Abstract

Urban areas confront a number of environmental issues including excessive thermal stress
and concentrated emissions of greenhouse gases and pollutants. In past decades, many mitigation
strategies have been designed and implemented to counteract these issues and ameliorating the
environmental quality in cities, which can be broadly classified as white, green or blue
infrastructure. The functioning and efficacy of urban mitigation strategies involve complex
interactions between landscape dynamics, anthropogenic activities, and atmospheric transport,
which leads to compound, rather than singular, environmental impact. In this study, we
conducted a critical review of the compound environmental impact of urban mitigation
strategies, and evaluated, besides the targeted cooling effect, the resultant co-benefits, trade-offs,
or unintended consequence, in terms of building energy saving, air quality improvement, carbon
emission offset, and impact to human health. Furthermore, we proposed a novel mathematical
framework that is capable of assessing the compound environmental impact in a unified way,
together with some preliminary results as the proof-of-concept. A number of knowledge gaps are
identified which calls for future transdisciplinary synergy among urban engineers, atmosphere

and climate scientists, and epidemiologists.
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1. Introduction

Global urbanization, the most irreversible and human-dominated form of landuse changes
(Seto et al., 2011), has given rise to critical issues challenging the sustainable development of
new generation of cities. Here sustainability can be broadly viewed as future development that is
compatible or supportive to natural environmental systems, human well-being, biodiversity, and
ecosystem services and meanwhile maintaining socioeconomic stability and growth. Today,
cities and towns accommodate 55% of the global population; this figure is projected to increase
to 67% by the mid-century (UN, 2019). The concentration of population in urban areas has
positively affected the economic growth, spurring entrepreneurship, inventions, and business
innovation (Bettencourt et al., 2007; Bettencourt & West, 2010). In addition, large cities are
often “greener” than rural areas, because people living in denser habitats typically have smaller
energy footprints, require less infrastructure, and consume fewer resources per capita
(Bettencourt & West, 2011).

Despite these benefits, urban areas confront a number of environmental issues, including
excessive thermal stress, degraded air quality, concentrated greenhouse gas (GHG) (carbon
dioxide COz in particular), and pollutant emissions, infrastructure vulnerability, etc. Among
these environmental issues, a prominent example is the phenomenon that urban cores are usually
warmer than their rural surroundings, commonly known as the urban heat island (UHI) effect
(Oke, 1973; Landsberg, 1981; Oke et al., 2017). The UHI effect can be further aggravated by
anthropogenic stressors (Fernando et al., 2010; Sailor, 2011), synergistic interactions with
synoptic-scale heat extremes (Perkins, 2015; Jiang et al., 2019), and regional climate changes

(Arnfield, 2003; IPCC, 2014).



To counteract the excessive thermal stress in urban areas, urban planners, researchers, and
policy makers have designed and implemented numerous heat mitigation strategies. These
strategies can be broadly classified into three categories according to their appearance in color,
viz. (1) white (reflective), (i1) green (vegetation), and (ii1) blue (waterscape) infrastructure. Figure

1 illustrates examples of all three categories of urban mitigation strategies.

(a) White infrastructure

Figure 1. Examples of urban infrastructure for urban heat mitigation: (a) white (reflective)
infrastructure: white roofs, white walls, and white pavements, (b) green (vegetation)
infrastructure: urban lawns, green roofs, and green walls, and (c) blue (waterscape)
infrastructure: pools, lakes, and rivers.

The denomination of white infrastructure here refers to engineering materials highly

reflective to solar radiation that appear white in color, including white roofs, walls, and



pavements, as shown Fig. l1a. The use of white infrastructure for heat mitigation has been
extensively studied in the literature; interested readers are referred to specific reviews in this
field for details (see, e.g. Akbari et al., 2012; Qin, 2015; Santamouris and Yun, 2020). It is
noteworthy that the phrase “cool” has been widely used as the synonym of “white” in the
literature (e.g. cool roofs). In this category, we may also associate with the use of other
innovative engineering materials for heat mitigation, such as phase change materials (Nagano et
al., 2004; Roman et al., 2016), retro-reflective coating (Rossi et al., 2016; Yuan et al., 2016;
Manni et al., 2020), permeable/porous pavements (Stempihar et al., 2012; Liu et al., 2018;
Ferrari et al., 2020), etc., sometimes broadly labeled as the grey infrastructure. The primary
mechanism underlying the white (or grey) infrastructure for heat mitigation is by changing the
thermal material properties of urban surfaces especially the building envelops. The high surface
albedo of reflective materials helps to sending more direct shortwave (solar) radiation back to the
atmosphere, hence reduces the net available energy impinged on urban surfaces. Phase change
and permeable materials, on the other hand, helps to retard heating of paved surfaces by
converting available energy to the latent heat of phase transition or by quicker heat dissipation.
As alternative to the use of engineering materials, urban greening is another effective and
popular means for heat mitigation (Bowler et al., 2010; Shashua-Bar et al., 2011;
Vijayaraghavan, 2016; Besir & Cuce, 2018; Koch et al., 2020). Commonly used urban green
infrastructure for heat mitigation include urban lawns, shade trees, green roofs, and green walls
(Fig. 1b). Other forms of green infrastructure include rooftop gardens, parks, urban agriculture,
urban forests, etc. Urban vegetation at the ground level can be further classified into two sub-
categories, viz. mesic and xeric landscapes. A well-maintained grassland (lawns, gold courses,

parks, etc.) with ample irrigation features a typical mesic landscape that is highly water



demanding. The cooling effect of a mesic landscapes is a result of re-partitioning of sensible and
latent heat, viz. more available energy impinged on urban surfaces will be used to vaporize liquid
water through evapotranspiration instead of heating urban surfaces and the atmosphere; and its
efficacy requires high heat-water trade-offs (Yang & Wang, 2015; C. Wang et al., 2019a). In
contrast, xeric landscapes are often found in arid or semi-arid cities with native (often water-
saving) species of trees or shrublands, with radiative shading as the primary mechanism of
cooling (Upreti et al., 2017; C. Wang et al., 2018a, 2019b). In addition to the ground-level urban
vegetation, greening of the urban envelops (roofs and walls) is another popular form of green
infrastructure, with cooling provided by evapotranspiration and additional layers of insulation
(Alexandria & Jones, 2008; Sun et al., 2013; Cameron et al., 2014; Malys et al., 2014; Yang &
Wang, 2014; Yang et al., 2016a; Coma et al., 2017).

In comparison to white and green infrastructure, the use of urban blue infrastructure
(waterscapes) remains a relatively underexplored field and its impact on heat mitigation has been
studied only till very recently (Steeneveld et al. 2014; Zuvela-Aloise et al., 2016; Broadbent et
al., 2019; C.Y. Wu et al., 2019; Fung and Jim, 2020; Lin et al., 2020). Commonly included in the
category of blue infrastructure are open waters such as pools, lakes, and rivers (Fig. 1c). The use
of blue infrastructure, like green infrastructure, was originally designed as urban landscape
planning strategies for stormwater management. The two are commonly combined as green-blue
infrastructure (GBI) in the landscape management literature and have the natural co-benefit of
flood control in addition to environmental cooling (Perini and Sabbion, 2016; Alves et al., 2019,
2020; Kapetas and Fenner, 2020). The presence of a waterscape in a metropolitan and its cooling

of the ambient environment usually manifest as an oasis in the built environment during daytime



(Fan et al., 2017), while the heat capacity of water makes it warm during nighttime (Steeneveld
etal. 2014).

This paper is not intended to be an exhaustive review of urban mitigation strategies, but
rather a critical evaluation of the compound environmental impact of heat mitigation strategies
on ambient temperature, air quality, building energy efficiency, human well-being and health,
and other ecosystem services. Given the excessively voluminous literature on urban heat
mitigation strategies, the selected studies in this review are limited to publications after Year
2000, with the focus on compound (multiple) environmental measures rather than on a singular
(especially cooling) effect alone. This synthetic effort is expected to help promoting the
integration of urban mitigation strategies into the context of a holistic framework of general
urban liveability inclusive of issues such as air quality, energy-water-climate repercussions, and
diverse ecosystem services (Howells et al., 213; Antognelli et al., 2016; Simpson and Parker,
2018; Martinez-Bravo et al., 2019).

The rest of the paper is organized as follows. The co-benefit of urban mitigation strategies
are reviewed and discussed in Section 2, with subsections focused on the compound effect of
cooling and building energy saving (Section 2.1), air quality (Section 2.2), carbon emission
(Section 2.3), and health impact (Section 2.4). It is followed by review and discussion of critical
trade-offs using common urban mitigation strategies in Section 3, viz. the heating penalty of
reflective surfaces (Section 3.1) and the heat-water trade-offs induced by urban irrigation
(Section 3.2). We then proceed to illustrate in Section 4 the unintended consequence associated
with urban mitigation strategies that should be avoided whenever possible. The use of urban

mitigation strategies for conserving biodiversity and other ecosystem services is reviewed in



Section 5. We then venture to develop a theoretical framework for quantifying the compound

environmental impact in Section 6 and present some concluding remarks in Section 7.

2. Environmental co-benefits of urban mitigation strategies

2.1. Compound effect of cooling and building energy saving

One immediate effect of urban heat mitigation is to reduce the energy use for cooling in hot
days, via different pathways of re-partitioning of available energy impinged on urban surfaces
and building facets. Results of cooling and building energy savings from studies on different heat
mitigation strategies selected in the literature are summarized in Table 1. It can be seen that the
quantitative results differ widely from case to case and depended heavily on local climatology,
seasonality, characteristics of mitigation strategies, or even scales of numerical simulations.
More specifically, it was reported that cool roofs are usually more effective in reducing heating
load in hot seasons as compared to other techniques, but often lead to increase of heating load
(aka heating penalty) during cold seasons (Zinzi and Agnoli, 2012; Virk et al., 2015; He et al.,
2020; Berardi et al., 2020). In the extreme case, a “super-cool” rooftop with surface albedo
greater than 0.96 is even capable of maintaining its surface temperature below the ambient air
temperature throughout the year in all climates (Baniassadi et al., 2019).

In contrast, green roofs and walls provide additional layers of insulations (growing medium
+ plant canopy) to building envelops, which makes them capable of reducing both heating and
cooling load in most weather conditions. However, the cooling efficacy of green roofs and walls
bear complex relationship to many factors, including the growing medium, plant foliage,
photosynthetically active radiation (PAR), irrigation, to name a few. Interested readers can found

more detailed information in comprehensive reviews of the use of green roofs for heat mitigation



for building energy saving (see e.g. Alexandria & Jones, 2008; Azkorra et al., 2015; Susca 2019;

Koch et al., 2020).

Table 1. Summary of cooling and energy saving potentials of different urban heat mitigation

strategies
Strategy Methodology Study area Temperature  Cooling energy References
reduction saving
Cool surfaces & DOE-2 building  Multiple U.S. N.A. ~20% nationwide Akbari et al. (2001)
shade trees energy model cities Akbari & Konopachi
(2005)
Green roofs EnergyPlus Chicago, IL N.A. 2% electricity, 9%-  Sailor (2008)
Houston, TX 11% natural gas
Cool and Green  EnergyPlus Mediterranea  10%-80% 8%-17% Zinzi & Agnoli
roofs n region reduced 28°C+ (2012)
hours
Cool roofs Regression or Hyderabad, 5.2°C outdoor  14%-26% Xu et al. (2012)
field observation  India Tair
Urban irrigation  Urban canopy Phoenix, AZ, ~3°Ccanyon  $1.19 per m? wall Yang & Wang (2015)
model (UCM) U.S. Tair area
Green and cool ADMS T&H 4 London, UK. ~1 °C Tairmax 18% cool roofs Virk et al. (2015)
roofs 23% green
Lawns and trees UCM Phoenix, AZ, 2.4°C (lawn), $1.82/m”or Z. H. Wang et al.
U.s. 5.5°C (trees)  $5.50/m? for max (2016)
Thair, max lawn/tree
Green roofs ENVI-met + Toronto, ON, 0.4 °C Ty 3% Berardi (2016)
EnergyPlus Canada
Urban trees EnergyPlus Nanjing city, 0.3-3°C 12.4%-15.2% Hsieh et al. (2018)
China ambient Tyir
Common ENV-met Hong Kong 3.3-5°C PET 1900-3000 kWh Morakinyo et al.
greenery (30% greenery  per summer day (2018)
coverage ratio)  per 500x500 m?
Cool pavements ENVI-met + Thessaloniki, <0.2°Cin <1.5% Tsoka et al. (2019)
EnergyPlus Greece monthly mean
Tair
Green walls ENVI-met Chenzhou, 2610-8267 W  6.29%-19.92% J.Y. Lietal. (2019)
Hunan, China  cooling power
Thermochromic  Laboratory + Toronto, ON, 15-20°Cskin  8.9% Berardi et al. (2020)
coatings simulations Canada temperature
Cool and green  THERB + Shanghai, 3.3 °C (cool 3.6% He et al. (2020)
roofs hygrothermal China roofs), 2.9 °C
transfer (green roofs)
High albedo WRF-BEP + Toronto, ON, 3.3 °C daily 10% Jandaghian & Berardi
surfaces BEM Canada average Tourface (2020)
Reflective Combined Sydney, 2.9 °C peak 80% overheating Santamouris et al.
surfaces + miscellaneous Australia ambient reduction (2020)
greenery methods temperature




Urban green space at the ground level, e.g. mesic lawns or xeric trees, have different
pathways of cooling and building energy saving. Mesic lawns or grasslands are roughly planar
(two-dimensional) and help to reduce the building cooling load rather indirectly by cooling the
ambient air in street canyons. Xeriscaping with shade trees, on the contrary, have three-
dimensional (3D) morphology and can provide cooling via direct shading by shielding off solar
radiation from walls and roofs. As a result, urban trees are usually more effective and economic
in promoting building energy efficiency as compared to lawns or shrublands lacking shading (Z.
H. Wang et al., 2016). Likewise, it was also found that the use of cool pavements at the ground
level induced insignificant cooling and energy saving in buildings (Tsoka et al., 2019). This is
understood as reflective pavements do not directly transport heat to adjacent buildings, but
instead reflect short- or long-wave radiations to walls (Wang, 2014; Yang et al., 2016b), which

in turn can cause other unintended consequence (detailed in Section 4).

2.2. Environmental co-benefit of improving thermal and air quality

Most studies on the co-benefit of urban cooling and air quality improvement focused on the
green infrastructure (Abhijith et al., 2017; Jones et al., 2019; Van Ryswyk et al., 2019). Itis
noteworthy that urban areas usually furnish favorable conditions for plant growth, because: 1)
the elevated temperature in cities allows plants to maintain a higher photosynthesis rate and a
longer growing period (Lahr et al., 2018; Meng et al., 2020; Zhao et al., 2016); 2) regular
maintenance practices, such as irrigation and fertilization, relieve much of environmental stresses
for plant growth (Luketich et al., 2019); and 3) the elevated CO; level forms a natural CO> pump,
promoting the carbon assimilation and plant growth rate (H. Wang et al., 2017; S. Wang et al.,

2019). Due to their peculiar growing conditions in the built environment, urban vegetation



behaves distinctively from plants in the natural environment with different physiological
functions (Calfapietra et al., 2015).

Concerning air quality in urban areas, particulate matter (PM) and ozone (O3) are two well-
characterized air pollutants as regulated by the U.S. Environmental Protection Agency (EPA,
2013, 2019). Nitrogen oxides (NOx) and volatile organic compounds (VOC) have also been
extensively studied in the urban environment, especially as ozone precursors. Studying the co-
benefit of urban greening for heat mitigation and air quality improvement have attracted much
research effort in the past decades. In general, strategic placement of vegetation in cities can
contribute to the improvement of air quality by reducing average concentrations or fluxes of
emission of criteria air pollutants (e.g. Pugh et al., 2012; Ren et al., 2017; Rafael et al., 2018; de
Jalon et al., 2019; Y. Q. Zhang et al., 2020), and negative air ions or bacteria rate (Zhu et al..,
2017). There are two major pathways for improving air quality using urban vegetation: (1) the
direct effect of removing pollutants through deposition (Janhall, 2015; Sicard et al., 2018; L.
Wang, 2018; de Jalon et al., 2019), and (2) the indirect effect of lowering pollutant concentration
by cooling the environment, albeit via complex temperature-dependent (e.g. stomatal, enzymatic,
etc.) mechanisms of secondary formation (Fallmann et al., 2016; Lun et al., 2020; J.L. Zhang et
al., 2020). More quantitively, for instance, Pugh et al. (2012) showed that increasing deposition
by urban greening can reduce street level concentrations in street canyons by as much as 40% for
NO; and 60% for PM, respectively. Y. Q. Zhang et al. (2020) predicted that the implementation
of urban green infrastructure decreased the average and hourly maximum ozone concentrations
by 0.9 and 1.4 ppbv respectively, over the downtown areas of Kansas City during summertime.

It is noteworthy that among different forms of urban vegetation, trees are found to be more

effective than lawns or green roofs for regulating air quality (Jayasooriya et al., 2017). This

10



advantage can be attributed to the 3D morphology of trees as compared to the planar (2D) form
grasslands with similar physiological functions; the same reason is responsible for the advantage
of urban trees in building energy saving (see Section 2.1). In particular, it was found that urban
trees, most noticeably coniferous forests, can effectively remove both PM and ozone by dry
deposition, with roughly equal efficacy in the Basque Country (de Jalon et al., 2019). This is
worth noting because coniferous trees, especially the native species, is especially fitful for cities
in semiarid and arid environment facing the double evil of UHI and water scarcity as to optimize
the heat-water trade-off (detailed in Section 3.1).

Furthermore, we highlight some important considerations for optimizing the co-benefit of
ameliorating thermal and air quality by urban greening, as revealed from the literature review:

(1) Context dependency: The impact of urban green space on air quality is highly context
dependent, meaning that plants can improve urban air quality when strategically planned, but can
be ineffective or even detrimental in other cases (Vos et al., 2013; Hewitt et al., 2020; Wang,
2020). Specifically, the mechanisms governing the interplay between thermal environment and
air quality are strongly regulated by urban landscape dynamics and temperature-dependent
(Camalier et al., 2007; C. Wang et al., 2017; Chen et al., 2019; Lun et al., 2020).

(2) In-canyon flow physics: One major factor that regulates the aforementioned context
dependency is the peculiar characteristics of urban flow (Fernando, 2010). In particular, the
presence of trees in street canyons alters the flow and physics of scalar transport in urban
canyons, depending on the canyon and tree morphology (Amorim et al., 2013; Gromke and
Blocken, 2015; Li and Wang, 2018). As a result, e.g. it was found that trees with high leaf area

density are beneficial to reducing pollutant concentration in wide street canyons, while trapping
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of pollutants is manifest in narrow canyons under skimming flow and splitting of vortices by
trees (C. Wang, et al., 2018b).

(3) Plant species: The co-benefit of mitigating heat and air pollution also depends heavily
on the selection and diversity of plant species. For example, J. L. Zhang et al. (2020) found that
the uptake rate of NOx can be significantly increased by selecting a specific tree species, Alnus
glutinosa which remains resilient to future climate changes. Furthermore, research suggested that
species richness amounts to the best biodiversity metric for measuring the efficacy of urban
green space on ameliorating air quality (Matos et al., 2019).

(4) Planetary boundary layer (PBL) dynamics: The compound effect of urban cooling and
air quality also involves complex land-atmosphere interactions and the thermodynamic
characteristics of the overlying atmospheric boundary layer (Song and Wang, 2015a,2016a). In
general, the cooling of urban surfaces and the canopy layer induced by urban mitigation
strategies leads to a lower planetary boundary layer (PBL) height (Song & Wang, 2015b, 2016b;
Song et al., 2018), which in turn changes the atmospheric concentration of pollutants and the
pathways of secondary formation (Y. H. Wu et al., 2019; Y. Q. Zhang et al., 2020).

(5) Nonlinear effect: the transport and fate of air pollutants do not generally bear
monotonic or linear correlation with emission sources, plant phenology, or photochemistry of
precursors (Xiao et al., 2010; Xing et al., 2011; Xie et al., 2014; Jochner et al., 2016; Hong,
2017). Furthermore, determinants of air pollution in urban areas often involve competing
mechanisms that operate simultaneously. One particular challenge realized by researchers is the
relationship between ozone and biogenic volatile organic compound (BVOC). For example, Xiao
et al. (2010), using photochemical modeling, identified that daytime ozone exhibits nonlinear

responsiveness to precursor (NOx and BVOC) emissions. As a result of this intense nonlinearity,
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moderate perturbations (10-30%) in either precursor emissions inventories could qualitatively
flip the model results. In the presence of urban trees, the nonlinear interactions between ozone
and BVOC renders it particularly challenging to accurately estimate the ozone level at urban
scales (Calfapietra et al., 2013).

In comparison to urban greening, research effort on the impact of reflective materials on
urban air quality remains relatively scarce up to date. Existing studies suggested that, based on
numerical simulations, the use cool roofs or walls gave rise to air quality penalty in terms of
increase of PM; 5 level, while its impact on ozone level remains divergent (Epstein et al., 2017;
Zhang et al., 2019). The penalty is supposedly due to the reductions in ventilation associated
with surface cooling. It is interesting to note that a recent study by Han et al. (2020) showed that
cool roofs led to decreased near surface O3 concentration in Seoul due to weakened sea breeze
that brings high ozone concentration air flows into the city. This apparent benefit of cool roofs
on ozone air quality is quite peculiar and precarious to extend to other metropolitan areas, as the
ozone concentration generally decreases over the urbanization gradient (Strosnider et al. 2017)
and reduced urban-rural breeze tends to generate higher ozone level accumulated in urban cores.
Overall, it remains hitherto a big knowledge gap and much more field observations and
numerical simulations are needed in the future for in-depth understanding of potential co-

benefits, trade-offs, or unintended consequence of white infrastructure with respect to air quality.

2.3. Co-benefit of heat and carbon mitigation

Urban areas are hotspots of carbon emission, especially the anthropogenic CO2 (AnCO»)
(Grimmond et al., 2002; Pataki et al., 2006; Hutyra et al., 2014). Cities contribute ~70% of

AnCOz emissions mainly through fossil fuel burning (UN-Habitat, 2011; Churkina, 2016), which
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constitutes the largest carbon flux to the atmosphere and represents the dominant source of GHG
forcing to emergent climate patterns (Gurney. 2014). More specifically, complex heat-carbon
interactions are responsible for the co-evolution of thermal and carbon dynamics in the built
environment (Balling et al., 2001; Vetter et al., 2008; Wang, 2020). For example, it was found
that emission rates of biogenic and anthropogenic CO; increase under high ambient temperature
(Churkina et al., 2017; Humborg et al., 2019). The elevated CO» concentration, in turn, tend to
exacerbate the local thermal environment and contribute to the longterm trend of urban warming
(Hutyra et al., 2014, Churkina, 2016). The inverted trend, i.e. reduction of AnCO; emission by
urban mitigation strategies, therefore has the potential to check the warming trend of global
climate changes in the long run (IPCC, 2014).

For reflective (cool) surfaces, Akbari et al. (2009) came up with a simple proportionality of
0.01 albedo increase to offset 2.55 kg COz (or 7 kg in Akbari et al., 2012) per square meter of
urban area, based on the rational that the increase of albedo in urban areas can be equivalent to
the reduction of atmospheric CO; emission since both leading to the change of radiative forcing.
Using this proportionality, it was estimated that a global increase of net urban albedo of about
0.1 can lead to a negative radiative forcing on the earth equivalent to offsetting about 44 Gt of
CO; emissions (Akbari et al., 2009). A higher estimate of global offset 57 Gt of CO; emissions
was reported by plausible increases of surface albedo of 0.25 (roof) and 0.15 (pavement) (Menon
et al., 2010). Nevertheless, these lumped proportionality between cooling and CO; offset is
apparently an over-simplification to the complex interactions of carbon dynamics and radiative
forcing as well as the climate response (Good et al., 2015).

Similar to the treatment with cool surfaces, Lin et al. (2011) estimated the carbon saving as

a result of cooling effect of urban green space. Remote sensing imagery (Landsat-ETM) were
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used to identify the cooled areas, where possible energy use to maintain the temperature
differences between cooled areas and their warmer surroundings was estimated, followed by the
calculation of the carbon savings owing to the avoidance of energy use. Recently, it has been
pointed out that the use of lumped correlation between the static average CO» saving and
building energy efficiency could be misleading and lead to inaccurate estimation (Pylsy et al.,
2020).

Weissert et al (2014) conducted a review on the influence of urban forests to mitigate CO2,
whereas the quantification of dynamic interactions of urban trees with the built environment in
carbon exchange processes was at its infancy at that time. There has long been a lack of accurate
estimation and prediction of the co-benefit of heat and CO mitigation by urban greening due to
the lack of sophisticated modeling techniques. Physically-based numerical models capable of
integrating realistic land surface processes and urban carbon dynamics were only developed
recently (Goret et al., 2019; Li and Wang, 2020, 2021a). Enabled by the new tools, it was found
that expanding urban green space resulted in the environmental co-benefit of reducing heat and

CO; emission; the efficacy varies for different vegetation types (Li and Wang, 2021b).

2.4. Health impact of heat mitigation

Degradation of environmental quality, especially the presence of elevated temperature
and air pollution, impose serious threat to human well-being and public health (Mishra and
Ramgopal, 2013; USGCRP, 2016), which increases the risk of morbidity and mortality in urban
areas (McMichael et al., 2008; Tan et al., 2010; Gabriel & Endlicher, 2011; Rosenthal et al.,
2014). The health impact is more severe for sensitive segments of the population, including the

elderly, children, and low-income individuals (Patz et al., 2005; USGCRP, 2016). In this section,
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we provide an overview of the co-benefit of urban mitigation strategies with implications to
health of urban residents and improvement of the urban liveability in general.

The primary health benefit of urban mitigation strategies is to reduce morbidity and
mortality associated via two major pathways, viz. (a) cooling and thermal stress alleviation
(Burkart et al., 2016; Salata et al., 2017; Chan et al., 2017; Park et al., 2020; Venter, et al., 2020)
and/or (b) improving of air quality (Cifuentes et al., 2001; Jack and Kinney, 2010; Ramaswami
et al., 2017; Ren et al., 2017). For example, a recent study showed that a combination of
reflective surfaces, additional greenery and other mitigation strategies, was capable of reducing
the heat-related morbidity by 1.07-1.49 and the heat-related mortality anomaly by 1.39 per
100,000 citizens in Greater Sydney, Australia (Santamouris et al., 2020).

Results from case studies also showed that urban plants, help to human well-being and
public health by pollutant removal (Jack and Kinney, 2010; Zhao et al., 2013; Nowak et al.,
2018, 2019; Arantes et al., 2019). In particular, there is an emerging research area that looks into
the impact of urban green space, especially trees, on the respiratory-related health problems, such
as asthma (Lovasi et al., 2008; Eisenman et al., 2019; Aerts et al., 2020). Up to date, the complex
causal pathways between urban greening, air quality, and health remain obscure (Eisenman et al.,
2019).

In addition, urban greenery has the recreational and aesthetic co-benefits to urban
residents, which helps to improve their visual comfort, though different demographic groups
differ in their preference of specific vegetated landscapes (Chen et al., 2015; Du et al., 2016;
R.G. Wang and Zhao, 2017). In addition, urban green space can serve as a physical and
psychological buffer for the negative health impact by noise reduction (Dzhambov and

Dimitrova, 2014; Azkorra et al., 2015; Sakieh et al., 2017), promote the combined restorative
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auditory-visual potentials (Zhao et al., 2018; Deng et al., 2020), improve mental health and well-

being in general (Andreucci et al., 2019, Andersson et al., 2019).

3. Trade-offs in urban mitigation strategies

The review of the environmental co-benefits of urban mitigation strategies in Section 2 has
already given us some inkling of their trade-offs, or more plainly, the price necessary to purchase
the desired co-benefit. In this section, we will give an in-depth review two particular trade-offs,
viz. heating penalty of reflective surfaces and heat-water nexus of urban irrigation, and their

potential remedies or implications.

3.1. Heating penalty

The problem of heating penalty associated with the use of reflective surfaces is quite
intuitive: white surfaces reflects more solar radiation back to the atmosphere than conventional
grey pavements, hence lower the surface (skin) temperature of the paved surfaces regardless of
the weather conditions. This all-weather cooling effect leads to the increase of heating energy
consumption in cities located in temperate to cold climate regions during winters, a penalty or
rather a trade-off necessary to gain building cool energy saving during hot seasons. To decide
whether or not reflective pavements should be used as heat mitigation strategy therefore depends
on the net building energy saving. It follows intuitively that for cities located in heating-
dominated climates, the use of cool roofs can result in a net energy loss due to the heating
penalty (e.g. London, see Virk et al., 2015). A simple rule of thumb is that the summer cooling
saving by cool surfaces can be roughly balanced by the winter heating penalties in climate

regions with less than 1000 cooling-degree-days (Akbari and Konopachi, 2005). The case is
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more complicated when retro-reflective materials are used for building coating, which can
generate uneven redistribution of solar energy, leading to cooling and heating on different urban
canyon facades (Manni et al., 2020).

One way to remedy the heating penalty generated by reflective surfaces is to use vegetated
building envelops instead of white roofs or walls. Green roofs or vertical walls provide
additional layers of insulation by growing medium and plant canopy, which can even save
heating load in winters as confirmed by numerous studies (see, e.g. Zinzi & Agnoli, 2012; He et
al., 2020). It is worth noting an alternative remedy, perhaps singular in the literature, is to use
different roof coatings during different seasons, i.e. white in the summer and black in the winter.
Ramamurthy et al. (2014) investigated this potential solution using numerical simulations
applied to Princeton, NJ by an urban canopy model (Wang et al., 2013). The real challenge of
this seemingly simplistic, but potentially promising, engineering approach lies with the design
and production of innovative pavement materials capable of color changing with response to

different intensity of solar (e.g. ultraviolet) radiation.

3.2. Heat-water trade-off for urban irrigation

The use of urban vegetation for heat mitigation is naturally supplemented by urban
irrigation, especially for cities in arid or semiarid regions. Yang and Wang (2015) evaluated
different urban irrigation schemes for achieving optimal heat-water trade-offs using a single-
layer urban canopy model (UCM). It was found that in Phoenix metropolitan, the best strategy is
for urban irrigation to be activated by urban temperature. Using a mesoscale regional climate
modeling, it was found that in Phoenix, AZ, the urban irrigation would amount to five times the

current irrigation water use for an oasis (fully green) city with a urban cooling of 2~2.5 °C (air
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temperature) (Yang and Wang, 2017). In contrast, a complete desert city is capable of saving 77
+ 5 Mm? of irrigation water in the summer (June, July, August) over the entire Phoenix
metropolitan area by suffering ~1 °C warming of urban air temperature. This amounts to about
240 mm (per unit area) of irrigation water for three summer months, which is comparable to an
earlier estimate of the usage of ~135 mm (per unit area) of irrigation for a nocturnal cooling rate
of 0.6 — 1.4 °C/hour in the same metropolitan area (Gober et al., 2010).

This heat-water trade-off, or as Gober et al. (2010) nicely phrased it as “how much water
will it take to cool Phoenix?”, lately leads to a the development of a convenient measure of
urban water capacity, analogous to heat capacity in thermodynamics, to denote the amount of
average irrigation (water) depth to effectuate one degree of temperature reduction (C. Wang et al.
2019a). The values of urban water capacity are found to be 4.52 + 0.77 mm day ' °C ™! and 7.27
+1.27 mm day ' °C™! for surface and near-surface air cooling respectively, for all urban areas
over the contiguous United States (CONUS). In addition, in large metropolitan areas, urban cores
with higher density of buildings and paved surfaces have better irrigation economy as compared

to their peripheral suburban areas.

4. Unintended environmental consequence

In this section, we review the unintended environmental impact induced by implementation
of white, green, and blue infrastructure for heat mitigation. While the trade-offs of urban
mitigation strategies might be reckoned as a necessary but lesser evil to improve the overall
environmental quality in urban areas, there unintended consequence, on the contrary, are the side

effects that should be avoided whenever possible.
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4.1. Reflective surfaces

Yang et al. (2015) conducted a comprehensive review of the unintended consequence of
cool roofs and cool pavements. Besides the heating penalty already discussed in Section 3.1
above, the unintended consequence includes the adverse impact on the thermal environment of
urban peripheries, regional hydroclimate, and air quality, as well as potential safety or health
issues. Here we only review more recent studies (published after Yang et al., 2015) on the
adverse environmental impact arising from reflective surfaces.

Sharma et al. (2016) evaluated the impact of cool roofs on the regional hydroclimate using
high-resolution (1 km) Weather Research & Forecasting (WRF) model. It was found that
reflective roofs (as well as green roofs) led to reduced wind speeds and vertical mixing and lower
PBL height, which in turn caused stagnation of air near the surface that can potentially impede
the dilution or dispersion of pollutants and causing degraded air quality in urban areas. More
specifically, large-scale deployment of cool roofs and cool walls gave rise to air quality penalty
in terms of increase of urban ozone and PM levels, attributable to the reductions in ventilation
associated with surface cooling (Epstein et al., 2017; Zhang et al., 2019). It is therefore urged
that the implementation of reflective surfaces should carefully take into consideration of the
competing feedbacks between cooling and PBL dynamics.

As for the potential hazard to human safety or health imposed by reflective surfaces, it was
reported that cool surfaces installed over pedestrian passage could produce some visual
discomfort due to glare issue, according to a field survey (Rosso et al., 2016). The optical
behavior of reflective pavements also affected the uniformity of visions for drivers and required

ad-hoc installation of additional light sources (Rossi et al., 2018).
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4.2. Green and blue infrastructure

As reviewed in Section 2.2, the use of urban green space to improve air quality requires
careful selection of plant species and strategic planning of locations, which needs to be informed
by detailed analysis of simulation-based results. Nevertheless, the intricate balance between
cooling and air quality improvement can be easily tipped, leading to unintended consequence
often unfavorable to urban air quality. For example, a recent study showed that the
implementation of green infrastructure caused an approximately 10% increases in summertime
PM: s mostly during nighttime in Kansas City (Y. Q. Zhang et al., 2020).

The primary causal pathway, engendering the adverse impact of urban trees on air quality,
has been identified as the air flow modification by tree morphology and leaf area density, which
generates the blocking effect or reduced ventilation for pollutant dispersion (Vos et al., 2013; C.
Wang et al., 2018b; Rui et al., 2019). On top of that, the reduced PBL height due to surface
cooling via urban land-atmosphere interactions (Song and Wang, 2015a, 2016a) tends to increase
the atmospheric concentration of pollutants. To add the geographic nuance, it was found that
urban trees in cool climate can increase carbon emissions from residential building energy use
due to undesirable shading in cold seasons (Erker and Townsend, 2019) (c.f. the heating penalty
by reflective surfaces as discussed in Section 3.1).

Furthermore, urban areas are more susceptible to severely degraded air quality during heat
extremes. During extreme heatwaves, high emissions or mixing ratios were observed for ozone,
PM 5, BVOC, and CO» (Churkina et al., 2017; Humborg et al., 2019; Y. H. Wu et al., 2019;
Zhao et al., 2019). In particular, the excessive BVOC (the major precursor to ozone) emission by
urban trees, especially during extreme heat (Churkina et al., 2017), can lead to severe ozone

pollution and detrimental health impact. For instance, Ren et al. (2017) found that urban trees, in
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comparison to rural forests, played much more important roles in threating human health via
BVOC emissions, which amounted for 62% of total health damage. The rate of BVOC emission
varies significantly across different plant species, which can potentially offset the biogenic
carbon uptake and/or pollutant deposition, and tip the balance from co-benefit to trade-off
between the urban cooling and air quality improvement. It is therefore of critical importance for
urban planners to carefully select plant species and take into consideration the potential trade-off
between air pollution removal and survival probability (J. L. Zhang, 2020), especially in the
context of future climate change.

Unintended consequence was also identified with respect to irrigation, an integral
component of green infrastructure. Large-scale irrigation for agricultural or urban plant use has
the potential to induce long-range impact on regional to global scale hydroclimate (Puma and
Cook, 2010; de Vrese et al., 2016), hence increases the uncertainty of future climate projections.
Irrigation also increases atmospheric humidity through evapotranspiration, which, in
combination with high temperature, enhances the intensity of extreme heatwaves. This
synergistic effect, as illustrated by Kang and Eltahir (2018), would generate deadly heatwaves
with wet-bulb temperature exceeding the threshold tolerable to human bodies and threaten the
entire North China Plain under projected climate changes.

The function of blue infrastructure (waterscape) in urban areas bears much similarity to
irrigation with ample supply of surface water for cooling the environment. Analogous to the
intensification of heatwaves by irrigation, Steeneveld et al. (2014) found that the presence of
water bodies increased the UHI intensity. This is because the diurnal and annual cycles over
water are suppressed due to high heat capacity, and water temperatures remain relatively high

even after nocturnal or seasonal transitions. Nevertheless, due to the dearth of research effort on
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blue infrastructure, our understanding of its unintended consequence to the built environment

still remains primitive up to date.

5. Biodiversity and ecosystem services

By far we have reviewed and discussed the major compound environmental impact of
urban mitigation strategies in terms of building energy efficiency, urban air quality, carbon
emissions, and health impact. In this section, we review the secondary influence by various heat
mitigation techniques for conserving biodiversity and supporting ecosystem services in the built
environment. It is understood that by secondary, we do not intend to downplay the importance of
the ecosystem services reviewed below, but rather to signal the fact that they are relatively
under-explored, and to encourage future research endeavor to broader the research frontier in this
challenging (highly transdisciplinary in nature) but promising field.

We have mentioned (Section 2.2) that cities furnish peculiar growing conditions to urban
plants. In addition, the implementation of new urban mitigation strategies has profound and far-
reaching impact on the native flora and fauna by: (1) changing their native habitats, (2) directly
introducing alien and potentially invasive species of plants, insects, birds, etc., and (3) creating
new environmental stressors. In particular, the living and growing conditions of native urban
species have jeopardized due to the loss of habitats (Maskell et al., 2006; Menke et al., 2010;
Kozlowski & Bondalla, 2013; Wells et al., 2014), invaded and outgrown by alien species
(Ruthrof et al., 2003; Lososova et al., 2012; Le Louarn et al., 2018; Clements et al., 2019), fall
prey to urban ecological traps (Stracey & Robinson, 2012). It is critical for conserving urban

biodiversity by conserving the native flora and fauna and facilitating their symbiosis with alien
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species under the changing urban environment and habitat structure is critical (Garden et al.,
2007; 2010; Threlfall et al., 2015; Tordoni et al., 2017).

Hence it is rather exciting to find that recent studies revealed that urban green space can
provide complementary and protective habitat to native and endangered species, especially with
their transpiration and cool potentials (Pan et al., 2019; Tan et al., 2020; Gastreich & Presler,
2020). By analogy, we anticipate that urban waterscape should be capable of providing similar
co-benefit of cooling and biodiversity conservation to aquatic species, though the research effort
is hitherto lacking. It also remains to be explored how the use of white infrastructure can impact
the native species and their habitat in the urban environment. In the light of the adverse impact
exerted by reflective surfaces on human health and safety (Section 4.1), it will not be completely
groundless to speculate there might be some unintended consequence to ecosystem services by
large-scale implementation of white infrastructure.

A new paradigm is needed for future research to explore the compound environmental
impact of urban mitigation strategies in supporting urban ecosystem services. Pioneering work
has been conducted to investigate the integrated ecosystem services of GBI with multiple
objectives inclusive of pollutant reduction, biodiversity, and ecosystem conditions (Barbosa et
al., 2019; Strain et al., 2019). In particular, Barbosa et al. (2019) proposed a framework for
systematically selecting cost-effective areas for optimizing the GBI design that addressed

different conservation, restoration and exploitation objectives.

6. A unified framework for measuring the compound environmental impact

Speaking of the need of a new paradigm for future study of the compound environmental

impact, here denoted as CEJ, in this section, we venture to develop a mathematical framework
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for unified quantification of CEI, supplemented with some preliminary analysis as proof-of-
concept. Our framework of generalization begins by considering a multivariate impact space of
environmental measures M = {M;|i=1, 2, 3, ..., n} and a coordinate space of mitigation
strategies S = {Sj|j =1, 2, 3, ..., m}, where each M; denotes a singular measure of environmental
impact (e.g. temperature, building energy consumption, pollutant concentration, morbidity or
mortality rate, etc.), and S; denote individual mitigation strategies (see Fig. 1) quantifiable as
changes of albedo, fractions of green space, irrigation amount, etc. A scalar measure of CEI can
then be constructed, rather intuitively, as weighted average of fractional changes in the ensemble

of M; determined as specific urban planning objectives,
CEI =Y woM:, (1)
i=l1
where SM, = (M,—M )/ M, is the normalized (dimensionless) variation of the individual

measure M;, each associated with a weight w;, and the subscript “ref” denotes the reference

environmental state (not necessarily urban). Note that if we set M, =T,

urban and Mref = Trural as the
ambient temperature in an urban area and its rural surroundings, we then recover the familiar

measure M, =T =T,

urban

-T

rural °

viz. the UHI intensity. The obvious advantage of normalizing

individual measures, in the definition of compound environmental impact CE, is to make
different measures dimensionless and comparable. The choice of weight depends on the policy

priority or credit assigned to individual indicators or objectives (e.g. improvement of air quality

or saving of building energy) by urban planners, and should obey Zwl. =1.

Next, we assume that the scalar measure of CEI varies (adequately) smoothly over the

entire coordinate space under the regional climate index R. This assumption allows us to
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analytically decompose and quantify the sensitivity of CEI to each relevant mitigation strategy

separately, as

2 OCEI " ow, oM
SCEI = 6—55j+®(Mi,Sj,R)=z S 58, +0(M,.5,.R), (2)

m
Jj=1 j j=1 i=1 j

where ® represents the potential nonlinear (confounding or covariant) effect among variables in
the coordinate and impact spaces subjected to regional climate changes. Examples of such
nonlinearity include the temperature response to CO2 concentration (Good et al., 2015), or
partitioning of surface sensible and latent heat per Clausius-Clapeyron relation regulated by soil
water availability (Yang et al., 2019). Alternatively, Eq. (2) can be written in matrix form as

5CEI:ZJ-5S+®, (3)

aWi§Mi

where J: R" — R”, with J, = is the (weighted) Jacobian matrix. One exemplary

element of the Jacobian matrix is the urban water capacity (C. Wang et al., 2019a) for measuring
the heat-water trade-off as discussed in Section 3.2. Using the unified mathematical framework
proposed above, the measure of urban water capacity can be derived as a specific element of the
Jacobian matrix by taking M; as the amount of irrigation water (in mm/day) and S; as temperature
(in °C).

The proposed mathematical framework, in particular the derivation of the Jacobian matrix,
is further illustrated in Fig. 2 below. The procedure starts with the design of urban mitigation
strategies in urban planning processes. The portfolio of scenarios, constitute of the coordinate
space S, are then assimilated as boundary conditions in the physically-based urban hydroclimate
simulations, which in turn predicts the environmental response of the designed mitigation
strategies. The Jacobian matrix is determined as the derivatives of the impact functions (e.g.,
cooling or CO» uptake) in response to the changes in landscape scenarios (e.g., albedo or
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vegetation fraction). Note that the Jacobian matrix admits spatio-temporal variabilities. Thus the
quantification of CEI, for practical uses, needs to be spatially aggregated over the
neighborhood/city of design or temporally averaged over the design period. The determined CEI

can then be feedback to urban planners to inform their decision-making processes.

(a) Mitigation strategies (b) Urban climate modeling (c) Environmental response

owoM,
ﬁ J!/ = aS,

albedo

CO, uptake

S

Figure 2. Illustration of the proposed mathematical framework: (a) design of mitigation
strategies in urban planning, (b) local/regional urban hydroclimate modeling, and (c)
quantification of environmental response and determination of the Jacobian matrix.

As a proof of concept, here we show the result of measuring the compound co-benefit of
heat-CO> mitigation as a function of urban greening and irrigation, using a physically-based
UCM-CO2 model (Li and Wang, 2020). In this case, the coordinate space consists of two
parameters {S;| S1 = SWC, S$2 = fr} where SWC is the soil water content (due to irrigation), and fi
the vegetation fraction (due to urban greening); and the impact space is defined as {M;| M1 = Tcan,
M> =NEE}, where Tcan is the canyon air temperature, and NEE the net ecosystem exchange
(CO2 flux). The results of numerical simulations are show in Fig. 3, where equal weight of 50%
is assigned to NEE and temperature variations, and the nonlinearity in Eq. (2) is neglected for
simplicity. It is clear from the graphs that: (1) urban greening supported with irrigation lead to a

compound co-benefit of cooling and net carbon sink (Fig. 3a), and (2) the variation of CEI with
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respect to the vegetation fraction and soil moisture in the coordinate space is sufficiently smooth,
which validates the assumption of our theoretical framework in Eq. (2) (Fig. 3b). It is also
noteworthy that the slopes of the curved surface in Fig. 3b at a given point of the coordinate

space correspond to the sensitivity of CEI with respect to different mitigation strategies.
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Figure 3. Compound co-benefit of heat-carbon mitigation using urban greening: (a) Simulated
mean canyon air temperature (filled colormaps) and net ecosystem exchange (mg m—2s~!,

contours, negative value signaling carbon sink), and (b) the scalar measure of CEI, as functions
of vegetation fraction fy and soil water content multiplier SWCx, The star indicates the reference

case. SWCx is defined as the ratio of target soil moisture after irrigation to the measured monthly

mean soil moisture at the site.

7. Concluding remarks

To summarize, we have critically reviewed the compound environmental impact of urban
mitigation strategies and their potential or actual co-benefit, trade-offs, and unintended

consequence in terms of impact on ambient temperatures, building energy consumption, air
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quality, carbon emission, human health, and biodiversity. In general, the major co-benefit of
white infrastructure (reflective surfaces) consists of heat mitigation and saving of cooling load in
hot seasons, whereas its heating penalty and potential adverse impact on air quality and human
health need to carefully considered for large-scale implementation. In contrast, the use of urban
green infrastructure is more versatile with far-reaching environmental impact on energy
efficiency, air quality improvement, CO» offset, and positive impact on human health, ecosystem
services and social equity. Among different forms of green infrastructure, urban trees are usually
more effective in generating either positive co-benefit or negative consequence. Urban irrigation
is essential to support the growth and physiological functions of plants, especially in arid or
semiarid environment, but superfluous irrigation water use leads to marginal environmental
benefit that is often negligible. The use of open waterscapes, or blue infrastructure, is relatively
under-explored as compared to white or green infrastructure, and more future studies are needed
to further our understanding to their compound environmental impact.

Furthermore, we can identify a number of knowledge gaps and outstanding challenges from
this review. The major ones include: (1) The complex interplay between urban mitigation
strategies and the urban carbon dynamics. This is particularly important in the context of global
climate change as in current practice our projections of future climate rely heavily on the
accurate prediction of future CO2 concentration to which urban areas are the primary contributor.
(2) The potential feedback mechanisms underlying the interactions between urban mitigation
strategies and human behavior in the context of regional climate change. One interesting
example is feedback between the use of air conditioning system and the UHI effect or heat

extremes. (3) A systematic approach that integrates different urban land surface, hydrological,
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biochemical, and atmospheric processes in a unified framework for evaluating the compound
environmental impact.

As a pioneering effort to address the last challenge, we propose a mathematical framework
in this review. Preliminary analysis shows that this framework is capable of embracing the
familiar environmental measures of urban mitigation strategies in the literature, including the
conventional UHI intensity and urban water capacity. The results are promising for future
research endeavor to quantify the compound environmental impact of reflective surfaces, urban

green spaces, and open waterscapes in one unified framework.
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