Abstract

Urban areas confront a number of environmental issues including excessive thermal stress

and concentrated emissions of greenhouse gases and pollutants. In past decades, many mitigation

strategies have been designed and implemented to counteract these issues and ameliorating the

environmental quality in cities, which can be broadly classified as white, green or blue

infrastructure. The functioning and efficacy of urban mitigation strategies involve complex

interactions between landscape dynamics, anthropogenic activities, and atmospheric transport,

which leads to compound, rather than singular, environmental impact. In this study, we

conducted a critical review of the compound environmental impact of urban mitigation

strategies, and evaluated, besides the targeted cooling effect, the resultant co-benefits, trade-offs,

or unintended consequence, in terms of building energy saving, air quality improvement, carbon

emission offset, and impact to human health. Furthermore, we proposed a novel mathematical

framework that is capable of assessing the compound environmental impact in a unified way,

together with some preliminary results as the proof-of-concept. A number of knowledge gaps are

identified which calls for future transdisciplinary synergy among urban engineers, atmosphere

and climate scientists, and epidemiologists.

Keywords: Air quality; Building energy; Green-blue infrastructure; Heat mitigation;

Mathematical framework; Reflective surfaces

1

1. Introduction

Global urbanization, the most irreversible and human-dominated form of landuse changes (Seto et al., 2011), has given rise to critical issues challenging the sustainable development of new generation of cities. Here *sustainability* can be broadly viewed as future development that is compatible or supportive to natural environmental systems, human well-being, biodiversity, and ecosystem services and meanwhile maintaining socioeconomic stability and growth. Today, cities and towns accommodate 55% of the global population; this figure is projected to increase to 67% by the mid-century (UN, 2019). The concentration of population in urban areas has positively affected the economic growth, spurring entrepreneurship, inventions, and business innovation (Bettencourt et al., 2007; Bettencourt & West, 2010). In addition, large cities are often "greener" than rural areas, because people living in denser habitats typically have smaller energy footprints, require less infrastructure, and consume fewer resources per capita (Bettencourt & West, 2011).

Despite these benefits, urban areas confront a number of environmental issues, including excessive thermal stress, degraded air quality, concentrated greenhouse gas (GHG) (carbon dioxide CO₂ in particular), and pollutant emissions, infrastructure vulnerability, etc. Among these environmental issues, a prominent example is the phenomenon that urban cores are usually warmer than their rural surroundings, commonly known as the urban heat island (UHI) effect (Oke, 1973; Landsberg, 1981; Oke et al., 2017). The UHI effect can be further aggravated by anthropogenic stressors (Fernando et al., 2010; Sailor, 2011), synergistic interactions with synoptic-scale heat extremes (Perkins, 2015; Jiang et al., 2019), and regional climate changes (Arnfield, 2003; IPCC, 2014).

To counteract the excessive thermal stress in urban areas, urban planners, researchers, and policy makers have designed and implemented numerous heat mitigation strategies. These strategies can be broadly classified into three categories according to their appearance in color, viz. (i) white (reflective), (ii) green (vegetation), and (iii) blue (waterscape) infrastructure. Figure 1 illustrates examples of all three categories of urban mitigation strategies.

Figure 1. Examples of urban infrastructure for urban heat mitigation: (a) white (reflective) infrastructure: white roofs, white walls, and white pavements, (b) green (vegetation) infrastructure: urban lawns, green roofs, and green walls, and (c) blue (waterscape) infrastructure: pools, lakes, and rivers.

The denomination of white infrastructure here refers to engineering materials highly reflective to solar radiation that appear white in color, including white roofs, walls, and

pavements, as shown Fig. 1a. The use of white infrastructure for heat mitigation has been extensively studied in the literature; interested readers are referred to specific reviews in this field for details (see, e.g. Akbari et al., 2012; Qin, 2015; Santamouris and Yun, 2020). It is noteworthy that the phrase "cool" has been widely used as the synonym of "white" in the literature (e.g. cool roofs). In this category, we may also associate with the use of other innovative engineering materials for heat mitigation, such as phase change materials (Nagano et al., 2004; Roman et al., 2016), retro-reflective coating (Rossi et al., 2016; Yuan et al., 2016; Manni et al., 2020), permeable/porous pavements (Stempihar et al., 2012; Liu et al., 2018; Ferrari et al., 2020), etc., sometimes broadly labeled as the grey infrastructure. The primary mechanism underlying the white (or grey) infrastructure for heat mitigation is by changing the thermal material properties of urban surfaces especially the building envelops. The high surface albedo of reflective materials helps to sending more direct shortwave (solar) radiation back to the atmosphere, hence reduces the net available energy impinged on urban surfaces. Phase change and permeable materials, on the other hand, helps to retard heating of paved surfaces by converting available energy to the latent heat of phase transition or by quicker heat dissipation.

As alternative to the use of engineering materials, urban greening is another effective and popular means for heat mitigation (Bowler et al., 2010; Shashua-Bar et al., 2011; Vijayaraghavan, 2016; Besir & Cuce, 2018; Koch et al., 2020). Commonly used urban green infrastructure for heat mitigation include urban lawns, shade trees, green roofs, and green walls (Fig. 1b). Other forms of green infrastructure include rooftop gardens, parks, urban agriculture, urban forests, etc. Urban vegetation at the ground level can be further classified into two subcategories, viz. mesic and xeric landscapes. A well-maintained grassland (lawns, gold courses, parks, etc.) with ample irrigation features a typical mesic landscape that is highly water

demanding. The cooling effect of a mesic landscapes is a result of re-partitioning of sensible and latent heat, viz. more available energy impinged on urban surfaces will be used to vaporize liquid water through evapotranspiration instead of heating urban surfaces and the atmosphere; and its efficacy requires high heat-water trade-offs (Yang & Wang, 2015; C. Wang et al., 2019a). In contrast, xeric landscapes are often found in arid or semi-arid cities with native (often watersaving) species of trees or shrublands, with radiative shading as the primary mechanism of cooling (Upreti et al., 2017; C. Wang et al., 2018a, 2019b). In addition to the ground-level urban vegetation, greening of the urban envelops (roofs and walls) is another popular form of green infrastructure, with cooling provided by evapotranspiration and additional layers of insulation (Alexandria & Jones, 2008; Sun et al., 2013; Cameron et al., 2014; Malys et al., 2014; Yang & Wang, 2014; Yang et al., 2016a; Coma et al., 2017).

In comparison to white and green infrastructure, the use of urban blue infrastructure (waterscapes) remains a relatively underexplored field and its impact on heat mitigation has been studied only till very recently (Steeneveld et al. 2014; Zuvela-Aloise et al., 2016; Broadbent et al., 2019; C.Y. Wu et al., 2019; Fung and Jim, 2020; Lin et al., 2020). Commonly included in the category of blue infrastructure are open waters such as pools, lakes, and rivers (Fig. 1c). The use of blue infrastructure, like green infrastructure, was originally designed as urban landscape planning strategies for stormwater management. The two are commonly combined as green-blue infrastructure (GBI) in the landscape management literature and have the natural co-benefit of flood control in addition to environmental cooling (Perini and Sabbion, 2016; Alves et al., 2019, 2020; Kapetas and Fenner, 2020). The presence of a waterscape in a metropolitan and its cooling of the ambient environment usually manifest as an *oasis* in the built environment during daytime

(Fan et al., 2017), while the heat capacity of water makes it warm during nighttime (Steeneveld et al. 2014).

This paper is not intended to be an exhaustive review of urban mitigation strategies, but rather a critical evaluation of the *compound* environmental impact of heat mitigation strategies on ambient temperature, air quality, building energy efficiency, human well-being and health, and other ecosystem services. Given the excessively voluminous literature on urban heat mitigation strategies, the selected studies in this review are limited to publications after Year 2000, with the focus on compound (multiple) environmental measures rather than on a singular (especially cooling) effect alone. This synthetic effort is expected to help promoting the integration of urban mitigation strategies into the context of a holistic framework of general urban liveability inclusive of issues such as air quality, energy-water-climate repercussions, and diverse ecosystem services (Howells et al., 213; Antognelli et al., 2016; Simpson and Parker, 2018; Martinez-Bravo et al., 2019).

The rest of the paper is organized as follows. The *co-benefit* of urban mitigation strategies are reviewed and discussed in Section 2, with subsections focused on the compound effect of cooling and building energy saving (Section 2.1), air quality (Section 2.2), carbon emission (Section 2.3), and health impact (Section 2.4). It is followed by review and discussion of critical *trade-offs* using common urban mitigation strategies in Section 3, viz. the heating penalty of reflective surfaces (Section 3.1) and the heat-water trade-offs induced by urban irrigation (Section 3.2). We then proceed to illustrate in Section 4 the *unintended consequence* associated with urban mitigation strategies that should be avoided whenever possible. The use of urban mitigation strategies for conserving biodiversity and other ecosystem services is reviewed in

Section 5. We then venture to develop a theoretical framework for quantifying the compound environmental impact in Section 6 and present some concluding remarks in Section 7.

2. Environmental co-benefits of urban mitigation strategies

2.1. Compound effect of cooling and building energy saving

One immediate effect of urban heat mitigation is to reduce the energy use for cooling in hot days, via different pathways of re-partitioning of available energy impinged on urban surfaces and building facets. Results of cooling and building energy savings from studies on different heat mitigation strategies selected in the literature are summarized in Table 1. It can be seen that the quantitative results differ widely from case to case and depended heavily on local climatology, seasonality, characteristics of mitigation strategies, or even scales of numerical simulations.

More specifically, it was reported that cool roofs are usually more effective in reducing heating load in hot seasons as compared to other techniques, but often lead to increase of heating load (aka *heating penalty*) during cold seasons (Zinzi and Agnoli, 2012; Virk et al., 2015; He et al., 2020; Berardi et al., 2020). In the extreme case, a "super-cool" rooftop with surface albedo greater than 0.96 is even capable of maintaining its surface temperature below the ambient air temperature throughout the year in all climates (Baniassadi et al., 2019).

In contrast, green roofs and walls provide additional layers of insulations (growing medium + plant canopy) to building envelops, which makes them capable of reducing both heating and cooling load in most weather conditions. However, the cooling efficacy of green roofs and walls bear complex relationship to many factors, including the growing medium, plant foliage, photosynthetically active radiation (PAR), irrigation, to name a few. Interested readers can found more detailed information in comprehensive reviews of the use of green roofs for heat mitigation

for building energy saving (see e.g. Alexandria & Jones, 2008; Azkorra et al., 2015; Susca 2019; Koch et al., 2020).

Table 1. Summary of cooling and energy saving potentials of different urban heat mitigation strategies

Strategy	Methodology	Study area	Temperature reduction	Cooling energy saving	References
Cool surfaces & shade trees	DOE-2 building energy model	Multiple U.S. cities	N.A.	~20% nationwide	Akbari et al. (2001) Akbari & Konopachi (2005)
Green roofs	EnergyPlus	Chicago, IL Houston, TX	N.A.	2% electricity, 9%-11% natural gas	Sailor (2008)
Cool and Green roofs	EnergyPlus	Mediterranea n region	10%-80% reduced 28°C+ hours	8%-17%	Zinzi & Agnoli (2012)
Cool roofs	Regression or field observation	Hyderabad, India	5.2 °C outdoor $T_{\rm air}$	14%-26%	Xu et al. (2012)
Urban irrigation	Urban canopy model (UCM)	Phoenix, AZ, U.S.	~3 °C canyon T _{air}	\$1.19 per m ² wall area	Yang & Wang (2015)
Green and cool roofs	ADMS T&H 4	London, U.K.	~1 °C T _{air,max}	18% cool roofs 23% green	Virk et al. (2015)
Lawns and trees	UCM	Phoenix, AZ, U.S.	2.4 °C (lawn), 5.5 °C (trees) $T_{\rm air, max}$	\$1.82/m ² or \$5.50/m ² for max lawn/tree	Z. H. Wang et al. (2016)
Green roofs	ENVI-met + EnergyPlus	Toronto, ON, Canada	0.4 °C T _{air}	3%	Berardi (2016)
Urban trees	EnergyPlus	Nanjing city, China	$0.3-3$ °C ambient $T_{\rm air}$	12.4%-15.2%	Hsieh et al. (2018)
Common greenery	ENV-met	Hong Kong	3.3-5 °C PET (30% greenery coverage ratio)	1900-3000 kWh per summer day per 500×500 m ²	Morakinyo et al. (2018)
Cool pavements	ENVI-met + EnergyPlus	Thessaloniki, Greece	< 0.2 °C in monthly mean $T_{\rm air}$	< 1.5%	Tsoka et al. (2019)
Green walls	ENVI-met	Chenzhou, Hunan, China	2610-8267 W cooling power	6.29%-19.92%	J.Y. Li et al. (2019)
Thermochromic coatings	Laboratory + simulations	Toronto, ON, Canada	15-20 °C skin temperature	8.9%	Berardi et al. (2020)
Cool and green roofs	THERB + hygrothermal transfer	Shanghai, China	3.3 °C (cool roofs), 2.9 °C (green roofs)	3.6%	He et al. (2020)
High albedo surfaces	WRF-BEP + BEM	Toronto, ON, Canada	3.3 °C daily average $T_{\rm surface}$	10%	Jandaghian & Berardi (2020)
Reflective surfaces + greenery	Combined miscellaneous methods	Sydney, Australia	2.9 °C peak ambient temperature	80% overheating reduction	Santamouris et al. (2020)

Urban green space at the ground level, e.g. mesic lawns or xeric trees, have different pathways of cooling and building energy saving. Mesic lawns or grasslands are roughly planar (two-dimensional) and help to reduce the building cooling load rather indirectly by cooling the ambient air in street canyons. Xeriscaping with shade trees, on the contrary, have three-dimensional (3D) morphology and can provide cooling via direct shading by shielding off solar radiation from walls and roofs. As a result, urban trees are usually more effective and economic in promoting building energy efficiency as compared to lawns or shrublands lacking shading (Z. H. Wang et al., 2016). Likewise, it was also found that the use of cool pavements at the ground level induced insignificant cooling and energy saving in buildings (Tsoka et al., 2019). This is understood as reflective pavements do not directly transport heat to adjacent buildings, but instead reflect short- or long-wave radiations to walls (Wang, 2014; Yang et al., 2016b), which in turn can cause other unintended consequence (detailed in Section 4).

2.2. Environmental co-benefit of improving thermal and air quality

Most studies on the co-benefit of urban cooling and air quality improvement focused on the green infrastructure (Abhijith et al., 2017; Jones et al., 2019; Van Ryswyk et al., 2019). It is noteworthy that urban areas usually furnish favorable conditions for plant growth, because: 1) the elevated temperature in cities allows plants to maintain a higher photosynthesis rate and a longer growing period (Lahr et al., 2018; Meng et al., 2020; Zhao et al., 2016); 2) regular maintenance practices, such as irrigation and fertilization, relieve much of environmental stresses for plant growth (Luketich et al., 2019); and 3) the elevated CO₂ level forms a natural CO₂ pump, promoting the carbon assimilation and plant growth rate (H. Wang et al., 2017; S. Wang et al., 2019). Due to their peculiar growing conditions in the built environment, urban vegetation

behaves distinctively from plants in the natural environment with different physiological functions (Calfapietra et al., 2015).

Concerning air quality in urban areas, particulate matter (PM) and ozone (O₃) are two wellcharacterized air pollutants as regulated by the U.S. Environmental Protection Agency (EPA, 2013, 2019). Nitrogen oxides (NO_x) and volatile organic compounds (VOC) have also been extensively studied in the urban environment, especially as ozone precursors. Studying the cobenefit of urban greening for heat mitigation and air quality improvement have attracted much research effort in the past decades. In general, strategic placement of vegetation in cities can contribute to the improvement of air quality by reducing average concentrations or fluxes of emission of criteria air pollutants (e.g. Pugh et al., 2012; Ren et al., 2017; Rafael et al., 2018; de Jalon et al., 2019; Y. Q. Zhang et al., 2020), and negative air ions or bacteria rate (Zhu et al., 2017). There are two major pathways for improving air quality using urban vegetation: (1) the direct effect of removing pollutants through deposition (Janhall, 2015; Sicard et al., 2018; L. Wang, 2018; de Jalon et al., 2019), and (2) the indirect effect of lowering pollutant concentration by cooling the environment, albeit via complex temperature-dependent (e.g. stomatal, enzymatic, etc.) mechanisms of secondary formation (Fallmann et al., 2016; Lun et al., 2020; J.L. Zhang et al., 2020). More quantitively, for instance, Pugh et al. (2012) showed that increasing deposition by urban greening can reduce street level concentrations in street canyons by as much as 40% for NO₂ and 60% for PM, respectively. Y. Q. Zhang et al. (2020) predicted that the implementation of urban green infrastructure decreased the average and hourly maximum ozone concentrations by 0.9 and 1.4 ppbv respectively, over the downtown areas of Kansas City during summertime.

It is noteworthy that among different forms of urban vegetation, trees are found to be more effective than lawns or green roofs for regulating air quality (Jayasooriya et al., 2017). This

advantage can be attributed to the 3D morphology of trees as compared to the planar (2D) form grasslands with similar physiological functions; the same reason is responsible for the advantage of urban trees in building energy saving (see Section 2.1). In particular, it was found that urban trees, most noticeably *coniferous* forests, can effectively remove both PM and ozone by dry deposition, with roughly equal efficacy in the Basque Country (de Jalon et al., 2019). This is worth noting because coniferous trees, especially the native species, is especially fitful for cities in semiarid and arid environment facing the *double evil* of UHI and water scarcity as to optimize the heat-water trade-off (detailed in Section 3.1).

Furthermore, we highlight some important considerations for optimizing the co-benefit of ameliorating thermal and air quality by urban greening, as revealed from the literature review:

- (1) Context dependency: The impact of urban green space on air quality is highly context dependent, meaning that plants can improve urban air quality when strategically planned, but can be ineffective or even detrimental in other cases (Vos et al., 2013; Hewitt et al., 2020; Wang, 2020). Specifically, the mechanisms governing the interplay between thermal environment and air quality are strongly regulated by urban landscape dynamics and temperature-dependent (Camalier et al., 2007; C. Wang et al., 2017; Chen et al., 2019; Lun et al., 2020).
- (2) In-canyon flow physics: One major factor that regulates the aforementioned context dependency is the peculiar characteristics of urban flow (Fernando, 2010). In particular, the presence of trees in street canyons alters the flow and physics of scalar transport in urban canyons, depending on the canyon and tree morphology (Amorim et al., 2013; Gromke and Blocken, 2015; Li and Wang, 2018). As a result, e.g. it was found that trees with high leaf area density are beneficial to reducing pollutant concentration in wide street canyons, while trapping

of pollutants is manifest in narrow canyons under skimming flow and splitting of vortices by trees (C. Wang, et al., 2018b).

- (3) Plant species: The co-benefit of mitigating heat and air pollution also depends heavily on the selection and diversity of plant species. For example, J. L. Zhang et al. (2020) found that the uptake rate of NO_x can be significantly increased by selecting a specific tree species, *Alnus glutinosa* which remains resilient to future climate changes. Furthermore, research suggested that species richness amounts to the best biodiversity metric for measuring the efficacy of urban green space on ameliorating air quality (Matos et al., 2019).
- (4) Planetary boundary layer (PBL) dynamics: The compound effect of urban cooling and air quality also involves complex land-atmosphere interactions and the thermodynamic characteristics of the overlying atmospheric boundary layer (Song and Wang, 2015a,2016a). In general, the cooling of urban surfaces and the canopy layer induced by urban mitigation strategies leads to a lower planetary boundary layer (PBL) height (Song & Wang, 2015b, 2016b; Song et al., 2018), which in turn changes the atmospheric concentration of pollutants and the pathways of secondary formation (Y. H. Wu et al., 2019; Y. Q. Zhang et al., 2020).
- (5) Nonlinear effect: the transport and fate of air pollutants do not generally bear monotonic or linear correlation with emission sources, plant phenology, or photochemistry of precursors (Xiao et al., 2010; Xing et al., 2011; Xie et al., 2014; Jochner et al., 2016; Hong, 2017). Furthermore, determinants of air pollution in urban areas often involve competing mechanisms that operate simultaneously. One particular challenge realized by researchers is the relationship between ozone and biogenic volatile organic compound (BVOC). For example, Xiao et al. (2010), using photochemical modeling, identified that daytime ozone exhibits nonlinear responsiveness to precursor (NO_x and BVOC) emissions. As a result of this intense nonlinearity,

moderate perturbations (10-30%) in either precursor emissions inventories could qualitatively flip the model results. In the presence of urban trees, the nonlinear interactions between ozone and BVOC renders it particularly challenging to accurately estimate the ozone level at urban scales (Calfapietra et al., 2013).

In comparison to urban greening, research effort on the impact of reflective materials on urban air quality remains relatively scarce up to date. Existing studies suggested that, based on numerical simulations, the use cool roofs or walls gave rise to air quality penalty in terms of increase of PM_{2.5} level, while its impact on ozone level remains divergent (Epstein et al., 2017; Zhang et al., 2019). The penalty is supposedly due to the reductions in ventilation associated with surface cooling. It is interesting to note that a recent study by Han et al. (2020) showed that cool roofs led to decreased near surface O₃ concentration in Seoul due to weakened sea breeze that brings high ozone concentration air flows into the city. This apparent benefit of cool roofs on ozone air quality is quite peculiar and precarious to extend to other metropolitan areas, as the ozone concentration generally decreases over the urbanization gradient (Strosnider et al. 2017) and reduced urban-rural breeze tends to generate higher ozone level accumulated in urban cores. Overall, it remains hitherto a big knowledge gap and much more field observations and numerical simulations are needed in the future for in-depth understanding of potential cobenefits, trade-offs, or unintended consequence of white infrastructure with respect to air quality.

2.3. Co-benefit of heat and carbon mitigation

Urban areas are hotspots of carbon emission, especially the anthropogenic CO₂ (AnCO₂) (Grimmond et al., 2002; Pataki et al., 2006; Hutyra et al., 2014). Cities contribute ~70% of AnCO₂ emissions mainly through fossil fuel burning (UN-Habitat, 2011; Churkina, 2016), which

constitutes the largest carbon flux to the atmosphere and represents the dominant source of GHG forcing to emergent climate patterns (Gurney. 2014). More specifically, complex heat-carbon interactions are responsible for the co-evolution of thermal and carbon dynamics in the built environment (Balling et al., 2001; Vetter et al., 2008; Wang, 2020). For example, it was found that emission rates of biogenic and anthropogenic CO₂ increase under high ambient temperature (Churkina et al., 2017; Humborg et al., 2019). The elevated CO₂ concentration, in turn, tend to exacerbate the local thermal environment and contribute to the longterm trend of urban warming (Hutyra et al., 2014, Churkina, 2016). The inverted trend, i.e. reduction of AnCO₂ emission by urban mitigation strategies, therefore has the potential to check the warming trend of global climate changes in the long run (IPCC, 2014).

For reflective (cool) surfaces, Akbari et al. (2009) came up with a simple proportionality of 0.01 albedo increase to offset 2.55 kg CO₂ (or 7 kg in Akbari et al., 2012) per square meter of urban area, based on the rational that the increase of albedo in urban areas can be equivalent to the reduction of atmospheric CO₂ emission since both leading to the change of radiative forcing. Using this proportionality, it was estimated that a global increase of net urban albedo of about 0.1 can lead to a negative radiative forcing on the earth equivalent to offsetting about 44 Gt of CO₂ emissions (Akbari et al., 2009). A higher estimate of global offset 57 Gt of CO₂ emissions was reported by plausible increases of surface albedo of 0.25 (roof) and 0.15 (pavement) (Menon et al., 2010). Nevertheless, these lumped proportionality between cooling and CO₂ offset is apparently an over-simplification to the complex interactions of carbon dynamics and radiative forcing as well as the climate response (Good et al., 2015).

Similar to the treatment with cool surfaces, Lin et al. (2011) estimated the carbon saving as a result of cooling effect of urban green space. Remote sensing imagery (Landsat-ETM) were

used to identify the cooled areas, where possible energy use to maintain the temperature differences between cooled areas and their warmer surroundings was estimated, followed by the calculation of the carbon savings owing to the avoidance of energy use. Recently, it has been pointed out that the use of lumped correlation between the static average CO₂ saving and building energy efficiency could be misleading and lead to inaccurate estimation (Pylsy et al., 2020).

Weissert et al (2014) conducted a review on the influence of urban forests to mitigate CO₂, whereas the quantification of dynamic interactions of urban trees with the built environment in carbon exchange processes was at its infancy at that time. There has long been a lack of accurate estimation and prediction of the co-benefit of heat and CO₂ mitigation by urban greening due to the lack of sophisticated modeling techniques. Physically-based numerical models capable of integrating realistic land surface processes and urban carbon dynamics were only developed recently (Goret et al., 2019; Li and Wang, 2020, 2021a). Enabled by the new tools, it was found that expanding urban green space resulted in the environmental co-benefit of reducing heat and CO₂ emission; the efficacy varies for different vegetation types (Li and Wang, 2021b).

2.4. Health impact of heat mitigation

Degradation of environmental quality, especially the presence of elevated temperature and air pollution, impose serious threat to human well-being and public health (Mishra and Ramgopal, 2013; USGCRP, 2016), which increases the risk of morbidity and mortality in urban areas (McMichael et al., 2008; Tan et al., 2010; Gabriel & Endlicher, 2011; Rosenthal et al., 2014). The health impact is more severe for sensitive segments of the population, including the elderly, children, and low-income individuals (Patz et al., 2005; USGCRP, 2016). In this section,

we provide an overview of the co-benefit of urban mitigation strategies with implications to health of urban residents and improvement of the urban liveability in general.

The primary health benefit of urban mitigation strategies is to reduce morbidity and mortality associated via two major pathways, viz. (a) cooling and thermal stress alleviation (Burkart et al., 2016; Salata et al., 2017; Chan et al., 2017; Park et al., 2020; Venter, et al., 2020) and/or (b) improving of air quality (Cifuentes et al., 2001; Jack and Kinney, 2010; Ramaswami et al., 2017; Ren et al., 2017). For example, a recent study showed that a combination of reflective surfaces, additional greenery and other mitigation strategies, was capable of reducing the heat-related morbidity by 1.07-1.49 and the heat-related mortality anomaly by 1.39 per 100,000 citizens in Greater Sydney, Australia (Santamouris et al., 2020).

Results from case studies also showed that urban plants, help to human well-being and public health by pollutant removal (Jack and Kinney, 2010; Zhao et al., 2013; Nowak et al., 2018, 2019; Arantes et al., 2019). In particular, there is an emerging research area that looks into the impact of urban green space, especially trees, on the respiratory-related health problems, such as asthma (Lovasi et al., 2008; Eisenman et al., 2019; Aerts et al., 2020). Up to date, the complex causal pathways between urban greening, air quality, and health remain obscure (Eisenman et al., 2019).

In addition, urban greenery has the recreational and aesthetic co-benefits to urban residents, which helps to improve their visual comfort, though different demographic groups differ in their preference of specific vegetated landscapes (Chen et al., 2015; Du et al., 2016; R.G. Wang and Zhao, 2017). In addition, urban green space can serve as a physical and psychological buffer for the negative health impact by noise reduction (Dzhambov and Dimitrova, 2014; Azkorra et al., 2015; Sakieh et al., 2017), promote the combined restorative

auditory-visual potentials (Zhao et al., 2018; Deng et al., 2020), improve mental health and wellbeing in general (Andreucci et al., 2019, Andersson et al., 2019).

3. Trade-offs in urban mitigation strategies

The review of the environmental co-benefits of urban mitigation strategies in Section 2 has already given us some inkling of their trade-offs, or more plainly, the price necessary to purchase the desired co-benefit. In this section, we will give an in-depth review two particular trade-offs, viz. heating penalty of reflective surfaces and heat-water nexus of urban irrigation, and their potential remedies or implications.

3.1. Heating penalty

The problem of heating penalty associated with the use of reflective surfaces is quite intuitive: white surfaces reflects more solar radiation back to the atmosphere than conventional grey pavements, hence lower the surface (skin) temperature of the paved surfaces regardless of the weather conditions. This all-weather cooling effect leads to the increase of heating energy consumption in cities located in temperate to cold climate regions during winters, a *penalty* or rather a trade-off necessary to gain building cool energy saving during hot seasons. To decide whether or not reflective pavements should be used as heat mitigation strategy therefore depends on the *net* building energy saving. It follows intuitively that for cities located in heating-dominated climates, the use of cool roofs can result in a net energy loss due to the heating penalty (e.g. London, see Virk et al., 2015). A simple rule of thumb is that the summer cooling saving by cool surfaces can be roughly balanced by the winter heating penalties in climate regions with less than 1000 cooling-degree-days (Akbari and Konopachi, 2005). The case is

more complicated when retro-reflective materials are used for building coating, which can generate uneven redistribution of solar energy, leading to cooling and heating on different urban canyon facades (Manni et al., 2020).

One way to remedy the heating penalty generated by reflective surfaces is to use vegetated building envelops instead of white roofs or walls. Green roofs or vertical walls provide additional layers of insulation by growing medium and plant canopy, which can even save heating load in winters as confirmed by numerous studies (see, e.g. Zinzi & Agnoli, 2012; He et al., 2020). It is worth noting an alternative remedy, perhaps singular in the literature, is to use different roof coatings during different seasons, i.e. white in the summer and black in the winter. Ramamurthy et al. (2014) investigated this potential solution using numerical simulations applied to Princeton, NJ by an urban canopy model (Wang et al., 2013). The real challenge of this seemingly simplistic, but potentially promising, engineering approach lies with the design and production of innovative pavement materials capable of color changing with response to different intensity of solar (e.g. ultraviolet) radiation.

3.2. Heat-water trade-off for urban irrigation

The use of urban vegetation for heat mitigation is naturally supplemented by urban irrigation, especially for cities in arid or semiarid regions. Yang and Wang (2015) evaluated different urban irrigation schemes for achieving optimal heat-water trade-offs using a single-layer urban canopy model (UCM). It was found that in Phoenix metropolitan, the best strategy is for urban irrigation to be activated by urban temperature. Using a mesoscale regional climate modeling, it was found that in Phoenix, AZ, the urban irrigation would amount to five times the current irrigation water use for an oasis (fully green) city with a urban cooling of 2~2.5 °C (air

temperature) (Yang and Wang, 2017). In contrast, a complete desert city is capable of saving 77 \pm 5 Mm³ of irrigation water in the summer (June, July, August) over the entire Phoenix metropolitan area by suffering ~1 °C warming of urban air temperature. This amounts to about 240 mm (per unit area) of irrigation water for three summer months, which is comparable to an earlier estimate of the usage of ~135 mm (per unit area) of irrigation for a nocturnal cooling rate of 0.6 - 1.4 °C/hour in the same metropolitan area (Gober et al., 2010).

This heat-water trade-off, or as Gober et al. (2010) nicely phrased it as "how much water will it take to cool Phoenix?", lately leads to a the development of a convenient measure of *urban water capacity*, analogous to heat capacity in thermodynamics, to denote the amount of average irrigation (water) depth to effectuate one degree of temperature reduction (C. Wang et al. 2019a). The values of urban water capacity are found to be 4.52 ± 0.77 mm day⁻¹ °C⁻¹ and 7.27 ± 1.27 mm day⁻¹ °C⁻¹ for surface and near-surface air cooling respectively, for all urban areas over the contiguous United States (CONUS). In addition, in large metropolitan areas, urban cores with higher density of buildings and paved surfaces have better irrigation economy as compared to their peripheral suburban areas.

4. Unintended environmental consequence

In this section, we review the unintended environmental impact induced by implementation of white, green, and blue infrastructure for heat mitigation. While the trade-offs of urban mitigation strategies might be reckoned as a *necessary but lesser evil* to improve the overall environmental quality in urban areas, there unintended consequence, on the contrary, are the side effects that should be avoided whenever possible.

4.1. Reflective surfaces

Yang et al. (2015) conducted a comprehensive review of the unintended consequence of cool roofs and cool pavements. Besides the heating penalty already discussed in Section 3.1 above, the unintended consequence includes the adverse impact on the thermal environment of urban peripheries, regional hydroclimate, and air quality, as well as potential safety or health issues. Here we only review more recent studies (published after Yang et al., 2015) on the adverse environmental impact arising from reflective surfaces.

Sharma et al. (2016) evaluated the impact of cool roofs on the regional hydroclimate using high-resolution (1 km) Weather Research & Forecasting (WRF) model. It was found that reflective roofs (as well as green roofs) led to reduced wind speeds and vertical mixing and lower PBL height, which in turn caused stagnation of air near the surface that can potentially impede the dilution or dispersion of pollutants and causing degraded air quality in urban areas. More specifically, large-scale deployment of cool roofs and cool walls gave rise to air quality penalty in terms of increase of urban ozone and PM levels, attributable to the reductions in ventilation associated with surface cooling (Epstein et al., 2017; Zhang et al., 2019). It is therefore urged that the implementation of reflective surfaces should carefully take into consideration of the competing feedbacks between cooling and PBL dynamics.

As for the potential hazard to human safety or health imposed by reflective surfaces, it was reported that cool surfaces installed over pedestrian passage could produce some visual discomfort due to glare issue, according to a field survey (Rosso et al., 2016). The optical behavior of reflective pavements also affected the uniformity of visions for drivers and required ad-hoc installation of additional light sources (Rossi et al., 2018).

4.2. Green and blue infrastructure

As reviewed in Section 2.2, the use of urban green space to improve air quality requires careful selection of plant species and strategic planning of locations, which needs to be informed by detailed analysis of simulation-based results. Nevertheless, the intricate balance between cooling and air quality improvement can be easily tipped, leading to unintended consequence often unfavorable to urban air quality. For example, a recent study showed that the implementation of green infrastructure caused an approximately 10% increases in summertime PM_{2.5} mostly during nighttime in Kansas City (Y. Q. Zhang et al., 2020).

The primary causal pathway, engendering the adverse impact of urban trees on air quality, has been identified as the air flow modification by tree morphology and leaf area density, which generates the blocking effect or reduced ventilation for pollutant dispersion (Vos et al., 2013; C. Wang et al., 2018b; Rui et al., 2019). On top of that, the reduced PBL height due to surface cooling via urban land-atmosphere interactions (Song and Wang, 2015a, 2016a) tends to increase the atmospheric concentration of pollutants. To add the geographic nuance, it was found that urban trees in cool climate can increase carbon emissions from residential building energy use due to undesirable shading in cold seasons (Erker and Townsend, 2019) (c.f. the heating penalty by reflective surfaces as discussed in Section 3.1).

Furthermore, urban areas are more susceptible to severely degraded air quality during heat extremes. During extreme heatwaves, high emissions or mixing ratios were observed for ozone, PM_{2.5}, BVOC, and CO₂ (Churkina et al., 2017; Humborg et al., 2019; Y. H. Wu et al., 2019; Zhao et al., 2019). In particular, the excessive BVOC (the major precursor to ozone) emission by urban trees, especially during extreme heat (Churkina et al., 2017), can lead to severe ozone pollution and detrimental health impact. For instance, Ren et al. (2017) found that urban trees, in

comparison to rural forests, played much more important roles in threating human health via BVOC emissions, which amounted for 62% of total health damage. The rate of BVOC emission varies significantly across different plant species, which can potentially offset the biogenic carbon uptake and/or pollutant deposition, and tip the balance from co-benefit to trade-off between the urban cooling and air quality improvement. It is therefore of critical importance for urban planners to carefully select plant species and take into consideration the potential trade-off between air pollution removal and survival probability (J. L. Zhang, 2020), especially in the context of future climate change.

Unintended consequence was also identified with respect to irrigation, an integral component of green infrastructure. Large-scale irrigation for agricultural or urban plant use has the potential to induce long-range impact on regional to global scale hydroclimate (Puma and Cook, 2010; de Vrese et al., 2016), hence increases the uncertainty of future climate projections. Irrigation also increases atmospheric humidity through evapotranspiration, which, in combination with high temperature, enhances the intensity of extreme heatwaves. This synergistic effect, as illustrated by Kang and Eltahir (2018), would generate deadly heatwaves with wet-bulb temperature exceeding the threshold tolerable to human bodies and threaten the entire North China Plain under projected climate changes.

The function of blue infrastructure (waterscape) in urban areas bears much similarity to irrigation with ample supply of surface water for cooling the environment. Analogous to the intensification of heatwaves by irrigation, Steeneveld et al. (2014) found that the presence of water bodies increased the UHI intensity. This is because the diurnal and annual cycles over water are suppressed due to high heat capacity, and water temperatures remain relatively high even after nocturnal or seasonal transitions. Nevertheless, due to the dearth of research effort on

blue infrastructure, our understanding of its unintended consequence to the built environment still remains primitive up to date.

5. Biodiversity and ecosystem services

By far we have reviewed and discussed the major compound environmental impact of urban mitigation strategies in terms of building energy efficiency, urban air quality, carbon emissions, and health impact. In this section, we review the *secondary* influence by various heat mitigation techniques for conserving biodiversity and supporting ecosystem services in the built environment. It is understood that by secondary, we do not intend to downplay the importance of the ecosystem services reviewed below, but rather to signal the fact that they are relatively under-explored, and to encourage future research endeavor to broader the research frontier in this challenging (highly transdisciplinary in nature) but promising field.

We have mentioned (Section 2.2) that cities furnish peculiar growing conditions to urban plants. In addition, the implementation of new urban mitigation strategies has profound and farreaching impact on the native flora and fauna by: (1) changing their native habitats, (2) directly introducing alien and potentially invasive species of plants, insects, birds, etc., and (3) creating new environmental stressors. In particular, the living and growing conditions of native urban species have jeopardized due to the loss of habitats (Maskell et al., 2006; Menke et al., 2010; Kozlowski & Bondalla, 2013; Wells et al., 2014), invaded and outgrown by alien species (Ruthrof et al., 2003; Lososova et al., 2012; Le Louarn et al., 2018; Clements et al., 2019), fall prey to urban ecological traps (Stracey & Robinson, 2012). It is critical for conserving urban biodiversity by conserving the native flora and fauna and facilitating their symbiosis with alien

species under the changing urban environment and habitat structure is critical (Garden et al., 2007; 2010; Threlfall et al., 2015; Tordoni et al., 2017).

Hence it is rather exciting to find that recent studies revealed that urban green space can provide complementary and protective habitat to native and endangered species, especially with their transpiration and cool potentials (Pan et al., 2019; Tan et al., 2020; Gastreich & Presler, 2020). By analogy, we anticipate that urban waterscape should be capable of providing similar co-benefit of cooling and biodiversity conservation to aquatic species, though the research effort is hitherto lacking. It also remains to be explored how the use of white infrastructure can impact the native species and their habitat in the urban environment. In the light of the adverse impact exerted by reflective surfaces on human health and safety (Section 4.1), it will not be completely groundless to speculate there might be some unintended consequence to ecosystem services by large-scale implementation of white infrastructure.

A new paradigm is needed for future research to explore the compound environmental impact of urban mitigation strategies in supporting urban ecosystem services. Pioneering work has been conducted to investigate the integrated ecosystem services of GBI with multiple objectives inclusive of pollutant reduction, biodiversity, and ecosystem conditions (Barbosa et al., 2019; Strain et al., 2019). In particular, Barbosa et al. (2019) proposed a framework for systematically selecting cost-effective areas for optimizing the GBI design that addressed different conservation, restoration and exploitation objectives.

6. A unified framework for measuring the compound environmental impact

Speaking of the need of a new paradigm for future study of the compound environmental impact, here denoted as *CEI*, in this section, we venture to develop a mathematical framework

for unified quantification of *CEI*, supplemented with some preliminary analysis as proof-of-concept. Our framework of generalization begins by considering a multivariate *impact space* of environmental measures $\mathbf{M} = \{M_i | i = 1, 2, 3, ..., n\}$ and a *coordinate space* of mitigation strategies $\mathbf{S} = \{S_j | j = 1, 2, 3, ..., m\}$, where each M_i denotes a singular measure of environmental impact (e.g. temperature, building energy consumption, pollutant concentration, morbidity or mortality rate, etc.), and S_{ij} denote individual mitigation strategies (see Fig. 1) quantifiable as changes of albedo, fractions of green space, irrigation amount, etc. A scalar measure of *CEI* can then be constructed, rather intuitively, as weighted average of *fractional changes* in the ensemble of M_i determined as specific urban planning objectives,

$$CEI = \sum_{i=1}^{n} w_i \delta \overline{M}_i , \qquad (1)$$

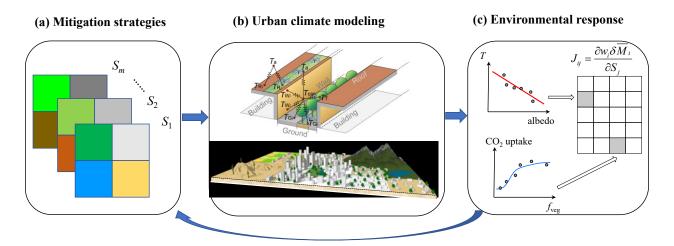
where $\delta \overline{M}_i = (M_i - M_{\rm ref})/M_{\rm ref}$ is the normalized (dimensionless) variation of the individual measure M_i , each associated with a weight w_i , and the subscript "ref" denotes the reference environmental state (not necessarily urban). Note that if we set $M_i = T_{\rm urban}$ and $M_{\rm ref} = T_{\rm rural}$ as the ambient temperature in an urban area and its rural surroundings, we then recover the familiar measure $\delta M_i = T_{\rm ur} = T_{\rm urban} - T_{\rm rural}$, viz. the UHI intensity. The obvious advantage of normalizing individual measures, in the definition of compound environmental impact CEI, is to make different measures dimensionless and comparable. The choice of weight depends on the policy priority or credit assigned to individual indicators or objectives (e.g. improvement of air quality or saving of building energy) by urban planners, and should obey $\sum_i w_i = 1$.

Next, we assume that the scalar measure of *CEI* varies (adequately) smoothly over the entire coordinate space under the regional climate index *R*. This assumption allows us to

analytically decompose and quantify the sensitivity of *CEI* to each relevant mitigation strategy separately, as

$$\delta CEI = \sum_{j=1}^{m} \frac{\partial CEI}{\partial S_{j}} \delta S_{j} + \Theta(M_{i}, S_{j}, R) = \sum_{j=1}^{m} \sum_{i=1}^{n} \frac{\partial w_{i} \delta \overline{M}_{i}}{\partial S_{j}} \delta S_{j} + \Theta(M_{i}, S_{j}, R),$$
 (2)

where Θ represents the potential nonlinear (confounding or covariant) effect among variables in the coordinate and impact spaces subjected to regional climate changes. Examples of such nonlinearity include the temperature response to CO₂ concentration (Good et al., 2015), or partitioning of surface sensible and latent heat per Clausius-Clapeyron relation regulated by soil water availability (Yang et al., 2019). Alternatively, Eq. (2) can be written in matrix form as


$$\delta CEI = \sum_{i} \mathbf{J} \cdot \delta \mathbf{S} + \Theta, \qquad (3)$$

where $\mathbf{J}: \mathbb{R}^m \to \mathbb{R}^n$, with $J_{ij} = \frac{\partial w_i \delta \overline{M}_i}{\partial S_j}$ is the (weighted) Jacobian matrix. One exemplary

element of the Jacobian matrix is the urban water capacity (C. Wang et al., 2019a) for measuring the heat-water trade-off as discussed in Section 3.2. Using the unified mathematical framework proposed above, the measure of urban water capacity can be derived as a specific element of the Jacobian matrix by taking M_i as the amount of irrigation water (in mm/day) and S_j as temperature (in ${}^{\circ}$ C).

The proposed mathematical framework, in particular the derivation of the Jacobian matrix, is further illustrated in Fig. 2 below. The procedure starts with the design of urban mitigation strategies in urban planning processes. The portfolio of scenarios, constitute of the coordinate space S, are then assimilated as boundary conditions in the physically-based urban hydroclimate simulations, which in turn predicts the environmental response of the designed mitigation strategies. The Jacobian matrix is determined as the derivatives of the impact functions (e.g., cooling or CO_2 uptake) in response to the changes in landscape scenarios (e.g., albedo or


vegetation fraction). Note that the Jacobian matrix admits spatio-temporal variabilities. Thus the quantification of *CEI*, for practical uses, needs to be spatially aggregated over the neighborhood/city of design or temporally averaged over the design period. The determined CEI can then be feedback to urban planners to inform their decision-making processes.

Figure 2. Illustration of the proposed mathematical framework: (a) design of mitigation strategies in urban planning, (b) local/regional urban hydroclimate modeling, and (c) quantification of environmental response and determination of the Jacobian matrix.

As a proof of concept, here we show the result of measuring the compound co-benefit of heat-CO₂ mitigation as a function of urban greening and irrigation, using a physically-based UCM-CO₂ model (Li and Wang, 2020). In this case, the coordinate space consists of two parameters $\{S_j | S_1 = \text{SWC}, S_2 = f_V\}$ where SWC is the soil water content (due to irrigation), and f_V the vegetation fraction (due to urban greening); and the impact space is defined as $\{M_i | M_1 = T_{\text{can}}, M_2 = \text{NEE}\}$, where T_{can} is the canyon air temperature, and NEE the net ecosystem exchange (CO₂ flux). The results of numerical simulations are show in Fig. 3, where equal weight of 50% is assigned to NEE and temperature variations, and the nonlinearity in Eq. (2) is neglected for simplicity. It is clear from the graphs that: (1) urban greening supported with irrigation lead to a compound co-benefit of cooling and net carbon sink (Fig. 3a), and (2) the variation of CEI with

respect to the vegetation fraction and soil moisture in the coordinate space is sufficiently smooth, which validates the assumption of our theoretical framework in Eq. (2) (Fig. 3b). It is also noteworthy that the slopes of the curved surface in Fig. 3b at a given point of the coordinate space correspond to the sensitivity of *CEI* with respect to different mitigation strategies.

Figure 3. Compound co-benefit of heat-carbon mitigation using urban greening: (a) Simulated mean canyon air temperature (filled colormaps) and net ecosystem exchange (mg m⁻²s⁻¹, contours, negative value signaling carbon sink), and (b) the scalar measure of CEI, as functions of vegetation fraction f_V and soil water content multiplier SWC_x , The star indicates the reference case. SWC_x is defined as the ratio of target soil moisture after irrigation to the measured monthly mean soil moisture at the site.

7. Concluding remarks

To summarize, we have critically reviewed the compound environmental impact of urban mitigation strategies and their potential or actual co-benefit, trade-offs, and unintended consequence in terms of impact on ambient temperatures, building energy consumption, air

quality, carbon emission, human health, and biodiversity. In general, the major co-benefit of white infrastructure (reflective surfaces) consists of heat mitigation and saving of cooling load in hot seasons, whereas its heating penalty and potential adverse impact on air quality and human health need to carefully considered for large-scale implementation. In contrast, the use of urban green infrastructure is more versatile with far-reaching environmental impact on energy efficiency, air quality improvement, CO₂ offset, and positive impact on human health, ecosystem services and social equity. Among different forms of green infrastructure, urban trees are usually more effective in generating either positive co-benefit or negative consequence. Urban irrigation is essential to support the growth and physiological functions of plants, especially in arid or semiarid environment, but superfluous irrigation water use leads to marginal environmental benefit that is often negligible. The use of open waterscapes, or blue infrastructure, is relatively under-explored as compared to white or green infrastructure, and more future studies are needed to further our understanding to their compound environmental impact.

Furthermore, we can identify a number of knowledge gaps and outstanding challenges from this review. The major ones include: (1) The complex interplay between urban mitigation strategies and the urban carbon dynamics. This is particularly important in the context of global climate change as in current practice our projections of future climate rely heavily on the accurate prediction of future CO₂ concentration to which urban areas are the primary contributor. (2) The potential feedback mechanisms underlying the interactions between urban mitigation strategies and human behavior in the context of regional climate change. One interesting example is feedback between the use of air conditioning system and the UHI effect or heat extremes. (3) A systematic approach that integrates different urban land surface, hydrological,

biochemical, and atmospheric processes in a unified framework for evaluating the compound environmental impact.

As a pioneering effort to address the last challenge, we propose a mathematical framework in this review. Preliminary analysis shows that this framework is capable of embracing the familiar environmental measures of urban mitigation strategies in the literature, including the conventional UHI intensity and urban water capacity. The results are promising for future research endeavor to quantify the compound environmental impact of reflective surfaces, urban green spaces, and open waterscapes in one unified framework.

Acknowledgement

This study is supported by the U. S. National Science Foundation (NSF) under Grant numbers AGS-1930629 and CBET-2028868, and the National Aeronautics and Space Administration (NASA) under grant # 80NSSC20K1263.

References:

- Abhijith, K. V., Kumar, P., Gallagher, J., McNabola, A., Baldauf, R., Pilla, F., et al. (2017). Air pollution abatement performances of green infrastructure in open road and built-up street canyon environments A review. *Atmospheric Environment*, 162, 71-86.
- Aerts, R., Dujardin, S., Nemery, B., Van Nieuwenhuyse, A., Van Orshoven, J., Aerts, J. M., et al. (2020). Residential green space and medication sales for childhood asthma: A longitudinal ecological study in Belgium. *Environmental Research*, *189*, 109914.
- Akbari, H., &Konopacki, S. (2005). Calculating energy-saving potentials of heat-island reduction strategies. *Energy Policy*, *33*(6), 721-756.
- Akbari, H., Matthews, H. D., &Seto, D. (2012). The long-term effect of increasing the albedo of urban areas. *Environmental Research Letters*, 7(2), 024004.
- Akbari, H., Menon, S., &Rosenfeld, A. (2009). Global cooling: increasing world-wide urban albedos to offset CO2. *Climatic Change*, 94(3-4), 275-286.
- Akbari, H., Pomerantz, M., &Taha, H. (2001). Cool surfaces and shade trees to reduce energy use and improve air quality in urban areas. *Solar Energy*, 70(3), 295-310.
- Alexandria, E., &Jones, P. (2008). Temperature decreases in an urban canyon due to green walls and green roofs in diverse climates. *Building and Environment*, 43(4), 480-493.
- Alves, A., Gersonius, B., Kapelan, Z., Vojinovic, Z., &Sanchez, A. (2019). Assessing the Co-Benefits of green-blue-grey infrastructure for sustainable urban flood risk management.

 *Journal of Environmental Management, 239, 244-254.
- Alves, A., Vojinovic, Z., Kapelan, Z., Sanchez, A., & Gersonius, B. (2020). Exploring trade-offs among the multiple benefits of green-blue-grey infrastructure for urban flood mitigation.

 Science of the Total Environment, 703, 134980.

- Amorim, J. H., Rodrigues, V., Tavares, R., Valente, J., &Borrego, C. (2013). CFD modelling of the aerodynamic effect of trees on urban air pollution dispersion. *Science of the Total Environment*, 461, 541-551.
- Andersson, E., Langemeyer, J., Borgstrom, S., McPhearson, T., Haase, D., Kronenberg, J., et al. (2019). Enabling green and blue infrastructure to improve contributions to human well-being and equity in urban systems. *Bioscience*, 69(7), 566-574.
- Andreucci, M. B., Russo, A., &Olszewska-Guizzo, A. (2019). Designing urban green blue infrastructure for mental health and elderly well-being. *Sustainability*, 11(22), 6425.
- Antognelli, S., & Vizzari, M. (2016). Ecosystem and urban services for landscape liveability: A model for quantification of stakeholders' perceived importance. *Land Use Policy*, *50*, 277-292.
- Arantes, B. L., Mauad, T., &Silva, D. F. (2019). Urban forests, air quality and health: a systematic review. *International Forestry Review*, 21(2), 167-181.
- Arnfield, A. J. (2003). Two decades of urban climate research: A review of turbulence, exchanges of energy and water, and the urban heat island. *International Journal of Climatology*, 23(1), 1-26.
- Azkorra, Z., Perez, G., Coma, J., Cabeza, L. F., Bures, S., Alvaro, J. E., et al. (2015). Evaluation of green walls as a passive acoustic insulation system for buildings. *Applied Acoustics*, 89, 46-56.
- Balling, R. C., Cerveny, R. S., &Idso, C. D. (2001). Does the urban CO2 dome of Phoenix,

 Arizona contribute to its heat island? *Geophysical Research Letters*, 28(24), 4599-4601.
- Baniassadi, A., Sailor, D. J., &Ban-Weiss, G. A. (2019). Potential energy and climate benefits of super-cool materials as a rooftop strategy. *Urban Climate*, 29, 100495.

- Barbosa, A., Martin, B., Hermoso, V., Arevalo-Torres, J., Barbiere, J., Martinez-Lopez, J., et al. (2019). Cost-effective restoration and conservation planning in Green and Blue Infrastructure designs. A case study on the Intercontinental Biosphere Reserve of the Mediterranean: Andalusia (Spain) Morocco. *Science of the Total Environment*, 652, 1463-1473.
- Berardi, U. (2016). The outdoor microclimate benefits and energy saving resulting from green roofs retrofits. *Energy and Buildings*, *121*, 217-229.
- Berardi, U., Garai, M., & Morselli, T. (2020). Preparation and assessment of the potential energy savings of thermochromic and cool coatings considering inter-building effects. *Solar Energy*, 209, 493-504.
- Besir, A. B., &Cuce, E. (2018). Green roofs and facades: A comprehensive review. *Renewable & Sustainable Energy Reviews*, 82, 915-939.
- Bettencourt, L., &West, G. (2010). A unified theory of urban living. *Nature*, 467(7318), 912-913.
- Bettencourt, L. M. A., Lobo, J., Helbing, D., Kuhnert, C., &West, G. B. (2007). Growth, innovation, scaling, and the pace of life in cities. *Proceedings of the National Academy of Sciences of the United States of America*, 104(17), 7301-7306.
- Bettencourt, L. M. A., &West, G. B. (2011). Bigger cities do more with less: New science reveals why cities become more productive and efficient as they grow. *Scientific American*, 305(3), 52-53.
- Bowler, D. E., Buyung-Ali, L., Knight, T. M., &Pullin, A. S. (2010). Urban greening to cool towns and cities: A systematic review of the empirical evidence. *Landscape and Urban Planning*, 97(3), 147-155.

- Broadbent, A. M., Coutts, A. M., Nice, K. A., Demuzere, M., Krayenhoff, E. S., Tapper, N. J., et al. (2019). The air-temperature response to green/blue-infrastructure evaluation tool (TARGET v1.0): an efficient and user-friendly model of city cooling. *Geoscientific Model Development*, 12(2), 785-803.
- Burkart, K., Meier, F., Schneider, A., Breitner, S., Canario, P., Alcoforado, M. J., et al. (2016).

 Modification of heat-related mortality in an elderly urban population by vegetation (urban green) and proximity to water (urban blue): Evidence from Lisbon, Portugal.

 Environmental Health Perspectives, 124(7), 927-934.
- Calfapietra, C., Fares, S., Manes, F., Morani, A., Sgrigna, G., &Loreto, F. (2013). Role of Biogenic Volatile Organic Compounds (BVOC) emitted by urban trees on ozone concentration in cities: A review. *Environmental Pollution*, 183, 71-80.
- Calfapietra, C., Penuelas, J., & Niinemets, U. (2015). Urban plant physiology: adaptation-mitigation strategies under permanent stress. *Trends in Plant Science*, 20(2), 72-75.
- Camalier, L., Cox, W., &Dolwick, P. (2007). The effects of meteorology on ozone in urban areas and their use in assessing ozone trends. *Atmospheric Environment*, 41(33), 7127-7137.
- Cameron, R. W. F., Taylor, J. E., &Emmett, M. R. (2014). What's 'cool' in the world of green facades? How plant choice influences the cooling properties of green walls. *Building and Environment*, 73, 198-207.
- Chan, E. Y. Y., Wang, S. S. X., Ho, J. Y. E., Huang, Z., Liu, S. D., &Guo, C. L. (2017). Socio-demographic predictors of health and environmental co-benefit behaviours for climate change mitigation in urban China. *PLoS One*, *12*(11), e0188661.
- Chen, Z. Y., Xu, B., &Gao, B. B. (2015). Assessing visual green effects of individual urban trees using airborne Lidar data. *Science of the Total Environment*, 536, 232-244.

- Chen, Z. Y., Zhuang, Y., Xie, X. M., Chen, D. L., Cheng, N. L., Yang, L., et al. (2019).

 Understanding long-term variations of meteorological influences on ground ozone concentrations in Beijing During 2006-2016. *Environmental Pollution*, 245, 29-37.
- Churkina, G. (2016). The role of urbanization in the global carbon cycle. *Frontiers in Ecology* and Evolution, 3, 144.
- Churkina, G., Kuik, F., Bonn, B., Lauer, A., Grote, R., Tomiak, K., et al. (2017). Effect of VOC emissions from vegetation on air quality in Berlin during a heatwave. *Environmental Science & Technology*, 51(11), 6120-6130.
- Cifuentes, L., Borja-Aburto, V. H., Gouveia, N., Thurston, G., &Davis, D. L. (2001). Assessing the health benefits of urban air pollution reductions associated with climate change mitigation (2000-2020): Santiago, Sao Paulo, Mexico City, and New York City.

 Environmental Health Perspectives, 109, 419-425.
- Clements, S. L., Catania, S. V. L., & Searcy, C. A. (2019). Non-native species dominate herpetofaunal community patterns in both native and non-native habitat patches in urban Miami-Dade County. *Biological Invasions*, 21(5), 1775-1788.
- Coma, J., Perez, G., de Gracia, A., Bures, S., Urrestarazu, M., &Cabeza, L. F. (2017). Vertical greenery systems for energy savings in buildings: A comparative study between green walls and green facades. *Building and Environment*, 111, 228-237.
- de Jalon, S. G., Burgess, P. J., Yuste, J. C., Moreno, G., Graves, A., Palma, J. H. N., et al. (2019). Dry deposition of air pollutants on trees at regional scale: A case study in the Basque Country. *Agricultural and Forest Meteorology*, 278, 107648.
- de Vrese, P., Hagemann, S., & Claussen, M. (2016). Asian irrigation, African rain: Remote impacts of irrigation. *Geophysical Research Letters*, 43, 3737-3745.

- Deng, L., Luo, H., Ma, J., Huang, Z., Sun, L. X., Jiang, M. Y., et al. (2020). Effects of integration between visual stimuli and auditory stimuli on restorative potential and aesthetic preference in urban green spaces. *Urban Forestry & Urban Greening*, 53, 126702.
- Du, H. Y., Jiang, H., Song, X. J., Zhan, D. F., &Bao, Z. Y. (2016). Assessing the visual aesthetic quality of vegetation landscape in urban green space from a visitor's perspective. *Journal of Urban Planning and Development*, 142(3), 04016007.
- Dzhambov, A. M., &Dimitrova, D. D. (2014). Urban green spaces effectiveness as a psychological buffer for the negative health impact of noise pollution: A systematic review.

 Noise & Health, 16(70), 157-165.
- Eisenman, T. S., Churkina, G., Jariwala, S. P., Kumar, P., Lovasi, G. S., Pataki, D. E., et al. (2019). Urban trees, air quality, and asthma: An interdisciplinary review. *Landscape and Urban Planning*, 187, 47-59.
- EPA (2013). Integrated Science Assessment for Ozone and Related Photochemical Oxidants.

 EPA 600/R-10/076F. U.S. Environmental Protection Agency, Research Triangle Park, NC, USA, 1251 pp.
- EPA (2019). Integrated Science Assessment for Particulate Matter. EPA 600/R-19/188. U.S. Environmental Protection Agency, Research Triangle Park, NC, USA, 1967 pp.
- Epstein, S. A., Lee, S. M., Katzenstein, A. S., Carreras-Sospedra, M., Zhang, X., Farina, S. C., et al. (2017). Air-quality implications of widespread adoption of cool roofs on ozone and particulate matter in southern California. *Proceedings of the National Academy of Sciences of the United States of America*, 114(34), 8991-8996.
- Erker, T., & Townsend, P. A. (2019). Trees in cool climate cities may increase atmospheric

- carbon by altering building energy use. *Environmental Research Communications*, 1(8), 081003.
- Fallmann, J., Forkel, R., &Emeis, S. (2016). Secondary effects of urban heat island mitigation measures on air quality. *Atmospheric Environment*, 125, 199-211.
- Fan, C., Myint, S. W., Kaplan, S., Middel, A., Zheng, B., Rahman, A., et al. (2017).
 Understanding the Impact of Urbanization on Surface Urban Heat Islands-A Longitudinal
 Analysis of the Oasis Effect in Subtropical Desert Cities. *Remote Sensing*, 9(7), 672.
- Fernando, H. J. S. (2010). Fluid dynamics of urban atmospheres in complex terrain. *Annual Review of Fluid Mechanics*, 42, 365-389.
- Fernando, H. J. S., Zajic, D., Di Sabatino, S., Dimitrova, R., Hedquist, B., &Dallman, A. (2010). Flow, turbulence, and pollutant dispersion in urban atmospheres. *Physics of Fluids*, 22(5), 051301.
- Ferrari, A., Kubilay, A., Derome, D., & Carmeliet, J. (2020). The use of permeable and reflective pavements as a potential strategy for urban heat island mitigation. *Urban Climate*, *31*, 100534.
- Fung, C. K. W., &Jim, C. Y. (2020). Influence of blue infrastructure on lawn thermal microclimate in a subtropical green space. *Sustainable Cities and Society*, *52*, 101858.
- Gabriel, K. M. A., &Endlicher, W. R. (2011). Urban and rural mortality rates during heat waves in Berlin and Brandenburg, Germany. *Environmental Pollution*, *159*(8-9), 2044-2050.
- Garden, J. G., McAlpine, C. A., &Possingham, H. P. (2010). Multi-scaled habitat considerations for conserving urban biodiversity: native reptiles and small mammals in Brisbane,

 Australia. *Landscape Ecology*, 25(7), 1013-1028.
- Garden, J. G., McAlpine, C. A., Possingham, H. P., & Jones, D. N. (2007). Habitat structure is

- more important than vegetation composition for local-level management of native terrestrial reptile and small mammal species living in urban remnants: A case study from Brisbane, Australia. *Austral Ecology*, *32*(6), 669-685.
- Gastreich, K. R., &Presler, L. (2020). Remnant prairies and organic gardens provide complementary habitat for native bees within a Midwestern urban matrix. *Ecological Restoration*, 38(1), 3-6.
- Gober, P., Brazel, A., Quay, R., Myint, S., Grossman-Clarke, S., Miller, A., et al. (2010). Using watered landscapes to manipulate urban heat island effects: How much water will it take to cool Phoenix? *Journal of the American Planning Association*, 76(1), 109-121.
- Good, P., Lowe, J. A., Andrews, T., Wiltshire, A., Chadwick, R., Ridley, J. K., et al. (2015).

 Nonlinear regional warming with increasing CO2 concentrations. *Nature Climate Change*, 5(2), 138-142.
- Goret, M., Masson, V., Schoetter, R., & Moine, M. P. (2019). Inclusion of CO2 flux modelling in an urban canopy layer model and an evaluation over an old European city centre.

 *Atmospheric Environment-X, 3, 100042.
- Grimmond, C. S. B., King, T. S., Cropley, F. D., Nowak, D. J., &Souch, C. (2002). Local-scale fluxes of carbon dioxide in urban environments: methodological challenges and results from Chicago. *Environmental Pollution*, *116*, S243-S254.
- Gromke, C., &Blocken, B. (2015). Influence of avenue-trees on air quality at the urban neighborhood scale. Part I: Quality assurance studies and turbulent Schmidt number analysis for RANS CFD simulations. *Environmental Pollution*, 196, 214-223.
- Gurney, K. R. (2014). Recent research quantifying anthropogenic CO2 emissions at the street scale within the urban domain. *Carbon Management*, 5(3), 309-320.

- Han, B. S., Baik, J. J., Kwak, K. H., &Park, S. B. (2020). Effects of cool roofs on turbulent coherent structures and ozone air quality in Seoul. *Atmospheric Environment*, 229, 117476.
- He, Y., Yu, H., Ozaki, A., &Dong, N. N. (2020). Thermal and energy performance of green roof and cool roof: A comparison study in Shanghai area. *Journal of Cleaner Production*, 267, 122205.
- Hewitt, C. N., Ashworth, K., & MacKenzie, A. R. (2020). Using green infrastructure to improve urban air quality (GI4AQ). *Ambio*, 49(1), 62-73.
- Hong, J. (2017). Non-linear influences of the built environment on transportation emissions: Focusing on densities. *Journal of Transport and Land Use*, *10*(1), 229-240.
- Howells, M., Hermann, S., Welsch, M., Bazilian, M., Segerstrom, R., Alfstad, T., et al. (2013).

 Integrated analysis of climate change, land-use, energy and water strategies. *Nature Climate Change*, *3*, 621-626.
- Hsieh, C. M., Li, J. J., Zhang, L. M., &Schwegler, B. (2018). Effects of tree shading and transpiration on building cooling energy use. *Energy and Buildings*, *159*, 382-397.
- Humborg, C., Geibel, M. C., Sun, X. L., McCrackin, M., Morth, C. M., Stranne, C., et al. (2019). High emissions of carbon dioxide and methane from the coastal Baltic sea at the end of a summer heat wave. *Frontiers in Marine Science*, *6*, 493.
- Hutyra, L. R., Duren, R., Gurney, K. R., Grimm, N., Kort, E. A., Larson, E., et al. (2014).

 Urbanization and the carbon cycle: Current capabilities and research outlook from the natural sciences perspective. *Earth's Future*, 2(10), 473-495.
- IPCC (2014). Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and
 III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change
 [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. Geneva, Switzerland, 151 pp.

- Jack, D. W., &Kinney, P. L. (2010). Health co-benefits of climate mitigation in urban areas.

 Current Opinion in Environmental Sustainability, 2(3), 172-177.
- Jandaghian, Z., &Berardi, U. (2020). Analysis of the cooling effects of higher albedo surfaces during heat waves coupling the Weather Research and Forecasting model with building energy models. *Energy and Buildings*, 207, 109627.
- Janhall, S. (2015). Review on urban vegetation and particle air pollution Deposition and dispersion. *Atmospheric Environment*, 105, 130-137.
- Jayasooriya, V. M., Ng, A. W. M., Muthukumaran, S., & Perera, B. J. C. (2017). Green infrastructure practices for improvement of urban air quality. *Urban Forestry & Urban Greening*, 21, 34-47.
- Jiang, S. J., Lee, X., Wang, J. K., &Wang, K. C. (2019). Amplified urban heat islands during heat wave periods. *Journal of Geophysical Research-Atmospheres*, 124(14), 7797-7812.
- Jochner, S., Sparks, T. H., Laube, J., & Menzel, A. (2016). Can we detect a nonlinear response to temperature in European plant phenology? *International Journal of Biometeorology*, 60(10), 1551-1561.
- Jones, L., Vieno, M., Fitch, A., Carnell, E., Steadman, C., Cryle, P., et al. (2019). Urban natural capital accounts: developing a novel approach to quantify air pollution removal by vegetation. *Journal of Environmental Economics and Policy*, 8(4), 413-428.
- Kang, S., &Eltahir, E. A. B. (2018). North China Plain threatened by deadly heatwaves due to climate change and irrigation. *Nature Communications*, *9*, 2894.
- Kapetas, L., &Fenner, R. (2020). Integrating blue-green and grey infrastructure through an adaptation pathways approach to surface water flooding. *Philosophical Transactions of the Royal Society a-Mathematical Physical and Engineering Sciences*, 378(2168), 22.

- Koch, K., Ysebaert, T., Denys, S., &Samson, R. (2020). Urban heat stress mitigation potential of green walls: A review. *Urban Forestry & Urban Greening*, 55, 126843.
- Kozlowski, G., &Bondallaz, L. (2013). Urban aquatic ecosystems: Habitat loss and depletion of native macrophyte diversity during the 20th century in four Swiss cities. *Urban Ecosystems*, 16(3), 543-551.
- Lahr, E. C., Dunn, R. R., &Frank, S. D. (2018). Variation in photosynthesis and stomatal conductance among red maple (Acer rubrum) urban planted cultivars and wildtype trees in the southeastern United States. *PLoS One*, *13*(5), e0197866.
- Landsberg, H. E. (1981). The Urban Climate. New York, USA: Academic Press, 275 pp.
- Le Louarn, M., Clergeau, P., Strubbe, D., &Deschamps-Cottin, M. (2018). Dynamic species distribution models reveal spatiotemporal habitat shifts in native range-expanding versus non-native invasive birds in an urban area. *Journal of Avian Biology*, 49(4), e01527.
- Li, J. Y., Zheng, B. H., Shen, W. Q., Xiang, Y. F., Chen, X., &Qi, Z. Y. (2019). Cooling and energy-saving performance of different green wall design: A simulation study of a block. *Energies*, 12(15), 2912.
- Li, P., &Wang, Z. H. (2020). Modeling carbon dioxide exchange in a single-layer urban canopy model. *Building and Environment*, 184, 107243.
- Li, P., &Wang, Z. H. (2021a). Uncertainty and sensitivity analysis of modeling plant CO2 exchange in the built environment. *Building and Environment*, *189*, 107539.
- Li, P., & Wang, Z. H. (2021b), Environmental co-benefits of urban greening for mitigating heat and carbon emissions, *Journal of Environmental Management*, 293, 112963.
- Li, Q., &Wang, Z. H. (2018). Large-eddy simulation of the impact of urban trees on momentum and heat fluxes. *Agricultural and Forest Meteorology*, 255, 44-56.

- Lin, W. Q., Wu, T. H., Zhang, C. G., &Yu, T. (2011). Carbon savings resulting from the cooling effect of green areas: A case study in Beijing. *Environmental Pollution*, 159(8-9), 2148-2154.
- Lin, Y., Wang, Z. F., Jim, C. Y., Li, J. B., Deng, J. S., &Liu, J. G. (2020). Water as an urban heat sink: Blue infrastructure alleviates urban heat island effect in mega-city agglomeration. *Journal of Cleaner Production*, 262, 121411.
- Liu, Y., Li, T., & Peng, H. Y. (2018). A new structure of permeable pavement formitigating urban heat island. *Science of the Total Environment*, 634, 1119-1125.
- Lososova, Z., Chytry, M., Tichy, L., Danihelka, J., Fajmon, K., Hajek, O., et al. (2012). Native and alien floras in urban habitats: a comparison across 32 cities of central Europe. *Global Ecology and Biogeography*, 21(5), 545-555.
- Lovasi, G. S., Quinn, J. W., Neckerman, K. M., Perzanowski, M. S., &Rundle, A. (2008).

 Children living in areas with more street trees have lower prevalence of asthma. *Journal of Epidemiology and Community Health*, 62(7), 647-649.
- Luketich, A. M., Papuga, S. A., & Crimmins, M. A. (2019). Ecohydrology of urban trees under passive and active irrigation in a semiarid city. *PLoS One*, *14*(11), e0224804.
- Lun, X. X., Lin, Y., Chai, F. H., Fan, C., Li, H., &Liu, J. F. (2020). Reviews of emission of biogenic volatile organic compounds (BVOCs) in Asia. *Journal of Environmental Sciences*, 95, 266-277.
- Malys, L., Musy, M., &Inard, C. (2014). A hydrothermal model to assess the impact of green walls on urban microclimate and building energy consumption. *Building and Environment*, 73, 187-197.
- Manni, M., Cardinali, M., Lobaccaro, G., Goia, F., Nicolini, A., &Rossi, F. (2020). Effects of

- retro-reflective and angular-selective retro-reflective materials on solar energy in urban canyons. *Solar Energy*, 209, 662-673.
- Martinez-Bravo, M. D., Martinez-del-Rio, J., & Antolin-Lopez, R. (2019). Trade-offs among urban sustainability, pollution and livability in European cities. *Journal of Cleaner Production*, 224, 651-660.
- Maskell, L. C., Bullock, J. M., Smart, S. M., Thompson, K., &Hulme, P. E. (2006). The distribution and habitat associations of non-native plant species in urban riparian habitats. *Journal of Vegetation Science*, 17(4), 499-508.
- Matos, P., Vieira, J., Rocha, B., Branquinho, C., &Pinho, P. (2019). Modeling the provision of air-quality regulation ecosystem service provided by urban green spaces using lichens as ecological indicators. *Science of the Total Environment*, 665, 521-530.
- McMichael, A. J., Wilkinson, P., Kovats, R. S., Pattenden, S., Hajat, S., Armstrong, B., et al. (2008). International study of temperature, heat and urban mortality: the 'ISOTHURM' project. *International Journal of Epidemiology*, *37*(5), 1121-1131.
- Meng, L., Mao, J. F., Zhou, Y. Y., Richardson, A. D., Lee, X. H., Thornton, P. E., et al. (2020). Urban warming advances spring phenology but reduces the response of phenology to temperature in the conterminous United States. *Proceedings of the National Academy of Sciences of the United States of America*, 117(8), 4228-4233.
- Menke, S. B., Booth, W., Dunn, R. R., Schal, C., Vargo, E. L., &Silverman, J. (2010). Is it easy to be urban? Convergent success in urban habitats among lineages of a widespread native ant. *PLoS One*, *5*(2), e9194.
- Menon, S., Akbari, H., Mahanama, S., Sednev, I., &Levinson, R. (2010). Radiative forcing and temperature response to changes in urban albedos and associated CO2 offsets.

- Environmental Research Letters, 5(1), 014005.
- Mishra, A. K., &Ramgopal, M. (2013). Field studies on human thermal comfort An overview.

 *Building and Environment, 64, 94-106.
- Morakinyo, T. E., Lau, K. K. L., Ren, C., &Ng, E. (2018). Performance of Hong Kong's common trees species for outdoor temperature regulation, thermal comfort and energy saving. *Building and Environment*, 137, 157-170.
- Nagano, K., Ogawa, K., Mochida, T., Hayashi, K., &Ogoshi, H. (2004). Thermal characteristics of magnesium nitrate hexahydrate and magnesium chloride hexahydrate mixture as a phase change material for effective utilization of urban waste heat. *Applied Thermal Engineering*, 24(2-3), 221-232.
- Nowak, D. J., Hirabayashi, S., Doyle, M., McGovern, M., &Pasher, J. (2018). Air pollution removal by urban forests in Canada and its effect on air quality and human health. *Urban Forestry & Urban Greening*, 29, 40-48.
- Nowak, D. J., &Van den Bosch, M. (2019). Tree and forest effects on air quality and human health in and around urban areas. *Sante Publique*, *31*, 153-161.
- Oke, T. R. (1973). City size and the urban heat island. *Atmospheric Environment*, 7, 769-779.
- Oke, T. R., Mills, G., Christen, A., &Voogt, J. A. (2017). *Urban Climates*. Cambridge, United Kingdom: Cambridge University Press, 519 pp.
- Pan, K. X., Lu, Y. J., He, S. N., Yang, G. F., Chen, Y., Fan, X., et al. (2019). Urban green spaces as potential habitats for introducing a native endangered plant, Calycanthus chinensis.

 Urban Forestry & Urban Greening, 46, 126444.
- Park, C. Y., Yoon, E. J., Lee, D. K., &Thorne, J. H. (2020). Integrating four radiant heat load mitigation strategies is an efficient intervention to improve human health in urban

- environments. Science of the Total Environment, 698, 134259.
- Pataki, D. E., Bowling, D. R., Ehleringer, J. R., &Zobitz, J. M. (2006). High resolution atmospheric monitoring of urban carbon dioxide sources. *Geophysical Research Letters*, 33(3), L03813.
- Patz, J. A., Campbell-Lendrum, D., Holloway, T., &Foley, J. A. (2005). Impact of regional climate change on human health. *Nature*, *438*(7066), 310-317.
- Perini, K., &Sabbion, P. (2016). Green-blue infrastructure in urban areas, the case of the Bronx River (NYC) and Paillon (Nice). *Techne-Journal of Technology for Architecture and Environment*, 11, 97-103.
- Perkins, S. E. (2015). A review on the scientific understanding of heatwaves-Their measurement, driving mechanisms, and changes at the global scale. *Atmospheric Research*, *164*, 242-267.
- Pugh, T. A. M., MacKenzie, A. R., Whyatt, J. D., & Hewitt, C. N. (2012). Effectiveness of Green Infrastructure for Improvement of Air Quality in Urban Street Canyons. *Environmental Science & Technology*, 46(14), 7692-7699.
- Puma, M. J., &Cook, B. I. (2010). Effects of irrigation on global climate during the 20th century. *Journal of Geophysical Research-Atmospheres*, 115, D16120.
- Pylsy, P., Lylykangas, K., &Kurnitski, J. (2020). Buildings' energy efficiency measures effect on CO2 emissions in combined heating, cooling and electricity production. *Renewable & Sustainable Energy Reviews*, 134, 110299.
- Qin, Y. H. (2015). A review on the development of cool pavements to mitigate urban heat island effect. *Renewable & Sustainable Energy Reviews*, *52*, 445-459.
- Rafael, S., Vicente, B., Rodrigues, V., Miranda, A. I., Borrego, C., &Lopes, M. (2018). Impacts of green infrastructures on aerodynamic flow and air quality in Porto's urban area.

- Atmospheric Environment, 190, 317-330.
- Ramamurthy, P., Bou-Zeid, E., Smith, J., Wang, Z., Baeck, M., Hom, J., et al. (2014). Influence of sub-facet heterogeneity and material properties on the urban surface energy budget.

 *Journal of Applied Meteorology and Climatology, 53(9), 2114-2129.
- Ramaswami, A., Tong, K. K., Fang, A., Lal, R. M., Nagpure, A. S., Li, Y., et al. (2017). Urban cross-sector actions for carbon mitigation with local health co-benefits in China. *Nature Climate Change*, 7(10), 736-745.
- Ren, Y., Qu, Z. L., Du, Y. Y., Xu, R. H., Ma, D. P., Yang, G. F., et al. (2017). Air quality and health effects of biogenic volatile organic compounds emissions from urban green spaces and the mitigation strategies. *Environmental Pollution*, 230, 849-861.
- Roman, K. K., O'Brien, T., Alvey, J. B., &Woo, O. (2016). Simulating the effects of cool roof and PCM (phase change materials) based roof to mitigate UHI (urban heat island) in prominent US cities. *Energy*, *96*, 103-117.
- Rosenthal, J. K., Kinney, P. L., & Metzger, K. B. (2014). Intra-urban vulnerability to heat-related mortality in New York City, 1997-2006. *Health & Place*, *30*, 45-60.
- Rossi, F., Castellani, B., Presciutti, A., Morini, E., Anderini, E., Filipponi, M., et al. (2016). Experimental evaluation of urban heat island mitigation potential of retro-reflective pavement in urban canyons. *Energy and Buildings*, *126*, 340-352.
- Rossi, G., Iacomussi, P., &Zinzi, M. (2018). Lighting implications of urban mitigation strategies through cool pavements: energy savings and visual comfort. *Climate*, 6(2), 26.
- Rosso, F., Pisello, A. L., Cotana, F., &Ferrero, M. (2016). On the thermal and visual pedestrians' perception about cool natural stones for urban paving: A field survey in summer conditions. *Building and Environment*, 107, 198-214.

- Rui, L. Y., Buccolieri, R., Gao, Z., Gatto, E., &Ding, W. W. (2019). Study of the effect of green quantity and structure on thermal comfort and air quality in an urban-like residential district by ENVI-met modelling. *Building Simulation*, *12*(2), 183-194
- Ruthrof, K. X., Loneragan, W. A., &Yates, C. J. (2003). Comparative population dynamics of Eucalyptus cladocalyx in its native habitat and as an invasive species in an urban bushland in south-western Australia. *Diversity and Distributions*, *9*(6), 469-483.
- Sailor, D. J. (2008). A green roof model for building energy simulation programs. *Energy and Buildings*, 40(8), 1466-1478.
- Sailor, D. J. (2011). A review of methods for estimating anthropogenic heat and moisture emissions in the urban environment. *International Journal of Climatology*, 31(2), 189-199.
- Sakieh, Y., Jaafari, S., Ahmadi, M., &Danekar, A. (2017). Green and calm: Modeling the relationships between noise pollution propagation and spatial patterns of urban structures and green covers. *Urban Forestry & Urban Greening*, 24, 195-211.
- Salata, F., Golasi, L., Petitti, D., Vollaro, E. D. L., Coppi, M., &Vollaro, A. D. L. (2017).

 Relating microclimate, human thermal comfort and health during heat waves: An analysis of heat island mitigation strategies through a case study in an urban outdoor environment.

 Sustainable Cities and Society, 30, 79-96.
- Santamouris, M., Paolini, R., Haddad, S., Synnefa, A., Garshasbi, S., Hatvani-Kovacs, G., et al. (2020). Heat mitigation technologies can improve sustainability in cities. An holistic experimental and numerical impact assessment of urban overheating and related heat mitigation strategies on energy consumption, indoor comfort, vulnerability and heat-related mortality and morbidity in cities. *Energy and Buildings*, 217, 110002.
- Santamouris, M., & Yun, G. Y. (2020). Recent development and research priorities on cool and

- super cool materials to mitigate urban heat island. Renewable Energy, 161, 792-807.
- Seto, K. C., Fragkias, M., Guneralp, B., &Reilly, M. K. (2011). A meta-analysis of global urban land expansion. *PLoS One*, 6(8), e23777.
- Sharma, A., Conry, P., Fernando, H. J. S., Hamlet, A. F., Hellmann, J. J., &Chen, F. (2016).

 Green and cool roofs to mitigate urban heat island effects in the Chicago metropolitan area: evaluation with a regional climate model. *Environmental Research Letters*, 11(6), 064004.
- Shashua-Bar, L., Pearlmutter, D., & Erell, E. (2011). The influence of trees and grass on outdoor thermal comfort in a hot-arid environment. *International Journal of Climatology*, 31(10), 1498-1506.
- Sicard, P., Agathokleous, E., Araminiene, V., Carrari, E., Hoshika, Y., De Marco, A., et al. (2018). Should we see urban trees as effective solutions to reduce increasing ozone levels in cities? *Environmental Pollution*, *243*, 163-176.
- Simpson, G. D., &Parker, J. (2018). Data on peer-reviewed papers about green infrastructure, urban nature, and city liveability. *Data*, *3*(4), 51.
- Song, J., &Wang, Z. H. (2015a). Interfacing urban land-atmosphere through coupled urban canopy and atmospheric models. *Boundary-Layer Meteorology*, *154*(3), 427-448.
- Song, J., &Wang, Z. H. (2015b). Impacts of mesic and xeric urban vegetation on outdoor thermal comfort and microclimate in Phoenix, AZ. *Building and Environment*, 94(2), 558-568.
- Song, J., & Wang, Z. H. (2016a). Evaluating the impact of built environment characteristics on urban boundary layer dynamics using an advanced stochastic approach. *Atmospheric Chemistry and Physics*, 16, 6285-6301.
- Song, J., & Wang, Z. H. (2016b). Diurnal changes in urban boundary layer environment induced by urban greening. *Environmental Research Letters*, 11, 114018.

- Song, J., Wang, Z. H., &Wang, C. (2018). The regional impact of urban heat mitigation strategies on planetary boundary-layer dynamics over a semi-arid city. *Journal of Geophysical Research: Atmospheres*, 123, 6410-6422.
- Steeneveld, G. J., Koopmans, S., Heusinkveld, B. G., & Theeuwes, N. E. (2014). Refreshing the role of open water surfaces on mitigating the maximum urban heat island effect. *Landscape and Urban Planning*, 121, 92-96.
- Stempihar, J. J., Pourshams-Manzouri, T., Kaloush, K. E., &Rodezno, M. C. (2012). Porous asphalt pavement temperature effects for urban heat island analysis. *Transportation Research Record*, 2293, 123-130.
- Stracey, C. M., &Robinson, S. K. (2012). Are urban habitats ecological traps for a native songbird? Season-long productivity, apparent survival, and site fidelity in urban and rural habitats. *Journal of Avian Biology*, 43(1), 50-60.
- Strain, E. M. A., Morris, R. L., Bishop, M. J., Tanner, E., Steinberg, P., Swearer, S. E., et al. (2019). Building blue infrastructure: Assessing the key environmental issues and priority areas for ecological engineering initiatives in Australia's metropolitan embayments.

 **Journal of Environmental Management, 230, 488-496.
- Strosnider, H., Kennedy, C., Monti, M., &F., Y. (2017). Rural and Urban Differences in Air Quality, 2008–2012, and Community Drinking Water Quality, 2010–2015 United States. *MMWR Surveillance Summaries*, 66(13), 1-10.
- Sun, T., Bou-Zeid, E., Wang, Z. H., Zerba, E., &Ni, G. H. (2013). Hydrological determinants of green roof performance via a vertically-resolved model for heat and water transport.

 *Building and Environment, 60, 211-224.
- Susca, T. (2019). Green roofs to reduce building energy use? A review on key structural factors

- of green roofs and their effects on urban climate. Building and Environment, 162, 106273.
- Tan, J. G., Zheng, Y. F., Tang, X., Guo, C. Y., Li, L. P., Song, G. X., et al. (2010). The urban heat island and its impact on heat waves and human health in Shanghai. *International Journal of Biometeorology*, 54(1), 75-84.
- Tan, P. Y., Wong, N. H., Tan, C. L., Jusuf, S. K., Schmiele, K., & Chiam, Z. Q. (2020).
 Transpiration and cooling potential of tropical urban trees from different native habitats.
 Science of the Total Environment, 705, 135764.
- Threlfall, C. G., Walker, K., Williams, N. S. G., Hahs, A. K., Mata, L., Stork, N., et al. (2015).

 The conservation value of urban green space habitats for Australian native bee communities. *Biological Conservation*, 187, 240-248.
- Tordoni, E., Napolitano, R., Nimis, P., Castello, M., Altobelli, A., Da Re, D., et al. (2017).

 Diversity patterns of alien and native plant species in Trieste port area: exploring the role of urban habitats in biodiversity. *Urban Ecosystems*, 20(5), 1151-1160.
- Tsoka, S., Tsikaloudaki, K., &Theodosiou, T. (2019). Coupling a building energy simulation tool with a microclimate model to assess the impact of cool pavements on the building's energy performance application in a dense residential area. *Sustainability*, 11(9), 2519.
- UN-Habitat (2011). *Cities and climate change: Global report on human settlements*. Earthscan, London.
- United Nations (UN) (2019). World Urbanization Prospects: The 2018 Revision. The United Nations' Department of Economic and Social Affairs Population Division, New York, 126 pp.
- Upreti, R., Wang, Z. H., &Yang, J. (2017). Radiative shading effect of urban trees on cooling the regional built environment. *Urban Forestry & Urban Greening*, 26, 18-24.

- USGCRP (2016). The Impacts of Climate Change on Human Health in the United States: A Scientific Assessment. U.S. Global Change Research Program, Washington, DC, 312 pp.
- Van Ryswyk, K., Prince, N., Ahmed, M., Brisson, E., Miller, J. D., &Villeneuve, P. J. (2019).
 Does urban vegetation reduce temperature and air pollution concentrations? Findings from an environmental monitoring study of the Central Experimental Farm in Ottawa, Canada.
 Atmospheric Environment, 218, 116886.
- Venter, Z. S., Krog, N. H., &Barton, D. N. (2020). Linking green infrastructure to urban heat and human health risk mitigation in Oslo, Norway. Science of the Total Environment, 709, 136193.
- Vetter, M., Churkina, G., Jung, M., Reichstein, M., Zaehle, S., Bondeau, A., et al. (2008).

 Analyzing the causes and spatial pattern of the European 2003 carbon flux anomaly using seven models. *Biogeosciences*, 5(2), 561-583.
- Vijayaraghavan, K. (2016). Green roofs: A critical review on the role of components, benefits, limitations and trends. *Renewable & Sustainable Energy Reviews*, 57, 740-752.
- Virk, G., Jansz, A., Mavrogianni, A., Mylona, A., Stocker, J., &Davies, M. (2015).
 Microclimatic effects of green and cool roofs in London and their impacts on energy use
 for a typical office building. *Energy and Buildings*, 88, 214-228.
- Vos, P. E. J., Maiheu, B., Vankerkom, J., & Janssen, S. (2013). Improving local air quality in cities: To tree or not to tree? *Environmental Pollution*, 183, 113-122.
- Wang, C., Wang, C., Myint, S. W., &Wang, Z. H. (2017). Landscape determinants of spatiotemporal patterns of aerosol optical depth in the two most polluted metropolitans in the United States. *Science of the Total Environment*, 609, 1556-1565.
- Wang, C., Wang, Z. H., & Yang, J. (2018a). Cooling effect or urban trees on the built

- environment of contiguous United States. Earth's Future, 6, 1066-1081.
- Wang, C., Li, Q., &Wang, Z. H. (2018b). Quantifying the impact of urban trees on passive pollutant dispersion using a coupled large-eddy simulation-Lagrangian stochastic model.

 *Building and Environment, 145, 33-49.
- Wang, C., Wang, Z. H., & Yang, J. (2019a). Urban water capacity: Irrigation for heat mitigation.

 Computers, Environment and Urban Systems, 78, 101397.
- Wang, C., Wang, Z. H., Wang, C., & Myint, S. W. (2019b). Environmental cooling provided by urban trees under extreme heat and cold waves. *Remote Sensing of Environment*, 227, 28-43.
- Wang, H., Prentice, I. C., Keenan, T. F., Davis, T. W., Wright, I. J., Cornwell, W. K., et al. (2017). Towards a universal model for carbon dioxide uptake by plants. *Nature Plants*, 3(9), 734-741.
- Wang, L., Gong, H. L., Peng, N. A., &Zhang, J. Z. (2018). Molecular adsorption mechanism of elemental carbon particles on leaf surface. *Environmental Science & Technology*, 52(9), 5182-5190.
- Wang, R. G., &Zhao, J. W. (2017). Demographic groups' differences in visual preference for vegetated landscapes in urban green space. *Sustainable Cities and Society*, 28, 350-357.
- Wang, S. H., Ju, W. M., Penuelas, J., Cescatti, A., Zhou, Y. Y., Fu, Y. S., et al. (2019). Urban-rural gradients reveal joint control of elevated CO2 and temperature on extended photosynthetic seasons. *Nature Ecology & Evolution*, *3*(7), 1076-1085.
- Wang, Z. H. (2014). Monte Carlo simulations of radiative heat exchange in a street canyon with trees. *Solar Energy*, *110*, 704-713.
- Wang, Z. H. (2020). Can trees pollute cities? *Atmósfera*, https://doi.org/10.20937/ATM.52907.

- Wang, Z. H., Bou-Zeid, E., &Smith, J. A. (2013). A coupled energy transport and hydrological model for urban canopies evaluated using a wireless sensor network. *Quarterly Journal of the Royal Meteorological Society*, 139(675), 1643-1657.
- Wang, Z. H., Zhao, X., Yang, J., &Song, J. (2016). Cooling and energy saving potentials of shade trees and urban lawns in a desert city. *Applied Energy*, 161(3), 437-444.
- Weissert, L. F., Salmond, J. A., &Schwendenmann, L. (2014). A review of the current progress in quantifying the potential of urban forests to mitigate urban CO2 emissions. *Urban Climate*, 8, 100-125.
- Wells, K., Lakim, M. B., &O'Hara, R. B. (2014). Shifts from native to invasive small mammals across gradients from tropical forest to urban habitat in Borneo. *Biodiversity and Conservation*, 23(9), 2289-2303.
- Wu, C. Y., Li, J. X., Wang, C. F., Song, C. H., Chen, Y., Finka, M., et al. (2019). Understanding the relationship between urban blue infrastructure and land surface temperature. *Science of the Total Environment*, 694, 133742.
- Wu, Y. H., Zhao, K. H., Huang, J. P., Arend, M., Gross, B., &Moshary, F. (2019). Observation of heat wave effects on the urban air quality and PBL in New York City area. *Atmospheric Environment*, 218, 17024.
- Xiao, X., Cohan, D. S., Byun, D. W., &Ngan, F. (2010). Highly nonlinear ozone formation in the Houston region and implications for emission controls. *Journal of Geophysical Research-Atmospheres*, 115, D23309.
- Xie, M., Zhu, K. G., Wang, T. J., Yang, H. M., Zhuang, B. L., Li, S., et al. (2014). Application of photochemical indicators to evaluate ozone nonlinear chemistry and pollution control countermeasure in China. *Atmospheric Environment*, 99, 466-473.

- Xing, J., Wang, S. X., Jang, C., Zhu, Y., &Hao, J. M. (2011). Nonlinear response of ozone to precursor emission changes in China: a modeling study using response surface methodology. *Atmospheric Chemistry and Physics*, 11(10), 5027-5044.
- Xu, T. F., Sathaye, J., Akbari, H., Garg, V., &Tetali, S. (2012). Quantifying the direct benefits of cool roofs in an urban setting: Reduced cooling energy use and lowered greenhouse gas emissions. *Building and Environment*, 48, 1-6.
- Yang, J., &Wang, Z. H. (2014). Physical parameterization and sensitivity of urban hydrological models: Application to green roof systems. *Building and Environment*, 75, 250-263.
- Yang, J., &Wang, Z. H. (2015). Optimizing urban irrigation schemes for the trade-off between energy and water consumption. *Energy and Buildings*, 107, 335-344.
- Yang, J., & Wang, Z. H. (2017). Planning for a sustainable desert city: The potential water buffering capacity of urban green infrastructure. *Landscape and Urban Planning*, 167, 339-347.
- Yang, J., Wang, Z. H., Georgescu, M., Chen, F., &Tewari, M. (2016a). Assessing the impact of enhanced hydrological processes on urban hydrometeorology with application to two cities in contrasting climates. *Journal of Hydrometeorology*, *17*, 1031-1047.
- Yang, J., Wang, Z. H., Kaloush, K., &Dylla, H. (2016b). Effect of pavement thermal properties on mitigating urban heat islands: A multi-scale modeling case study in Phoenix. *Building and Environment*, 108, 110-121.
- Yang, J., Wang, Z. H., &Huang, H. P. (2019). Intercomparison of the surface energy partitioning in CMIP5 simulations. *Atmosphere*, 10(10), 602.
- Yang, J., Wang, Z. H., &Kaloush, K. E. (2015). Environmental impacts of reflective materials: Is high albedo a 'silver bullet' for mitigating urban heat island? *Renewable and Sustainable*

- *Energy Reviews*, *47*, 830-843.
- Yuan, J. H., Emura, K., Farnham, C., &Sakai, H. (2016). Application of glass beads as retroreflective facades for urban heat island mitigation: Experimental investigation and simulation analysis. *Building and Environment*, 105, 140-152.
- Zhang, J. C., Li, Y., Tao, W., Liu, J. F., Levinson, R., Mohegh, A., et al. (2019). Investigating the urban air quality effects of cool walls and cool roofs in southern California.

 Environmental Science & Technology, 53(13), 7532-7542.
- Zhang, J. L., Ghirardo, A., Gori, A., Albert, A., Buegger, F., Pace, R., et al. (2020). Improving air quality by nitric oxide consumption of climate-resilient trees suitable for urban greening. *Frontiers in Plant Science*, 11, 549913.
- Zhang, Y. Q., Bash, J. O., Roselle, S. J., Shatas, A., Repinsky, A., Mathur, R., et al. (2020).

 Unexpected air quality impacts from implementation of green infrastructure in urban environments: A Kansas City case study. *Science of the Total Environment*, 744, 140960.
- Zhao, J. W., Xu, W. Y., &Ye, L. (2018). Effects of auditory-visual combinations on perceived restorative potential of urban green space. *Applied Acoustics*, *141*, 169-177.
- Zhao, K. H., Bao, Y. X., Huang, J. P., Wu, Y. H., Moshary, F., Arend, M., et al. (2019). A high-resolution modeling study of a heat wave-driven ozone exceedance event in New York City and surrounding regions. *Atmospheric Environment*, 199, 368-379.
- Zhao, S. Q., Liu, S. G., &Zhou, D. C. (2016). Prevalent vegetation growth enhancement in urban environment. *Proceedings of the National Academy of Sciences of the United States of America*, 113(22), 6313-6318.
- Zhao, W. C., Cheng, J. P., Li, D. L., Duan, Y. S., Wei, H. P., Ji, R. X., et al. (2013). Urban ambient air quality investigation and health risk assessment during haze and non-haze

- periods in Shanghai, China. Atmospheric Pollution Research, 4(3), 275-281.
- Zhu, C. Y., Ji, P., &Li, S. H. (2017). Effects of urban green belts on the air temperature, humidity and air quality. *Journal of Environmental Engineering and Landscape Management*, 25(1), 39-55.
- Zinzi, M., & Agnoli, S. (2012). Cool and green roofs. An energy and comfort comparison between passive cooling and mitigation urban heat island techniques for residential buildings in the Mediterranean region. *Energy and Buildings*, 55, 66-76.
- Zuvela-Aloise, M., Koch, R., Buchholz, S., &Fruh, B. (2016). Modelling the potential of green and blue infrastructure to reduce urban heat load in the city of Vienna. *Climatic Change*, 135(3-4), 425-438.