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Abstract 1 

The dynamics of carbon dioxide (CO2) exchange in the built environment, coupled with 2 

local microclimate modeling, is of critical importance to the understanding of emergent patterns 3 

of longterm urban climate evolution. In addition to the complex model physics, the difficulty is 4 

outstanding to characterize uncertainties inherited in the parameter space and its impact on the 5 

model performance and predictive skills. In this study, we conducted a series of numerical 6 

simulations based on advanced Markov chain Monte Carlo algorithms to quantify the sensitivity 7 

of a recently developed modeling framework by coupling the dynamics of CO2 transport into a 8 

single-layer urban canopy model. The results show that urban morphology (canyon aspect ratio), 9 

irrigation, and the physiological properties of urban vegetation predominate the processes of 10 

plant CO2 exchange in the built environment. In contrast, the CO2 budget is relatively insensitive 11 

to material properties of urban facets in the built environment. The findings in this study can help 12 

to unravel the interplay of urban carbon dynamics and the built environment, as well as to inform 13 

researchers and policy makers for sustainable urban development towards a low carbon city.  14 

 15 

Keywords: Carbon exchange; Markov chain Monte Carlo; Model sensitivity; Plant physiology; 16 

Soil respiration; Urban environment  17 
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1 Introduction 18 

Globally, urban areas cover approximately 3% of global land surface area but contribute 19 

~70% of anthropogenic carbon dioxide (CO2) emissions mainly through fossil fuel burning [1]. 20 

The carbon dynamics of urban areas entices complex interplay among anthropogenic and 21 

biospheric processes [2] via multiscale land-atmosphere interactions. Local urban microclimates 22 

modify the overlying urban boundary layer dynamics, such as the boundary layer height and 23 

thermal stratification [3, 4] which in turn impacts the spatio-temporal patterns of CO2 variability 24 

over built terrains. For example, the transportation network of a city leads to enhanced CO2 flux 25 

due to vehicular emissions, whereas on the other hand, the excessive heating over paved road 26 

surfaces contributes to raise the height of mixing layer and reduce the CO2 concentration in the 27 

overlying atmosphere. 28 

Among various sources and sinks of CO2 exchange, urban vegetation, e.g. green roofs, 29 

street trees, urban lawns, golf courses, backyard gardens, etc., and their physiological functions 30 

emerge as the most challenging component for numerical modeling. Urban vegetation behaves 31 

distinctively from plants in the natural environment, primarily due to their peculiar growing 32 

conditions in the built environment. It is noteworthy that urban areas usually furnish favorable 33 

conditions for plant growth and physiological functions, because in cities: 1) warmer ambient 34 

temperatures, e.g. those due to the prominent urban heat island effect, allow urban plants to 35 

maintain a higher photosynthesis rate and a longer growing period [5-7]; 2) regular maintenance 36 

practices, such as irrigation and fertilization, relieve much of environmental stresses for plant 37 

growth [8]; and 3) the elevated CO2 level forms a natural CO2 pump, promoting the carbon 38 

assimilation rate [9, 10].  39 
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Among urban vegetation, urban trees have the most sophisticated biophysical functions, 40 

partially due to the complexity of their geometry (three dimensional as compared the planar 41 

distribution of grasses). Previous studies have found that the presence of street trees significantly 42 

alter the microclimate and the heat and moisture re-distribution in the urban canyon, including 43 

the change of surface energy balance [11], the reduction of thermal discomfort [12, 13], and 44 

weakening the passive pollutant dispersion [14], to name a few. In particular, urban trees 45 

influence CO2 dynamics in counteracting ways: they are effective carbon sinks via 46 

photosynthesis, but meanwhile can also create unfavorable growing conditions for shaded 47 

ground vegetation (e.g. lawns). The shading effect tends to intercept solar radiation for 48 

photosynthesis and lower the ground level temperature [15-17], hence reduces the carbon uptake 49 

via ground vegetation by impeding their physiological functions.  50 

The complex interplay between carbon dynamics and anthropogenic activities in urban 51 

areas can be partially captured in field measurements at sub-urban scale, e.g. flux towers 52 

deployed in different cities [18-20]. In addition, regional CO2 exchange can be quantified via 53 

data fusion. For example, FluxCom uses machine learning algorithm to estimate global CO2 flux 54 

by fusing in-situ eddy covariance measurements, satellite imagery, and global meteorological 55 

data [21]. This method is capable of producing reasonable carbon estimate in natural area or 56 

agriculture fields. When applied to urban areas, however, the characteristics of the built 57 

environment (e.g. urban morphology) are largely missing in the existing data fusion models, 58 

leading to large uncertainties in final data product. On the other hand, for urban CO2 estimate, 59 

spatial gridded datasets are mostly focused on anthropogenic emissions exclusively, such as 60 

traffic emissions, power generation, cement production, etc. [22-24], leaving the biogenic carbon 61 

exchange unaccounted.  62 
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Given its dynamic complexity, up to date the quantification of urban carbon exchange 63 

largely resorts to observational dataset [18-20, 25], while physically based modeling remains at 64 

its infancy. Only until very recently, attempts have been made to incorporate CO2 transport into 65 

single-layer urban canopy models (UCMs) [26, 27]. This family of UCMs provides a versatile 66 

and reasonably realistic modeling framework for parameterizing surface processes of heat, 67 

moisture, and scalar transport in the built environment [28-31]. By incorporating the CO2 68 

exchange in UCMs, the coupled modeling framework enables us to capture the interactions of 69 

dynamic transport of urban carbon emission and the local hydroclimate. In particular, the model 70 

developed by Goret et al. [26] has been focused on anthropogenic carbon release. In contrast, the 71 

model developed by Li and Wang [27] (hereafter referred to as the coupled UCM-CO2 model) is 72 

more comprehensive with emphasize on plant physiological response to the urban environment. 73 

Both models have been extensively calibrated and evaluated against field observation of urban 74 

CO2 emissions at specific cities. Nevertheless, uncertainties in the parameter space of the 75 

coupled UCM-CO2 modeling framework remain unexplored and model sensitivity obscure.  76 

It remains imperative for comprehensive sensitivity analysis to be conducted to better 77 

characterize the parameterization schemes in the coupled UCM-CO2 model. But the conventional 78 

sensitivity analysis, viz. by quantifying changes in model output while tuning individual input 79 

parameters one at a time, presents numerical difficulties for this task. The major difficulties 80 

include: (1) the large number of parameters (hence the high dimensionality of the parameter 81 

space) in the coupled UCM-CO2 model that can be broadly grouped as urban morphology, 82 

thermal properties of engineered materials, plant physiological properties, and soil hydrothermal 83 

properties, hence the conventional sensitivity analysis easily falls prey to the “curse of 84 
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dimensionality” [32], and (2) uncertainties in individual parameters inherent from variability of 85 

locations of cities and their local climatic and environmental conditions.  86 

To break free from these difficulties,  stochastic algorithms are usually resorted to in 87 

order to characterize parameter uncertainties and sensitivity of models involving complex system 88 

dynamics [33]; one particular method being the subset simulation using an advanced Markov 89 

chain Monte Carlo (MCMC) algorithm [34, 35]. Based on Bayesian inference, the MCMC 90 

algorithm improves the efficiency in the generation of conditional samples, which is particularly 91 

preferable for assessments of the tail of the probability distributions, viz. extreme events and risk 92 

analysis. It also produces less autocorrelation when dealing with multi-dimensional problems 93 

when comparing to the direct Monte Carlo (DMC) simulation. The subset simulation algorithm 94 

has been extensively applied for advanced sensitivity study of modeling frameworks adopting 95 

the single-layer UCM [4, 36, 37]. 96 

In this study, we characterize uncertainties in the parameter space in the newly developed 97 

coupled UCM-CO2 model [27], and quantify the model sensitivity using the MCMC algorithm of 98 

subset simulation. The results of numerical simulations help to unravel the interactions among 99 

various determinants of urban carbon exchange processes, including urban morphology, soil 100 

status, landscape properties, and plant physiological functions. The current study also 101 

demonstrates the robustness of the new UCM-CO2 model by estimating the plant dynamics 102 

under various urban settings. Results of the proposed sensitivity analysis with quantified 103 

uncertainties in the model parameter space will enable us to answer questions such as or how the 104 

urban morphology influence plant uptake of CO2? Or what the co-benefit of mitigating heat and 105 

carbon emissions is by urban greening. The quantified model sensitivity will also be helpful as to 106 
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guide future development of modeling urban CO2 exchange, or to inform urban planners and 107 

policy makers for a better decision towards a carbon neutral city.  108 

 109 

2 Method 110 

2.1 The UCM-CO2 model  111 

Single-layer UCMs are widely used in land surface modeling for cities all around the 112 

world (e.g. [38]) for its tractable parameter sensitivity [36, 39] and reliable performance [40, 41]. 113 

The historical development of UCMs was primarily focused on resolving urban land surface 114 

energy and moisture exchanges. It was only until very recently that attempts were made in 115 

incorporating  plant physiological model and gridded CO2 emission data in single-layer UCMs 116 

for capturing carbon exchange in urban area [26, 27]. Among all possible carbon sources/sinks in 117 

cities, the anthropogenic sources and their spatiotemporal pattern depend heavily on the 118 

population density and human activities rather. In contrast, the physiological functions of urban 119 

plant, especially trees, are primarily controlled by environmental conditions and their numerical 120 

modeling presents particular challenges.  121 

More specifically, capturing the dynamics of urban vegetation in UCMs is complicated 122 

due to: (1) the numerical difficulty in representation of realistic tree geometry hence its 123 

participatory role in radiative exchange inside street canyons [42, 43], (2) the complexity of plant 124 

biophysical functions for transport of energy, moisture, and pollutants [14, 44], and (3) the lack 125 

of comprehensive parameterization schemes of urban CO2 exchange by urban vegetation.  126 

In this study, we adopt the newly developed UCM-CO2 modeling framework [27] that 127 

incorporates plant physiological functions in urban land surface model and prognostically solves 128 

time-varying urban carbon fluxes arising from anthropogenic, biogenic, and soil sources/sinks 129 
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under local micrometeorological conditions. Moreover, the model differentiates urban trees from 130 

ground vegetation (e.g. lawns): individual plant type is subject to variable meteorological 131 

conditions, specific to its location in the street canyons, and modeled separately with 132 

corresponding biophysical functions of radiative heat exchange, evaporative cooling, and CO2 133 

dynamics. In particular, urban trees are defined by crown sizes and locations in street canyons, 134 

independent of those dimensional parameters of ground level vegetated area. The incorporation 135 

of urban trees in the UCM is therefore representative of more realistic setting of the built 136 

environment.  137 

Here we briefly describe the coupled UCM-CO2 model, with emphasis on the 138 

parameterization schemes that are most relevant to carbon exchange in urban areas. More 139 

detailed algorithms of the early development of this specific single-layer UCM for modeling 140 

urban land surface processes of energy, moisture, and scalar transport can be found in prior 141 

studies [17, 30, 37]. Figure 1 shows a schematic of the representative street canyon used in this 142 

study. The built terrain is represented as a generic unit of two-dimensional (2D) street canyon, 143 

consisting of two arrays of buildings separated by a road, with infinite longitudinal dimension. 144 

The in-canyon transport of energy, water, and scalar fluxes are resolved separately for each sub-145 

facet (walls, impervious and vegetated roads, shade trees, etc.). The street canyon includes two 146 

symmetric rows of trees with circular crown geometry for simplicity. The urban morphology is 147 

determined by the roof width (r), road width (w), and building height (h), normalized by the total 148 

(roof + road) width of the street canyon. The surface heterogeneity at the ground (road) level is 149 

represented using fractions of impervious pavement (fp), vegetation (fv), and bare soil (fs), each 150 

normalized by the road width (w), with fp + fv + fs = 1 (Fig. 1). Tree parameters are normalized by 151 

canyon geometry: the tree crown radius rT is normalized by road width w, the tree height hT by 152 
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building height, and the relative distance between tree to the near wall xT by half canyon width 153 

(with xT = 0 the closest to the wall and xT = 1 closest to the canyon center).  154 

 Driven by micrometeorological conditions, the UCM-CO2 model calculates the gross 155 

primary production (GPP, total CO2 assimilation via photosynthesis) using the An-gc method [27, 156 

45], given as  157 

 ( ) intGPP m d

x

E
A R LAI

K

 
= + − 

 
,  (1) 158 

where GPP is the CO2 assimilation rate at canopy level; Am is the plant primary productivity at 159 

leaf level; Rd is the plant dark respiration and usually calculated as a fraction of Am; LAI is the 160 

leaf area index; Kx is the extinction coefficient; and Eint represents the overall leaf density from 161 

top to bottom of the canopy, calculated as 162 
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with Ei [•] the exponential integral and PAR the photosynthetic active radiation, representing the 164 

amount of radiation that is able to drive photosynthesis. The leaf level primary productivity (Am) 165 

is given by 166 

 ,max
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where Am,max is the maximum primary productivity under high CO2 concentration and sufficient 168 

light condition; gm is the stomatal conductance; Ci is CO2 concentration inside of leaves; and Γ is 169 

the CO2 compensation point. Here Am,max and gm are temperature-dependent, and can be 170 

estimated using the Q10-type method as 171 

 ( )  ( ) 
1 1

1 2 1 2( , , ) ( ) 1 exp 0.3 1 exp 0.3k leaf leaf leaf leafV T T T V T T T T T
− −
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where Vk is the temperature-dependent variable (in this case, Am,max and gm); V(Tleaf) is generic 173 

temperature-dependent variable; and T1 and T2 are empirical parameters for given types of plants 174 

[45].  175 

 Soil respiration is primarily regulated by soil temperature (Ts) and soil water content (θ), 176 

given as 177 

 
( 25)/10

soil 25 10( , ) ( ) ( ) sT

s sR T f R Q T  −
= ,  (5) 178 

where Rsoil and R25 are the soil respiration rate under Ts and 25 oC, respectively; Ts is soil 179 

temperature in oC; f(θ) is the respiration reduction function due to water stress; and Q10 is a 180 

temperature-dependent parameter, given by Kirschbaum [46] as, 181 

 10 ( ) exp 10 1
opt

T
Q T

T


  
= −   

   

.  (6) 182 

Plant respiration (Re) is evaluated empirically using  183 

 ( ) ( ),ref

10

s sc T T

eR a bLAI e
−

= + ,  (7) 184 

where a = 0.159, b = 0.064, c = 0.054, and Ts,ref  = 27.7 oC are empirical coefficients [53]. 185 

The total urban vegetation coverage is divided into fractions of ground vegetation (e.g. 186 

lawns) and trees, denoted as fv and 4rT, respectively, as shown in Fig. 1. The urban gross primary 187 

productivity (GPPU) and total respiration (Rtot) from soil and plants are determined as 188 

 ( )U T T GGPP 4 GPP GPPvw r f= + ,  (8) 189 

and 190 

 ( )tot soil T T G4s vR w f R r R f R= + + ,  (9) 191 

respectively. The subscripts U, T, G, and ‘soil’ denote parameters of urban (total), tree, grass, 192 

and soil, respectively. The urban biogenic net ecosystem exchange (NEE, defined as the net CO2 193 
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efflux) from each component, i.e. bare soil, ground level grass, and tree, is calculated separately 194 

and then aggregated using areal means to estimate total urban CO2 flux (NEEU) as 195 

 U UNEE GPPtotR= − .  (10) 196 

We followed the sign convention commonly used in the ecological literature, i.e. both Rtot and 197 

GPPU are non-negative; the negative value of NEEU means a net carbon sink. For better clarity, 198 

both ‘lower NEE’ and ‘higher GPP’ describe the actual increase in CO2 uptake hereafter. 199 

Theoretically, plants under abundant radiation, ideal temperature, and less environmental 200 

(water, nutrition, etc.) stresses tend to have higher net CO2 uptake rate, though such conditions 201 

promote the respiration rate as well. Treating urban trees separately from the ground vegetation 202 

therefore permits more accurate modeling to their corresponding growing environment and 203 

capturing different plant physiological functions more realistically. More specifically, the 204 

shading and evaporative cooling effects provided by trees alter the micrometeorological 205 

condition in street canyon, leading to less solar radiation and lower ambient temperature at the 206 

ground (road) level; both are unfavorable to ground vegetation. This intricate balance and trade-207 

off between cooling of urban environment and CO2 exchange, as well as the CO2 uptake and 208 

release, need careful investigation, and are what we aim to disentangle in subsequent 209 

simulations.  210 

 211 

2.2 Markov chain Monte Carlo subset simulation 212 

The conventional (and most straightforward) method to quantify the sensitivity of the 213 

proposed UCM-CO2 model, is tuned individual parameters one at a time while keep the rest of 214 

the parameter space intact. An example is shown in Fig. 2 how the model output of NEE and its 215 

decomposed contribution from grasses, trees and soils vary with two key model parameters, viz. 216 
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the canyon aspect ratio (h/w) and the tree crown size (rT).  The advantage of this method is that 217 

the model response can be visualized intuitively with the change of the selected parameter. 218 

However, when the parameter space grows (c.f. Table 1 for a partial list of UCM-CO2 model 219 

input parameters), the conventional sensitivity analysis is susceptible to the curse of 220 

dimensionality: the computational cost will increase exponentially with the increase of the size 221 

of the parameter space. In particular, it becomes extremely difficult for the conventional method 222 

to capture or evaluate critical responses of complex modeling framework to changes in external 223 

forcing, i.e. the occurrence of extreme events in model output with low probability of 224 

exceedance.  225 

In the study, we resort to the stochastic subset simulation [34, 35] based on advanced 226 

MCMC algorithms to overcome the difficulties of conventional sensitivity analysis by, viz. (1) 227 

avoiding the curse of dimensionality, and (2) to capture critical model responses with low 228 

exceedance probability. Originally, the method is designed to assess the failure rate of the 229 

extreme events in engineering dynamic problems [34, 35, 47]. Its history of evolution and 230 

continuous expanding frontier of applications proved the subset simulation is versatile enough to 231 

handle problem in many different branches of engineering applications, ranging from building 232 

dynamics to environmental studies. 233 

Here we follow a well-developed protocol of applying the subset simulation to single-234 

layer UCMs from prior research [4, 36, 37]. The basic principle of the subset simulation and key 235 

procedure of its applications to our specific modeling framework of UCM-CO2 are briefly 236 

described as follows. First, we need to determine the subset of stochastic UCM-CO2 model 237 

parameters that can regulate output. Note that input parameters such as meteorological forcings 238 

are treated as deterministic and will not subject to stochastic simulations.  We then statistically 239 
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characterize uncertainties of the chosen stochastic parameters using appropriate probability 240 

distribution functions (pdfs). These pdfs, given the different nature of the uncertain parameters, 241 

are determined in different ways: (1) if typical field or laboratory measurements are available, 242 

pdfs will be determined (partially) empirically, such as the thermal properties of engineered 243 

materials, (2) reasonable estimates of the parameter distribution when direct measurements are 244 

not available, e.g. distributions of the street canyon geometry or vegetation fraction, and (3) 245 

reported values (or physical ranges) of parameters that are used in numerical parameterization 246 

schemes, e.g. parameters of plant physiological functions, unsaturated soil moisture properties, 247 

etc. In all cases, subjective judgement is required in determining pdfs of model parameters and 248 

their appropriate statistics (means, standard deviations, etc.).  249 

In particular, normal (Gaussian) distributions are used to describe variables such as 250 

thermal properties of urban landscapes, soil properties, leaf area index (LAI), and modeling 251 

parameters related to photosynthesis. Mean (most probable) values of these normal pdfs are 252 

determined based on the reported values retrieved from the literature [16, 26, 30, 48] and 253 

engineering handbooks [49], while the standard deviations are set as 25% of the mean values. 254 

Parameters of urban morphology are described by uniform distributions to represent the roughly 255 

equal probability of the presence of various urban geometry. In addition, uniform distributions 256 

are used to describe minimum leaf resistance of grass and tree (rmin,G, rmin,T), based on typical 257 

values and ranges retrieved from the literature [45, 50, 51]. The list of the stochastic parameters 258 

and the pdfs for quantifying their uncertainties are shown in Table 1.  259 

To carry out the subset simulation, we then define a critical level (p0), the number of 260 

simulation (n) at each level, the number of levels (N), and the monitored target (Y). At the initial 261 

phase of simulation (level 0), direct Monte Carlo is performed where each parameter is randomly 262 
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sampled from the prescribed distributions to generate n sets of parameters. In each run, the 263 

simulation records the monitored output Y and rank Y in an ascending order. The sets of 264 

parameters that produce the most extreme np0 responses are marked as the seed for the next 265 

level. The conditional posterior distribution is constructed based on the principle of Bayesian 266 

inference, by multiply the originally prescribed distribution and the distribution fitted from the 267 

seed. The posterior distribution from level 0 will be used as the prior distribution for generating 268 

samples for the next level of subset simulation using MCMC algorithm (from level 1 onwards). 269 

At level j, the exceedance probability is defined as P(Y>yj). The subset simulation proceeds 270 

through each conditional level until the desired exceedance probability (p0
n) is achieved.  271 

To quantify the sensitivity of each stochastic parameter, we adopted the index, called 272 

Percentage Sensitivity Index (PSI) defined by [36], 273 

 
1

[ | ] [ ]1
PSI

[ ]

N
j

j

E X Y y E X

N E X=

 −
=  ,  (5) 274 

where E[X] is the prescribed mean of the parameter, yj is the critical response at conditional level 275 

j. The PSI is calculated as the arithmetical mean of the parameter values that deviated from the 276 

prescribed value across all conditional levels.  277 

 278 

3 Result and Discussion 279 

To analyze the model sensitivity, the UCM-CO2 model was driven using a sample set of 280 

meteorological forcing from the eddy covariance measurement of two consecutive clear days 281 

(2012-05-10 17:00 to 2012-05-12 17:00 local time) in Phoenix, Arizona. The weather conditions 282 

represent the typical hot and dry climate during pre-monsoon in the southwest America (Fig. 3) 283 

[52]. The subset simulation generates all 29 stochastic parameters (listed in Table 1) in each 284 

realization using the MCMC procedure, sampled individually from the prescribed pdfs. For each 285 
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realization, the model UCM-CO2 model imports one set of 29 stochastic parameters and, 286 

together with other (deterministic) ones in the parameter space, and numerically solves the 287 

prognostic equations of heat, moisture, and carbon exchange. The model output is sampled at an 288 

interval of 30 minutes. The first 7 hours of simulations were used as the spin-up period of the 289 

model to achieve the energy balance of canyon subfacets. After the spin-up, results of a complete 290 

diurnal cycle (2012-05-11 00:00 to 2012-05-12 00:00 local time) were selected for subsequent 291 

analysis, with the effect of initial conditions adequately damped.   292 

In all subsequent simulations, we use a conditional probability of p0 = 0.1 and run 500 293 

samples at the initial level and 450 samples in higher levels until the target exceedance 294 

probability 10−4 (representing the extreme events of one out of 10,000) is attained. The 295 

monitored model output, viz. the target Y, include the hourly peak and diurnal cumulative values 296 

of urban biogenic net ecosystem exchange (NEEU), urban gross primary production (GPPU), and 297 

total respiration (Rtot), respectively. For each output, we conduct and sample an ensemble of 40 298 

runs, each containing 1400 realization of a parameter space of 29 stochastic parameters, for 299 

subsequent analysis.  300 

 301 

3.1 The peak hourly CO2 exchange 302 

We first evaluate the strength of carbon fixation by the CO2 uptake rate at the peak hour. 303 

The results of exceedance probability of monitored model output and the corresponding model 304 

sensitivity in terms of PSI values are shown in Figs. 4a and 5, respectively. The threshold values 305 

of maximum hourly NEE responding to the exceedance probability of 10−1 , 10−2,  and 10−3 306 

response are −3.0 mg m−2 s−1, −5.4 mg m−2 s−1, and −7.6 mg m−2 s−1, respectively (Fig. 4a). The 307 

hourly GPP is constantly lower than the hourly NEE at each conditional level (Fig. 4a). The key 308 
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factors that enhance the CO2 uptake are canyon width (w), tree crown size (rT), tree height (hT), 309 

initial soil moisture (θi), and tree leaf area index (LAIT), with PSI values greater than 10% (Fig. 310 

5). It is noteworthy that these parameters promote the CO2 uptake via different pathways. For 311 

example, wider canyon width, larger tree crown, and denser leaves all tend to increase the 312 

biomass of tree, while taller trees lead to lower NEE since they are less shaded by canyon walls. 313 

The importance of irrigation is also underscored in the simulations, as to maintain the initial (half 314 

saturated) soil moisture θi. At the NEE (or GPP) peak hours, plant needs to open stomata to 315 

absorb CO2, meanwhile lose water passively. Once feeling water stress, plant will close the 316 

stomata to conserve water, thus reduce the CO2 uptake rate.  317 

Thermal properties of urban landscape materials are important to regulate the thermal 318 

environment (temperature and heat fluxes) in the UCM, as reported in prior study [36]. In 319 

contrast, they are found to be relatively insignificant in this study, with PSI values less than 5%, 320 

to influence CO2 exchange in the built environment. The impact of thermal properties are 321 

indirect: their variability leads to changes in the ambient temperature and radiative heat flux that, 322 

in turn, alter the physiological functions of plants; the latter are less sensitive to thermal 323 

conditions due to their broad adaptability. In comparison, the fraction of vegetation plays a direct 324 

role in enhancing the carbon exchange in urban areas, the increase in both LAIT and LAIG  lead 325 

to higher NEE and GPP (Fig. 5).  326 

One interesting finding is that the presence of urban trees, being effective in ameliorating 327 

the urban thermal environment (e.g. UHI mitigation) via shading and evaporative cooling, on the 328 

other hand offsets the enhancement of CO2 uptake by a warmer environment. Among all species-329 

dependent parameters in photosynthesis modeling (Table 1), the hourly peak CO2 assimilation 330 

rate is most sensitive to rmin,T, indicating the minimum leaf resistance is a key parameter in CO2 331 
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uptake modeling, especially at fine temporal resolution. The model sensitivity to rmin,T is 332 

diminished when considering the daily CO2 exchange (to be discussed in Section 3.2).  333 

In the UCM-CO2 modeling framework, as well as in many real urban settings, urban trees 334 

usually have a higher biomass density and more rapid CO2 uptake rate than their counterpart of 335 

ground vegetation. In addition, urban trees (especially crowns) benefit from their higher location 336 

in street canyons, thus receiving more solar energy than ground level vegetation. This urban 337 

physics is manifest in the results of our simulations in Fig. 5, where we found the model 338 

sensitivity of peak hour output is dominated by tree parameters: Parameters denoting ground 339 

vegetation (grass), viz. fv, LAIG, and rmin,G, are not as sensitive as those parameters of trees (rT, 340 

LAIT, rmin,T). 341 

To maximize net CO2 uptake, total respiration (sum of the respiration from grass, tree, 342 

and soil) needs to be suppressed while promoting the CO2 assimilation rate. However, in most 343 

cases, the rate of photosynthesis and respiration are positively related as they partially shared the 344 

series of biochemical reactions inside of the plants. In the numerical simulation, higher initial 345 

soil moisture (more irrigation) will promote GPP and Rtot in the same time since it provides a 346 

favored growing condition for plant as well as the microbes in soil. Nevertheless, our numerical 347 

simulations identified some parameters that have opposite effect on the plant and soil carbon 348 

dynamics, the soil fraction (fs) being the critical one. The soil fraction played a vital role in CO2 349 

budget as microbes in bare soil could be the largest carbon source in urban street canyon [27]. A 350 

larger fraction of bare soil in urban areas competes for available space for vegetation, hence 351 

reduce the CO2 sink strength of plants while releasing more CO2 into the atmosphere. The other 352 

parameter that has the opposite effect is the tree height hT: taller trees enhance the plant carbon 353 

uptake but suppress total respiration.   354 
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 355 

3.2 The diurnal cumulative CO2 exchange 356 

In a diurnal cycle, the CO2 exchange is most active from noon to early afternoon with the 357 

optimal growing conditions during this time window (if without water stress). However, in hot 358 

environment, the excessive high temperature will force plant to close the stomata, thus lower the 359 

photosynthesis rate. The situation is not manifest when only examining the peak hour model 360 

output in Section 3.1. In this section, we further exam the model output of the diurnal cumulative 361 

(daily) CO2 budgets and probe into the sensitivity to parameter uncertainties.  362 

Figure 4b shows the critical response of daily NEE, GPP and Rtot with the corresponding 363 

exceedance probability. Daily NEE can be positive (net CO2 source) when the respiration is high. 364 

A sharp decrease of NEE is observed when the exceedance probability is greater than 0.7, 365 

making the daily NEE negative (net CO2 sink) for most of urban scenarios. Daily CO2 exchanges 366 

(NEEU, GPPU and Rtot) exhibit steady changes with the increase of exceedance probability, 367 

which are similar to the peak hourly CO2 exchanges at smaller exceedance probabilities.  368 

The results of sensitivity analysis in terms of PSI for daily cumulative carbon exchange 369 

are shown in Fig. 6. In general, the model sensitivity to most parameters remains roughly for the 370 

diurnal average output as compared to hourly peaks, indicating the over robustness of the UCM-371 

CO2 modeling framework and common characteristics of model physics at different time scales. 372 

For example, the diurnal urban carbon dynamics remain relatively insensitive to all thermal 373 

properties. In addition, the soil fraction fs plays similar role in regulating the plant carbon 374 

exchange (negative correlation) and total respiration (positive) at the daily scale.  375 

Nevertheless, there are some noticeable differences in the model sensitivity to some 376 

parameters at the diurnal scale (Fig. 6) in comparison to the peak hourly output (Fig. 5). Firstly, 377 
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the average absolute values of PSI for the daily NEE across the entire parameter space is smaller 378 

than that for the peak hourly NEE (8.0% vs 5.2%), indicating a decrease in overall model 379 

sensitivity when aggregated over longer time span. Secondly, the relative sensitivity among the 380 

parameter space has altered. The vegetation fraction (fv) out-weighted tree parameters (rT and 381 

hT), LAI values, initial soil moisture, and canyon building height (h), becoming the second most 382 

sensitive parameter in the test. The increase of fv reduces the coverage of bare soil or paved 383 

surfaces, providing greater biomass for CO2 assimilation while shrinking the soil respiration. 384 

Besides, the modeling parameter, rmin,T, is not sensitive to the daily NEE, though showing a high 385 

PSI value in terms of the peak hourly NEE. Comparing to the other physical parameters in the 386 

UCM-CO2 model, the model parameters of plant, such as rmin,T, admit less clear physical 387 

interpretation. In general, it is preferred that the uncertainty of these parameters of plant 388 

physiological functions, mostly empirically based, should be mitigated to improve the robustness 389 

of predicting urban carbon dynamics.  390 

In Fig. 6, the PSI value of tree crown radius (rT) becomes negative in terms of daily NEE, 391 

though the magnitude is small (−2.2%), (the value is significantly positive in peak hourly NEE 392 

output, c.f. Fig. 5) This change reflects that an excessive increase in urban tree biomass tends to 393 

deteriorate the growing condition and physiological functions of the ground vegetation, primarily 394 

due to the tree shading effect. It is noteworthy that rT is also negatively correlated to the daily 395 

total respiration rate, with a PSI of −16.5%. As soil and plant respirations are strongly 396 

(positively) correlated to the ambient temperature near the canyon ground, the cooling effect 397 

induced by tree shading at the ground level also reduces the respiration rate, thus decrease the 398 

average NEE over the diurnal cycle.  399 

 400 
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3.3 Implications of the sensitivity analysis 401 

The main findings from the results of sensitivity analysis, as discussed above, are 402 

quantitatively consistent to those reported, albeit scattered, in the literature. In addition, the 403 

uncertainty characterization and results of sensitivity analysis can provide important guideline to 404 

future development of the coupled UCM-CO2 model. One important application is to use PSI to 405 

inform model calibration by focusing on the critical subset of parameters (e.g. those of urban 406 

vegetation) for capturing more realistic urban carbon dynamics. Though focusing on the CO2 407 

exchange, results of subset simulations also reveal complex interplay among urban morphology, 408 

vegetation dynamics, thermal environment, and possible planning strategies, and have important 409 

implications to sustainable urban development and the co-benefits of mitigating heat and carbon 410 

emissions. These implications include: (1) certain urban morphology, in particular lower 411 

building heights and/or wider streets, can help to strengthen plant physiological functions as 412 

carbon sinks but also increase total respiration rate; (2) replacing bare soil fraction in urban areas 413 

by green vegetation, using either lawns or trees, appears to be very desirable for urban planning 414 

as to mitigate both heat and carbon emissions; and (3) one particular urban greening strategy, 415 

viz. the plantation of tall urban trees with larger crown sizes, emerges as the most effective 416 

means in reducing peak carbon emission and suppressing soil respiration. Trees with too large 417 

crown sizes, however, can sometimes lead to unintended consequence of suppressing 418 

photosynthesis of grass at the ground level and reduce the overall carbon uptake capacity by 419 

urban vegetation.  420 

 421 

4 Concluding remarks 422 
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In this study, we characterized the uncertainty of the parameter space and conducted a 423 

sensitivity analysis of a newly developed UCM-CO2 model (Li and Wang, 2020) using the 424 

subset simulation. In particular, we focused on the dynamics of plant CO2 exchange by 425 

monitoring the model output of peak hourly and daily cumulative carbon fluxes in terms of net 426 

ecosystem exchange, gross primary productivity, and total respiration. It is noteworthy that the 427 

UCM-CO2 model is capable of resolving the anthropogenic heat and CO2 fluxes arising from 428 

traffic emissions and building operations based on gridded dataset. The anthropogenic heat and 429 

carbon emissions can affect the growing conditions of urban vegetation by altering the 430 

concentration of trace gases, thermal environment, particle deposition, and flow field in the 431 

urban canopy layer. On the other hand, the modified plant physiological functions and the 432 

concomitant changes in the urban thermal environment and carbon concentration can, in turn, 433 

regulate anthropogenic heat and carbon emissions. Disentangling this two-way interaction 434 

between anthropogenic and biogenic sources of heat and carbon emissions remains an 435 

outstanding challenge and calls for further development of more sophisticated urban modeling 436 

frameworks.  437 

From the results of the sensitivity study, urban morphology, urban vegetation fraction and 438 

geometry (especially those of trees), and soil fraction, are of pivotal importance in determining 439 

the prediction of urban carbon dynamics. In contrast, thermal parameters of urban landscapes, 440 

albeit being critical in regulating the thermal environment of urban areas, have indirect and 441 

relatively insignificant influence on carbon dynamics. As biophysical functions of urban 442 

vegetation play a critical role in modulating both heat and carbon emissions, they also exhibit 443 

complex interactions with the built environment in the urban surface layer. While the current 444 

study shade some lights on this aspect, it remains an outstanding challenge for future UCM-CO2 445 
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modeling development to further disentangle the interactions of anthropogenic and biogenic 446 

processes, as well as to promote sustainable urban development strategies that maximize the co-447 

benefits of mitigating heat and carbon emissions and improve the overall environmental quality.  448 
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Table 1. Statistics of selected uncertain parameters. The unit of leaf resistance is in mm s−1. The 456 

unit of thermal conductivity and heat capacity are W m−1 K−1 and MJ m−3 K−1, respectively. The 457 

other parameters are dimensionless.   458 

Parameter PDF Mean Std. Min. Max. 

Canyon geometry 

 

w Normalized road width Uniform 0.425  0.05 0.8 

h Normalized building height Uniform 0.8  0.1 1.5 

Soil properties 

 

fs Bare soil fraction Uniform 0.275  0.05 0.5 

θs Saturation soil moisture Normal 0.35 0.0875 0.15 0.55 

θr  Residual soil moisture Normal 0.06 0.015 0.02 0.1 

Plant properties 

 

fv Vegetated fraction Uniform 0.275  0.05 0.5 

rT Normalized tree crown radius Uniform 0.07  0.02 0.12 

hT Normalized tree height Uniform 0.625  0.25 1 

xT Normalized tree location Uniform 0.5  0 1 

LAIG Grass - leaf area index Normal 2.5 1 1.00 5.00 

LAIT Tree - leaf area index Normal 4 1 1.50 6.50 

θi Initial soil moisture Uniform 0.19  0.08 0.3 

Photosynthesis modeling 

 

CF PAR conversion factor  Normal 0.5 0.125 0.3 0.7 

KxT Tree - LAI extinction coefficient Normal 0.48 0.12 0.28 0.68 

rmin,T Tree - minimum leaf resistance Uniform 175  150 200 

KxG Grass - LAI extinction coefficient Normal 0.48 0.12 0.28 0.68 

rmin,G Grass - minimum leaf resistance Uniform 205  180 230 

Subfacet thermal properties 

  

aW Albedo - wall Normal 0.17 0.04 0.06 0.28 

aG1 Albedo - paved Normal 0.125 0.03 0.05 0.20 

aG2 Albedo - bare soil Normal 0.2 0.05 0.08 0.33 

aG3 Albedo - vegetated Normal 0.2 0.05 0.08 0.33 

kW Thermal conductivity - wall Normal 0.12 0.03 0.05 0.20 

kG1 Thermal conductivity - paved Normal 1.5 0.38 0.56 2.44 

kG2 Thermal conductivity - bare soil Normal 0.65 0.16 0.24 1.06 

kG3 Thermal conductivity - vegetated  Normal 0.22 0.06 0.08 0.36 

cW Heat capacity - wall Normal 2.3 0.58 0.86 3.74 

cG1 Heat capacity - paved Normal 0.9 0.23 0.34 1.46 

cG2 Heat capacity - bare soil Normal 1.7 0.43 0.64 2.76 

cG3 Heat capacity - vegetated Normal 1 0.25 0.38 1.63 
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 459 

Figure 1. Representative urban street canyon used in the coupled UCM-CO2 model. h, r, w, hT, 460 

rT, and xT are the normalized building height, building roof width, street width, tree height, tree 461 

crown radius, and tree location, respectively. fs, fp, and fv are the normalized bare soil fraction, 462 

pavement fraction, and vegetation fraction of the canyon ground, respectively.   463 
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 464 

Figure 2. The variation of (a) NEE over urban area (NEEU), (b) Soil respiration per urban area 465 

(RS = wfsRsoil), (c) NEE from tall trees (NEET), and (d) NEE from ground vegetation (NEEG) in 466 

terms of the change in normalized tree crown radius (rT) and canyon aspect ratio (h/w).   467 
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 468 

Figure 3. Atmospheric forcing used in subset simulation measured at west of downtown Phoenix 469 

in 2012 (33.483847oN,112.142609oW). (a) Downwelling radiations; (b) Air temperature and 470 

windspeed; (c) CO2 concentration and air density. Time showed in the figure is local time (UTC 471 

-7). Only the results during the shaded period are discussed in the study, while the non-shaded 472 

period is used for quality control. A detail description of the measurement site can be found in 473 

Chow et al. (2014).  474 
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 475 

Figure 4. The exceedance probability of (a) the hourly maximum, and (b) the daily cumulative 476 

values of NEEU, GPPU, and Rtot respectively. The dashed line shows one standard deviation (± 477 

1) from the ensemble means.    478 
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`  479 

Figure 5. PSI values when the simulation targets are NEEU, GPPU and Rtot at the peak hour in a 480 

day. The order is ranked based on the PSI values of NEEU at the peak hour.  481 
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 482 

Figure 6. Same as Figure 5 but change the simulation targets to NEEU, GPPU and Rtot of the 483 

daily total. The order is ranked based on the PSI values of NEEU of the daily total.  484 

  485 
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