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The objective of this study was to test the feasibility of using a pair of wearable inertial measurement unit (IMU) sensors to
accurately capture dynamic joint motion data during simulated occupational conditions. Eleven subjects (5 males and 6 females)
performed repetitive neck, low-back, and shoulder motions simulating low- and high-difficulty occupational tasks in a laboratory
setting. Kinematics for each of the 3 joints were measured via IMU sensors in addition to a “gold standard” passive marker optical
motion capture system. The IMU accuracy was benchmarked relative to the optical motion capture system, and IMU sensitivity to
low- and high-difficulty tasks was evaluated. The accuracy of the IMU sensors was found to be very good on average, but
significant positional drift was observed in some trials. In addition, IMUmeasurements were shown to be sensitive to differences
in task difficulty in all 3 joints (P < .05). These results demonstrate the feasibility for using wearable IMU sensors to capture
kinematic exposures as potential indicators of occupational injury risk. Velocities and accelerations demonstrate the most
potential for developing risk metrics since they are sensitive to task difficulty and less sensitive to drift than rotational position
measurements.
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Work-related musculoskeletal disorders (MSDs) are prevalent
in private industry. In 2018 in the United States, MSDs resulting
from overexertion and bodily reaction occurred at a rate of 27.1 per
10,000 full-time workers, leading to a median of 12 days away
from work per incident.1 The treatment of work-related MSDs such
as low-back, neck, and shoulder pain also constitutes an immense
economic burden. The United States spends $88 billion per year in
direct costs treating patients with neck and low-back pain (more
than was spent treating any other conditions besides diabetes and
heart disease),2 and indirect costs associated with these spine
disorders are estimated to be $625 billion.3,4 Likewise, expendi-
tures on shoulder injuries may exceed $7 billion.5

During the early part of this century, a comprehensive litera-
ture review by the National Research Council and the Institute for
Medicine concluded that MSDs are, indeed, linked to work ex-
posures.6 One widely accepted risk factor includes working in an
awkward or extreme posture. However, there is substantial scien-
tific evidence suggesting that to appropriately estimate injury risk,
higher order kinematics need to be monitored in addition to static
posture alone.7,8 That is, to understand MSD injury risk, ergonom-
ics practitioners must be able to capture accurate joint kinematics
(position, velocity, and acceleration) for exposures of interest in an
occupational environment.

Over the past 10–15 years, significant advancements in sens-
ing technologies, cloud computing, and machine learning have
synergized to create new opportunities to use data to improve
occupational safety and health. Technologies that sense how

workers move are of increasing interest due to well-known con-
nections between dynamic joint motions and injury risk.8–12

Broadly, technologies that have emerged to capture and assess
human motion include (1) markered optical motion capture,
(2) markerless optical motion capture, and (3) inertial measurement
unit (IMU) sensors. Each technology has significant advantages
and disadvantages.

Often considered the “gold standard,”markered optical motion
capture (optoelectronic) systems are well established as the most
accurate way to capture complex humanmotions and boast errors as
low as 100 μm.13 Despite having outstanding accuracy, markered
optical motion capture applications are limited to use under con-
trolled laboratory environments due to their significant cost, sensi-
tivity to light and vibration, line-of-sight requirements, and reliance
on dozens of markers that need to be placed on the person of
interest.

Markerless motion capture systems have been growing in
popularity due to their ability to capture motion without the
need to place markers on the person of interest. The emergence
of affordable commercial systems like the Microsoft Kinect have
resulted in a flurry of new applications aimed at increasing worker
safety. Some markerless motion capture systems have demon-
strated good accuracy for simple applications such as measuring
lower-extremity angles during gait.14,15 However, significant lim-
itations in accuracy have also been reported,16 and most studies
demonstrating good performance are limited to lower-extremity
joint motions performed in unrealistically clean and controlled
environments with spandex suits or exposed skin. Real-world
occupational environments are likely to challenge the performance
and applicability of markerless motion capture systems as these
environments often include loose-fitting clothing, background
noise, and more complex (multiplanar) tasks. Though postural
measurement errors introduced from these artifacts may not be
biomechanically significant if they are less than a few degrees, the
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resulting noise is magnified in joint velocities and accelerations,
making dynamic measurements less useful.

Finally, many emerging occupational human motion sensing
solutions have begun to utilize IMU sensors, which leverage a series
of gyroscopes, accelerometers, and (generally) magnetometers. These
sensors are attractive due to their low cost, small size, immunity to
occlusion, and relatively high accuracy. A multitude of studies have
previously validated IMU-measured kinematics against a “gold
standard” system for various experimental tasks, including simple
functional motions,17–23 gait/locomotion,24–27 sports applications,28,29

and simulated occupational exposures.30–37 The results of these prior
studies suggest that IMU fusion algorithms can generally produce
root mean square orientation errors of 5° or less, representing a level
of error that is generally acceptable for biomechanics applications,35

though higher peak orientation errors are still likely. Moreover, the
potential usefulness of IMU motion capture has been further demon-
strated by studies that have utilized IMUs alongside kinetic informa-
tion to predict joint moments38,39 or have utilized IMUs alongside
machine learning and artificial neural network approaches to predict
ground reaction forces or joint loading40,41 or to describe “correct”
versus “incorrect” lifting postures.42

This being said, the primary limitation of IMUs exists in the
form of a well-known artifact called yaw drift during which a
sensor incurs error in its prediction of its orientation relative to
Earth’s gravity vector over time.43 The magnetometers onboard
IMU sensors are often used to try to correct this drift issue, but this
solution is not fool-proof and can be prone to error in practice,
especially in environments that have an abundance of ferrous
metals. One prior study has noted that the root mean square error
(RMSE) between IMUs and an optoelectronic system could reach
peaks of 50° near a large metal object compared with 2.6° with no
disturbance,44 and Robert-Lachaine et al34 recently noted that up to
30 seconds may be necessary to restore accuracy in IMU motion
capture systems after experiencing magnetic disturbance. The IMU
motion capture accuracy may also be limited by factors including
soft tissue artifact, movement of the sensors on the body, and
inaccuracies in the transformation between the local coordinate
systems of onboard IMU sensors and the anatomical coordinate
system for a particular joint.20,24,26,27

To address the problem of yaw drift, it has been suggested that
increasing the number of IMUs may improve the overall accuracy
of predicted joint angles and moments.45 The increased data input
allows software solutions to keep drift in check by leveraging
reasonable assumptions about the relationships between sensors
given their known anatomical location on the body. Because this
utilization of additional “a priori” information shows promise,
some companies, such as Xsens, have attempted to improve data
precision by leveraging as many as 17 IMUs placed all over the
body. However, there is also significant cost and operational
burden associated with reliably configuring each worker with 17
sensors. Moreover, there are many instances in which ergonomics
practitioners are interested in performing a risk assessment for
only one joint of interest. Therefore, the objective of this study was
to test the feasibility of using only 2 wearable IMU sensors to
accurately capture dynamic joint motion data during simulated
occupational conditions. This objective was achieved by compar-
ing joint angle data (position, velocity, and acceleration) collected
from IMU sensors with data derived from a “gold standard”
optoelectronic system upon implementing custom algorithms to
minimize yaw drift during dynamic activities. In addition, to test
whether IMUs are sensitive to changes in work design, complex
multiplanar low-back, neck, and shoulder motions were performed

at 2 task difficulty levels, and differences in IMU kinematic
variables were assessed.

Methods
Approach

Repetitive occupational tasks of relative low and high difficulty were
performed in a laboratory setting. Low-back, neck, and shoulder
motionsweremonitored via IMU sensors aswell as a “gold standard”
markered optical motion capture system. IMU accuracy was bench-
marked relative to the optical motion capture system, and IMU
sensitivity to low- and high-difficulty tasks was evaluated.

Subjects

Eleven subjects (5 males and 6 females) were recruited for this study
(age 21.3 [1.5] y, mass 69.3 [13.0] kg, and stature 175.55 [6.1] cm)
from a university population. To capture a wide range of motion
patterns, we made a special effort to recruit subjects with a relatively
wide range of anthropometric characteristics for this study. Subjects
did not have significant experience related to the occupational tasks
simulated in a laboratory environment. The study was approved by
The Ohio State University’s Institutional Review Board, and all
subjects provided informed consent prior to study participation.

Design

Three mini studies were performed, one for each of 3 targeted joints
(low back, neck, and shoulder). Within each mini study, a repeated-
measures study design was used to measure the main effect of a
single independent variable, task difficulty (low or high). The low-
and high-difficulty tasks performed therein represented automotive
assembly jobs deemed to pose low and high risk for injury,
respectively, to each of the joints (low back, neck, and shoulder)
via a previous field data collection. Note that because the relation to
injury risk was not explicitly validated, the variable was named
“difficulty” instead of “injury risk” or something of the sort. Low-
and high-difficulty tasks took 60 seconds to complete and were
each performed for 5 repetitions. Experimental conditions were
randomized for each subject with all repetitions being performed
consecutively over a 5-minute period. The primary dependent
variables of interest in this study were IMU measurement error
and measurement accuracy relative to a “gold standard” optical
motion tracking system. Minimum, maximum, and range of rota-
tional position, velocity, and acceleration values from the IMU data
were also calculated for each joint.

Instrumentation and Apparatus

Subjects were monitored simultaneously with 2 separate motion
capture systems (Figure 1). The first system consisted of 5 wearable
XsensMTw2 IMU sensors (Xsens North America Inc, El Segundo,
CA) that were captured at a rate of 100 Hz in custom laboratory
software. The IMU sensors were mounted securely to custom
harnesses made by a local product design and development com-
pany (Priority Designs, Inc, Whitehall, OH) via an Afinia H800
(Afinia 3D, Chanhassen, MN) 3D-printed snap-fit mounting plat-
form designed specifically for this study. Though 5 sensors were
used in total, motion from each joint of interest was derived from
just 2 IMU sensors (ie, chest and hip sensors tracked low-back
motion, head and chest sensors tracked neck motion, and chest and
upper arm sensors tracked shoulder motion).
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Each 3D-printed mounting platform also included a series of
3 (left upper arm and right upper arm) or 4 (head, chest, and hips)
rigidly attached 14-mm retroreflective markers. Markers were
located relative to IMU sensors with an accuracy of 100 μm,
as determined by the resolution of the 3D printer. These markers
were tracked by a “gold standard” 42-camera OptiTrack (Natural
Point, Corvallis, OR) optical motion tracking system with dem-
onstrated error of <100 μm.6 Camera system data were recorded at
a rate of 120 Hz via OptiTrack’s Motive software. All simulated
occupational tasks were mocked up via custom 80/20 T-slotted
aluminum framing (80/20 Inc, Columbia City, IN) as shown in
Figure 2. Apparatus dimensions were determined based on the
average 50th percentile US male and female anthropometry
measurements.46

Procedure

Subjects were given an overview of the study and were asked to
sign an informed consent document per The Ohio State University
Institutional Review Board requirements. Subject age, stature, and
mass were then recorded into custom laboratory software. Five
harnesses (head, upper back, hips, right upper arm, and left upper
arm) were placed on the subject, and IMU sensors were snapped
into place on each harness. After setup, experimental conditions
were performed. Each exertion was performed 12 times during a
60-second repetition. Pace was maintained via an audible metro-
nome that sounded every 5 seconds.

Tasks that targeted the low back required subjects to repeat-
edly lift a box from its origin and place it at its destination without
moving their feet. The box mass was 5.1 kg and had a width, depth,
and height of 0.27, 0.25, and 0.27 m, respectively. Holes in the side
of the box served as handles. For low-difficulty lifts, the origin of
the box was located directly in front of the subject at a vertical
location of 0.59 m from the ground. For high-difficulty lifts, the
origin of the box was located asymmetrically 90° to the left of the
subject at 0.27 m from the ground. The destination of the box was
located directly in front of the subject at a vertical location of
0.95 m from the ground for all conditions.

Tasks that targeted the neck required subjects to visually locate
targets in 8 different locations with the subject located .61 m away
from the center target. Upon locating each target, subjects were
asked to verbally call out a unique 4-digit number to confirm visual
location. Low-difficulty targets were positioned in the central-near
peripheral field-of-view (≤30°). High-difficulty targets were posi-
tioned in the near-mid peripheral field-of-view (30°–60°). Subjects
returned their vision to a neutral target directly in front of them after
calling out each experimental target and were required to keep their
feet in the same position throughout all exertions.

Tasks that targeted the shoulder required subjects to repeatedly
place a small machine screw in a small bin 0.56 m in front of them
using their right hand. Subjects were asked to keep their feet in the
same position as they performed these tasks. For low-difficulty
placements, the target bin was located at a height of 1.39 m directly
in front of the subject. For high-difficulty placements, the target bin
was located at a height of 1.68 m and offset laterally to the right of
the subject by 0.56 m. Note that only values for the right shoulder
will be reported herein as this is the shoulder that was the primary
target of the experimental task.

Figure 1 — Sensor configuration showing Xsens inertial measurement
units (rectangular sensors on harnesses) and optical motion capture system
(markers on harnesses, cameras around the room).

Figure 2 — Experimental tasks.
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Data Processing and Statistical Analysis

Positional data from optical motion capture markers were trans-
formed into local coordinate system orientations for each body
segment. The IMU sensor data were also transformed into the same
local coordinate systems and adjusted to account for the effect of
sensor drift at the start of each trial by aligning the sensors about the
yaw axis when the subject was standing in a neutral posture.
Positional data from the optical motion capture system were
resampled and interpolated to match the frequency of the IMU
data. Signals were also time synchronized by calculating a time
delay that minimized the RMSE between the 2 signals and shifting
the IMU sensor data by that time delay to ensure that the signals
overlapped. All additional calculations were identical for both
systems. First, local coordinate system orientations were low-
pass filtered with a cutoff frequency of 4 Hz. Then, joint orienta-
tions were calculated as the distal segment orientation relative to
the proximal segment orientation for each joint. Only 2 sensors
were used to measure motions for each joint so that results could be
replicated if only a single joint was of interest. All orientation
transformations were performed using quaternion mathematics and
then converted to Euler rotation sequences that were optimized for
each joint to prevent gimbal lock and Euler Singularities. Euler
angles were then differentiated twice to obtain rotational velocities
and accelerations.

The IMU measurement error was calculated as the RMSE
relative to the optical motion capture system across each 1-minute
trial for a given position, velocity, or acceleration signal. Percent
error was calculated by normalizing RMSE to the range of each
signal, and accuracy was calculated as one minus percent error. The
minimum, maximum, and range of rotational position, velocity,
and acceleration values were also extracted from the IMU data as
additional dependent variables of interest for each joint. In the low
back and neck, values were presented for each anatomical plane
(axial, lateral, and sagittal). However, in the shoulder joint, values
were presented as minimum and maximum elevation where appro-
priate. Elevation was defined as the angle in any plane above
hanging directly downwards. For example, when standing upright
with the arms by the sides of the body, elevation is 0°. Likewise,
when the arm is level with the ground (in any direction), this
represents an elevation of 90°, and when the arm is straight
overhead, this represents an elevation of 180°.

All statistical tests were performed in in JMP PRO software
(version 14.0; SAS Institute Inc, Cary, NC). A 1-way ANOVA

with α = .05 was used to determine significant differences in each
of the dependent measures attributable to task difficulty (low and
high) for each joint. The effect of subject and the interaction effect
between subject and task difficulty were included in the model and
treated as random variables.

Results
Mean IMU error (RMSE) and accuracy measurements for each
joint after processing are shown in Table 1. Across the 3 joints and
2 task difficulty levels, average RMS errors in position, velocity,
and acceleration were found to be 1.37°, 3.07°/s, and 44.9°/s2,
respectively. Although mean accuracy was similar across all joints,
average error magnitudes were highest in the right shoulder (mean
RMS error 2.18°). Task difficulty significantly influenced RMSE
and accuracy measures for low-back velocity (P = .009) and neck
velocity (P = .030) signals wherein the high-difficulty task yielded
larger RMSE values and reduced accuracy values than the low-
difficulty task.

Though IMU accuracy was generally very good, significant
drift was observed over the course of some of the 60-second trials.
An example of one of the worst cases of drift is shown in Figure 3.
Trials that were recorded while sensors were drifting experienced
relatively large errors in position measurements (maximum RMSE
for the position signal was 8.01° in the low back, 2.58° in the neck,
and 9.09° in the right shoulder). However, drift affected velocity
and acceleration measurements to a lesser extent.

High-difficulty tasks produced higher joint position, velocity,
and acceleration measurements than low-difficulty tasks (Figure 4).
Differences between low and high task difficulties were found to be
statistically significant for all measures (P value for maximum
shoulder elevation in the acceleration signal was .042, all other P
values were <.001.)

Discussion
On average, the IMU sensors used in this study were found to have
relatively low errors and high accuracies after applying custom
processing algorithms to mitigate yaw drift at the beginning of each
trial. Average RMS error in position data was found to be 1.37°,
which is well below the acceptable position threshold of 5°
presented by Robert-Lachaine et al35 for manual materials handling
tasks. Errors were comparable in the low back and neck but were

Table 1 Mean (SD) RMSE and Accuracy of IMU Measurements Relative to the Optical Motion Capture System
Separated by Task Difficulty

Joint Low back Neck Right shoulder

Task difficulty Low High Low High Low High

RMSE

Position, deg 1.32 (1.25) 1.39 (1.46) 0.76 (0.32) 0.80 (0.37) 2.18 (0.85) 2.06 (1.23)

Velocity, deg/s 1.32 (0.50) 1.64 (0.83)* 1.25 (0.53) 1.42 (0.59)* 6.98 (7.95) 7.26 (8.11)

Acceleration, deg/s2 19.0 (4.53) 21.5 (6.75) 20.7 (9.63) 22.9 (10.2) 96.9 (141.1) 108.4 (148.8)

Accuracy

Position, deg 98.1% (1.9%) 97.9% (2.2%) 99.3% (0.3%) 99.3% (0.3%) 98.7% (0.5%) 98.7% (0.7%)

Velocity, deg/s 99.5% (0.2%) 99.4% (0.3%)* 99.7% (0.1%) 99.7% (0.1%)* 99.4% (0.7%) 99.3% (0.7%)

Acceleration, deg/s2 99.0% (0.2%) 98.9% (0.3%) 99.4% (0.3%) 99.4% (0.3%) 99.3% (1.1%) 99.2% (1.1%)

Abbreviations: ANOVA, analysis of variance; IMU, inertial measurement unit; RMSE, root mean square error. Note: *Statistically significant effect of task difficulty from
the 1-way ANOVA at an alpha level of .05.
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highest in the right shoulder. Task difficulty did not affect error or
accuracy measures except for increased errors and reduced accu-
racy in rotational velocity in the low back and neck for the high-
difficulty task relative to the low-difficulty task. Though these

differences were found to be statistically significant, differences in
error magnitude and accuracy were small and are not expected to
bear any biomechanical significance. It should be noted that large
errors in rotational position measurements did occur in a subset of

Figure 3 — An example of one of the worst cases of drift in (A) position, (B) velocity, and (C) acceleration for the IMU sensor (gray) relative to optical
motion capture system (black). IMU indicates inertial measurement unit.

Figure 4 — Effect of task difficulty across the various inertial measurement unit sensor measurements describing (A) position, (B) velocity, or
(C) acceleration. The effect of task difficulty was statistically significant for all dependent measures shown.
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trials over time, yielding maximum RMSE up to 9.1°. In contrast,
velocities and accelerations were not generally affected by sensor
drift as the artifact occurred slowly over time.

Though a multitude of studies have previously validated IMU-
measured kinematics against a “gold standard” system, many of
these prior studies were limited by a lack of complexity in the
movements examined or joints analyzed. Moreover, relatively
few studies have examined IMU accuracy for simulated or actual
occupational exposures30–37 and, instead, have assessed IMU
accuracy for simple planar motion or simple gait/locomotion such
as walking or sit-to-stand. These simpler motions restrict the range
of motion, degrees of freedom, motion coupling, and motion
dynamics associated with the experimental task and may subse-
quently underestimate the true error associated with IMUs, espe-
cially because increases in task complexity have previously been
shown to increase orientation errors in IMU sensors.20 Regardless,
the RMS errors in position data approximate those observed by
Robert-Lachaine et al,33 who observed a mean RMSE of approxi-
mately 2.8° across the full body for an extended (32 min) lifting
task. This is a promising result given that the present study utilized
just 2 IMU sensors per joint and the study by Robert-Lachaine et al
leveraged data from 17 sensors across the whole body to make joint
angle predictions. Likewise, the RMSE values reported herein
also represent an improvement over values reported by Godwin
et al20 and Plamondon et al32 for lifting tasks (mean RMSE range
4.9°–23.6° and 2.5°–5.1°, respectively), suggesting improvements
attributable to improvements in the IMU fusion algorithm with
time and/or our custom algorithms utilizing knowledge of neutral
postures to minimize yaw drift.

The optical motion capture system used in this study as the
ground truth has demonstrated excellent accuracy in previous
studies with errors as low as 100 μm.6 Even so, it is possible
that some of the errors we associated with the IMU sensors may
have been errors in measurements produced by the optical motion
capture system. This is especially true for velocities and accelera-
tions, which may include errors accrued during derivation of
marker position data. Errors in optical motion capture shoulder
measurements were also likely artificially high in this study as only
3 markers were used on upper arm segments compared with the 4
used on the rest of the segments. This lack of redundancy for the
upper arm segments may explain why RMSE values for the right
shoulder were generally observed to be larger than in the neck and
low back.

The long-term goal of these efforts is to eventually identify
which kinematic measurements are associated with real occupa-
tional injuries, which could provide for updated risk models.
Alternatively, collection of reliable full-body kinematic data
from IMUs could be utilized alongside kinetic information col-
lected from force shoes or pressure insoles to predict joint moments
as an additional indicator of potential injury risk.38,39 However,
making connections to injury risk can often prove to be difficult as
prospective studies and intimate access to occupational injury
records are often required. Regardless, in this first study, we wanted
to investigate whether IMU measurements were sensitive to differ-
ences in relative task difficulty since it is much easier to control in a
laboratory environment and can be used as a surrogate for injury
risk to establish feasibility.

The IMU position, velocity, and acceleration measurements
were all found to be sensitive to differences in task difficulty for all
3 joints observed. Increases in position (posture) measurements
during high-difficulty tasks is not overly interesting given that
the study was designed to elicit these changes. However, it is

interesting to note that increases in posture were generally accom-
panied by increases in joint velocities and accelerations. This
makes sense intuitively as subjects were required to perform the
same number of exertions over a 60-second period for both low-
and high-difficulty tasks but were required to move further. As the
results of this study show promise, the natural next step would be to
design larger studies that aim to identify which IMUmeasurements
may be useful for classifying potential MSD injury risk. Given that
joint velocities and accelerations are less sensitive to IMU drift,
they demonstrate increased predictive power for assessing occu-
pational injury risk and should be the focus of future study. This is
especially the case given that drift correction algorithms perform
modestly or poorly at this time.34Moreover, though not observed in
this study, it is important to note that positional drift can, indeed,
cause error in anatomical joint velocity and acceleration component
measurements by modifying the relative coordinate systems used
to calculate these higher order signals. Velocity and acceleration
magnitudes, however, should remain completely impervious to
sensor drift, in theory.

It is important to interpret the findings of this study in context
with its limitations. First, the study was performed in a controlled
laboratory environment free of magnetic field interference from
ferrous metals and some electronics. In addition, as IMU sensors
rely on fusion algorithms that use historical data to adjust for
perceived estimate errors, the relatively short 60-second trials
observed in this study may have affected the results. This effect
could have been positive or negative as longer warm-ups and
collection periods can make the sensors more stable but can also
provide more time for drift to occur. Moreover, we only evaluated a
single IMU manufacturer and model. Xsens sensors have been
shown to be among the most accurate IMU sensors on the market,
especially compared with lower cost alternatives.35 Results from
other IMUs may vary depending on the accelerometer, gyroscope,
and magnetometer sensors they use and the fusion algorithms they
deploy. The results of the study may be further limited by the
subject population and experimental task. Though we recruited a
larger number of subjects (11) compared with prior validation
studies that have relied on as few as 3 or 4,19,23,24 a larger subject
pool could have allowed for the potential to capture an even wider
range of motion patterns. Finally, low- and high-difficulty tasks
were determined based on automotive assembly jobs previously
deemed to pose low and high risk for injury (respectively) to each
of the joints examined. As a result, multiple aspects of the
experimental task (eg, vertical height, twisting) were manipulated
between low- and high-difficulty tasks. It remains unclear if the
kinematic measurements reported on herein would be sensitive
enough to differentiate between more subtle differences in task
difficulty.

In conclusion, the IMU sensors examined in this study were
shown to have low mean errors and excellent mean accuracy
relative to a “gold standard” optical motion capture system.
Though average errors were good, significant positional drift
was still observed in a subset of trials. This positional drift could
impact posture interpretation, especially over a longer duration of
time, as is typical in actual work context and ergonomic assess-
ments. Moreover, ergonomics assessments utilizing posture alone
may be affected more so than those that use velocity or acceleration
as inputs. In contrast, drift did not significantly impact joint
velocity and acceleration measurements. Thus, higher order joint
velocity and accelerations that are less sensitive to drift should be
the primary focus of future studies that aim to reliably use IMU
sensors in the field. Finally, all kinematic measurements, including
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joint positions, velocities, and accelerations, were shown to be
good differentiators of task difficulty in this study, suggesting that
IMU sensors have the potential to classifyMSD injury risk in future
studies.
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