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Research Impact Statement: The decision tree methodology has good performance on figuring out uncertainty
in hydrological citizen science data and can be applied as a quality control tool for crowdsourcing dataset.

ABSTRACT: To fill the observations gap on ungauged streams, crowdsourced distributed hydrologic measure-
ments were considered as a potential supplement for observational data networks. However, citizen science data
come with uncertainty as they are provided by the general public. In order to investigate this uncertainty, a
decision tree methodology was applied to evaluate existing citizen science data of stream stage based on the
CrowdHydrology (CH) network. Quality control (QC) flags were developed and applied to CH sites, dividing
Level 1 dataset (raw dataset) into Level 2 (flagged dataset) and Level 3 (processed dataset). Error estimates
were calculated to determine uncertainty in the citizen science data. The results indicate that the decision tree
could provide reliable QC for citizen science data and demonstrate how uncertainty can be quantified in the QC
datasets.

(KEYWORDS: rivers/streams; public participation; computational methods; crowd hydrology; citizen science;
crowdsourcing.)

INTRODUCTION

As an enhancement to traditional research, citizen
science projects based on crowdsourcing have the
potential to complement existing observation net-
works, meeting the challenges of limited data avail-
ability (Davids et al. 2019; Njue et al. 2019; Seibert
et al. 2019). Defined by National Oceanic and Atmo-
spheric Administration (NOAA), citizen science is “a
form of open collaboration where members of the pub-
lic participate in the scientific process to address real-
world problems in ways that include identifying
research questions, collecting and analyzing data,
interpreting results, making new discoveries, develop-
ing technologies and applications, and solving complex
problems” (Dickinson et al. 2012; NOAA 2018). The
revolution of mobile phones and the Internet in recent
years provides citizen volunteers with easier and more

efficient approaches to collect, store and communicate
a large amount of data, which has contributed to the
growth of citizen science in new fields with innovative
methods (Sullivan et al. 2009; McCormick 2012;
Hemmi and Graham 2014; Poelen et al. 2014).

These technological advances have encouraged a
worldwide increase in measurements by citizen scien-
tist in hydrological research with a wide range
including streamflow estimation, floods prediction,
hydrological database generation, and water quality
monitoring (Lowry and Fienen 2013; Toivanen et al.
2013; Le Coz et al. 2016). Crowdsourcing hydrologic
data, where data are provided by the crowd, could
help fill the information gap on intermittence steams,
vastly increase the number of monitored tributaries
in a watershed, and expand understanding of when,
where, and how streams flow (Lowry et al. 2019).

Increasing research and programs about crowd-
sourcing hydrology were launched in recent years.
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Seibert et al. (2019) generated a smartphone app that
allows the collection of stream level information
occurring at places without physical staff gauges. It
provided the public with easy access to set up a new
measurement site and encouraged increased public
participation in citizen science. Lowry et al. (2019)
evaluated a citizen science hydrological program,
CrowdHydrology (CH), in data accuracy, citizen par-
ticipation, and station popularity to figure out the
barriers that may inhibit public participation. Davids
et al. (2019) evaluated three citizen science stream-
flow measurement methods, finding the preferred
method and applying it to larger regions. Weeser
et al. (2018) estimated the quality and quantity of
data generated by the public in a remote Kenyan
basin, demonstrating that water level data can be
measured with enough quality and high temporal res-
olution by the public. Various citizen science pro-
grams related to hydrology have been launched by
governments such as Volunteer Water Monitoring
Programs (USA), the Risk-Scape Project (New Zeal-
and), and Water-Watch Victoria monitoring network
(Australia); which not only vastly increases the num-
ber and type of available hydrologic data with low-
cost collection methods, but also promotes public
understanding about hydrological processes and par-
ticipation in science (Gauchat 2012; Kampf et al.
2018).

Uncertainty and error in citizen science measure-
ments are a primary concern for the scientific com-
munity (Law et al. 2017). Fienen and Lowry (2012)
found high-quality observations could be obtained
without requiring trained observers and stated that
with a simple filter, errors such as transcriptions
could be removed from the dataset. The objective of
this study was to develop a quality control (QC)
method for finding errors in crowdsourced data so it
can be used to expand the observational network into
ungauged watersheds. A decision tree methodology
was developed to apply a QC filter to citizen science
data. Using this method, the citizen science data
would pass through a QC process consisting of L1
(raw dataset) to L2 (flagged dataset) to L3 (processed
dataset).

DATA COLLECTION

Citizen science data are considered to be a high
risk for potential in error. This error can be reduced
using reference datasets to flag atypical data points.
Data quality can be influenced by factors such as
sampling scale, frequency, location, collection method,
etc.; therefore, multiple sources of reference data

were utilized in this study. The data sources and
locations used are listed in Table 1.

The locations of the dataset sites on the Boyne
River, Michigan are shown in Figure 1.

Dataset Collection and Use

Crowd-Hydrology Data. To test the decision
tree rule set and select an optimal data QC metric,
citizen science datasets were used. Datasets were
obtained for the CH stations Michigan 1022 to 1026
from May 2014 to June 2018 from www.crowdhydrol
ogy.com/data.

USGS Gauges Data. The United States Geological
Survey (USGS) data are one of the most widely used ref-
erence data source, which provides long-term stage
monitoring data across the United States (U.S.). Texas
USGS Gauge No. 08211503 was used with added ran-
dom noise, as a simulation of citizen science data. The
simulated dataset was compared to the original data-
set’s corresponding values, and selected controls applied
for flagging atypical data values. Michigan USGS
Gauge No. 04127800 was used as a reference dataset
for the Michigan citizen science datasets.

The stage data were not available for the USGS
Michigan gauge for the dates corresponding with the
CH data. A stage-discharge relation was created to
calculate the stage from the recorded discharge. The
stream stage was calculated, and values predicted for
the Michigan USGS gauge by creating a rating curve
from the 2018-gauge height and discharge data (Wahl
et al. 1995; USGS 2016). The rating curve was made
by inserting a linear regression line with the equa-
tion in the form y = ax + b, where x is discharge and y
is gauge height. It is given by the following equation:

y ¼ 0:0059xþ 1:9865; ð1Þ

was calculated with an R2 value of 0.9622 and a root
mean square error of 0.0578.

TABLE 1. Data source and location for each station.

Data source Station ID Latitude Longitude

CH MI1022 45.214508 �85.011725
CH MI1023 45.203904 �84.972731
CH MI1024 45.196873 �84.958077
CH MI1025 45.157571 �84.921393
CH MI1026 45.1714449 �84.876804
CocoRaHS MI-CX-7 45.18639 �85.1475
USGS TX 08211503 27.8969652 �97.625551
USGS MI 04127800 45.10250676 �85.098112

Notes: CH, CrowdHydrology; USGS TX, United States Geological
Survey Texas; USGS MI, USGS Michigan.
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Pressure Transducer Data. Pressure transduc-
ers (PT) were installed and corresponded with the
CH Michigan data points on the Boyne River
(PT1022–PT1026). These data obtained from the PT
were used for qualifying uncertainty in the citizen
science data and evaluating the classification capabil-
ities of the decision tree by comparing with CH data.

Additional Datasets. The external factors used
in this study were precipitation and temperature.
These datasets were used for setting controls to
determine if they can also be used as potential refer-
ences to flag erroneous citizen science data. These
additional datasets include local precipitation and air
temperature.
Precipitation Data. Precipitation may impact the

stream stage. To generate a continuous dataset over
the study period and provide transferability for
future studies, two sources of precipitation data were

selected: the National Climatic Data Center (NCDC)-
NOAA, and CoCoRaHS dataset, a national citizen
science-based precipitation observation network. For
the NCDC dataset, the record was chosen from the
gauge nearest to the specific citizen science data. For
CoCoRaHS data, the precipitation is recorded as
point measurements and extrapolated to a county
scale. These datasets reported cumulative daily pre-
cipitation in inches from April 1, 2014 to June 29,
2018.

Temperature Data. Temperature may have poten-
tial influence not only on the stage itself from evapo-
ration but also on volunteer activities, which are
closely related with the sampling frequency of citizen
science data. The daily average temperature data
were collected from NCDC-NOAA for the observation
station closest in distance from the citizen science
site gauges. The temperature dataset was reported in
degrees Fahrenheit.

FIGURE 1. Location of Michigan sites on Boyne River.
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METHODS

A decision tree methodology was applied in an
EXCEL platform to evaluate uncertainty in citizen
science-based stream stage time-series data and to
flag erroneous observations in the dataset. Multiple
sources of datasets were utilized to determine the
ruleset of the decision tree, and its classification abil-
ity evaluated based on CH stage data of Boyne River,
Michigan.

Decision Tree

Decision tree methods, also called recursive parti-
tioning, were developed to segment the target dataset
into subdivisions based on the predefined controls for
each branch (Friedl and Brodley 1997; Lemon et al.
2003). As one of the most commonly used prediction
models, the decision tree has incomparable advan-
tages for binary classification by facilitating user’s
comprehension and simplifying the classification pro-
cesses (Anyanwu and Shiva 2009). The typical frame-
work of a simple decision tree includes one input
dataset, several test rules, and a set of categories,
which correspond to the root, branches, and leaf
nodes. To ensure one-way data flow and avoid loops
in the decision tree, a node is only allowed to have
one parent node. Based on this structure, the input
dataset can be subdivided sequentially according to
the controls and fall into a certain class in the end
(Friedl and Brodley 1997). Recent research indicates
that the decision tree is a valuable tool for data
uncertainty analysis. Tami et al. (2018) presented a
reliable tree construction whose prediction and split
rule take the uncertainty of each quantitative obser-
vation into account. Ma et al. (2016) extended classi-
cal decision trees to generate a tree approach, which
can not only handle uncertain data but also reduce
uncertainty by querying the most valuable uncertain
cases within the learning procedure.

The controls in a decision tree define the classifica-
tion rules. By breaking a complex decision into a set
of sequentially independent controls, decision trees
implement data categorization in a multistage
approach (Safavian and Landgrebe 1991). Every
obtained case should satisfy the ruleset, which is
composed of controls along the path from the root to
the corresponding leaf. For the same task, different
control combinations may lead to different conclu-
sions and accuracy (Quinlan 1987).

Control Design. A simulated citizen science
dataset of Texas was used to set the classification
rules for each control and to assess the decision tree’s

performance quantitatively. The Texas dataset was
created by randomly deleting data points to simulate
irregular sampling frequency, and by adding erro-
neous values as noise. Two types of data, incorrect
data and atypical values, were flagged by the decision
tree for having high potential to be sources of uncer-
tainty in citizen science stream stage measurements.
Data flagged as incorrect should be removed before
data analysis, and atypical values checked for accu-
racy.

Seven controls were designed to be tested by the
decision tree.

Positive. The data point will be flagged if negative
or zero value. The CH staffing gauges are placed in the
riverbed and start at zero, therefore the stage height
cannot be negative. The zero stage values could poten-
tially be true values as in extreme situations, such as
drought, and should be verified for accuracy.

Local Stability. The data point will be flagged if
the distance between the point value and the local
average is greater than three times the standard
deviation. Sharp changes in time-series data could
indicate potential inaccuracies on a local scale.
Values with large local variations were flagged using
the standard deviation from the average stage value.
Misclassifications were reduced by applying moving
windows of four sizes (3-, 5-, 7-, and 14-day). The
moving windows reflect variation within different
time scales and, were used to calculate local average
Averi and standard deviation Siði ¼ 3; 5; 7; 14Þ.

Sampling Frequency. Data points will be flagged
if the sampling interval is over a set threshold. Data
gaps can be produced in time-series data from sam-
pling intervals, which potentially reduce the reliabil-
ity of the dataset. A threshold of 3 days between
observations was used for this study.

Comparison with Reference Dataset. Data points
will be flagged where the absolute difference from the
reference data minus the average difference in citizen
science data is greater than the standard deviation
ðx0007C;dif � difx0007C; [SÞ. Citizen science data
were compared with the reference USGS gauge data to
test for consistent trends. This was done as follows:

1. Calculating absolute difference (dif) between citi-
zen science data and reference data.

2. Pairing citizen science data with reference data
and calculating slope for each dataset. Data
points where the slope kcs trends different from
the corresponding kUSGS was grouped as “tempo-
rary flagged” in the citizen science dataset.

3. Calculating average difference ðdifÞ and standard
deviation (S) for temporary flagged group. If
x0007C;dif � difx0007C; [Sflag, data point
remained flagged, otherwise data point was
unflagged.
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4. Calculating average difference ðdifÞ and standard
deviation (S) for the ungrouped citizen
science dataset. Data points where
x0007C;dif � difx0007C; [S were flagged.

Sampling Time. Data points will be flagged if dur-
ing a specified time frame as the quality of the citizen
science stage data correlates with visual perception
factors, such as darkness. It was assumed that dur-
ing the early morning (0000–0359) and late night
(2100–2359) there was diminished accuracy in the
data measurement observation.

Precipitation. Stage data points will be flagged if
the rank of its slope does not trend with correspond-
ing precipitation slope. The precipitation intensity,
which is classified by the precipitation rate seven-
level of American Meteorological Society (1959), was

used to determine the rank of precipitation and stage
change. The lowest precipitation rate level was
ranked as 1 with the highest rate being ranked at 7.
Precipitation slopes and stage slopes were calculated
and paired. It was assumed that changes in stage cor-
respond with the intensity of precipitation.

Temperature. Data points with corresponding
temperatures out of a specified range will be flagged.
It was assumed that extreme temperatures correlate
with sampling frequency due to impacts on human
activities. For this study, the range 15°C–25°C was
selected as adequate for citizen scientist data obser-
vations’ validity.

The flag assignment rules are shown in Table 2.
For each control, the results involve two classes,
“Flag” and “Unflag,” which correspond to Flag 1 and
Flag 0.

TABLE 2. The flag assignment rules for each control.
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Ruleset Generation. The ruleset is composed of
ranked controls with the capability to categorize data
points into appropriate classes. Every control was
tested individually by simulation of citizen science
data. To reflect the classification’s results, a binary
confusion matrix was utilized (Figure 2). Four perfor-
mance indicators were considered to quantitatively
estimate the classification accuracy of each control.

Precision, Accuracy, and Error Estima-
tion. In this study, precision describes the proportion
of the data points flagged by controls that should be
flagged, according to the ruleset. Recall expresses the
ability of controls to find flag-data in the dataset. Pre-
cision P, Recall r, F1-score F1, and “Accuracy” were
computed (Goutte and Gaussier 2005; Powers 2011).
The equations of precision and recall are as follows:

P ¼ TP

TPþ FP
; ð2Þ

r ¼ TP

TPþ FN
: ð3Þ

The harmonic average of precision and recall yield
the F1-score, which gives equal weight to both mea-
sures and avoids bias on extreme values. The F1-
score was calculated using:

F1 ¼ 2� P� r

Pþ r
: ð4Þ

The “Accuracy” reflects the overall accuracy of clas-
sification and is computed by the following equation:

Accuracy ¼ TPþ TN

TPþ FPþ TN þ FN
: ð5Þ

In the above equation, FN represents data points
that are misclassified into the unflagged class. To
reduce the rate of FN, controls were selected to form

the rules in which combinations tended to have com-
plementary effects. FN was separated into nonposi-
tive data and positive data with bias to establish the
complementary effects of the controls and to deter-
mine their operation orders. The performance of
selected control combinations was assessed with the
confusion matrix and performance indicators on the
individual controls.

Accuracy evaluation was conducted with the CH
data from the five stations on the Boyne River, Michi-
gan, as input datasets for the decision tree. To test
the flexibility of the decision tree, USGS data from
the nearest gauge and pressure transducer data from
the same five stations on the Boyne River were used
as references (Figure 1). Since two different collection
methods where used, PT and staff gauge observa-
tions, to obtain the compared datasets, percent differ-
ence was used to calculate error (NCSU 2010). It was
computed by the following equation:

Percent difference ¼
E1�E2j j
E1þE2

2
� 100%: ð6Þ

RESULTS AND DISCUSSION

The results section presents the formulated deci-
sion tree and its reliability. Improvements in the citi-
zen science dataset are evaluated quantitatively
based on this decision tree.

Control Selection

The confusion matrix allows visualization of the
performance for each control. The classification

FIGURE 2. Binary confusion matrix.

TABLE 3. Classification confusion matrix for simulated citizen
science data.

Control Actual class

Prediction class

Flag Unflag

1 Positive Flag 403 169
Unflag 0 103,458

2 Local stability Flag 96 476
Unflag 725 103,209

3 Sampling frequency Flag 0 572
Unflag 1 103,457

4 Reference comparison Flag 94 478
Unflag 0 103,458

5 Sampling time Flag 160 412
Unflag 30,192 73,266

6 Precipitation Flag 209 363
Unflag 50,543 52,915

7 Temperature Flag 334 238
Unflag 60,603 42,855
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confusion matrix is shown in Table 3 for the simu-
lated citizen science data from the USGS Texas
gauge. Classification performance was estimated by
four indicators, providing a quantitative comparison
between different controls (Table 4).

Control orders relate to the efficiency and result of
the decision tree. Misclassified types in FN control
order are described in Table 5.

To establish an optimal ruleset, controls with com-
plementary classifications effects were chosen. Accord-
ing to Tables 3 and 4, Control 3 (Sampling frequency)
should be removed from the ruleset, since it shows the
worst performance on identifying flag type data. Based
on the F1-score and Accuracy, Control 1 (Positive),
Control 4 (Reference Comparison) and Control 2 (Local
stability) have high potential for flagging atypical val-
ues and should therefore be used in the ruleset. Based
on the result of Table 5, among these three controls,
Control 1 has preeminent capability to locate nonposi-
tive values but fails with data containing biases. On
the contrary, Control 4 and 2 have a low misclassifica-
tion rate for biased data and a high error rate on non-
positive type data. Thus, the combination including
Controls 1, 2, 4 potentially provides substantial infor-
mation without large duplication and lead to satisfac-
tory results of categorizing data into flag and unflag
classes. The finalized structure decision tree from the
optimized ruleset is shown in Figure 3.

TABLE 4. Classification performance estimation.

Control Precision Recall F1-score Accuracy

1 Positive 1 0.7045 0.8267 0.9984
2 Local stability 0.1169 0.1678 0.1378 0.9885
3 Sampling

frequency
0 0 NA 0.9945

4 Reference
comparison

1 0.1643 0.2823 0.9954

5 Sampling time 0.0053 0.2797 0.0103 0.7058
6 Precipitation 0.0041 0.3654 0.0081 0.5107
7 Temperature 0.0055 0.5839 0.0109 0.4152

TABLE 5. Flag-class data misclassified into unflag class.

Control

Misclassified flag-class data

Total

Type

Negative or 0 Bias

1 Positive 169 0 0% 169 100%
2 Local stability 476 353 74.16% 123 25.84%
3 Sampling

frequency
572 403 70.45% 169 29.55%

4 Reference
comparison

478 373 78.03% 105 21.97%

5 Sampling time 412 308 74.76% 104 25.24%
6 Precipitation 363 228 62.81% 135 37.19%
7 Temperature 238 144 60.50% 94 39.50%

FIGURE 3. Decision tree structure.
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Application of Decision Tree Methodology

The simulated citizen science dataset consisted of
104,029 (n) observations in the L1 (raw) dataset;
88,099 points flagged by the decision tree methodol-
ogy in the L2 dataset; and 15,930 (n) observations in
the L3 (processed) dataset. The original USGS Texas
stage record observations (Figure 4) were modified to

add noise in order to test the decision tree methodol-
ogy. The decision tree methodology was then imple-
mented to flag potentially erroneous data points to be

FIGURE 4. L1-raw (top), L3-processed (bottom) simulated citizen science dataset with original USGS Texas gauge dataset.

TABLE 6. Classification result of decision tree.

Actual class

Prediction class

Flag Unflag

Confusion matrix
Flag 572 0
Unflag 726 102,732

Precision Recall F1-score Accuracy

Classification performance estimation
0.4407 1 0.6118 0.9930

TABLE 7. Error calculations for Michigan CH and pressure trans-
ducers (PT) datasets.

Site Dataset % Difference

MI1022 L1 0.0706
L2 0.0686
L3 0.0717

MI1023 L1 0.1197
L2 0.1173
L3 0.1177

MI1024 L1 0.0266
L2 0.0174
L3 0.0335

MI1025 L1 0.1642
L2 0.2473
L3 0.1781

MI1026 L1 0.1661
L2 0.7898
L3 0.0527
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removed, resulting in a L3 dataset. The decision tree
results for the simulated Texas data indicated high
performance (Table 6).

Prediction Accuracy of the Decision Tree

Error estimates between the CH datasets and the
pressure transducer (PT) datasets are shown in
Table 7. The smallest error estimates for the L1 and
L3 datasets are in blue. Percent difference was
decreased at sites MI1023 and MI1026.

Table 8 shows that error is estimated in a range
for the datasets, �instead of %, we divide the table %
values by 100 and result in � meters. Using this
method of error calculation, the error associated with
the CH data is in the same range as the reported
USGS staff gauge accuracy of �0.01 ft (Office of Sur-
face Water 1992; Lowry and Fienen 2013).

Removing data points to create the L3 dataset
increased all error estimates for MI1024; most likely
due to the small sample size that corresponded with
the pressure transducer. This decrease in accuracy
when the flagged points are removed may also be
explained by mis-flagging caused by an over-narrow
threshold. To improve the flagging results, other
empirical threshold was tested. The threshold of tem-
porary unflagged dataset in Control 4 (USGS refer-
ence comparison), was modified amplifying it to two
times the standard deviations. Considering the
extreme values were already removed in a previous
step, it is reasonable for us to enlarge the accepted
verge to reduce the mis-flagging in the remainder of
the dataset.

Table 9 shows that how many points remain
unflagged with two standard deviations. Table 10
shows that when more points are kept as unflagged
data using two standard deviations vs. one, it improves
the data quality estimates. The smaller values in com-
parison of L31 std and L32 std are marked in blue.

For MI1022 and MI1024, whose error and uncertainty
were increased under one-standard-deviation threshold
(there were no points mis-flagged, which avoids the loss
of data quality caused by flagged data being removed).
The results of MI1026 remained unchanged. The num-
ber of flagged points in MI1023 and MI1025 were
reduced and their error decreased compared with those
in the L3 under one standard deviation.

CONCLUSION

There are many crowdsourced databases involving
various data types such as hydrology, precipitation, and
water quality, covering the regions where no systematic
monitoring existed previously. To improve the quality of
citizen science data, a binary decision tree model has
been generated to flag potentially erroneous data
points. Optimal categorization rules were selected based
on their performance for finding “incorrect record” (neg-
ative stage value) and “bias record” (extreme value).
Considering the performance evaluated by precision,
recall, F1-score and accuracy, “positive,” “local stabil-
ity,” and “reference comparison”: were shown to be the
most appropriate rule set for data quality. The overall
classification accuracy of the decision tree shows

TABLE 8. Error estimates based on range � meters for the CH
and PT datasets.

Site Dataset
Error
(m)

Uncertainty
(m)

Difference
(m)

MI1022 L1 0.00282 0.00011 0.00071
L3 0.00287 0.00037 0.00072

MI1023 L1 0.00478 0.00019 0.00120
L3 0.00470 0.00060 0.00118

MI1024 L1 0.00106 0.00004 0.00027
L3 0.00134 0.00018 0.00033

MI1025 L1 0.01613 0.00065 0.00164
L3 0.00710 0.00091 0.00178

MI1026 L1 0.00657 0.00021 0.00166
L3 0.00210 0.00022 0.00053

TABLE 9. Number of data points in each dataset under two-stan-
dard deviations.

Station ID L12 std L22 std L32 std

MI1022 15 0 15
MI1023 20 3 17
MI1024 7 0 7
MI1025 23 1 22
MI1026 13 2 11

TABLE 10. Accuracy comparison for Michigan CH based on differ-
ent thresholds.

Site Dataset % Difference

MI1022 L1 0.0706
L31 std 0.0717
L32 std 0.0706

MI1023 L1 0.1197
L31 std 0.1177
L32 std 0.1162

MI1024 L1 0.0266
L31 std 0.0335
L32 std 0.0266

MI1025 L1 0.1642
L31 std 0.1781
L32 std 0.1173

MI1026 L1 0.1661
L31 std 0.0527
L32 std 0.0527
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potential. This research demonstrated the application
of decision tree methodology to hydrological data and
was shown to be an effective tool for finding errors or
outliers in datasets. The methodology demonstrated in
this study could be applied to a broader aspect and
incorporated as a QC tool for data processing.

ACKNOWLEDGMENTS

We thank at the National Water Center: NOAA-Trey Flowers,
Fernando Salas, Fred Ogden, and Ed Clark; USGS-Dave Blodgett
and Martin Briggs; NCAR: Aubrey Dugger and Katelyn FitzGerald;
CUAHSI: Jared Bales, Lauren Grimley, and Fernando Aristizabal.
We also thank Ben Ruddell, Sagy Cohen, John Brackins, and
Azbina Rahman, Nishani Moragoda. Di Wu thank her funding
source CUAHSI, and her academic advisor Ruopu Li for his sup-
ports. Elizabeth Del Rosario acknowledge her funding source
NOAA EPP CCME Program (National Oceanic and Atmospheric
Administration, Office of Education Educational Partnership Pro-
gram Award [NA16SEC4810009]).

AUTHORS’ CONTRIBUTIONS

Di Wu: Data curation; methodology; validation;
writing-original draft; writing-review & editing. Eliz-
abeth A. Del Rosario: Data curation; methodology;
validation; writing-original draft; writing-review &
editing. Christopher Lowry: Data curation;
methodology; writing-review & editing.

LITERATURE CITED

American Meteorological Society. 1959. Glossary of Meteorology.
Boston, MA: American Meteorological Society.

Anyanwu, M.N., and S.G. Shiva. 2009. “Comparative Analysis of
Serial Decision Tree Classification Algorithms.” International
Journal of Computer Science and Security 3 (3): 230–40.

Davids, J.C., M.M. Rutten, A. Pandey, N. Devkota, W.D. van Oyen,
R. Prajapati, and N. van de Giesen. 2019. “Citizen Science Flow
— An Assessment of Simple Streamflow Measurement Meth-
ods.” Hydrology and Earth System Sciences 23 (2): 1045–65.

Dickinson, J.L., J. Shirk, D. Bonter, R. Bonney, R.L. Crain, J. Mar-
tin, T. Phillips, and K. Purcell. 2012. “The Current State of Citi-
zen Science as a Tool for Ecological Research and Public
Engaugement.” Frontiers Ecology & Environment 10 (6): 291–
97. https://doi.org/10.1890/110236.

Fienen, M.N., and C.S. Lowry. 2012. “Social.Water — A Crowd-
sourcing Toll for Environmental Data Acquisition.” Computers
& Geosciences 49: 164–69. https://doi.org/10.1016/j.cageo.2012.
06.015.

Friedl, M.A., and C.E. Brodley. 1997. “Decision Tree Classification
of Land Cover from Remotely Sensed Data.” Remote Sensing of
Environment 61 (3): 399–409. https://doi.org/10.1016/S0034-4257
(97)00049-7.

Gauchat, G. 2012. “Politicization of Science in the Public Sphere: A
Study of Public Trust in the United States, 1974 to 2010.”

American Sociological Review 77 (2): 167–87. https://doi.org/10.
1177/0003122412438225.

Goutte, C., and E. Gaussier. 2005. “A Probabilistic Interpretation of
Precision, Recall and F-Score, with Implication for Evaluation.”
European Conference on Information Retrieval, edited byC.
Goutte and E. Gaussier, 345–59. Berlin, Heidelberg: Springer.

Hemmi, A., and I. Graham. 2014. “Hacker Science versus Closed
Science: Building Environmental Monitoring Infrastructure.”
Information, Communication & Society 17 (7): 830–42. https://d
oi.org/10.1080/1369118X.2013.848918.

Kampf, S., B. Strobl, J. Hammond, A. Anenberg, S. Etter, C. Mar-
tin, K. Puntenney-Desmond, J. Seibert, and I. van Meerveld.
2018. “Testing the Waters: Mobile Apps for Crowdsourced
Streamflow Data.” Eos 99: 30–34. https://doi.org/10.1029/
2018EO096355.

Law, E., K.Z. Gajos, A. Wiggins, M. Gray, and A. William. 2017.
“Crowdsourcing as a Tool for Research: Implications of Uncer-
tainty.” Proceedings of the ACM,1544–61. https://doi.org/10.1145/
2998181.2998197.

Le Coz, J., A. Patalano, D. Collins, N.F. Guill�en, C.M. Garc�ıa, G.M.
Smart, J. Bind et al. 2016. “Crowdsourced Data for Flood
Hydrology: Feedback from Recent Citizen Science Projects in
Argentina, France and New Zealand.” Journal of Hydrology
541: 766–77. https://doi.org/10.1016/j.jhydrol.2016.07.036.

Lemon, S.C., J. Roy, M.A. Clark, P.D. Friedmann, and W.
Rakowski. 2003. “Classification and Regression Tree Analysis in
Public Health: Methodological Review and Comparison with
Logistic Regression.” Annals of Behavioral Medicine 26 (3): 172–
81. https://doi.org/10.1207/S15324796ABM2603_02.

Lowry, C.S., and M.N. Fienen. 2013. “CrowdHydrology: Crowd-
sourcing Hydrologic Data and Engaging Citizen Scientists.”
Ground Water 51 (1): 151–56. https://doi.org/10.1111/j.1745-
6584.2012.00956.x.

Lowry, C.S., M.N. Fienen, D.M. Hall, and K.F. Stepenuck. 2019.
“Growing Pains of Crowdsourced Stream Stage Monitoring
Using Mobile Phones: The Development of CrowdHydrology.”
Frontiers in Earth Science 7: 128. https://doi.org/10.3389/feart.
2019.00128.

Ma, L., S. Destercke, and Y. Wang. 2016. “Online Active Learning
of Decision Trees with Evidential Data.” Pattern Recognition 52:
33–45.

McCormick, S. 2012. “After the Cap: Risk Assessment, Citizen
Science and Disaster Recovery.” Ecology and Society 17 (4).
https://doi.org/10.5751/ES-05263-170431.

NCSU (North Carolina State University). 2010. “Appendix B: Per-
cent Error and Percent Difference.” In Labs for Colleges Physics
Mechanics (Second Edition). www.webassign.net/labsgraceper
iod/ncsulcpmech2/appendices/appendixB/appendixB.html.

Njue, N., J.S. Kroese, J. Gr€af, S.R. Jacobs, B. Weeser, L. Breuer,
and M.C. Rufino. 2019. “Citizen Science in Hydrological Moni-
toring and Ecosystem Services Management: State of the Art
and Future Prospects.” Science of the Total Environment 693
(13): 133531.

NOAA (National Oceanic and Atmospheric Association). 2018. “Citi-
zen Science and Crowdsourcing.” http://www.noaa.gov/office-ed
ucation/citizen-science-crowdsourcing.

Office of Surface Water. 1992. “Technical Memorandum No. 93.07,
Policy Statement on Stage Accuracy.” United States Geological
Survey. https://water.usgs.gov/admin/memo/SW/sw93.07.html.

Poelen, J.H., J.D. Simons, and C.J. Mungall. 2014. “Global Biotic
Interactions: An Open Infrastructure to Share and Analyze Spe-
cies-Interaction Datasets.” Ecological Informatics 24: 148–59.
https://doi.org/10.1016/j.ecoinf.2014.08.005.

Powers, D.M. 2011. “Evaluation: From Precision, Recall and F-Mea-
sure to ROC, Informedness, Markedness and Correlation.” Jour-
nal of Machine Learning Technologies 2 (1): 37–63. https://bioinf
opublication.org/files/articles/2_1_1_JMLT.pdf.

JAWR JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION10

WU, DEL ROSARIO, AND LOWRY



Quinlan, J.R. 1987. “Generating Production Rules from Decision
Trees.” International Joint Conferences on Artificial Intelligence
87: 304–07.

Safavian, S.R., and D. Landgrebe. 1991. “A Survey of Decision
Tree Classifier Methodology.” IEEE Transactions on Systems,
Man, and Cybernetics 21 (3): 660–74. https://doi.org/10.1109/
21.97458.

Seibert, J., B. Strobl, S. Etter, P. Hummer, and H.I. van Meerveld.
2019. “Virtual Staff Gauges for Crowd-Based Stream Level
Observations.” Frontiers in Earth Science 7: 70.

Sullivan, B.L., C.L. Wood, M.J. Iliff, R.E. Bonney, D. Fink, and S.
Kelling. 2009. “eBird: A Citizen-Based Bird Observation Net-
work in the Biological Sciences.” Biological Conservation 142
(10): 2282–92. https://doi.org/10.1016/j.biocon.2009.05.006.

Tami, M., M. Clausel, E. Devijver, E. Gaussier, and J.M. Aubert.
2018. “Decision Tree for Uncertainty Measures.” JDS 2018:

50�emes Journ�ees de statistique, May 2018, Paris-Saclay,
France. ffhal-01815637.

Toivanen, T., S. Koponen, V. Kotovirta, M. Molinier, and P. Chen-
gyuan. 2013. “Water Quality Analysis Using an Inexpensive
Device and a Mobile Phone.” Environmental Systems Research 2
(1): 9. https://doi.org/10.1186/2193-2697-2-9.

USGS (United States Geological Survey). 2016. “How Streamflow is
Measured Part 3: The Stage-Discharge Relation.” https://water.
usgs.gov/edu/streamflow3.html.

Wahl, K.L., W.O. Thomas, Jr., and R.M. Hirsch. 1995. “Stream-
Gaging Program of the U.S. Geological Survey.” https://pubs.
usgs.gov/circ/circ1123/collection.html.

Weeser, B., J.S. Kroese, S.R. Jacobs, N. Njue, Z. Kemboi, A. Ran,
M.C. Rufino, and L. Breuer. 2018. “Citizen Science Pioneers in
Kenya — A Crowdsourced Approach for Hydrological Monitor-
ing.” Science of the Total Environment 631: 1590–99.

JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION JAWR11

EXPLORING THE USE OF DECISION TREE METHODOLOGY IN HYDROLOGY USING CROWDSOURCED DATA


