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Abstract

The dynamics of carbon dioxide (CO.) exchange in the built environment, coupled with
local microclimate modeling, is of critical importance to the understanding of emergent patterns
of longterm urban climate evolution. In addition to the complex model physics, the difficulty is
outstanding to characterize uncertainties inherited in the parameter space and its impact on the
model performance and predictive skills. In this study, we conducted a series of numerical
simulations based on advanced Markov chain Monte Carlo algorithms to quantify the sensitivity
of a recently developed modeling framework by coupling the dynamics of CO> transport into a
single-layer urban canopy model. The results show that urban morphology (canyon aspect ratio),
irrigation, and the physiological properties of urban vegetation predominate the processes of
plant CO2 exchange in the built environment. In contrast, the CO; budget is relatively insensitive
to material properties of urban facets in the built environment. The findings in this study can help
to unravel the interplay of urban carbon dynamics and the built environment, as well as to inform

researchers and policy makers for sustainable urban development towards a low carbon city.

Keywords: Carbon exchange; Markov chain Monte Carlo; Model sensitivity; Plant physiology;

Soil respiration; Urban environment
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1 Introduction

Globally, urban areas cover approximately 3% of global land surface area but contribute
~70% of anthropogenic carbon dioxide (CO2) emissions mainly through fossil fuel burning [1].
The carbon dynamics of urban areas entices complex interplay among anthropogenic and
biospheric processes [2] via multiscale land-atmosphere interactions. Local urban microclimates
modify the overlying urban boundary layer dynamics, such as the boundary layer height and
thermal stratification [3, 4] which in turn impacts the spatio-temporal patterns of CO; variability
over built terrains. For example, the transportation network of a city leads to enhanced CO; flux
due to vehicular emissions, whereas on the other hand, the excessive heating over paved road
surfaces contributes to raise the height of mixing layer and reduce the CO; concentration in the
overlying atmosphere.

Among various sources and sinks of CO2 exchange, urban vegetation, e.g. green roofs,
street trees, urban lawns, golf courses, backyard gardens, etc., and their physiological functions
emerge as the most challenging component for numerical modeling. Urban vegetation behaves
distinctively from plants in the natural environment, primarily due to their peculiar growing
conditions in the built environment. It is noteworthy that urban areas usually furnish favorable
conditions for plant growth and physiological functions, because in cities: 1) warmer ambient
temperatures, e.g. those due to the prominent urban heat island effect, allow urban plants to
maintain a higher photosynthesis rate and a longer growing period [5-7]; 2) regular maintenance
practices, such as irrigation and fertilization, relieve much of environmental stresses for plant
growth [8]; and 3) the elevated CO level forms a natural CO, pump, promoting the carbon

assimilation rate [9, 10].
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Among urban vegetation, urban trees have the most sophisticated biophysical functions,
partially due to the complexity of their geometry (three dimensional as compared the planar
distribution of grasses). Previous studies have found that the presence of street trees significantly
alter the microclimate and the heat and moisture re-distribution in the urban canyon, including
the change of surface energy balance [11], the reduction of thermal discomfort [12, 13], and
weakening the passive pollutant dispersion [14], to name a few. In particular, urban trees
influence CO> dynamics in counteracting ways: they are effective carbon sinks via
photosynthesis, but meanwhile can also create unfavorable growing conditions for shaded
ground vegetation (e.g. lawns). The shading effect tends to intercept solar radiation for
photosynthesis and lower the ground level temperature [15-17], hence reduces the carbon uptake
via ground vegetation by impeding their physiological functions.

The complex interplay between carbon dynamics and anthropogenic activities in urban
areas can be partially captured in field measurements at sub-urban scale, e.g. flux towers
deployed in different cities [18-20]. In addition, regional CO2 exchange can be quantified via
data fusion. For example, FluxCom uses machine learning algorithm to estimate global CO; flux
by fusing in-situ eddy covariance measurements, satellite imagery, and global meteorological
data [21]. This method is capable of producing reasonable carbon estimate in natural area or
agriculture fields. When applied to urban areas, however, the characteristics of the built
environment (e.g. urban morphology) are largely missing in the existing data fusion models,
leading to large uncertainties in final data product. On the other hand, for urban CO> estimate,
spatial gridded datasets are mostly focused on anthropogenic emissions exclusively, such as
traffic emissions, power generation, cement production, etc. [22-24], leaving the biogenic carbon

exchange unaccounted.
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Given its dynamic complexity, up to date the quantification of urban carbon exchange
largely resorts to observational dataset [18-20, 25], while physically based modeling remains at
its infancy. Only until very recently, attempts have been made to incorporate CO> transport into
single-layer urban canopy models (UCMs) [26, 27]. This family of UCMs provides a versatile
and reasonably realistic modeling framework for parameterizing surface processes of heat,
moisture, and scalar transport in the built environment [28-31]. By incorporating the CO»
exchange in UCMs, the coupled modeling framework enables us to capture the interactions of
dynamic transport of urban carbon emission and the local hydroclimate. In particular, the model
developed by Goret et al. [26] has been focused on anthropogenic carbon release. In contrast, the
model developed by Li and Wang [27] (hereafter referred to as the coupled UCM-CO; model) is
more comprehensive with emphasize on plant physiological response to the urban environment.
Both models have been extensively calibrated and evaluated against field observation of urban
CO: emissions at specific cities. Nevertheless, uncertainties in the parameter space of the
coupled UCM-CO:2 modeling framework remain unexplored and model sensitivity obscure.

It remains imperative for comprehensive sensitivity analysis to be conducted to better
characterize the parameterization schemes in the coupled UCM-CO2 model. But the conventional
sensitivity analysis, viz. by quantifying changes in model output while tuning individual input
parameters one at a time, presents numerical difficulties for this task. The major difficulties
include: (1) the large number of parameters (hence the high dimensionality of the parameter
space) in the coupled UCM-CO2 model that can be broadly grouped as urban morphology,
thermal properties of engineered materials, plant physiological properties, and soil hydrothermal

properties, hence the conventional sensitivity analysis easily falls prey to the “curse of
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dimensionality” [32], and (2) uncertainties in individual parameters inherent from variability of
locations of cities and their local climatic and environmental conditions.

To break free from these difficulties, stochastic algorithms are usually resorted to in
order to characterize parameter uncertainties and sensitivity of models involving complex system
dynamics [33]; one particular method being the subset simulation using an advanced Markov
chain Monte Carlo (MCMC) algorithm [34, 35]. Based on Bayesian inference, the MCMC
algorithm improves the efficiency in the generation of conditional samples, which is particularly
preferable for assessments of the tail of the probability distributions, viz. extreme events and risk
analysis. It also produces less autocorrelation when dealing with multi-dimensional problems
when comparing to the direct Monte Carlo (DMC) simulation. The subset simulation algorithm
has been extensively applied for advanced sensitivity study of modeling frameworks adopting
the single-layer UCM [4, 36, 37].

In this study, we characterize uncertainties in the parameter space in the newly developed
coupled UCM-CO2 model [27], and quantify the model sensitivity using the MCMC algorithm of
subset simulation. The results of numerical simulations help to unravel the interactions among
various determinants of urban carbon exchange processes, including urban morphology, soil
status, landscape properties, and plant physiological functions. The current study also
demonstrates the robustness of the new UCM-CO> model by estimating the plant dynamics
under various urban settings. Results of the proposed sensitivity analysis with quantified
uncertainties in the model parameter space will enable us to answer questions such as or how the
urban morphology influence plant uptake of CO,? Or what the co-benefit of mitigating heat and

carbon emissions is by urban greening. The quantified model sensitivity will also be helpful as to
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guide future development of modeling urban CO; exchange, or to inform urban planners and

policy makers for a better decision towards a carbon neutral city.

2 Method
2.1 The UCM-CO: model

Single-layer UCMs are widely used in land surface modeling for cities all around the
world (e.g. [38]) for its tractable parameter sensitivity [36, 39] and reliable performance [40, 41].
The historical development of UCMs was primarily focused on resolving urban land surface
energy and moisture exchanges. It was only until very recently that attempts were made in
incorporating plant physiological model and gridded CO- emission data in single-layer UCMs
for capturing carbon exchange in urban area [26, 27]. Among all possible carbon sources/sinks in
cities, the anthropogenic sources and their spatiotemporal pattern depend heavily on the
population density and human activities rather. In contrast, the physiological functions of urban
plant, especially trees, are primarily controlled by environmental conditions and their numerical
modeling presents particular challenges.

More specifically, capturing the dynamics of urban vegetation in UCMs is complicated
due to: (1) the numerical difficulty in representation of realistic tree geometry hence its
participatory role in radiative exchange inside street canyons [42, 43], (2) the complexity of plant
biophysical functions for transport of energy, moisture, and pollutants [14, 44], and (3) the lack
of comprehensive parameterization schemes of urban CO: exchange by urban vegetation.

In this study, we adopt the newly developed UCM-CO2 modeling framework [27] that
incorporates plant physiological functions in urban land surface model and prognostically solves

time-varying urban carbon fluxes arising from anthropogenic, biogenic, and soil sources/sinks
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under local micrometeorological conditions. Moreover, the model differentiates urban trees from
ground vegetation (e.g. lawns): individual plant type is subject to variable meteorological
conditions, specific to its location in the street canyons, and modeled separately with
corresponding biophysical functions of radiative heat exchange, evaporative cooling, and CO»
dynamics. In particular, urban trees are defined by crown sizes and locations in street canyons,
independent of those dimensional parameters of ground level vegetated area. The incorporation
of urban trees in the UCM is therefore representative of more realistic setting of the built
environment.

Here we briefly describe the coupled UCM-CO; model, with emphasis on the
parameterization schemes that are most relevant to carbon exchange in urban areas. More
detailed algorithms of the early development of this specific single-layer UCM for modeling
urban land surface processes of energy, moisture, and scalar transport can be found in prior
studies [17, 30, 37]. Figure 1 shows a schematic of the representative street canyon used in this
study. The built terrain is represented as a generic unit of two-dimensional (2D) street canyon,
consisting of two arrays of buildings separated by a road, with infinite longitudinal dimension.
The in-canyon transport of energy, water, and scalar fluxes are resolved separately for each sub-
facet (walls, impervious and vegetated roads, shade trees, etc.). The street canyon includes two
symmetric rows of trees with circular crown geometry for simplicity. The urban morphology is
determined by the roof width (r), road width (w), and building height (%), normalized by the total
(roof + road) width of the street canyon. The surface heterogeneity at the ground (road) level is
represented using fractions of impervious pavement (f,), vegetation (f,), and bare soil (f;), each
normalized by the road width (w), with £, + £, + f; = 1 (Fig. 1). Tree parameters are normalized by

canyon geometry: the tree crown radius 71 is normalized by road width w, the tree height 4t by
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building height, and the relative distance between tree to the near wall xr by half canyon width
(with xt = 0 the closest to the wall and xt = 1 closest to the canyon center).

Driven by micrometeorological conditions, the UCM-CO> model calculates the gross
primary production (GPP, total CO, assimilation via photosynthesis) using the An-g. method [27,

45], given as

GPP = (4, +Rd)£LAI—%], (1)

where GPP is the CO> assimilation rate at canopy level; 4, is the plant primary productivity at
leaf level; Ry is the plant dark respiration and usually calculated as a fraction of 4,,; LAl is the
leaf area index; Ky is the extinction coefficient; and Eiy represents the overall leaf density from
top to bottom of the canopy, calculated as

[ ak _PAR
-5 L ®

A +R

m d

aKXPAR}

exp(—KXLA])} —~ Ei{ TR
m d

with Ei [¢] the exponential integral and PAR the photosynthetic active radiation, representing the

amount of radiation that is able to drive photosynthesis. The leaf level primary productivity (4m)

=T
Am = Am,max [1 - exp[_gm j—J} ) (3)

where A max 1s the maximum primary productivity under high CO; concentration and sufficient

is given by

light condition; g is the stomatal conductance; C; is CO2 concentration inside of leaves; and /" is
the CO2 compensation point. Here 4, max and g, are temperature-dependent, and can be

estimated using the Q;o-type method as

V(T 1) =V G ) L exp[03(1 -7, )|} Dvex[03(7, -1) ). @)
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where Vi is the temperature-dependent variable (in this case, A max and gn); V(Tieqr) 1S generic
temperature-dependent variable; and 77 and 7> are empirical parameters for given types of plants
[45].

Soil respiration is primarily regulated by soil temperature (7%) and soil water content (6),

given as

R(T,,0) = f(O)RQ,(T))" ", )

where Rsoil and R>s are the soil respiration rate under 7 and 25 °C, respectively; T is soil
temperature in °C; f{0) is the respiration reduction function due to water stress; and Qo is a

temperature-dependent parameter, given by Kirschbaum [46] as,

QIO(T)ZeXp{IOﬂ[l—TiH )

opt
Plant respiration (R.) is evaluated empirically using
R, =(a+bLAI)6e" "), )

where a = 0.159, b =0.064, ¢ = 0.054, and Tsrer = 27.7 °C are empirical coefficients [53].
The total urban vegetation coverage is divided into fractions of ground vegetation (e.g.
lawns) and trees, denoted as £, and 4rr, respectively, as shown in Fig. 1. The urban gross primary

productivity (GPPu) and total respiration (Rt) from soil and plants are determined as

GPP, = w(4r,GPP, + f.GPP, ), ®)
and

Ry =w(f.R, +4rR. + f,R;), 9)

respectively. The subscripts U, T, G, and ‘soil’ denote parameters of urban (total), tree, grass,

and soil, respectively. The urban biogenic net ecosystem exchange (NEE, defined as the net CO»

10
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efflux) from each component, i.e. bare soil, ground level grass, and tree, is calculated separately
and then aggregated using areal means to estimate total urban CO> flux (NEEuy) as
NEE, =R, —GPP,. (10)

We followed the sign convention commonly used in the ecological literature, i.e. both R and
GPPvy are non-negative; the negative value of NEEy means a net carbon sink. For better clarity,
both ‘lower NEE’ and ‘higher GPP’ describe the actual increase in CO; uptake hereafter.

Theoretically, plants under abundant radiation, ideal temperature, and less environmental
(water, nutrition, etc.) stresses tend to have higher net CO; uptake rate, though such conditions
promote the respiration rate as well. Treating urban trees separately from the ground vegetation
therefore permits more accurate modeling to their corresponding growing environment and
capturing different plant physiological functions more realistically. More specifically, the
shading and evaporative cooling effects provided by trees alter the micrometeorological
condition in street canyon, leading to less solar radiation and lower ambient temperature at the
ground (road) level; both are unfavorable to ground vegetation. This intricate balance and trade-
off between cooling of urban environment and CO; exchange, as well as the CO> uptake and
release, need careful investigation, and are what we aim to disentangle in subsequent

simulations.

2.2 Markov chain Monte Carlo subset simulation

The conventional (and most straightforward) method to quantify the sensitivity of the
proposed UCM-CO; model, is tuned individual parameters one at a time while keep the rest of
the parameter space intact. An example is shown in Fig. 2 how the model output of NEE and its

decomposed contribution from grasses, trees and soils vary with two key model parameters, viz.

11
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the canyon aspect ratio (4/w) and the tree crown size (#1). The advantage of this method is that
the model response can be visualized intuitively with the change of the selected parameter.
However, when the parameter space grows (c.f. Table 1 for a partial list of UCM-CO> model
input parameters), the conventional sensitivity analysis is susceptible to the curse of
dimensionality: the computational cost will increase exponentially with the increase of the size
of the parameter space. In particular, it becomes extremely difficult for the conventional method
to capture or evaluate critical responses of complex modeling framework to changes in external
forcing, i.e. the occurrence of extreme events in model output with low probability of
exceedance.

In the study, we resort to the stochastic subset simulation [34, 35] based on advanced
MCMC algorithms to overcome the difficulties of conventional sensitivity analysis by, viz. (1)
avoiding the curse of dimensionality, and (2) to capture critical model responses with low
exceedance probability. Originally, the method is designed to assess the failure rate of the
extreme events in engineering dynamic problems [34, 35, 47]. Its history of evolution and
continuous expanding frontier of applications proved the subset simulation is versatile enough to
handle problem in many different branches of engineering applications, ranging from building
dynamics to environmental studies.

Here we follow a well-developed protocol of applying the subset simulation to single-
layer UCMs from prior research [4, 36, 37]. The basic principle of the subset simulation and key
procedure of its applications to our specific modeling framework of UCM-CO: are briefly
described as follows. First, we need to determine the subset of stochastic UCM-CO; model
parameters that can regulate output. Note that input parameters such as meteorological forcings

are treated as deterministic and will not subject to stochastic simulations. We then statistically

12



240  characterize uncertainties of the chosen stochastic parameters using appropriate probability

241  distribution functions (pdfs). These pdfs, given the different nature of the uncertain parameters,
242 are determined in different ways: (1) if typical field or laboratory measurements are available,
243 pdfs will be determined (partially) empirically, such as the thermal properties of engineered
244  materials, (2) reasonable estimates of the parameter distribution when direct measurements are
245  not available, e.g. distributions of the street canyon geometry or vegetation fraction, and (3)
246  reported values (or physical ranges) of parameters that are used in numerical parameterization
247  schemes, e.g. parameters of plant physiological functions, unsaturated soil moisture properties,
248  etc. In all cases, subjective judgement is required in determining pdfs of model parameters and
249  their appropriate statistics (means, standard deviations, etc.).

250 In particular, normal (Gaussian) distributions are used to describe variables such as

251  thermal properties of urban landscapes, soil properties, leaf area index (LAI), and modeling
252 parameters related to photosynthesis. Mean (most probable) values of these normal pdfs are
253 determined based on the reported values retrieved from the literature [16, 26, 30, 48] and

254  engineering handbooks [49], while the standard deviations are set as 25% of the mean values.
255  Parameters of urban morphology are described by uniform distributions to represent the roughly
256  equal probability of the presence of various urban geometry. In addition, uniform distributions
257  are used to describe minimum leaf resistance of grass and tree (7min,G, 7min,T), based on typical
258  values and ranges retrieved from the literature [45, 50, 51]. The list of the stochastic parameters
259  and the pdfs for quantifying their uncertainties are shown in Table 1.

260 To carry out the subset simulation, we then define a critical level (po), the number of
261  simulation (n) at each level, the number of levels (), and the monitored target (Y). At the initial

262  phase of simulation (level 0), direct Monte Carlo is performed where each parameter is randomly
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sampled from the prescribed distributions to generate n sets of parameters. In each run, the
simulation records the monitored output Y and rank Y in an ascending order. The sets of
parameters that produce the most extreme npo responses are marked as the seed for the next
level. The conditional posterior distribution is constructed based on the principle of Bayesian
inference, by multiply the originally prescribed distribution and the distribution fitted from the
seed. The posterior distribution from level 0 will be used as the prior distribution for generating
samples for the next level of subset simulation using MCMC algorithm (from level 1 onwards).
At level j, the exceedance probability is defined as P(Y>y;). The subset simulation proceeds
through each conditional level until the desired exceedance probability (po”) is achieved.

To quantify the sensitivity of each stochastic parameter, we adopted the index, called
Percentage Sensitivity Index (PSI) defined by [36],

_ L GEX|Y >y, |- E[X]
PSI_NZ X , (5)

where E[X] is the prescribed mean of the parameter, ); is the critical response at conditional level
j. The PSI is calculated as the arithmetical mean of the parameter values that deviated from the

prescribed value across all conditional levels.

3 Result and Discussion

To analyze the model sensitivity, the UCM-CO> model was driven using a sample set of
meteorological forcing from the eddy covariance measurement of two consecutive clear days
(2012-05-10 17:00 to 2012-05-12 17:00 local time) in Phoenix, Arizona. The weather conditions
represent the typical hot and dry climate during pre-monsoon in the southwest America (Fig. 3)
[52]. The subset simulation generates all 29 stochastic parameters (listed in Table 1) in each
realization using the MCMC procedure, sampled individually from the prescribed pdfs. For each
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realization, the model UCM-CO> model imports one set of 29 stochastic parameters and,
together with other (deterministic) ones in the parameter space, and numerically solves the
prognostic equations of heat, moisture, and carbon exchange. The model output is sampled at an
interval of 30 minutes. The first 7 hours of simulations were used as the spin-up period of the
model to achieve the energy balance of canyon subfacets. After the spin-up, results of a complete
diurnal cycle (2012-05-11 00:00 to 2012-05-12 00:00 local time) were selected for subsequent
analysis, with the effect of initial conditions adequately damped.

In all subsequent simulations, we use a conditional probability of po = 0.1 and run 500
samples at the initial level and 450 samples in higher levels until the target exceedance
probability 10~* (representing the extreme events of one out of 10,000) is attained. The
monitored model output, viz. the target Y, include the hourly peak and diurnal cumulative values
of urban biogenic net ecosystem exchange (NEEu), urban gross primary production (GPPy), and
total respiration (Rt), respectively. For each output, we conduct and sample an ensemble of 40
runs, each containing 1400 realization of a parameter space of 29 stochastic parameters, for

subsequent analysis.

3.1 The peak hourly CO2 exchange

We first evaluate the strength of carbon fixation by the CO» uptake rate at the peak hour.
The results of exceedance probability of monitored model output and the corresponding model
sensitivity in terms of PSI values are shown in Figs. 4a and 5, respectively. The threshold values

of maximum hourly NEE responding to the exceedance probability of 10~!, 10~2, and 10~

response are —3.0 mg m—2s~!, —-5.4 mg m~2s~!, and —7.6 mg m2s~!, respectively (Fig. 4a). The

hourly GPP is constantly lower than the hourly NEE at each conditional level (Fig. 4a). The key
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factors that enhance the CO» uptake are canyon width (w), tree crown size (rr), tree height (A7),
initial soil moisture (6;), and tree leaf area index (LAlr), with PSI values greater than 10% (Fig.
5). It is noteworthy that these parameters promote the CO» uptake via different pathways. For
example, wider canyon width, larger tree crown, and denser leaves all tend to increase the
biomass of tree, while taller trees lead to lower NEE since they are less shaded by canyon walls.
The importance of irrigation is also underscored in the simulations, as to maintain the initial (half
saturated) soil moisture ;. At the NEE (or GPP) peak hours, plant needs to open stomata to
absorb CO2, meanwhile lose water passively. Once feeling water stress, plant will close the
stomata to conserve water, thus reduce the CO; uptake rate.

Thermal properties of urban landscape materials are important to regulate the thermal
environment (temperature and heat fluxes) in the UCM, as reported in prior study [36]. In
contrast, they are found to be relatively insignificant in this study, with PSI values less than 5%,
to influence CO: exchange in the built environment. The impact of thermal properties are
indirect: their variability leads to changes in the ambient temperature and radiative heat flux that,
in turn, alter the physiological functions of plants; the latter are less sensitive to thermal
conditions due to their broad adaptability. In comparison, the fraction of vegetation plays a direct
role in enhancing the carbon exchange in urban areas, the increase in both LAlIr and LAlg lead
to higher NEE and GPP (Fig. 5).

One interesting finding is that the presence of urban trees, being effective in ameliorating
the urban thermal environment (e.g. UHI mitigation) via shading and evaporative cooling, on the
other hand offsets the enhancement of CO; uptake by a warmer environment. Among all species-
dependent parameters in photosynthesis modeling (Table 1), the hourly peak CO> assimilation

rate is most sensitive to 7min,T, indicating the minimum leaf resistance is a key parameter in CO»
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uptake modeling, especially at fine temporal resolution. The model sensitivity to 7min,T 1S
diminished when considering the daily CO, exchange (to be discussed in Section 3.2).

In the UCM-CO; modeling framework, as well as in many real urban settings, urban trees
usually have a higher biomass density and more rapid CO; uptake rate than their counterpart of
ground vegetation. In addition, urban trees (especially crowns) benefit from their higher location
in street canyons, thus receiving more solar energy than ground level vegetation. This urban
physics is manifest in the results of our simulations in Fig. 5, where we found the model
sensitivity of peak hour output is dominated by tree parameters: Parameters denoting ground
vegetation (grass), viz. f,, LAlg, and rmin,G, are not as sensitive as those parameters of trees (7T,
LAIt, 7min,T).

To maximize net CO; uptake, total respiration (sum of the respiration from grass, tree,
and soil) needs to be suppressed while promoting the CO assimilation rate. However, in most
cases, the rate of photosynthesis and respiration are positively related as they partially shared the
series of biochemical reactions inside of the plants. In the numerical simulation, higher initial
soil moisture (more irrigation) will promote GPP and Ry« in the same time since it provides a
favored growing condition for plant as well as the microbes in soil. Nevertheless, our numerical
simulations identified some parameters that have opposite effect on the plant and soil carbon
dynamics, the soil fraction (fs) being the critical one. The soil fraction played a vital role in CO2
budget as microbes in bare soil could be the largest carbon source in urban street canyon [27]. A
larger fraction of bare soil in urban areas competes for available space for vegetation, hence
reduce the CO; sink strength of plants while releasing more CO; into the atmosphere. The other
parameter that has the opposite effect is the tree height /47: taller trees enhance the plant carbon

uptake but suppress total respiration.
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3.2 The diurnal cumulative CO2 exchange

In a diurnal cycle, the CO> exchange is most active from noon to early afternoon with the
optimal growing conditions during this time window (if without water stress). However, in hot
environment, the excessive high temperature will force plant to close the stomata, thus lower the
photosynthesis rate. The situation is not manifest when only examining the peak hour model
output in Section 3.1. In this section, we further exam the model output of the diurnal cumulative
(daily) CO2 budgets and probe into the sensitivity to parameter uncertainties.

Figure 4b shows the critical response of daily NEE, GPP and Rt with the corresponding
exceedance probability. Daily NEE can be positive (net CO2 source) when the respiration is high.
A sharp decrease of NEE is observed when the exceedance probability is greater than 0.7,
making the daily NEE negative (net CO2 sink) for most of urban scenarios. Daily CO» exchanges
(NEEu, GPPu and Rt) exhibit steady changes with the increase of exceedance probability,
which are similar to the peak hourly CO> exchanges at smaller exceedance probabilities.

The results of sensitivity analysis in terms of PSI for daily cumulative carbon exchange
are shown in Fig. 6. In general, the model sensitivity to most parameters remains roughly for the
diurnal average output as compared to hourly peaks, indicating the over robustness of the UCM-
COz modeling framework and common characteristics of model physics at different time scales.
For example, the diurnal urban carbon dynamics remain relatively insensitive to all thermal
properties. In addition, the soil fraction f; plays similar role in regulating the plant carbon
exchange (negative correlation) and total respiration (positive) at the daily scale.

Nevertheless, there are some noticeable differences in the model sensitivity to some

parameters at the diurnal scale (Fig. 6) in comparison to the peak hourly output (Fig. 5). Firstly,
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the average absolute values of PSI for the daily NEE across the entire parameter space is smaller
than that for the peak hourly NEE (8.0% vs 5.2%), indicating a decrease in overall model
sensitivity when aggregated over longer time span. Secondly, the relative sensitivity among the
parameter space has altered. The vegetation fraction (f,) out-weighted tree parameters (1 and
ht), LAI values, initial soil moisture, and canyon building height (%), becoming the second most
sensitive parameter in the test. The increase of £, reduces the coverage of bare soil or paved
surfaces, providing greater biomass for CO; assimilation while shrinking the soil respiration.
Besides, the modeling parameter, rmin,T, 1S not sensitive to the daily NEE, though showing a high
PSI value in terms of the peak hourly NEE. Comparing to the other physical parameters in the
UCM-CO2 model, the model parameters of plant, such as rmin,t, admit less clear physical
interpretation. In general, it is preferred that the uncertainty of these parameters of plant
physiological functions, mostly empirically based, should be mitigated to improve the robustness
of predicting urban carbon dynamics.

In Fig. 6, the PSI value of tree crown radius (71) becomes negative in terms of daily NEE,
though the magnitude is small (—2.2%), (the value is significantly positive in peak hourly NEE
output, c.f. Fig. 5) This change reflects that an excessive increase in urban tree biomass tends to
deteriorate the growing condition and physiological functions of the ground vegetation, primarily
due to the tree shading effect. It is noteworthy that 7 is also negatively correlated to the daily
total respiration rate, with a PSI of —16.5%. As soil and plant respirations are strongly
(positively) correlated to the ambient temperature near the canyon ground, the cooling effect
induced by tree shading at the ground level also reduces the respiration rate, thus decrease the

average NEE over the diurnal cycle.
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3.3 Implications of the sensitivity analysis

The main findings from the results of sensitivity analysis, as discussed above, are
quantitatively consistent to those reported, albeit scattered, in the literature. In addition, the
uncertainty characterization and results of sensitivity analysis can provide important guideline to
future development of the coupled UCM-CO> model. One important application is to use PSI to
inform model calibration by focusing on the critical subset of parameters (e.g. those of urban
vegetation) for capturing more realistic urban carbon dynamics. Though focusing on the CO;
exchange, results of subset simulations also reveal complex interplay among urban morphology,
vegetation dynamics, thermal environment, and possible planning strategies, and have important
implications to sustainable urban development and the co-benefits of mitigating heat and carbon
emissions. These implications include: (1) certain urban morphology, in particular lower
building heights and/or wider streets, can help to strengthen plant physiological functions as
carbon sinks but also increase total respiration rate; (2) replacing bare soil fraction in urban areas
by green vegetation, using either lawns or trees, appears to be very desirable for urban planning
as to mitigate both heat and carbon emissions; and (3) one particular urban greening strategy,
viz. the plantation of tall urban trees with larger crown sizes, emerges as the most effective
means in reducing peak carbon emission and suppressing soil respiration. Trees with too large
crown sizes, however, can sometimes lead to unintended consequence of suppressing
photosynthesis of grass at the ground level and reduce the overall carbon uptake capacity by

urban vegetation.

4 Concluding remarks
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423 In this study, we characterized the uncertainty of the parameter space and conducted a
424  sensitivity analysis of a newly developed UCM-CO> model (Li and Wang, 2020) using the

425  subset simulation. In particular, we focused on the dynamics of plant CO; exchange by

426  monitoring the model output of peak hourly and daily cumulative carbon fluxes in terms of net
427  ecosystem exchange, gross primary productivity, and total respiration. It is noteworthy that the
428  UCM-CO; model is capable of resolving the anthropogenic heat and CO» fluxes arising from
429 traffic emissions and building operations based on gridded dataset. The anthropogenic heat and
430  carbon emissions can affect the growing conditions of urban vegetation by altering the

431  concentration of trace gases, thermal environment, particle deposition, and flow field in the
432 urban canopy layer. On the other hand, the modified plant physiological functions and the

433 concomitant changes in the urban thermal environment and carbon concentration can, in turn,
434  regulate anthropogenic heat and carbon emissions. Disentangling this two-way interaction

435  between anthropogenic and biogenic sources of heat and carbon emissions remains an

436  outstanding challenge and calls for further development of more sophisticated urban modeling
437  frameworks.

438 From the results of the sensitivity study, urban morphology, urban vegetation fraction and
439  geometry (especially those of trees), and soil fraction, are of pivotal importance in determining
440  the prediction of urban carbon dynamics. In contrast, thermal parameters of urban landscapes,
441  albeit being critical in regulating the thermal environment of urban areas, have indirect and
442  relatively insignificant influence on carbon dynamics. As biophysical functions of urban

443  vegetation play a critical role in modulating both heat and carbon emissions, they also exhibit
444  complex interactions with the built environment in the urban surface layer. While the current

445  study shade some lights on this aspect, it remains an outstanding challenge for future UCM-CO
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modeling development to further disentangle the interactions of anthropogenic and biogenic
processes, as well as to promote sustainable urban development strategies that maximize the co-

benefits of mitigating heat and carbon emissions and improve the overall environmental quality.
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456  Table 1. Statistics of selected uncertain parameters. The unit of leaf resistance is in mm s~!. The

457  unit of thermal conductivity and heat capacity are W m~' K~! and MJ m= K-, respectively. The

458  other parameters are dimensionless.

Parameter PDF Mean  Std. Min. Max.
Canyon geometry
w Normalized road width Uniform  0.425 0.05 0.8
h Normalized building height Uniform 0.8 0.1 1.5
Soil properties
fs Bare soil fraction Uniform  0.275 0.05 0.5
s Saturation soil moisture Normal  0.35 0.0875 0.15 0.55
0, Residual soil moisture Normal  0.06 0.015  0.02 0.1
Plant properties
1 Vegetated fraction Uniform  0.275 0.05 0.5
rr Normalized tree crown radius Uniform  0.07 0.02 0.12
ht Normalized tree height Uniform  0.625 0.25 1
XT Normalized tree location Uniform 0.5 0 1
LAl  Grass - leaf area index Normal 2.5 1 1.00 5.00
LAIr  Tree - leaf area index Normal 4 1 1.50 6.50
0; Initial soil moisture Uniform  0.19 0.08 0.3
Photosynthesis modeling
CF PAR conversion factor Normal 0.5 0.125 0.3 0.7
Kxr Tree - LAI extinction coefficient Normal  0.48 0.12 0.28 0.68
FminT  Tree - minimum leaf resistance Uniform 175 150 200
Kxg Grass - LAI extinction coefficient Normal  0.48 0.12 0.28 0.68
rming  Grass - minimum leaf resistance Uniform 205 180 230
Subfacet thermal properties
aW Albedo - wall Normal 0.17 0.04 0.06 0.28
aG Albedo - paved Normal  0.125 0.03 0.05 0.20
aG Albedo - bare soil Normal 0.2 0.05 0.08 0.33
aGs Albedo - vegetated Normal 0.2 0.05 0.08 0.33
kw Thermal conductivity - wall Normal  0.12 0.03 0.05 0.20
kG| Thermal conductivity - paved Normal 1.5 0.38 0.56 2.44
kG Thermal conductivity - bare soil Normal  0.65 0.16 0.24 1.06
kG3 Thermal conductivity - vegetated Normal  0.22 0.06 0.08 0.36
cW Heat capacity - wall Normal 2.3 0.58 0.86 3.74
cGi Heat capacity - paved Normal 0.9 0.23 0.34 1.46
cG, Heat capacity - bare soil Normal 1.7 0.43 0.64 2.76
cGs Heat capacity - vegetated Normal 1 0.25 0.38 1.63
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463

Figure 1. Representative urban street canyon used in the coupled UCM-CO> model. 4, r, w, hT,
r1, and xt are the normalized building height, building roof width, street width, tree height, tree
crown radius, and tree location, respectively. f;, f», and f, are the normalized bare soil fraction,

pavement fraction, and vegetation fraction of the canyon ground, respectively.
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Figure 2. The variation of (a) NEE over urban area (NEEy), (b) Soil respiration per urban area

(Rs = wfsRsoi1), (c) NEE from tall trees (NEET), and (d) NEE from ground vegetation (NEEg) in

terms of the change in normalized tree crown radius (1) and canyon aspect ratio (4/w).
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Figure 3. Atmospheric forcing used in subset simulation measured at west of downtown Phoenix

in 2012 (33.483847°N,112.142609°W). (a) Downwelling radiations; (b) Air temperature and

windspeed; (c¢) COz concentration and air density. Time showed in the figure is local time (UTC

-7). Only the results during the shaded period are discussed in the study, while the non-shaded
period is used for quality control. A detail description of the measurement site can be found in

Chow et al. (2014).
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