN suffers from a worse
“best-case” performance than several other algorithms, especially nnenum and
Neurify. However, PEREGRiNN’s performance seems to be much more consis-
tent across different test cases. This allows it to prove more properties in aggre-
gate at the expense of being slower on a smaller subset of them. This further
suggests that PEREGRiNN is significantly less sensitive to peculiarities of partic-
ular test cases on the TB testbench. This will likely be a considerable advantage,
on average, when faced with verifying unknown networks and properties of this
type.

6 Discussion: Analogy to SAT Solvers

It is possible to draw a loose analogy between SAT solvers and search-and-
optimization NN verifiers such as PEREGRiNN. Indeed, since each neuron has
two phases, the operational phase of each neuron can be captured by a binary
variable; then any valuation of all these variables can be interpreted as SAT or
UNSAT based on the Input/Output properties to be verified on the network
(subject to that conditioning). Thus, the neuron conditioning step in PERE-
GRiNN is analogous to variable splitting in a SAT solver, and the backtrack and
re-condition block (see Fig. 1) functions analogously to backtracking. In this
analogy, infeasibility of the convex program and symbolic interval analysis func-
tion roughly like unit resolution in a SAT solver: they soundly reason about the
overall property before all neurons have been conditioned (i.e. variables split).

Fig. 4. Cactus plot of various solvers on 300-case testbench, TB

However, the main contribution of PEREGRiNN is a heuristic for deciding
which neuron to condition next: it is thus analogous to a heuristic for choosing
the next variable to split in a SAT solver. Specifically, PEREGRiNN’s heuristic
provides a numerical ranking of the as-yet-unconditioned neurons, and therefore
has a functional similarity to variable-ranking heuristics in SAT solvers (e.g.
VSIDS [24]). On the other hand, PEREGRiNN’s neuron ranking comes directly

298 H. Khedr et al.

from the output of the convex solver, which we argued reveals some information
about the underlying verification problem – this has no direct SAT-solver analog.

7 Conclusion

In this paper, we introduced PEREGRiNN, a new tool for formally verifying
input/output properties for ReLU NNs. PEREGRiNN compares favorably with
other state-of-the-art NN verifiers, thanks to a number of unique algorithmic fea-
tures. The benefits of these features were established with ablation experiments.

References

1. Gurobi optimizer 9.1. http://www.gurobi.com
2. International Verification of Neural Networks Competition 2020 (VNN-COMP

2020). https://sites.google.com/view/vnn20
3. Anderson, R., Huchette, J., Ma, W., Tjandraatmadja, C., Vielma, J.P.: Strong

mixed-integer programming formulations for trained neural networks. Math. Pro-
gram. 183(1), 3–39 (2020). https://doi.org/10.1007/s10107-020-01474-5

4. Bak, S., Tran, H.-D., Hobbs, K., Johnson, T.T.: Improved geometric path enu-
meration for verifying ReLU neural networks. In: Lahiri, S.K., Wang, C. (eds.)
CAV 2020. LNCS, vol. 12224, pp. 66–96. Springer, Cham (2020). https://doi.org/
10.1007/978-3-030-53288-8 4

5. Bastani, O., Ioannou, Y., Lampropoulos, L., Vytiniotis, D., Nori, A., Criminisi, A.:
Measuring neural net robustness with constraints. Adv. Neural Inf. Process. Syst.
29, 2613–2621 (2016)

6. Botoeva, E., Kouvaros, P., Kronqvist, J., Lomuscio, A., Misener, R.: Efficient verifi-
cation of ReLU-based neural networks via dependency analysis. Proc. AAAI Conf.
Artif. Intell. 34, 3291–3299 (2020). https://doi.org/10.1609/aaai.v34i04.5729

7. Bunel, R., Lu, J., Turkaslan, I., Kohli, P., Torr, P., Mudigonda, P.: Branch and
bound for piecewise linear neural network verification. J. Mach. Learn. Res. 21(42),
1–39 (2020)

8. Cheng, C.-H., Nührenberg, G., Ruess, H.: Maximum resilience of artificial neural
networks. In: D’Souza, D., Narayan Kumar, K. (eds.) ATVA 2017. LNCS, vol.
10482, pp. 251–268. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
68167-2 18

9. Dutta, S., Jha, S., Sanakaranarayanan, S., Tiwari, A.: Output range analysis for
deep neural networks (2017). https://arxiv.org/abs/1709.09130

10. Dvijotham, K., Stanforth, R., Gowal, S., Mann, T.A., Kohli, P.: A dual approach
to scalable verification of deep networks. In: Globerson, A., Silva, R. (eds.) Uncer-
tainty in Artificial Intelligence, vol. 1, pp. 550–559 (2018)

11. Ehlers, R.: Formal verification of piece-wise linear feed-forward neural networks.
In: D’Souza, D., Narayan Kumar, K. (eds.) ATVA 2017. LNCS, vol. 10482, pp.
269–286. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68167-2 19

12. Emiris, I.Z., Fisikopoulos, V.: Practical Polytope Volume Approximation. ACM
Trans. Math. Softw. 44(4), 38:1–38:21 (2018). https://doi.org/10.1145/3194656

http://www.gurobi.com
https://sites.google.com/view/vnn20
https://doi.org/10.1007/s10107-020-01474-5
https://doi.org/10.1007/978-3-030-53288-8_4
https://doi.org/10.1007/978-3-030-53288-8_4
https://doi.org/10.1609/aaai.v34i04.5729
https://doi.org/10.1007/978-3-319-68167-2_18
https://doi.org/10.1007/978-3-319-68167-2_18
https://arxiv.org/abs/1709.09130
https://doi.org/10.1007/978-3-319-68167-2_19
https://doi.org/10.1145/3194656

PEREGRiNN: Penalized-Relaxation Greedy Neural Network Verifier 299

13. Fazlyab, M., Robey, A., Hassani, H., Morari, M., Pappas, G.: Efficient and accu-
rate estimation of lipschitz constants for deep neural networks. In: Wallach, H.,
Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E., Garnett, R. (eds.)
Advances in Neural Information Processing Systems, vol. 32, pp. 11423–11434.
Curran Associates, Inc. (2019)

14. Fischetti, M., Jo, J.: Deep neural networks and mixed integer linear optimization.
Constraints 23(3), 296–309 (2018). https://doi.org/10.1007/s10601-018-9285-6

15. Gehr, T., Mirman, M., Drachsler-Cohen, D., Tsankov, P., Chaudhuri, S., Vechev,
M.: AI2: Safety and robustness certification of neural networks with abstract inter-
pretation. In: 2018 IEEE Symposium on Security and Privacy (SP), pp. 3–18. IEEE
(2018). https://doi.org/10.1109/SP.2018.00058

16. Goodfellow, I.J., Shlens, J., Szegedy, C.S.: Explaining and harnessing adversarial
examples (2014). https://arxiv.org/abs/1412.6572

17. Ivanov, R., Weimer, J., Alur, R., Pappas, G.J., Lee, I.: Verisig: verifying safety
properties of hybrid systems with neural network controllers. In: Proceedings of
the 22nd ACM International Conference on Hybrid Systems: Computation and
Control, HSCC 2019, pp. 169–178. Association for Computing Machinery, New
York (2019). https://doi.org/10.1145/3302504.3311806

18. Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: an
efficient SMT solver for verifying deep neural networks. In: Majumdar, R., Kunčak,
V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 97–117. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-63387-9 5

19. Katz, G., et al.: The marabou framework for verification and analysis of deep
neural networks. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11561, pp.
443–452. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25540-4 26

20. Kurakin, A., Goodfellow, I., Bengio, S.: Adversarial examples in the physical world
(2016). https://arxiv.org/abs/1607.02533

21. LeCun, Y.: The MNIST database of handwritten digits (1998). http://yann.lecun.
com/exdb/mnist/

22. Liu, C., Arnon, T., Lazarus, C., Barrett, C., Kochenderfer, M.J.: Algorithms for
Verifying Deep Neural Networks (2019). http://arxiv.org/abs/1903.06758

23. Lomuscio, A., Maganti, L.: An approach to reachability analysis for feed-forward
relu neural networks (2017). https://arxiv.org/abs/1706.07351

24. Moskewicz, M., Madigan, C., Zhao, Y., Zhang, L., Malik, S.: Chaff: engineering an
efficient SAT solver. In: Proceedings of the 38th Design Automation Conference,
pp. 530–535 (2001). https://doi.org/10.1145/378239.379017

25. Royo, V.R., Calandra, R., Stipanovic, D.M., Tomlin, C.: Fast neural network veri-
fication via shadow prices (2019). https://arxiv.org/abs/1902.07247

26. Shoukry, Y., Nuzzo, P., Sangiovanni-Vincentelli, A.L., Seshia, S.A., Pappas, G.J.,
Tabuada, P.: SMC: satisfiability modulo convex programming. Proc. IEEE 106(9),
1655–1679 (2018). https://doi.org/10.1109/JPROC.2018.2849003

27. Song, D., et al.: Physical adversarial examples for object detectors. In: Proceedings
of the 12th USENIX Conference on Offensive Technologies. WOOT 2018, USENIX
Association (2018)

28. Szegedy, C., et al.: Intriguing properties of neural networks (2013). https://arxiv.
org/abs/1312.6199

29. Tjeng, V., Xiao, K., Tedrake, R.: Evaluating robustness of neural networks with
mixed integer programming (2017). https://arxiv.org/abs/1711.07356

https://doi.org/10.1007/s10601-018-9285-6
https://doi.org/10.1109/SP.2018.00058
https://arxiv.org/abs/1412.6572
https://doi.org/10.1145/3302504.3311806
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-030-25540-4_26
https://arxiv.org/abs/1607.02533
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://arxiv.org/abs/1903.06758
https://arxiv.org/abs/1706.07351
https://doi.org/10.1145/378239.379017
https://arxiv.org/abs/1902.07247
https://doi.org/10.1109/JPROC.2018.2849003
https://arxiv.org/abs/1312.6199
https://arxiv.org/abs/1312.6199
https://arxiv.org/abs/1711.07356

300 H. Khedr et al.

30. Tran, H.-D., et al.: NNV: the neural network verification tool for deep neural
networks and learning-enabled cyber-physical systems. In: Lahiri, S.K., Wang, C.
(eds.) CAV 2020. LNCS, vol. 12224, pp. 3–17. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-53288-8 1

31. Wang, S., Pei, K., Whitehouse, J., Yang, J., Jana, S.: Efficient formal safety analysis
of neural networks. In: Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-
Bianchi, N., Garnett, R. (eds.) Advances in Neural Information Processing Systems,
vol. 31, pp. 6367–6377 (2018)

32. Wang, S., Pei, K., Whitehouse, J., Yang, J., Jana, S.: Formal security analysis of
neural networks using symbolic intervals. In: Proceedings of the 27th USENIX Con-
ference on Security Symposium, SEC 2018, pp. 1599–1614. USENIX Association
(2018). https://doi.org/10.5555/3277203.3277323

33. Wong, E., Kolter, J.Z.: Provable defenses against adversarial examples via the
convex outer adversarial polytope (2017). https://arxiv.org/abs/1711.00851

34. Xiang, W., Tran, H.D., Johnson, T.T.: Reachable set computation and safety ver-
ification for neural networks with relu activations (2017). https://arxiv.org/abs/
1712.08163

35. Xiang, W., Tran, H.D., Johnson, T.T.: Output reachable set estimation and ver-
ification for multilayer neural networks. IEEE Trans. Neural Netw. Learn. Syst.
29(11), 5777–5783 (2018). https://doi.org/10.1109/TNNLS.2018.2808470

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-030-53288-8_1
https://doi.org/10.1007/978-3-030-53288-8_1
https://doi.org/10.5555/3277203.3277323
https://arxiv.org/abs/1711.00851
https://arxiv.org/abs/1712.08163
https://arxiv.org/abs/1712.08163
https://doi.org/10.1109/TNNLS.2018.2808470
http://creativecommons.org/licenses/by/4.0/

	Preface
	Organization
	Contents – Part I
	Contents – Part II
	Invited Papers
	NNREPAIR: Constraint-Based Repair of Neural Network Classifiers
	1 Introduction
	2 Background
	3 Example
	4 Approach
	4.1 Intermediate-Layer Repair
	4.2 Last-Layer Repair
	4.3 Combining Experts

	5 Evaluation
	5.1 Scenarios
	5.2 Experiment Set-Up
	5.3 Results
	5.4 Discussion

	6 Related Work
	7 Conclusion and Future Work
	References

	Balancing Automation and Control for Formal Verification of Microprocessors
	1 Introduction
	2 Our FV Tools
	3 Challenges of Verifying a Single x86 instruction
	3.1 Front-End and Microcode Verification
	3.2 Verification of Execution Units
	3.3 Regressions

	4 FGL
	4.1 Example
	4.2 Extracting Boolean Variables
	4.3 Composing Boolean Functions

	5 Conclusion
	References

	Algebraic Program Analysis
	1 Introduction
	2 Regular Algebraic Program Analysis
	2.1 Transition-Formula Interpretations
	2.2 Weak Interpretations

	3 Semantic Foundations
	3.1 Semantic Equations
	3.2 Abstract Interpretation
	3.3 Discussion

	4 Interprocedural Analysis
	4.1 Motivation: Newtonian Program Analysis
	4.2 Algebraic Program Analysis for Linear Equations
	4.3 Discussion

	5 Termination Analysis
	5.1 Non-terminating State-Formula Interpretations
	5.2 The Instantiation of the Recipe

	6 Recap
	7 Related Work
	8 Open Problems
	References

	Programmable Program Synthesis
	1 Introduction
	1.1 A Synthesis Tale
	1.2 Programmable Synthesis Frameworks

	2 An Overview of Programmable Program Synthesis
	2.1 Why Isn't Existing Work in Synthesis Programmable?
	2.2 What Does a Programmable Synthesis Framework Look Like?

	3 Programmable-Synthesis Specifications
	3.1 Semantics-Guided Synthesis
	3.2 Adding Quantitative Syntactic Objectives

	4 Programmable-Synthesis Solvers
	4.1 General Solving Procedures for SemGuS Problems
	4.2 Meta Algorithms for Solving SemGuS Problems

	5 The Future of Programmable Synthesis and SemGuS
	5.1 What Are We Working on Next?
	5.2 What Can the Synthesis Community Do?

	References

	Deductive Synthesis of Programs with Pointers: Techniques, Challenges, Opportunities
	1 Introduction
	2 State of the Art
	2.1 Specifications
	2.2 The Basics of Deductive Synthesis
	2.3 Synthesis with Recursion and Auxiliary Functions
	2.4 Implementation and Empirical Results

	3 Proof Search
	3.1 Pruning via Proof Strategies
	3.2 Prioritization via a Cost Function

	4 Completeness
	4.1 Recursive Auxiliaries
	4.2 Pure Reasoning

	5 Quality of Synthesized Programs
	5.1 Performance
	5.2 Readability

	6 Applications
	6.1 Program Repair
	6.2 Data Migration and Serialization
	6.3 Fine-Grained Concurrency

	References

	AI Verification
	DNNV: A Framework for Deep Neural Network Verification
	1 Introduction
	2 Background
	3 DNNV Overview
	3.1 Input Formats
	3.2 Network Simplification
	3.3 Property Reduction
	3.4 Input and Output Translation

	4 Implementation
	4.1 Supporting Reuse and Extension
	4.2 Usage

	5 Study
	6 Conclusion
	References

	Robustness Verification of Quantum Classifiers
	1 Introduction
	2 Quantum Data and Computation Models
	3 Quantum Classification Algorithms
	3.1 Basic Definitions
	3.2 An Illustrative Example

	4 Robustness
	5 Robust Bound
	6 Robustness Verification Algorithms
	7 Evaluation
	7.1 Quantum Bits Classification
	7.2 Quantum Phase Recognition
	7.3 Cluster Excitation Detection
	7.4 The Classification of MNIST
	7.5 Robustness Verification

	8 Conclusion
	References

	BDD4BNN: A BDD-Based Quantitative Analysis Framework for Binarized Neural Networks
	1 Introduction
	2 Preliminaries
	2.1 Binarized Neural Networks
	2.2 Binary Decision Diagrams

	3 BDD4BNN Design
	3.1 BDD4BNN Overview
	3.2 CC2BDD: Cardinality Constraints to BDDs
	3.3 Region2BDD: Input Regions to BDDs
	3.4 BNN2CC: BNNs to Cardinality Constraints
	3.5 BDD Model Builder

	4 Applications: Robustness Analysis and Interpretability
	4.1 Robustness Analysis
	4.2 Interpretability

	5 Evaluation
	5.1 Performance of BDD Encoding
	5.2 Robustness Analysis
	5.3 Interpretability

	6 Related Work
	7 Conclusion
	References

	Automated Safety Verification of Programs Invoking Neural Networks
	1 Introduction
	2 Overview
	3 Approach
	3.1 Neuro-Aware Program Analysis
	3.2 Neural-Network Analysis

	4 Experimental Evaluation
	4.1 Benchmarks
	4.2 Implementation
	4.3 Setup
	4.4 Results

	5 Related Work
	6 Conclusion
	References

	Scalable Polyhedral Verification of Recurrent Neural Networks
	1 Introduction
	2 Related Work
	3 Background
	3.1 Threat Model
	3.2 Long Short-Term Memory (LSTM)
	3.3 Speech Preprocessing
	3.4 Verification Using DeepPoly Abstract Domain

	4 Overview of Prover
	5 Scalable Certification of LSTMs
	5.1 Computing Polyhedral Abstractions of LSTM Operations
	5.2 Abstraction Refinement via Optimization

	6 Certification of Speech Preprocessing
	7 Experimental Evaluation
	7.1 Speech Classification
	7.2 Image Classification
	7.3 Motion Sensor Data Classification

	8 Conclusion
	References

	Verisig 2.0: Verification of Neural Network Controllers Using Taylor Model Preconditioning
	1 Introduction
	2 Problem Statement
	3 Background: Neural Networks as Taylor Models
	4 Taylor Model Preconditioning and Shrink Wrapping
	4.1 Taylor Model Preconditioning
	4.2 Shrink Wrapping

	5 Implementation
	6 Benchmarks
	7 Experiments
	8 Conclusion
	References

	Robustness Verification of Semantic Segmentation Neural Networks Using Relaxed Reachability
	1 Introduction
	2 Preliminaries and Problem Formulation
	2.1 ImageStars
	2.2 Range of a Specific Input in an ImageStar
	2.3 Semantic Segmentation Networks and Reachability
	2.4 Adversarial Attacks and Robustness
	2.5 Robustness Verification Problem Formulation

	3 Reachability of SSNs Using Relaxed ImageStars
	3.1 Reachability of a Transposed (Dilated) Convolutional Layer
	3.2 Relaxed Reachability of a ReLU Layer
	3.3 Reachability of a Pixel-Classification Layer

	4 Verification Algorithm
	5 Evaluation
	5.1 Robustness and Sensitivity of Different Network Architectures
	5.2 Verification Performance
	5.3 Reducing Verification Time with Relaxation
	5.4 Conservativeness of Different Relaxation Heuristics

	6 Related Work
	7 Conclusion
	References

	PEREGRiNN: Penalized-Relaxation Greedy Neural Network Verifier
	1 Introduction
	2 Problem Formulation
	3 PEREGRiNN Overview
	4 PEREGRiNN Enhancements
	4.1 Sum-of-Slacks Penalty
	4.2 Max-Slack Conditioning Priority
	4.3 Layer-wise-Weighted Penalty
	4.4 Initial Counterexample Search by Sampling

	5 Experiments
	5.1 Adversarial Robustness Verification Task
	5.2 Ablation Experiments
	5.3 Comparison with Other NN Verifiers

	6 Discussion: Analogy to SAT Solvers
	7 Conclusion
	References

	Concurrency and Blockchain
	Isla: Integrating Full-Scale ISA Semantics and Axiomatic Concurrency Models
	1 Introduction
	2 Implementation
	2.1 Symbolic Execution for Sail
	2.2 Checking a Litmus Test
	2.3 Syntactic Dependency Analysis
	2.4 Web Interface

	3 System Litmus Tests
	4 Results and Comparisons
	References

	Summing up Smart Transitions
	1 Introduction
	2 Preliminaries
	3 Sum Logic (SL)
	4 Decidability of SL
	4.1 A Decidable Fragment of SL
	4.2 SL Undecidability

	5 SL Encodings of Smart Transitions
	5.1 SL Encoding Using Implicit Balances and Sums
	5.2 Completeness Relative to a Translation Function
	5.3 SL Encodings Using Explicit Balances and Sums

	6 Experiments
	7 Related Work
	8 Conclusions
	References

	Stateless Model Checking Under a Reads-Value-From Equivalence
	1 Introduction
	1.1 Motivating Example
	1.2 Our Contributions

	2 Preliminaries
	2.1 Concurrent Model
	2.2 Partial Orders

	3 Reads-Value-From Equivalence
	4 Verifying Sequential Consistency
	4.1 Algorithm for VSC
	4.2 Practical Heuristics for VerifySC in SMC

	5 Stateless Model Checking
	6 Experiments
	7 Conclusions
	References

	Gobra: Modular Specification and Verification of Go Programs
	1 Introduction
	2 Gobra in a Nutshell
	2.1 Basics
	2.2 Interfaces
	2.3 Concurrency

	3 Encoding
	4 Implementation and Evaluation
	5 Related Work and Conclusion
	References

	Delay-Bounded Scheduling Without Delay!
	1 Introduction
	2 Delay-Bounded Scheduling
	2.1 Basic Computational Model
	2.2 Free and Round-Robin Scheduling
	2.3 Delay-Bounded Round-Robin Scheduling

	3 Abstract Closure for Delay-Bounded Analysis
	3.1 Respectful Actions
	3.2 From Delay-Bounded to Delay-Unbounded Analysis

	4 Efficient Delay-Unbounded Analysis
	5 DrUBA with Unbounded-Domain Variables
	5.1 The Fixed-Thread Case
	5.2 The Unbounded-Thread Case

	6 Evaluation
	6.1 Results
	6.2 Unbounded-Thread Experiments

	7 Discussion of Related Work
	8 Conclusion
	References

	Checking Data-Race Freedom of GPU Kernels, Compositionally
	1 Introduction
	2 Overview
	2.1 Challenges of GPU Programming
	2.2 Memory Access Protocols by Example

	3 Access Memory Protocols
	4 DRF-Preserving Transformations of Protocols
	4.1 Aligning Protocols
	4.2 Splitting Protocols into Symbolic Traces

	5 Implementation
	6 Experimental Evaluation
	7 Related Work
	8 Conclusion
	References

	GENMC: A Model Checker for Weak Memory Models
	1 Introduction
	2 Memory Model Requirements
	3 Tool Architecture
	4 Supporting New Memory Models
	4.1 Supporting the Linux Kernel Memory Model (LKMM)

	5 Supporting New Languages and Libraries
	6 Error Detection and Reporting
	7 Other Performance Enhancements to GenMC
	8 Conclusion
	References

	Hybrid and Cyber-Physical Systems
	Synthesizing Invariant Barrier Certificates via Difference-of-Convex Programming
	1 Introduction
	2 A Bird's-Eye Perspective
	3 Mathematical Foundations
	4 Invariant Barrier-Certificate Condition as BMIs
	4.1 Invariant Barrier-Certificate Condition
	4.2 Encoding as BMI Optimizations

	5 Solving BMI Optimizations via DCP
	5.1 Difference-of-Convex Decomposition
	5.2 Reduction to LMIs
	5.3 Finding the Initial Solution

	6 Incorporating in a Branch-and-Bound Framework
	7 Experimental Results
	8 Related Work
	9 Conclusion
	References

	An Iterative Scheme of Safe Reinforcement Learning for Nonlinear Systems via Barrier Certificate Generation
	1 Introduction
	2 Preliminaries
	3 Synthesis of Safe Controller via Learning and Verification
	3.1 Training of Safe Controller
	3.2 Safety Verification with Barrier Certificates

	4 Algorithm
	5 Experiments
	6 Related Work
	7 Conclusion
	References

	HYBRIDSYNCHAADL: Modeling and Formal Analysis of Virtually Synchronous CPSs in AADL
	1 Introduction
	2 Preliminaries
	3 The HYBRIDSYNCHAADL Modeling Language
	4 The HYBRIDSYNCHAADL Tool
	5 Case Study: Collaborating Autonomous Drones
	6 Experimental Evaluation
	7 Related Work
	8 Concluding Remarks
	References

	Computing Bottom SCCs Symbolically Using Transition Guided Reduction
	1 Introduction
	2 Preliminaries
	3 Basic Symbolic BSCC Detection
	4 Transition Guided Reduction
	5 Interleaved Transition Guided Reduction
	6 Evaluation
	6.1 Boolean Networks
	6.2 Benchmark Set-Up
	6.3 Real-World Networks
	6.4 Pseudo-random Networks
	6.5 Interleaving Performance Impact

	7 Conclusions
	References

	Implicit Semi-Algebraic Abstraction for Polynomial Dynamical Systems
	1 Introduction
	2 Overview of the Approach
	3 Preliminaries
	4 Explicit Computation of the Semi-Algebraic Abstraction
	5 Linear Encoding of the Semi-Algebraic Abstraction
	6 Experimental Evaluation
	7 Related Work
	8 Conclusions and Future Work
	References

	IMITATOR 3: Synthesis of Timing Parameters Beyond Decidability
	1 Introduction
	2 An Expressive Input Language
	3 A Variety of Synthesis Algorithms
	4 Distribution
	5 A Selection of Applications
	6 Related Tools
	7 Perspectives
	References

	Formally Verified Switching Logic for Recoverability of Aircraft Controller
	1 Introduction
	2 Related Work
	3 Hybrid Controller Architecture
	3.1 Aircraft Dynamics
	3.2 LQR Controller
	3.3 Switching Algorithm for the Safety of ANN Controller

	4 Computation of Recoverable Zone
	4.1 Under-Approximation of Recoverable Zone

	5 Experimental Analysis
	5.1 Experimental Setup
	5.2 Experimental Results
	5.3 Practical Challenges

	6 Conclusions
	References

	SceneChecker: Boosting Scenario Verification Using Symmetry Abstractions
	1 Introduction
	2 Specifying Scenarios in SceneChecker
	3 Transforming Scenarios to Hybrid Automata
	4 Specifying Symmetry Maps in SceneChecker
	5 Symmetry Abstraction of the Scenario's Automaton
	6 SceneChecker Algorithm Overview
	7 Experimental Evaluation
	8 Limitations and Discussions
	References

	Effective Hybrid System Falsification Using Monte Carlo Tree Search Guided by QB-Robustness
	1 Introduction
	2 Preliminaries
	2.1 Hill Climbing-Guided Falsification

	3 QB-Robustness
	4 MCTS-Based Falsification Guided by QB-Robustness
	4.1 MCTS Background
	4.2 Proposed QB-Robustness-Guided Falsification Approach

	5 Experimental Evaluation
	5.1 Experiment Setup
	5.2 Evaluation

	6 Related Work
	7 Conclusion and Future Work
	References

	Fast Zone-Based Algorithms for Reachability in Pushdown Timed Automata
	1 Introduction
	2 Preliminaries
	2.1 Timed Automata
	2.2 Reachability, Zones and Simulations
	2.3 Pushdown Timed Automata (PDTA)

	3 Zones in PDTA and the Problem with Simulations
	4 Viewing Reachability Algorithms Using Rewrite Rules
	4.1 Rewrite Rules for Timed Automata.
	4.2 Rewrite Rules for PDTA

	5 Algorithm for PDTA Reachability via Zones
	6 Experiments and Results
	7 Discussion and Future Work
	References

	Security
	Verified Cryptographic Code for Everybody
	1 Introduction
	1.1 Related Work

	2 Project Design Constraints
	3 AES-256-GCM and SHA-384 Proof Structure
	4 SAW's Verification Pipeline
	5 New Capability: x86 Semantics
	6 New Capability: Verified Rewrites
	6.1 Role of Rewrites in AES-256-GCM and SHA-384 Proofs

	7 Results and Lessons Learned
	7.1 Trade-Offs When Building on Existing Verification Tools
	7.2 Verified Code Generation Versus Verifying Existing Code

	8 Conclusion and Future Work
	References

	Not All Bugs Are Created Equal, But Robust Reachability Can Tell the Difference
	1 Introduction
	2 Motivation
	3 Background
	4 Robust Reachability
	4.1 Definition
	4.2 Relation with Non-interference
	4.3 Interpretation in Terms of Hyperproperty
	4.4 Interpretation in Terms of Temporal Logic
	4.5 Robust Reachability and Automatic Verification

	5 Automatically Proving Robust Reachability
	5.1 Robust Bounded Model Checking
	5.2 Robust Symbolic Execution
	5.3 Path Merging
	5.4 Revisiting Standard Optimizations and Constructs
	5.5 About Constraint Solving

	6 Proof-of-Concept of a Robust Symbolic Execution Engine
	6.1 Implementation
	6.2 Case Studies: Exploitability Assessment for Vulnerabilities
	6.3 Experimental Evaluation
	6.4 Additional Considerations

	7 Related Work
	8 Conclusion
	A Details on the Experiments Supporting Sect.6.4
	References

	A Temporal Logic for Asynchronous Hyperproperties
	1 Introduction
	2 Preliminaries
	3 Asynchronous HyperLTL
	3.1 Syntax and Semantics of Asynchronous HyperLTL
	3.2 Examples of A-HLTL

	4 Model-Checking A-HLTL
	4.1 The Stuttering Construction
	4.2 The Accelerating Construction
	4.3 Decidable Practical A-HLTL Formulas

	5 Undecidability and Lower-Bound Complexity
	6 Case Studies and Evaluation
	6.1 Compiler Optimizations
	6.2 SPI Bus Protocol

	7 Related Work
	8 Conclusion
	References

	Product Programs in the Wild: Retrofitting Program Verifiers to Check Information Flow Security
	1 Introduction
	2 Preliminaries
	2.1 Noninterference
	2.2 Modular Product Programs

	3 Sound Products of IVL Encodings
	3.1 Proposed Architecture
	3.2 Soundness Issue
	3.3 Soundness Criterion
	3.4 Practical Relevance
	3.5 Example: Dynamically-Bound Calls

	4 Product Programs and Concurrency
	4.1 Concurrent IVL Encodings
	4.2 Possibilistic Noninterference
	4.3 Probabilistic Noninterference

	5 Implementation and Evaluation
	5.1 Nagini
	5.2 Performance Overhead of the Product Construction
	5.3 Expressiveness and Comparison with SecC

	6 Related Work
	7 Conclusion
	References

	Constraint-Based Relational Verification
	1 Introduction
	2 Overview
	2.1 Relational Verification Problems
	2.2 Challenges and Contributions

	3 Predicate Constraint Satisfaction Problems pfwCSP
	4 Relational Verification with Constraints
	4.1 k-Safety
	4.2 Co-termination
	4.3 Generalized Non-interference

	5 Constraint Solving Method for pfwCSP
	5.1 Predicate Synthesis with Stratified Families of Templates

	6 Evaluation
	7 Related Work
	7.1 Relational Verification
	7.2 Predicate Constraint Solving

	8 Conclusion
	References

	Pre-deployment Security Assessment for Cloud Services Through Semantic Reasoning
	1 Introduction
	2 Preliminaries
	3 Formalization and Encoding of IaC Deployments
	4 Security Properties Specification
	5 Application to Existing Infrastructure
	5.1 Found Security Issues

	6 Semantic Reasoning About Dataflows
	7 Related Work
	8 Conclusion and Future Work
	References

	Synthesis
	Synthesis with Asymptotic Resource Bounds
	1 Introduction
	2 Overview
	2.1 Type-Directed Synthesis
	2.2 Adding Resource Bounds
	2.3 Checking Recurrence Relations

	3 The SYNPLEXITY Type System
	3.1 Syntax and Types
	3.2 Semantics and Cost Model
	3.3 Typing Rules
	3.4 Soundness

	4 The SynPlexity Synthesis Algorithm
	4.1 Overview of the Synthesis Algorithm

	5 Extensions to the SynPlexity Type System
	6 Evaluation
	6.1 Comparison to Prior Tools
	6.2 Pruning the Search Space with Annotated Types

	7 Related Work
	References

	Program Sketching by Automatically Generating Mocks from Tests
	1 Introduction
	2 Overview
	3 The Sketcham Algorithm
	4 Evaluation
	4.1 Performance
	4.2 Case Study: Deduplication
	4.3 Discussion

	5 Related Work
	6 Conclusion
	References

	Counterexample-Guided Partial Bounding for Recursive Function Synthesis
	1 Introduction
	2 Background and Notation
	3 Formal Definition of the Synthesis Problem
	4 Recursion-Free Approximations
	4.1 Partially Bounded Quantification
	4.2 Refining Systems of Equations

	5 Synthesis Algorithm
	5.1 Expand : Producing Maximally Reducible Terms
	5.2 Counterexample Generalization
	5.3 Algorithm Properties

	6 Implementation
	6.1 Verification and Synthesis Oracles
	6.2 Baseline Method
	6.3 Optimizations

	7 Evaluation
	7.1 Case Studies
	7.2 Experimental Results

	8 Related Work
	9 Discussion and Future Work
	References

	PAYNT: A Tool for Inductive Synthesis of Probabilistic Programs
	1 Introduction
	2 Using PAYNT
	3 Synthesis of Probabilistic Programs
	4 Tool Architecture of PAYNT
	5 Performance Evaluation and Applicability
	References

	Adapting Behaviors via Reactive Synthesis
	1 Introduction
	2 Preliminaries
	3 Separated GR(k) Games
	4 From Transducers to Separated GR(k)
	4.1 Additional Usages of Our Technique

	5 Overview for Solving Separated GR(k) Games
	5.1 Algorithm Overview and Intuition
	5.2 The Delay Property

	6 Algorithms for Solving Separated GR(k) Games
	6.1 Realizability and Synthesis for Weak Büchi Games
	6.2 Realizability and Synthesis for Separated GR(k) Games

	7 Implementation and Evaluation
	8 Related Work
	9 Conclusion
	References

	Causality-Based Game Solving
	1 Introduction
	2 Motivating Example
	3 Preliminaries
	4 Subgoals
	5 Causality-Based Game Solving
	5.1 Symbolically Represented Strategies
	5.2 A Recursive Algorithm
	5.3 Special Cases with Guaranteed Termination

	6 Case Studies
	6.1 Game of Nim
	6.2 Corridor
	6.3 Mona Lisa
	6.4 Program Synthesis

	7 Conclusion
	References

	Author Index

