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Abstract. This paper gives a condensed review of the history of solutions to the Euler-

Poisson equations modeling equilibrium states of rotating stars and galaxies, leading to

a recent result of Walter Strauss and the author. This result constructs a connected set

of rotating star solutions for larger and larger rotation speed, so that the supports of the

stars become unbounded if we assume an equation of state p = ργ , 4/3 < γ < 2. On

the other hand, if 6/5 < γ < 4/3, we show that either the supports of the stars become

unbounded, or the density somewhere within the stars becomes unbounded. This is

the first global continuation result for rotating stars that displays singularity formation

within the solution set.

1. A brief history on equilibrium of rotating fluids. The equilibrium shape

and density distribution of rotating fluids under self gravitation is a classical problem in

mathematical physics with a long history. Such a fluid can be modeled by the Euler-

Poisson equations, a system coupling perfect fluid with Newtonian gravity:⎧⎪⎪⎨
⎪⎪⎩
ρt +∇ · (ρv) = 0,

(ρv)t +∇ · (ρv ⊗ v) +∇p = ρ∇U,

U(x, t) =
∫
R3

ρ(x′,t)
|x−x′| dx

′.

(1.1)

This system can be reduced to{
−ρω2(r)rer +∇p = ρ∇U,

U(x, t) =
∫
R3

ρ(x′,t)
|x−x′| dx

′,
(1.2)

if we make the following assumptions:

(1) All functions are time independent.

(2) v = ω(r)reθ.

(3) ρ is constant on the fluid domain (incompressible) or is a function of r and x3

only (compressible).
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In the above we have used the cylindrical coordinate r =
√
x2
1 + x2

2, and the unit vectors

er = 1
r (x1, x2, 0) and eθ = 1

r (−x2, x1, 0). We require (1.2) to hold on the fluid domain

{ρ > 0}. We also require the vacuum boundary condition:

p = 0 on ∂{ρ > 0}. (1.3)

Newton essentially started thinking about near spherical solutions to (1.2) soon after he

discovered his law of gravity. Most of the early attempts in solving this problem involve

trying the ansatz ρ = χD, the characteristic function of a suitable smooth domain D

(thus describing an incompressible fluid), while setting ω(r) ≡ ω0, a uniform rotation

profile. Under these assumptions, one has:⎧⎪⎪⎨
⎪⎪⎩
∇
(
− 1

2ω
2
0(x

2
1 + x2

2)− U + p
)
= 0 on D,

U = 1
|x| ∗ χD on R

3,

p = 0 on ∂D.

(1.4)

If we assume D has only one connected component, (1.4) essentially requires

1

2
ω2
0(x

2
1 + x2

2) +
1

|x| ∗ χD = constant on ∂D. (1.5)

Strictly speaking, one should also check that p ≥ 0 on D, but this can be easily verified

at the end and is omitted from the following discussion. One therefore just needs to

find a domain D for which (1.5) holds. The first well-known exact solution of this sort

is due to Maclaurin in the eighteenth century. He uses the formula for the Newtonian

potential of an ellipsoid (see, for example, section VII.6 in [17]): if D is an ellipsoid{
x2
1

a2 +
x2
2

b2 +
x2
3

c2 ≤ 1
}
, then

1

|x| ∗ χD = L0(a, b, c)− L1(a, b, c)x
2
1 − L2(a, b, c)x

2
2 − L3(a, b, c)x

2
3 (1.6)

for x ∈ D, where

L0(a, b, c) = πabc

∫ ∞

0

ds√
(a2 + s)(b2 + s)(c2 + s)

, (1.7)

L1(a, b, c) = πabc

∫ ∞

0

ds

(a2 + s)
√
(a2 + s)(b2 + s)(c2 + s)

, (1.8)

L2(a, b, c) = πabc

∫ ∞

0

ds

(b2 + s)
√
(a2 + s)(b2 + s)(c2 + s)

, (1.9)

L3(a, b, c) = πabc

∫ ∞

0

ds

(c2 + s)
√
(a2 + s)(b2 + s)(c2 + s)

. (1.10)

Maclaurin looks for an axisymmetric ellipsoid for which a = b. Thus

1

|x| ∗ χD = L0(a, a, c)− L1(a, a, c)(x
2
1 + x2

2)− L3(a, a, c)x
2
3 (1.11)

on D. On ∂D, x2
3 = c2

(
1− x2

1+x2
2

a2

)
, thus

1

|x| ∗ χD = (L0 − c2L3)−
(
L1 −

c2

a2
L3

)
(x2

1 + x2
2). (1.12)
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(1.5) now becomes

[
1

2
ω2
0 −

(
L1 −

c2

a2
L3

)]
(x2

1 + x2
2) = constant on ∂D, (1.13)

which is satisfied if we take

1

2
ω2
0 = L1(a, a, c)−

c2

a2
L3(a, a, c). (1.14)

Let us consider solutions with fixed total mass. As the volume of the ellipsoid is πa2c,

let’s set a2c = 1 for simplicity. As a consequence, a3 = a
c . If we define e = a

c to be the

ellipticity of the ellipsoid, one can easily find

L1(a, a, c)−
c2

a2
L3(a, a, c) = π

∫ ∞

0

1

(1 + s)
√
1 + e2s

(
1

1 + s
− 1

1 + e2s

)
ds. (1.15)

By (1.14), we get a Maclaurin ellipsoidal solution whenever the right hand side of (1.15)

is nonnegative. This happens if and only if e ≥ 1. In other words, the solutions are

“oblate”. By the relation of e, a, and c given above, when e tends to infinity, a tends

to infinity and c tends to zero. Thus we get a continuous set of solutions, so that the

support of the fluid domain blows up along this set. It is interesting to note that the

angular velocity ω0 does not blow up in this set, as the right hand side of (1.15) tends

to zero as e tends to infinity.

The Maclaurin ellipsoids present a simple example of a solution set that shows blow up

behavior. Much of the recent progress made by Walter Strauss and the author is about

constructing a similar solution set for the compressible Euler-Poisson equation, as will

be shown in the following. Nevertheless, the transition from the incompressible model

to the compressible one happened rather slowly in history. In retrospect, this could be

due to the fact that compressible solutions are much more difficult to construct and will

need some serious input from modern PDE theory.

To continue our discussion of the classical history, several other main events include:

the discovery of other nonaxisymmetric ellipsoidal solutions by Jacobi in the nineteenth

century; the study of linear perturbations of these constant density ellipsoids by Poincaré,

and the study of nonlinear perturbations by Lyapunov, both in the early twentieth cen-

tury. The solutions found by Poincaré and Lyapunov are both incompressible, and the

density function ρ is close to a constant on the fluid domain. A very nice account of the

classical history of this problem, including discussions of the above mentioned works, can

be found in Jardetzky [16].

To provide more realistic models of gaseous stars, people gradually turned to com-

pressible gas dynamics, in which an equation of state p = p(ρ) is prescribed to relate

pressure directly to fluid density. In the late nineteenth century, Lane and Emden stud-

ied nonrotating star solutions under a power law: p = Cργ for some positive constants

C, γ. Their work made a big impact on the study of stellar structure in astrophysics.

Chandrasekhar [5] is a classical reference for this work. To explain in our current lan-

guage, we take ω(r) = 0 in (1.2), use the equation of state p = Cργ , and divide the first
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equation by ρ on the fluid domain. It follows that

∇
(
ργ−1 − 1

|x| ∗ ρ
)

= 0. (1.16)

For simplicity of presentation, we have chosen a suitable C so that the coefficient in front

of ργ−1 is 1. By assuming the fluid domain has one connected component, we get

ργ−1 − 1

|x| ∗ ρ = constant on {ρ > 0}. (1.17)

Assume ρ is radially symmetric and supported on a ball, (1.17) is equivalent to

Δ

(
ργ−1 − 1

|x| ∗ ρ
)

= 0 on {ρ > 0}. (1.18)

The reason is that any radially symmetric harmonic function on a ball centered at the

origin is constant. Now letting u = ργ−1, and using Δ−1 = − 1
4π|x| ∗ · in R

3, we get

Δu+ 4πu1/(γ−1) = 0 (1.19)

on {u > 0}. This is the well-known Lane-Emden equation. It is actually an ODE for

radial solutions and can be treated as one. Alternatively, one can construct solutions

using PDE methods, which provide a more uniform treatment even when the equation

of state is not exactly a power law. Let us summarize the result by the following.

Theorem 1.1. Consider (1.19) on R
3. The existence of a compactly supported positive

radial solution of (1.19) depends on the exponent 1
γ−1 :

• If 0 < 1
γ−1 < 5, 1

γ−1 
= 1, then on any finite ball B centered at the origin, there

exists a unique positive radial solution to (1.19), such that it is continuous on B

and u = 0 on ∂B.

• If 1
γ−1 = 1, then a positive solution with zero boundary value can only exist on the

ball of radius
√
π
2 , and the solution has the explicit formula u(x) = C sin(2

√
π|x|)

|x|
for some positive constant C.

• If 1
γ−1 ≥ 5, there is no positive solution with zero boundary value on any finite

ball.

Here, existence of solutions for 0 < 1
γ−1 < 5, 1

γ−1 
= 1 is a special case of results

in [2] and [8]. A uniqueness proof can be found in [12] or more generally in [23]. The
1

γ−1 = 1, 5 cases can be solved explicitly. The nonexistence result for 1
γ−1 > 5 follows

from the classical Pohozaev identity (See for example, section 9.4.2 in [9].) By Theorem

1.1, the range of γ for existence is γ > 6
5 .

After Lane and Emden’s discovery, attempts were made to compute linear pertur-

bations of these solutions to produce rotating stars (see [6], for example), but the first

nonlinear construction of exact rotating star solutions is due to Lichtenstein [20]. His

result in our current language can be summarized as follows. As before, we divide the

first equation in (1.2) by ρ on the fluid domain, and use the equation of state p = Cργ .

The equation can now be written as

∇
(
ργ−1 − 1

|x| ∗ ρ−
∫ r

0

ω2(s)s ds

)
= 0 on {ρ > 0} (1.20)
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or

ργ−1 − 1

|x| ∗ ρ−
∫ r

0

ω2(s)s ds = constant on {ρ > 0}. (1.21)

Lichtenstein’s result can be described as follows.

Theorem 1.2. Let 6
5 < γ < 2, and let ρ0 be a Lane-Emden solution. Let ω(r) = κω0(r),

where ω0(r) is any given smooth function. Then for each sufficiently small κ, there is

a nonnegative compactly supported continuous function ρ = ρ(κ) solving (1.21). The

mapping κ �→ ρ(κ) is continuous into a suitable function space, and ρ(0) = ρ0.

Put more informally, he constructed a continuous curve of slowly rotating stars that

are small perturbations of a given Lane-Emden solution. The range of γ in this result is

much more limited compared with the full range of the Lane-Emden solutions (γ > 6
5 ),

but actually covers most types of gases relevant to astrophysics. It is worth noting that

Lichtenstein’s contruction is done in such a way that it is unclear whether the solutions

obtained will have the same total mass as ρ0. This is a topic that would be taken on by

Walter and the author later and would turn out to be an important issue for studying

large deviations from ρ0.

Lichtenstein’s work, unfortunately, did not make a significant impact on the rotating

star literature. In retrospect, the reason for such limited impact may be twofold. To the

astrophysics community, the construction of an exact solution may appear as a technical

piece of mathematical curiosity, and would be less interesting than an actual calculation

of the linear perturbation. On the mathematical side, Lichtenstein’s proof of the result is

not completely transparent with all the delicate estimates he needs to show convergence

of his perturbation series. In fact, many years later, Heilig [13] served to crystalize

Lichtenstein’s argument as an application of the implicit function theorem on a suitable

function space. Even after Heilig’s rework, Lichtenstein’s result appeared to remain

relatively unknown to the mathematical community.

The next major event in the history is Auchmuty and Beals’ work [3], which is the

first result on rotating stars that does not require the rotation to be small. Their result

can be described as follows.

Theorem 1.3. Let γ > 4
3 , and M > 0 be given, and let ω(r) be any given smooth

function with sufficient decay at infinity. Then there exists a nonnegative compactly

supported continuous function ρ solving (1.21), such that
∫
R3 ρ(x) dx = M .

This result has several advantages compared to Lichtenstein’s. It covers a wide range

of γ; it has a built-in mass constraint; it does not require smallness of rotation. On the

other hand, it has the disadvantage of requiring ω(r) to have a certain kind of decay at

infinity. This drawback was partially removed by Li [19], who showed the same result for

constant rotation profile ω(r) ≡ ω0. The method of [3] is calculus of variations (energy

minimization), and is completely different from Lichtenstein’s perturbation method. The

work [3] made a big impact on the mathematical literature of rotating stars. Developing

the variational techniques used in [3], Friedman and Turkington [11], Li [19], McCann

[22], Wu [27], and Wu [28] proved existence results in various more general setups. Caf-

farelli and Friedman [4], Friedman and Turkington [10], and Chanillo and Li [7] studied
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qualitative properties and bounds on the size of the support of the variational solutions.

Luo and Smoller [21] proved a conditional nonlinear stability result using the variational

method.

2. Revival of the perturbation method. By the time the author went to Brown

University as a postdoc working with Walter, the author’s knowledge of the rotating

star literature was pretty much dominated by the variational approach. We were not

even aware of Lichtenstein’s work which had been published some eighty years earlier.

At that point, Walter raised the interesting question of studying the continuity of the

set of rotating star solutions, and whether certain forms of blow up may appear as one

globally continues along the solution set. This is a natural analog of Walter’s previous

work on global continuation of steady water waves. The question can also be regarded

as the compressible analog of the Maclaurin ellipsoids for incompressible rotating fluids.

However, there are fundamental difficulties with the variational method mentioned above

when it comes to proving continuation results. In particular, the nonconvexity of the

energy functional related to this problem makes it very difficult to prove uniqueness of

minimizers (which may in fact be false in general). There is also no natural mechanism

for continuous change of the minimizers when we continuously change the rotation speed.

Such a problem was partially resolved by our finding of Lichtenstein and Heilig’s work.

It is worth mentioning that Lichtenstein’s original paper is in German, which is a language

the author cannot read. Walter, on the other hand, knows enough German to be able

to confirm that Lichtenstein did have the basic result and idea for local perturbation.

As we learned more about Lichtenstein and Heilig’s work, it became clear to us that the

lack of control on the total mass in their construction needs to be remedied before we

can globally continue the solution set to large rotation speed.

We did resolve this problem and upgraded Lichtenstein’s theorem (Theorem 1.2) to

include a mass control (see [25]).

Theorem 2.1. Let 6
5 < γ < 2, γ 
= 4

3 , while other assumptions remain the same as

in Theorem 1.2. Then for each sufficiently small κ, there is a nonnegative compactly

supported continuous function ρ = ρ(κ) solving (1.21) and
∫
R3 ρ(x) dx =

∫
R3 ρ0(x) dx.

The mapping κ �→ ρ(κ) is continuous into a suitable function space, and ρ(0) = ρ0.

Lichtenstein constructed his solutions by deforming the fluid domain and using an

Ansatz for the rotating solutions. The main idea of our proof of Theorem 2.1 is to

modify Lichtenstein’s Ansatz so that a mass control will be enforced explicitly. We also

need to make a technical change in the deformation map in order to help rigorously prove

the estimates needed to apply the implicit function theorem in a suitable function space.

Finally, the key new difficulty is in proving the linearized operator of the implicit function

theorem has a trivial kernel. The modified construction respecting the mass control

results in an integro-differential equation for functions in the kernel of the linearized

operator, whereas Lichtenstein’s construction only needs a vanishing theorem for an

elliptic PDE. We found an interesting general condition for the kernel to be trivial (that

even works for general equation of state different from a power law). To explain that

condition, we define the function M(a) to be the total physical mass of the radial solution
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to (1.19) with center value u(0) = a. Our condition says the kernel is trivial if and only

if M ′(a0) 
= 0, where a0 = u0(0) is the center value corresponding to the Lane-Emden

solution we perturb from. More informally, the condition means that the total mass of

the nonrotating star has a genuine first order change as one changes the central density

of the star. The curious omission of the case γ = 4
3 in Theorem 2.1 has to do with the

fact that M(a) = M(a0) (a/a0)
3γ−4
2γ−2 , which is a consequence of the scaling symmetry

u(x) → λ
2γ−2
2−γ u(λx) of (1.19). In particular, we see that M ′(a) = 0 when γ = 4

3 . This is

a pathological case, as all rescaled Lane-Emden solutions of different sizes have the same

total mass.

In the same paper [25], we proved a similar theorem for the Vlasov-Poisson equation.

At about the same time, Jang and Makino [14] studied local perturbations of the Lane-

Emden equations without using an explicit Ansatz as Lichtenstein and we did. Their

result does not contain a mass control, however. Jang met with Walter and the author

during the Spring 2017 semester program at ICERM (Brown University). The three of

us decided to generalize the perturbative method to MHD-Euler-Poisson—a model for

rotating magnetic stars. In [15], we proved the first existence result on rotating magnetic

stars for small rotation and weak magnetic field.

Walter and the author thus participated in and witnessed a small revival of the per-

turbation methods for rotating stars. Walter’s vision, however, has always been on the

structure of large deviations from the nonrotating solution.

3. Topological degree theory and global continuation. There is a large estab-

lished literature on global bifurcation and continuation method using topological degrees.

As an example, we have the following global implicit function theorem.

Theorem 3.1. Let X be a Banach space and let U be an open subset of X ×R. Let F :

U → X be a C1 mapping in the Fréchet sense. Let (ξ0, κ0) ∈ U such that F (ξ0, κ0) = 0.

Assume that the linear operator ∂F
∂ξ (ξ0, κ0) is an isomorphism on X. Assume also that

the mapping (ξ.κ) → F (ξ, κ)− ξ is compact from U to X, and that ∂F
∂ξ (ξ, κ)− I ∈ L(X)

is compact. Let S be the closure in X ×R of the solution set {(ξ, κ)
∣∣∣ F (ξ, κ) = 0}. Let

K be the connected component of S to which (ξ0, κ0) belongs. Then one of the following

three alternatives is valid:

(i) K is unbounded in X × R.

(ii) K\{(ξ0, κ0)} is connected.

(iii) K ∩ ∂U 
= ∅.

This is a standard theorem basically due to Rabinowitz. Theorem 3.2 in [24] is in

the case that U = X × R and under some extra structural assumption. A more general

version also appears in Theorem II.6.1 of [18]; its proof is easy to generalize to permit

a general open set U . The case of a general open set U also appears explicitly in [1].

Roughly speaking, the suitable compactness assumptions allow one to define the Leray-

Schauder degree for the mapping F (·, κ). If none of the alternatives holds, the component

of the global solution set on either side of (ξ0, κ0) will be compact. This will cause the

Leray-Schauder degree to vanish for large κ. Homotopy invariance of the degree then
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implies that it will vanish for κ close to κ0. This contradicts the solution curve given by

the usual local implicit function theorem, which would force the degree to be ±1.

The three alternatives in the conclusion of Theorem 3.1 are often termed the “blow-

up” case, the “loop” case, and the “meeting the boundary” case. At least one of these

three cases must happen along the solution set. Such a conclusion shows that the solution

set is “large” in a certain sense, and is not just the local curve of the solutions given by

the usual implicit function theorem.

We would like to apply the theory of global continuation via topological degree to

the rotating star problem. Unfortunately, it is very difficult to establish the necessary

compactness properties for the Lichtenstein-type deformation constructions. Instead,

we turned to another formulation of the problem. Our strategy is to invert the γ − 1

power in (1.21) to obtain a fixed point setup. In particular, we look for a function

ρ ∈ Cloc(R
3) ∩ L1(R3) and a real number α such that

ρ(x) =

[
1

| · | ∗ ρ(x) +
∫ r(x)

0

ω2(s)s ds+ α

] 1
γ−1

+

(3.1)

for all x ∈ R
3. Here f+ = max(f, 0). This formulation has the advantage that the

convolution with 1
|x| provides a simple source for compactness. Of course, every solution

of (3.1) is a solution to (1.21). However, (3.1) misses many solutions of (1.21). The

reason is that the physical problem doesn’t require equality of the two sides of (3.1) in

the vacuum domain when ρ(x) = 0. In particular, (3.1) requires the terms in the square

brackets to be nonpositive when ρ(x) = 0, whereas (1.21) does not. This discrepancy

becomes especially problematic when ω(r) does not decay at infinity, because in that

case, the term involving ω(r) will be very large for large r(x), causing the right hand side

of (3.1) to be outside L1(R3). If we stay within the class of ω(r) with sufficient decay at

∞, however, (3.1) is a viable approach. The set of ω(r) with rapid decay at infinity is

already a large and interesting set of rotation profiles.

To describe the result Walter and the author obtained, let us define

F1(ρ, α, κ) = ρ(·)−
[

1

| · | ∗ ρ(·) + κ2

∫ r(x)

0

ω2(s)s ds+ α

] 1
γ−1

+

. (3.2)

Here κ is a parameter describing the intensity of rotation. Let ρ0 be a radial Lane-

Emden solution, and let α0 be the number such that F1(ρ0, α0, 0) = 0 (such a number

is guaranteed to exist when ρ0 is a Lane-Emden solution). Let M =
∫
R3 ρ0(x) dx, and

define

F2(ρ) =

∫
R3

ρ(x) dx−M, (3.3)

and the pair

F(ρ, α, κ) = (F1(ρ, α, κ),F2(ρ)). (3.4)

We can now state our result as follows (see [26] for details).



GLOBAL CONTINUATION AND THE THEORY OF ROTATING STARS 155

Theorem 3.2. Suppose 6
5 < γ < 2, γ 
= 4

3 . Assume ω(r) has suitable decay as r tends

to infinity. There exists a set K of solutions to F(ρ, α, κ) = 0 satsfying the following

properties:

(1) K is a connected set in C1
c (R

3)× R× R.

(2) K contains (ρ0, α0, 0) together with a local curve of solutions around it.

(3) If 4
3 < γ < 2, then

sup{|x| | ρ(x) > 0, (ρ, α, κ) ∈ K} = ∞.

If 6
5 < γ < 4

3 , then either

sup{|x| | ρ(x) > 0, (ρ, α, κ) ∈ K} = ∞

or

sup{ρ(x) | x ∈ R
3, (ρ, α, κ) ∈ K} = ∞.

The last statement means that for the range of γ we consider, either the supports

become unbounded, or the densities become pointwise unbounded, as one continues along

the solution set. Furthermore, if γ > 4
3 , then the first alternative must hold. We thus

construct, for the first time, a connected set of solutions that is global. Keeping the mass

constant along the solution set turns out to be a key point of our methodology.

In the following, we list and compare several key features of the known existence

results on rotating star solutions. In this table, the new result refers to Theorem 3.2.

The old results refer to previous theorems by other authors.

old results old results new result

(variational) (perturbative) (global continuation)

range of γ (4/3,∞) (6/5, 2) (6/5, 2) \ {4/3}
mass constraint yes no yes

allow large rotation yes no yes

continuity of the no yes yes

solution set

nature of singularity no no yes

formulation

4. Constructing rapidly rotating stars. In this section, we sketch the main ideas

in the proof of Theorem 3.2. We first put ρ in the function space

Cs =
{
f : R3 → R

∣∣∣ f is continuous, axisymmetric, even in x3, and ‖f‖s < ∞
}
,

where

‖f‖s =: sup
x∈R3

〈x〉s|f(x)| < ∞.

The reason for this is simply to provide a straightforward definition of 1
|x| ∗ ρ so

that it decays properly at infinity. Let us now focus on the terms in the square brack-

ets in (3.2). Assuming proper decay of ω(r), we get ω2(r)r ∈ L1(0,∞). Denoting
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j(x) =
∫ r(x)

0
ω2(s)s ds, and j∞ = limr(x)→∞ j(x), we can rewrite the terms in the square

brackets as

1

| · | ∗ ρ(·) + κ2(j(x)− j∞) + (α+ κ2j∞) → α+ κ2j∞ (4.1)

as r(x) → ∞. We see clearly that if α+κ2j∞ > 0, then any solution ρ of F1(ρ, α, κ) = 0

will not be in L1(R3), because it tends to a positive constant as r(x) → ∞. Thus the

only way to set up this mapping consistently is to require α+ κ2j∞ < 0. In fact, in this

case we have [. . . ] < 0 for x near infinity, thus any solution satisfying ρ(x) = [. . . ]
1/(γ−1)
+

will be zero near infinity, thus is compactly supported. Nevertheless, to get quantitative

estimates on the support and to close other estimates on the spaces, we actually need a

little gap κ2j∞ + α < − 1
N . We can solve the global continuation problem with this 1

N

gap, and finally patch up the solutions by letting N → ∞. To highlight other ideas in the

proof, let us ignore this technical gap and pretend the necessary estimates are available

for N = ∞.

We now apply the global implicit function theorem, Theorem 3.1, by using ξ = (ρ, α),

X = Cs×R, U = {(ξ, κ) = (ρ, α, κ) ∈ X×R | κ2j∞+α < 0}. By the heuristic argument

above, one can show that F maps U intoX and is C1. The needed compactness properties

will follow from the inverse Laplacian, or convolution with 1
|x| . The next key condition

to verify is that the linearized operator ∂F
∂ξ (ξ0, 0) is an isomorphism on X. This step is

actually nontrivial, but the main difficulty was already resolved in our earlier paper [25].

As is eluded to above, the key condition here turns out to depend only on properties

of the nonrotating, radial, Lane-Emden solutions. The kernel is trivial if and only if

M ′(a0) 
= 0, where a0 = u0(0) is the center value corresponding to the Lane-Emden

solution we perturb from, and M(a) is the total mass of the solution to (1.19) with

central value u(0) = a. That the condition M ′(a0) 
= 0 is indeed satisfied for our range

of γ is then a simple consequence of the scaling symmetry of (1.19).

The general Theorem 3.1 then provides us with a solution set K of three alternatives

labeled (i), (ii), and (iii). However, they are not specific enough to give us the results in

Theorem 3.2. First of all, we want to eliminate alternative (ii). This is an alternative

that is often described as the “loop” case. The possible existence of the loop case would

significantly weaken our result, as it corresponds to a solution set with no blow-ups.

To see that this cannot happen, we observe that a connected K \ {(ρ0, α0, 0)} must

contain another non-rotating solution (ρ1, α1, 0) 
= (ρ0, α0, 0). Study of this solution

shows that it’s a radial nonrotating Lane-Emden solution with different center density

ρ1(0) 
= ρ0(0), and the same total mass
∫
R3 ρ1(x) dx =

∫
R3 ρ0(x) dx. This contradicts

the strict monotonicity of M(a) since M ′(a) 
= 0 for all a.

We are left with alternatives (i) and (iii), known as the blow-up case, and the meeting

of the boundary case. Let us prove Theorem 3.2 by contradiction. Assume, therefore,

for all (ρ, α, κ) ∈ K that ρ is uniformly bounded in L∞(R3), and the support of ρ is also

uniformly bounded. We want to conclude from these assumptions that neither case (i)

nor case (iii) in Theorem 3.1 can happen, thus arriving at a contradiction.

Suppose case (i) happens; then ‖ρ‖Cs
+ |κ| + |α| is unbounded along K. By our

assumption of uniform bounds on ρ, however, ‖ρ‖Cs
must be uniformly bounded. Thus
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|κ|+ |α| is unbounded. Remember

ρ(x) =

[
1

| · | ∗ ρ(x) + κ2j(x) + α

]1/(γ−1)

+

, (4.2)

∫
R3

ρ(x) dx = M, (4.3)

κ2j∞ + α < 0. (4.4)

If κ is bounded, then α → −∞ by (4.4). By the assumption on uniform L∞ bound on

ρ and uniform support bound, one can prove a uniform bound on the size of 1
|·| ∗ ρ(x).

Thus by (4.2) ρ ≡ 0 as α → −∞, violating the mass equation (4.3). Thus κ must be

unbounded. Now if κ → ∞, the terms in the square brackets in (4.2) will increase very

rapidly due to the term κ2j(x) (need to assume j(x) is strictly increasing here, which

amounts to suitable assumptions on ω(r)), which will cause ρ to be positive far outside,

violating the common support on ρ.

The argument above shows case (i) cannot happen. Now assume case (iii) happens,

so that κ2j∞ + α → 0 as one continues along the solution set. Since
∫
R3 ρ dx = M and

ρ has a uniform support bound, we have a lower bound

1

| · | ∗ ρ(x) �
1

|x|
as r(x) → ∞. Thus [

1

| · | ∗ ρ+ κ2(j − j∞) + κ2j∞ + α

]
> 0

as r(x) → ∞. To get the last inequality, we need j(x) → j∞ sufficiently rapidly as r(x) →
∞, which again amounts to suitable assumptions on ω(r). This implies ρ = [. . . ]

1/(γ−1)
+

is positive when r(x) is large, and again contradicts the uniform support bound on ρ.

The contradiction above shows that either the L∞ norm of ρ blows up, or the support

of ρ blows up, as one moves along the solution set. To get the final refinement that

the support of ρ must blow up when 4
3 < γ < 2, one just needs to get a uniform L∞

bound on ρ. We can start from the obvious L1 bound on ρ, and use Lp-type estimates

on 1
|x| ∗ ρ and the equation ρ(x) =

[
1
|·| ∗ ρ(x) + κ2j(x) + α

]1/(γ−1)

+
to iteratively improve

the exponent p until we eventually reach a uniform L∞ bound. This can be done when
1

γ−1 is sufficiently low and the support of ρ is uniformly bounded.

5. Future directions. Walter has always been spirited and explorative when it

comes to extending the boundary of mathematical knowledge. The above discussion

of global continuation of rotating stars is just one of the many examples where he takes a

fresh new look at an age old problem, and offers wonderful novel insight into the structure

of the problem.

There are many further questions one could ask with this new point of view on rotating

star solutions. For instance, can one extend the range of γ for these global continuation

results to include γ > 2, just like the solutions obtained by variational methods? Can one

remove the decay assumption on ω(r) in the global continuation, and allow in particular,
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a constant rotation profile? Can one prove these results for the equation of state of white

dwarf stars

p(ρ) =

∫ ρ1/3

0

x4

√
1 + x2

dx

rather than just a power law? (We have already made significant progress on this prob-

lem.) Can one prove similar results for other models, such as the Vlasov-Poisson equation,

or the general relativisitic Euler equations? What is the significance of these methods

for numerical computations of rotating stars? Do these methods provide new insight on

the problem of stability of rotating stars?

It is marvelous to see Walter continue to make his contribution on these interesting

problems, and more questions to come.
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