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Abstract: Microorganisms can potentially colonise volcanic rocks using the chemical energy in

reduced gases such as methane, hydrogen (H2) and carbon monoxide (CO). In this study, we analysed

soil metagenomes from Chilean volcanic soils, representing three different successional stages with

ages of 380, 269 and 63 years, respectively. A total of 19 metagenome-assembled genomes (MAGs) were

retrieved from all stages with a higher number observed in the youngest soil (1640: 2 MAGs, 1751: 1

MAG, 1957: 16 MAGs). Genomic similarity indices showed that several MAGs had amino-acid identity

(AAI) values >50% to the phyla Actinobacteria, Acidobacteria, Gemmatimonadetes, Proteobacteria

and Chloroflexi. Three MAGs from the youngest site (1957) belonged to the class Ktedonobacteria

(Chloroflexi). Complete cellular functions of all the MAGs were characterised, including carbon

fixation, terpenoid backbone biosynthesis, formate oxidation and CO oxidation. All 19 environmental

genomes contained at least one gene encoding a putative carbon monoxide dehydrogenase (CODH).

Three MAGs had form I coxL operon (encoding the large subunit CO-dehydrogenase). One of these

MAGs (MAG-1957-2.1, Ktedonobacterales) was highly abundant in the youngest soil. MAG-1957-2.1

also contained genes encoding a [NiFe]-hydrogenase and hyp genes encoding accessory enzymes and

proteins. Little is known about the Ktedonobacterales through cultivated isolates, but some species

can utilise H2 and CO for growth. Our results strongly suggest that the remote volcanic sites in Chile

represent a natural habitat for Ktedonobacteria and they may use reduced gases for growth.

Keywords: Ktedonobacteria; carbon monoxide dehydrogenase; metagenome-assembled-genome;

volcanic soils; shotgun sequencing

1. Introduction

Volcanic eruptions provide a model for understanding soil-forming processes and the roles of

pioneer bacteria during early biotic colonisation. Recently, it has been demonstrated that the structure of

microbial communities can play a key role in the direction of plant community succession pathways [1].

This is due in part to bacterial contributions to weathering of volcanic rocks, which releases nutrients,

resulting in some of the most fertile soils in the world.
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After lava and other volcanic deposits (i.e., ash and tephra) cool sufficiently, mineral surface

areas become accessible for microbial colonisation [2–5]. In fact, microbes, and especially bacteria,

are among the first colonisers of volcanic deposits and thereby initiate soil formation during the early

stages of terrestrial ecosystem development [6–12]. While methane (CH4), hydrogen sulphide (H2S),

hydrogen (H2) and carbon monoxide (CO) have been proposed to promote bacterial colonisation

and support microbial life in these organic-carbon-deficient environments [13,14], the actual carbon

and energy sources of the first colonisers remain elusive, but likely include a range of endogenous

and exogenous sources, including reduced minerals and gases. The microbial ability to utilise these

substrates for growth, and thereby initiate the formation of soil organic material, depends on specialised

enzymes which may not be prevalent in many different microbial groups, thus representing a limited

phylogenetic distribution. As a consequence, this could constrain the composition of pioneering

microbial communities.

CO is a potential source of carbon and energy for microbes pioneering the colonisation of

volcanic substrates. CO utilisation under oxic conditions requires a molybdenum-dependent

carbon monoxide dehydrogenase (Mo-CODH), which catalyses the oxidation of CO to CO2 [15].

Surveys of genome databases (e.g., Integrated Microbial Genomes) reveal that Mo-CODHs occur

in Proteobacteria, Actinobacteria, Firmicutes, Chloroflexi, Bacteroidetes, Deinococcus-Thermus,

Halobacteria and Sulfolobales, among others. They were originally described as inducible enzymes and

have subsequently been shown to be upregulated by carbon limitation during growth of Actinobacteria

(e.g., Rhodococcus and Mycobacterium smegmatis [15–17]), and Chloroflexi (e.g., Thermogemmatispora and

Thermomicrobium [18]). Mo-CODH has been previously targeted in molecular ecological studies of

CO oxidisers in volcanic systems and other extreme environments [15]. These studies have revealed

changes in community composition with the age and developmental status of individual sites [7,15].

The results suggest that CO-oxidising communities are not static, but that they change in response to

changing environmental conditions, and possibly affect the direction of changes.

In a preceding study, we identified the microbial communities involved in volcanic soil formation in

different sites on Llaima Volcano (Chile). The bacterial communities of soils from 3 sites affected by lava

deposition in 1640, 1751 and 1957 were analysed using 16S rRNA gene amplicon sequencing [19] and

it was demonstrated that microbial diversity increased with the age of the soil deposits. Interestingly,

bacterial phylotypes of the poorly studied Ktedonobacterales were among the predominant community

members in the 1957 soil, representing 37% of all OTUs, as compared with 18% in the 1751 and

7% in the 1640 soils. Thus, we suspected that bacteria of this order could be instrumental for

the initiation of soil formation, paving the way for soil organic carbon formation and preparing a

substrate for microbial colonisation and plant growth. Some already cultivated Ktedonobacterales

were found to be carboxydotrophs and hydrogenotrophs (i.e., carbon monoxide (CO) and hydrogen

(H2) oxidisers/consumers) [14]. Thus, this leads to the hypothesis that CO and H2 are important

carbon and energy sources for early stages of microbes colonising the Llaima Volcano soil. However,

the ecophysiology of the few bacterial isolates assigned to Ktedonobacterales limits predictions about

metabolic functions based on 16S rRNA gene sequences alone.

Therefore, in this study, a metagenomic approach was chosen to identify microbial traits associated

with early stages of colonisation and soil formation in a volcanic ecosystem. In particular, the presence

of functional genes implicated in CO-oxidation (coxL genes) and H2-oxidation (hyd and hyp genes) was

assessed from metagenome-assembled genomes (MAGs). These MAGs were retrieved from volcanic

soils of different ages, representing sites 1640, 1751 and 1957. During this period, the soil formation

evolved as indicated by their different levels of soil organic matter ranging from 65.33% in the most

recent soil (1957) to 9.33% in both medium (1751) and oldest soils (1640) [20].

Especially, the most recent soil (youngest soil) was suspected to reveal microbial adaptations to

the challenging environmental conditions and thus to unveil the metabolic processes which initiate

microbial colonisations. Therefore, functional metabolic modules annotated in the environmental

genomes were analysed, with a main focus on the poorly characterised class of the Ktedonobacteria
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(Chloroflexi). Three Ktedonobacteria MAGs were obtained and all contained genes encoding CO and

H2 oxidation. Additional MAGs from other phyla were also found to contain these genes. Our study

advances the understanding of the ecology of Ktedonobacteria and their potential to act as early

colonisers in volcanic soils.

2. Materials and Methods

2.1. Sequencing

The DNA from the volcanic soils used in our study had been previously extracted [20]. The soil

physico-chemical characteristics have been published [20] showing a pH of 5.6 in both the medium

and oldest soil and 4.7 in the youngest soil, and nitrogen (mg/kg) of 25 (1640), 26 (1751) and 36 (1957).

Briefly, the soil samples originated from three different sites of different ages according to the latest

lava eruption (1640, 1751, 1957, map in Reference [20]). A total of nine samples (triplicate per site) were

sequenced on an Illumina MiSeq at the Max-Planck-Genome Centre, Köln, Germany. The metagenome

was analysed on a high-performance computer using 650 GB RAM and 64 cores at the Thünen Institute

of Biodiversity, Braunschweig, Germany.

2.2. Quality Control

The sequence reads were checked using FastQC version 0.11.8 [21]. Low-quality reads were

discarded using BBDuk version 38.68, quality-trimming to Q15 using the Phred algorithm [22].

A schematic overview of the steps and programs used are shown in Figure 1.
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Figure 1. Workflow of the metagenome analysis and programs used in the present study. Binning was

run by using the MetaWrap package. AAI: Amino Acid Identity.

2.3. Metagenome Assembly and Binning

All trimmed Illumina reads were merged into longer contiguous sequences (scaffolds) using

de novo assemblers Megahit version 1.2.8 [23] with k-mers 21, 29, 39, 59, 79, 99, 119 and 141,

and MetaSPAdes (SPAdes for co-assembly) version 3.13.1 [24,25] with k-mers 21, 31, 41, 51, 61,

71 and 81. Triplicate samples were co-assembled in order to improve the assembly of low-abundance

organisms. Assembly quality was checked with MetaQuast version 5.0.2 [26], showing that the best

quality was obtained with SPAdes for our samples (data not shown). Downstream analysis was carried

out using the scaffolds retrieved from SPAdes. Krona charts [27] were recovered from MetaQuast runs
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to identify taxonomic profiles. Downstream binning analysis was performed with two sets of scaffolds:

full-size scaffolds and scaffolds larger than 1000 bp.

Metagenomic binning of the assembled scaffolds was carried out with the metaWRAP version

1.2.1 pipeline [28], in which binning module employs three binning software programs: MaxBin2 [29],

metaBAT2 [30], and CONCOCT [31]. Completion and contamination metrics of the extracted bins were

estimated using CheckM [32]. The resulting bins were collectively processed to produce consolidated

metagenome-assembled genomes (MAGs) using the bin_refinement module (criterion: completeness

> 70%; contamination < 5%). Both sets of MAGs (18 from scaffolds larger than 1000 bp and 17 from

full-size scaffolds) were aggregated, visualised with VizBin [33] and then dereplicated using dRep [34].

Only the highest scoring MAG from each secondary cluster was retained in the dereplicated set.

The abundance of each MAG in the different sites was calculated using BLASTN version 2.5.0+ [35],

keeping only hits with >95% identity and e-value 1e-5 for the analysis [36]. A final heatmap was

constructed using the function heatmap.2 from the gplots package version 3.0.4 [37] in R version 4.0.2

(https://www.r-project.org).

2.4. Functional Annotation

The open reading frames (ORFs) in all scaffolds of each MAG were predicted using Prodigal

(v2.6.3) [38]. Functions were annotated using Cognizer [39] and the Kyoto Encyclopedia of Genes and

Genomes (KEGG) annotation framework [40]. The annotations of the predicted proteins from KEGG

were used to confirm protein functional assignment and identify pathways. Complete pathways were

identified using KEGG BRITE pathway mapping [40]. Aerobic carbon-monoxide dehydrogenases and

hydrogen dehydrogenase were also identified using KEGG ortholog annotations. CODH was further

distinguished as form I and form II (putative CODH) based on active site motifs present in coxL genes

(e.g., Reference [41]).

2.5. Phylogenomic Analysis

Taxonomic classification of MAGs was performed using the classify_bins module from metaWRAP

which relies on the NCBI_nt database. MAGs were also screened using the RAST Server (Rapid Annotations

using Subsystems Technology [42,43]), which also allowed to retrieve information regarding close relative

genomes in order to construct the phylogenetic tree.

To estimate intergenomic similarity, amino-acid comparisons between MAGs and their closest

relative genomes present in the databases were calculated based on reciprocal best hits (two-way AAI)

using the enveomics collection (http://enve-omics.gatech.edu/ [44]).

The phylogenetic affiliation of MAGs was determined by constructing a genomic tree using

FastTree version 2.1.11 [45]. Reference genomes were manually downloaded from the National Center

for Biotechnology Information (NCBI) Refseq database (Supplementary Table S1). Conserved genes

from the extracted bins and the reference genomes were concatenated using Phylosift version 1.0.1 [46].

Phylogenetic analysis of the large sub-unit CO dehydrogenase gene (coxL) using the Maximum

Likelihood method with a JTT matrix-based model [47] was performed. Bootstrap values (100 replicates)

are shown where support ≥ 70 percent. The scale bar indicates substitutions per site. All gapped

positions were deleted, resulting in 420 positions in the final dataset. Evolutionary analyses were

conducted in MEGA X [48,49].

2.6. Accession Number

Raw metagenomic data and environmental genomes derived from binning processes were

deposited in the Sequence Read Archive (SRA) under the bioproject accession number PRJNA602600

for raw data and PRJNA602601 for metagenome-assembled genomes.
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3. Results

3.1. MAGs Recovery

A total of ~3–4 million scaffolds were recovered from the soil metagenomes in each site.

Even though all the sites underwent similar sequencing efforts (between 2.3 GB in 1640 and 1957 to

2.4 GB in 1751), the youngest soil had the largest number of scaffolds with 499 sequences > 50 kb (N50

length of 700) compared to the oldest soil with only 12 scaffolds with a size > 50 kb (N50 length of 914)

(Table 1). A total of 19 MAGs with a completeness of >70% and a contamination < 5% (2 from 1640,

1 from 1751 and 16 from 1957) were retrieved and characterised.

Table 1. Summary report for the assembly quality assessment using MetaQuast.

Statistics 1640 1751 1957

Number of scaffolds (>= 0 bp) 3,631,380 4,047,900 3,138,527
Number of scaffolds (>= 500 bp) 1,488,437 1,609,020 1,578,887
Number of scaffolds (>= 1000 bp) 326,980 333,885 447,418
Number of scaffolds (>= 25,000 bp) 172 195 1551
Number of scaffolds (>= 50,000 bp) 12 40 499
Total length (>= 0 bp) 2,320,437,372 2,460,323,814 2,396,069,091
Total length (>= 500 bp) 1,385,386,471 1,404,094,641 1,717,252,425
Total length (>= 1000 bp) 631,179,105 570,404,360 964,085,094
Total length (>= 25,000 bp) 5,697,241 8,152,100 8,236,5310
Total length (>= 50,000 bp) 686,375 2,983,958 46,419,897
N50 914 850 700
L50 391,387 477,193 348,604

N50—length such that scaffolds of this length or longer include half the bases of the assembly; L50—number of
scaffolds that are longer than, or equal to, the N50 length and therefore include half the bases of the assembly
(https://www.ncbi.nlm.nih.gov/assembly/help/#globalstats).

3.2. MAG Identification

MAGs were affiliated to the phyla Actinobacteria, Proteobacteria, Acidobacteria, Gemmatimonadetes,

Chloroflexi, Firmicutes and Verrucomicrobia (Figure 2). In the oldest soil, two environmental genomes

were retrieved related to Actinomycetales (Actinobacteria) and Rhodospirillales (Proteobacteria). The only

MAG retrieved from the middle soil was related to Acidobacteria. MAGs binned from the youngest soil

included six assigned to Acidobacteria, one to Proteobacteria, one to Firmicutes, three to Actinobacteria,

one to the phylum Gemmatimonadetes, one to Verrucomicrobia and three to the phylum Chloroflexi

(Figure 2).

The abundance of the MAGs in each site was calculated by using BLASTN (Figure 3). MAGs were

more abundant from the soil they were recovered. MAGs with a total abundance > 1% were found

only in the young soil (1957). MAG 1957-2.1 (Ktedonobacteria, 1.21% ± 0.82%), MAG 1957-5.1

(Actinomycetales, 1.02% ± 0.84%), MAG 1957-13.1 (Verrucomicrobiales, 1.58% ± 1.1%) and MAG

1957-16.1 (Acidobacteria, 1.14% ± 0.87%) were the most abundant MAGs (Figure 3).
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Figure 2. Phylogenomic tree of the bacterial genomic bins. The tree was built with PhyloSift against

reference genomes downloaded from NCBI. MAGs are indicated in bold together with their respective

completeness and contamination. FastTree confidence values of MAG branches are shown. The horizontal

bar represents 10% sequence divergence.



Microorganisms 2020, 8, 1880 7 of 16                   

 

         ‐             
‐                       

 
                             

                    ‐       −      
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by blast and only hits greater than 95% identity and e-value 1 × 10−5 were used.
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Figure 4. Summary of complete cellular functions and other high-level features in the MAGs recovered

form sites 1640, 1751 and 1957 retrieved from KEGG analysis. Reference genomes for Ketedonobacteria:

DSM45816T [50], DSM44963T [51] and NBRC 113551T [52], (K: KEGG orthology; M: KEGG Mode).

Asterisks indicate the MAGs isolated from the class Ktedonobacteria. “X” indicates MAGs containing

genes encoding form I of the CoxL.
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3.3. Metabolic Characterisation of MAGs

Genes encoding enzymes involved in carbohydrate and energy metabolism, such as carbon

fixation, sulphur metabolism, ATP synthesis and nitrogen metabolism, as well as terpenoid backbone

biosynthesis, were found in all the MAGs (Figure 4). Other functions, including xenobiotic biodegradation,

fatty acid metabolism, nucleotide metabolism and vitamin metabolism, among others, were also found

(Supplementary Table S2).

3.3.1. Characterisation of CODH and Hydrogenase Genes in MAGs

Three MAGs (MAG-1640-1.1, MAG-1751-1.1 and MAG-1957-2.1) encoded form I of the

CO-dehydrogenase large subunit (coxL). These MAGs were each associated with a particular soil,

with low abundance in the metagenomes of the other sites (Figure 5A). In addition to these three

form-I coxL-encoding MAGs, 15 other scaffolds from MAGs containing form II coxL-like genes were

recovered (data not shown), but the function of form II CoxL is not yet known. The arrangement

of genes encoding form I CODH in each of the MAGs is shown in Figure 5B. It should be noted

that all of these three MAGs show the canonical arrangement for the three structural genes of

CODH, that is the MSL (coxM-coxS-coxL) genes. The genes encoding the [NiFe]-hydrogenase and its

accessory proteins were only identified in MAG-1957-2.1, and instead, only some of the accessory

hyp genes were found in the other two MAGs (Figure 5B). A phylogenetic analysis of the form I coxL

genes was performed, showing they are affiliated with Actinobacteria (MAG-1640-1.1), Nitrospirae

Candidatus Manganitrophus noduliformans (MAG-1751-1.1) and Chloroflexi (MAG-1957-2.1) (Figure 6).

This grouping is consistent with the results of PhyloSift (Figure 2), except for MAG-1751-1.1, where it

was loosely associated with Acidobacteria (although with an amino-acid identity of only 40%) rather

than Nitrospirae.

3.3.2. Complete Metabolic Characterisation of Ktedonobacterales MAGs

Here, we focused on the Ktedonobacterales MAGs because of their apparent importance in early

soil formation. Three Ktedonobacterales MAGs were identified in the 1957 soil metagenomes but

were not found in the older soils (Figures 2 and 3). Two of the MAGs (MAGs 1957-2.1 and 1957-3.1),

affiliated to the class Ktedonobacteria (phylum Chloroflexi), contained genes for the complete electron

transport chain, citric acid metabolism, nitrogen metabolism, sulphur metabolism, several transporters,

the complete gene set for carbon monoxide oxidation (CO dehydrogenase), herbicide degradation

and degradation aromatics, as well as the major subunit of the formate dehydrogenase, and also a

hydrogenase. MAG 1957-6.1 (Ktedonobacteria) had very similar pathways as the other Chloroflexi

MAGs, except a step for CO-oxidation and the electron transport chain were absent (Figure 4,

Supplementary Table S2, Figure 7).
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Figure 5. (A) Relative abundance of MAG-1640-1.1, MAG-1751-1.1 and MAG-1957-2.1 in sites 1640,

1751 and 1957. Bars indicate standard error of triplicates. (B) Gene arrangement of the carbon monoxide

dehydrogenase (CODH) and membrane-bound [NiFe]-hydrogenase in MAG-1640-1.1, MAG-1751-1.1

and MAG-1957-2.1 (* indicates hypothetical proteins; small indicates NiFe-hydrogenase small subunit

and large indicates NiFe-hydrogenase large subunit).
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Figure 6. Phylogenetic tree of form I carbon monoxide dehydrogenase large subunit (CoxL) of

metagenome-assembled genomes retrieved from Llaima volcano (MAG-1640-2.1, MAG-1751-1.1 and

MAG-1957-2.1) against reference sequences (with accession numbers included in the tree). The tree was

drawn using the Maximum Likelihood method using MEGA X [48]. Bootstrap values (500 replications)

are shown at the nodes. MAG-1751_1.1 is a partial sequence of the coxL gene.
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challenge [55], with the chances of retrieving MAGs at a given sequencing effort being reduced with

increasing microdiversity (intra-population genetic diversity) and overall community diversity [56].

We previously reported that as the soil recovered and vegetation established, the microbial population

appeared to enlarge and become more diverse [19], which explains the lower number of MAGs

retrieved from more mature soil (1640 sample), compared to the younger sites (1957).

4.2. Metabolic Characterisation of MAGs

The three MAGs containing form I coxL genes were found in an operon structure (Figure 5B)

typical of known CO oxidisers [41]. Form I coxL has been definitively associated with CO oxidation at

high concentrations and also at sub-atmospheric levels [41]. Thus, even at low abundance, the presence

of these cox-containing MAGs strongly suggests a capacity for atmospheric CO uptake at all the sites.

Most of the complete functions found from the Ktedonobacteria MAGs were also found in three

reference genomes: Ktedonobacter racemifer DSM 44963 [51], Thermogemmatispora carboxidivorans PM5,

isolated from a geothermal biofilm on Kilauea Volcano, Hawaii (USA) [50], and Dictyobacter volcani

W12 [52]. According to our genomic analyses, all of these reference strains possess formate-, H2-,

and CO-dehydrogenases, as do the MAGs recovered in the present study. Burkholderia strains

(phylum Proteobacteria) [57], members of the phylum Chloroflexi [14] and other members of the

phyla Proteobacteria and Actinobacteria [58] have also been reported as CO-oxidisers in Hawaiian

volcanic deposits. coxL genes encoding the large subunit of the CO dehydrogenase have been found in

Proteobacteria species from Kilauea and Miyake-jima volcanoes [10,14,54].

The taxonomies of MAGs 1640-1.1 and 1957-2.1 were consistent for coxL (Figure 6) and phylogenomic

analyses (Figure 2). In contrast, MAG-1751-1.1 clustered weakly with Acidobacteria based on genomic

analysis (40% amino acid identity with a reference genome, see Supplementary Table S3) but did not cluster

with Candidatus Manganitrophus noduliformans as did the coxL sequence from this MAG.

Several strains from the class Ktedonobacteria have been isolated from different environments

(Supplementary Table S4), but only Dictyobacter vulcani W12 [52] and Thermogemmatispora carboxidivorans

PM5 [50] have been isolated from volcanic environments. So far, the class Ktedonobacteria contains only

six genera and fifteen formally proposed species. Out of the 15 type strains, 11 genomes are available on

RefSeq (Supplementary Table S2). The order Ktedonobacterales contains the type strains Ktedonobacter

racemifer SOSP1-21T [51,59], Dictyobacter aurantiacus S-27T [60], Dictyobacter vulcani W12T [52],

Thermosporothrix hazakensis SK20-1T [61], Thermosporothrix narukonensis F4T [62], Ktedonosporobacter

rubrisoli SCAWS-G2T [63], Tengunoibacter tsumagoiensis Uno3T, Dictyobacter kobayashii Uno11T and

Dictyobacter alpinus Uno16T [64]. The order Thermogemmatispora contains the species Thermogemmatispora

aurantia A1-2T [65], Thermogemmatispora argillosa A3-2T [65], Thermogemmatispora onikobensis NBRC

111776 (unpublished, RefSeq Nr NZ_BDGT00000000.1), Thermogemmatispora onikobensis ONI-1T [66],

Thermogemmatispora foliorum ONI-5T [66] and Thermogemmatispora carboxidivorans PM5T [50]. All of

those genomes contain the complete gene set for carbon monoxide oxidation (CO dehydrogenase),

as well as formate dehydrogenases and H2 dehydrogenases (Supplementary Table S4). Our study

particularly brings more insights into the role that early colonisers of this group from volcanic soils

may have in the development of soils.

The large subunit of the NAD-reducing hydrogenase was also found in several MAGs (Figure 4).

Hydrogen metabolism has been shown to provide an additional energy source for some microorganisms

and has been observed in bacteria and archaea [67]. Hydrogen dehydrogenases have also been found

in members of the genus Cupriavidus (phylum Proteobacteria) from volcanic mudflow deposits in the

Philippines, suggesting their potential contribution to hydrogen uptake [68].

5. Conclusions

This study is further evidence that poorly characterised groups, such as Ktedonobacteria, establish

in remote volcanic sites and may use reduced gases for growth. Further studies are needed to

demonstrate the activity of these pathways and their significance in volcanic deposits.
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Supplementary Materials: The following are available online at http://www.mdpi.com/2076-2607/8/12/1880/s1,
Figure S1: Relative abundance of main phyla based on classification of scaffolds >500 bp. Other phyla include
members of Planctomycetes, Gemmatimonadetes, Cyanobacteria, Firmicutes, Armatimonadetes and Patescibacteria,
Table S1: List of strains used for the tree construction, Table S2: Summary table of other complete cellular functions
in the MAGs isolates form sites 1640, 1751 and 1957 retrieved from KEGG analysis. Table S3: Summary of the
metagenome-assembled genomes (MAGs) isolated in the present study. Average amino-acid identity (AAI) was
calculated by comparing the MAGs with their closest reference genomes identified based on the RAST results.
The RefSeq accession number of the reference genomes are provided in parentheses, Table S4: Summary of enzymatic
functions for CO−, H2−, and formate-oxidation in the Ktedonobacteria reference genomes. Carbon monoxide
oxidation: K03518 carbon monoxide dehydrogenase small subunit coxS, K03519 carbon monoxide dehydrogenase
medium subunit coxM, K03520 carbon monoxide dehydrogenase large subunit coxL. Formate oxidation: K00122
formate dehydrogenase, K00123 formate dehydrogenase major subunit. Hydrogen oxidation: H2 dehydrogenase:
K00436: NAD-reducing hydrogenase large subunit.
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